Publications for topic "Projects"
2021
Michael Rapp, Eneldo Loza Mencía, Johannes Fürnkranz and Hüllermeier Eyke, Gradient-Based Label Binning in Multi-Label Classification, in: Machine Learning and Knowledge Discovery in Databases (ECML-PKDD), Springer, 2021
[URL]
Moritz Kulessa, Eneldo Loza Mencía and Johannes Fürnkranz, Revisiting Non-Specific Syndromic Surveillance, in: Advances in Intelligent Data Analysis {XIX} - 19th International Symposium on Intelligent Data Analysis, {IDA} 2021, Porto, Portugal, April 26-28, 2021, Proceedings, pages 128-140, Springer International Publishing, 2021
[DOI]
[URL]
Moritz Kulessa, Bennet Wittelsbach, Eneldo Loza Mencía and Johannes Fürnkranz, Sum-Product Networks for Early Outbreak Detection of Emerging Diseases, in: Artificial Intelligence in Medicine, pages 61--71, Springer International Publishing, 2021
2020
Margot Mieskes, Eneldo Loza Mencía and Tim Kronsbein, A Data Set for the Analysis of Text Quality Dimensions in Summarization Evaluation, in: Proceedings of the Twelfth International Conference on Language Resources and Evaluation (LREC 2020), pages 6690–-6699, European Language Resources Association, 2020
download
[URL]
Eyke Hüllermeier, Johannes Fürnkranz and Eneldo Loza Mencía, Conformal Rule-Based Multi-label Classification, in: KI 2020: Advances in Artificial Intelligence, Springer, Cham, 2020
[DOI]
[URL]
Simon Bohlender, Eneldo Loza Mencía and Moritz Kulessa, Extreme Gradient Boosted Multi-label Trees for Dynamic Classifier Chains, Knowledge Engineering Group, Technische Universität Darmstadt, number 2006.08094 [cs.LG], ArXiv e-prints, 2020
[URL]
Simon Bohlender, Eneldo Loza Mencía and Moritz Kulessa, Extreme Gradient Boosted Multi-label Trees for Dynamic Classifier Chains, in: Discovery Science - 23rd International Conference, {DS} 2020, Thessaloniki, Greece, October 19-21, 2020, Proceedings, pages 471--485, Springer International Publishing, 2020
[DOI]
[URL]
Moritz Kulessa, Eneldo Loza Mencía and Johannes Fürnkranz, Improving the Fusion of Outbreak Detection Methods with Supervised Learning, in: Computational Intelligence Methods for Bioinformatics and Biostatistics - 16th International Meeting, {CIBB} 2019, Bergamo, Italy, September 4-6, 2019, Revised Selected Papers, Bergamo, Italy, pages 55--66, Springer, 2020
[DOI]
Michael Rapp, Eneldo Loza Mencía, Johannes Fürnkranz, Vu-Linh Nguyen and Eyke Hüllermeier, Learning Gradient Boosted Multi-label Classification Rules, in: Machine Learning and Knowledge Discovery in Databases (ECML-PKDD), pages 124--140, Springer, 2020
[DOI]
[URL]
Vu-Linh Nguyen, Eyke Hüllermeier, Michael Rapp, Eneldo Loza Mencía and Johannes Fürnkranz, On Aggregation in Ensembles of Multilabel Classifiers, in: Discovery Science, pages 533--547, Springer International Publishing, 2020
[DOI]
[URL]
Vu-Linh Nguyen and Eyke Hüllermeier, Reliable Multilabel Classification: Prediction with Partial Abstention (2020), in: Proceedings of the AAAI Conference on Artificial Intelligence, 34:04(5264-5271)
[DOI]
[URL]
2019
Hien Quoc Dang and Johannes Fürnkranz, Driver Information Embedding with Siamese LSTM networks, in: 2019 IEEE Intelligent Vehicles Symposium (IV), Paris, France, IEEE, 2019
[DOI]
[URL]
Yannik Klein, Michael Rapp and Eneldo Loza Mencía, Efficient Discovery of Expressive Multi-label Rules using Relaxed Pruning, in: Discovery Science, pages 367--382, Springer International Publishing, 2019
[DOI]
[URL]
Moritz Kulessa, Eneldo Loza Mencía and Johannes Fürnkranz, Improving Outbreak Detection with Stacking of Statistical Surveillance Methods, in: Workshop Proceedings of epiDAMIK: Epidemiology meets Data Mining and Knowledge discovery (held in conjunction with ACM SIGKDD 2019), Anchorage, USA, 2019
download
[URL]
Aïssatou Diallo, Markus Zopf and Johannes Fürnkranz, Learning Analogy-Preserving Sentence Embeddings for Answer Selection, in: Proceedings of the 23rd Conference on Computational Natural Language Learning (CoNLL), pages 910--919, Association for Computational Linguistics, 2019
[DOI]
[URL]
Jinseok Nam, Young{-}Bum Kim, Eneldo Loza Mencía, Sunghyun Park, Ruhi Sarikaya and Johannes Fürnkranz, Learning Context-dependent Label Permutations for Multi-label Classification, in: Proceedings of the 36th International Conference on Machine Learning (ICML-19), pages 4733--4742, {PMLR}, 2019
[URL]
Ousama Esbel, Sebastian Kauschke and Stephan Rinderknecht, Predicting and Forecasting the Lifetime of Automotive Vehicle Components, in: 29. VDI-Fachtagung Technische Zuverlässigkeit 2019, Düsseldorf, pages 321-336, VDI Wissensforum GmbH, 2019
Michael Rapp, Eneldo Loza Mencía and Johannes Fürnkranz, Simplifying Random Forests: On the Trade-off between Interpretability and Accuracy, Knowledge Engineering Group, Technische Universität Darmstadt, number 1911.04393, ArXiv e-prints, 2019
[URL]
2018
Markus Zopf, auto-hMDS: Automatic Construction of a Large Heterogeneous Multilingual Multi-Document Summarization Corpus, in: Proceedings of the 11th Edition of the Language Resources and Evaluation Conference (LREC 2018), Miyazaki, Japan, pages 3228-3233, 2018
[URL]
Sebastian Kauschke and Johannes Fürnkranz, Batchwise Patching of Classifiers, in: Proceedings of the 32nd AAAI Conference on Artificial Intelligence (AAAI-18), pages 3374--3381, 2018
[URL]
Moritz Kulessa and Eneldo Loza Mencía, Dynamic Classifier Chain with Random Decision Trees, in: Proceedings of the 21st International Conference of Discovery Science (DS-18), Limassol, Cyprus, pages 33--50, Springer-Verlag, 2018
[DOI]
linked PDF
Markus Zopf, Estimating Summary Quality with Pairwise Preferences, in: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT 2018), New Orleans, USA, pages 1687-1696, Association for Computational Linguistics, 2018
[URL]
Michael Rapp, Eneldo Loza Mencía and Johannes Fürnkranz, Exploiting Anti-monotonicity of Multi-label Evaluation Measures for Inducing Multi-label Rules, in: PAKDD 2018: Advances in Knowledge Discovery and Data Mining, pages 29--42, Springer International Publishing, 2018
[DOI]
[URL]
Hien Quoc Dang and Johannes Fürnkranz, Exploiting Maneuver Dependency for Personalization of a Driver Model, in: Proceedings of the Conference ``Lernen, Wissen, Daten, Analysen'' ({LWDA}-18), pages 93--97, CEUR-WS.org, 2018
[URL]
Eneldo Loza Mencía, Johannes Fürnkranz, Eyke Hüllermeier and Michael Rapp, Learning Interpretable Rules for Multi-label Classification, in: Explainable and Interpretable Models in Computer Vision and Machine Learning, pages 81--113, Springer-Verlag, 2018
[DOI]
[URL]
Tobias Joppen, Christian Wirth and Johannes Fürnkranz, Preference-Based Monte Carlo Tree Search, in: Proceedings of the 41st German Conference on Artficial Intelligence (KI-18), pages 327--340, Springer, 2018
[DOI]
[URL]
Hien Quoc Dang and Johannes Fürnkranz, Using Past Maneuver Executions for Personalization of a Driver Model, in: Proceedings of the 21th IEEE International Conference on Intelligent Transportation Systems (ITSC-18), Maui, Hawaii, pages 742--748, IEEE, 2018
Markus Zopf, Teresa Botschen, Tobias Falke, Benjamin Heinzerling, Ana Marasovic, Todor Mihaylov, Avinesh P.V.S., Eneldo Loza Mencía, Johannes Fürnkranz and Anette Frank, What’s important in a text? An extensive evaluation of linguistic annotations for summarization, in: Proceedings of the 5th International Conference on Social Networks Analysis, Management and Security (SNAMS-18), Valencia, Spain, pages 272--277, 2018
attachment
[DOI]
[URL]
Markus Zopf, Eneldo Loza Mencía and Johannes Fürnkranz, Which Scores to Predict in Sentence Regression for Text Summarization?, in: Proceedings of the 2018 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies (NAACL-HLT 2018), pages 1782--1791, 2018
[DOI]
[URL]
2017
Andrei Tolstikov, Frederik Janssen and Johannes Fürnkranz, Evaluation of Different Heuristics for Accommodating Asymmetric Loss Functions in Regression, in: Proceedings of the 20th International Conference on Discovery Science (DS-17), Kyoto, Japan, Springer-Verlag, 2017
[DOI]
[URL]
Hien Quoc Dang, Johannes Fürnkranz, Maximilian Hoepfl and Alexander Biedermann, Time-to-Lane-Change Prediction with Deep Learning, in: Proceedings of the 20th IEEE International Conference on Intelligent Transportation Systems (ITSC-17), IEEE, 2017
[DOI]
[URL]
2016
Markus Zopf, Eneldo Loza Mencía and Johannes Fürnkranz, Beyond Centrality and Structural Features: Learning Information Importance for Text Summarization, in: Proceedings of the 20th SIGNLL Conference on Computational Natural Language Learning, Berlin, Germany, pages 84-94, Association for Computational Linguistics, 2016
[URL]
Hani Salah and Thorsten Strufe, Evaluating and mitigating a Collusive version of the Interest Flooding Attack in NDN, in: Proceedings of the {IEEE} Symposium on Computers and Communication, {ISCC-16}, pages 938--945, {IEEE} Computer Society, 2016
[DOI]
Christian Wirth, Johannes Fürnkranz and Gerhard Neumann, Model-Free Preference-based Reinforcement Learning, in: Proceedings of the 30th {AAAI} Conference on Artificial Intelligence (AAAI-16), Phoenix, Arizona, pages 2222--2228, 2016
[URL]
Sebastian Kauschke, Johannes Fürnkranz and Frederik Janssen, Predicting Cargo Train Failures: A Machine Learning Approach for a Lightweight Prototype, in: Proceedings of the 19th International Conference on Discovery Science (DS-16), Bari, Italy, pages 151--166, Springer-Verlag, 2016
[DOI]
[URL]
Markus Zopf, Eneldo Loza Mencía and Johannes Fürnkranz, Sequential Clustering and Contextual Importance Measures for Incremental Update Summarization, in: Proceedings of the 26th International Conference on Computational Linguistics, Osaka, Japan, pages 1071-1082, The COLING 2016 Organizing Committee, 2016
[URL]
Markus Zopf, Maxime Peyrard and Judith Eckle{-}Kohler, The Next Step for Multi-Document Summarization: A Heterogeneous Multi-Genre Corpus Built with a Novel Construction Approach, in: Proceedings of the 26th International Conference on Computational Linguistics, Osaka, Japan, pages 1535-1545, The COLING 2016 Organizing Committee, 2016
[URL]
2015
Hani Salah and Thorsten Strufe, CoMon: An architecture for coordinated caching and cache-aware routing in CCN, in: Proceedings of the 12th Annual {IEEE} Consumer Communications and Networking Conference, (CCNC-15), pages 663--670, {IEEE}, 2015
[DOI]
Christian Wirth and Johannes Fürnkranz, On Learning from Game Annotations (2015), in: IEEE Transactions on Computational Intelligence and AI in Games, 7:3(304-316)
[DOI]
Sebastian Kauschke, Frederik Janssen and Immanuel Schweizer, On the Challenges of Real World Data in Predictive Maintenance Scenarios: A Railway Application, in: Proceedings of the LWA 2015 Workshops: KDML, FGWM, IR, and FGDB, Trier, Germany, October 7-9, 2015., pages 121-132, CEUR Workshop Proceedings, 2015
attachment
[URL]
Markus Zopf, SeqCluSum: Combining Sequential Clustering and Contextual Importance Measuring to Summarize Developing Events over Time, in: The Twenty-Fourth Text Retrieval Conference Proceedings, Gaithersburg, Maryland, USA, National Institute of Standards and Technology, 2015
[URL]
2014
Petar Ristoski, Eneldo Loza Mencía and Heiko Paulheim, A Hybrid Multi-Strategy Recommender System Using Linked Open Data, in: Semantic Web Evaluation Challenge, Proceedings (ESWC 2014), pages 150-156, Springer, 2014
[DOI]
[URL]
Christian Brinker, Eneldo Loza Mencía and Johannes Fürnkranz, Graded Multilabel Classification by Pairwise Comparisons, in: 2014 IEEE International Conference on Data Mining (ICDM 2014), pages 731--736, Curran Associates, IEEE, 2014
[DOI]
linked PDF
Christian Brinker, Eneldo Loza Mencía and Johannes Fürnkranz, Graded Multilabel Classification by Pairwise Comparisons, Knowledge Engineering Group, Technische Universität Darmstadt, Technical Report, 2014
download
linked PDF
Sebastian Kauschke, Immanuel Schweizer, Michael Fiebrig and Frederik Janssen, Learning to Predict Component Failures in Trains, in: Proceedings of the 16th LWA Workshops: KDML, IR and FGWM, pages 71--82, CEUR Workshop Proceedings, 2014
attachment
[URL]
Christian Wirth and Johannes Fürnkranz, Preference Learning from Annotated Game Databases, in: Proceedings of the 16th {LWA} Workshops: KDML, {IR} and FGWM, pages 57--68, CEUR-WS.org, 2014
[URL]
2013
Christian Wirth and Johannes Fürnkranz, A Policy Iteration Algorithm for Learning from Preference-based Feedback, in: Advances in Intelligent Data Analysis XII: 12th International Symposium (IDA-13), pages 427--437, Springer-Verlag, 2013
[DOI]
Eyke Hüllermeier and Johannes Fürnkranz, Editorial: Preference Learning and Ranking (2013), in: Machine Learning, 93:2-3(185--189)
[URL]
Christian Wirth and Johannes Fürnkranz, EPMC: Every Visit Preference Monte Carlo for Reinforcement Learning, in: Proceedings of the 5th Asian Conference on Machine Learning, (ACML-13), pages 483--497, JMLR.org, 2013
[URL]
Christian Wirth and Johannes Fürnkranz, Learning from Trajectory-Based Action Preferences, in: Proceedings of the ICRA 2013 Workshop on Autonomous Learning, Karslruhe, 2013
[URL]
Christian Wirth and Johannes Fürnkranz, Preference-Based Reinforcement Learning: A Preliminary Survey, in: Proceedings of the ECML/PKDD-13 Workshop on Reinforcement Learning from Generalized Feedback: Beyond Numeric Rewards, 2013
linked PDF
Johannes Fürnkranz, Rule-Based Methods, in: Encyclopedia of Systems Biology, Springer-Verlag, 2013
Special Issue on Preference Learning and Ranking (2013), in: Machine Learning, 93:2-3
[URL]
Ji-Ung Lee, Transductive Pairwise Classification, TU Darmstadt, Knowledge Engineeering Group, 2013
linked PDF
Victor-Philipp Negoescu, Wissensgewinn aus Spieldatenbanken, Knowledge Engineering Group, TU Darmstadt, 2013
linked PDF
2012
Johannes Fürnkranz and Sang-Hyeun Park, Error-Correcting Output Codes as a Transformation from Multi-Class to Multi-Label Prediction, in: Proceedings of the 15th International Conference on Discovery Science (DS-12), pages 254--267, Springer, 2012
[DOI]
Christian Wirth and Johannes Fürnkranz, First Steps Towards Learning from Game Annotations, in: Proceedings of the {ECAI} Workshop on Preference Learning: Problems and Applications in AI, Montpellier, pages 53-58, 2012
linked PDF
Wouter Duivesteijn, Eneldo Loza Mencía, Johannes Fürnkranz and Arno J. Knobbe, Multi-label LeGo -- Enhancing Multi-label Classifiers with Local Patterns, Knowledge Engineering Group, Technische Universität Darmstadt, number TUD-KE-2012-02, 2012
download
linked PDF
Johannes Fürnkranz and Eyke Hüllermeier, Preference Learning, in: Encyclopedia of the Sciences of Learning, pages 986, Springer-Verlag, 2012
[DOI]
Frederik Janssen, Faraz Fallahi, Jan Noessner and Heiko Paulheim, Towards Rule Learning Approaches to Instance-based Ontology Matching, in: 1st International Workshop on Knowledge Discovery and Data Mining Meets Linked Open Data (Know@LOD), pages 13--18, 2012
attachment
linked PDF
Heiko Paulheim and Johannes Fürnkranz, Unsupervised Generation of Data Mining Features from Linked Open Data, in: International Conference on Web Intelligence and Semantics (WIMS'12), 2012
attachment
[DOI]
2011
Frederik Janssen and Johannes Fürnkranz, Heuristic Rule-Based Regression via Dynamic Reduction to Classification, in: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI-11), Barcelona, Spain, pages 1330--1335, 2011
[URL]
Eyke Hüllermeier and Johannes Fürnkranz, Learning from Label Preferences, in: Proceedings of the 14th International Conference on Discovery Science (DS-11), pages 2--17, Springer, 2011
[DOI]
Eyke Hüllermeier and Johannes Fürnkranz, Learning from Label Preferences, in: Proceedings of the 22nd International Conference on Algorithmic Learning Theory (ALT-11), pages 38, Springer, 2011
[DOI]
Weiwei Cheng, Johannes Fürnkranz, Eyke Hüllermeier and Sang-Hyeun Park, Preference-Based Policy Iteration: Leveraging Preference Learning for Reinforcement Learning, in: Proceedings of the 22nd European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2011, Athens, Greece), Part I, pages 312--327, Springer, 2011
linked PDF
Jan-Nikolas Sulzmann and Johannes Fürnkranz, Rule Stacking: An Approach for Compressing an Ensemble of Rule Sets into a Single Classifier, in: Proceedings of the 14th International Conference on Discovery Science (DS-11), pages 323--334, Springer, 2011
[DOI]
2010
Eneldo Loza Mencía, An Evaluation of Multilabel Classification for the Automatic Annotation of Texts, in: Proceedings of the LWA 2010: Lernen, Wissen, Adaptivität, Workshop on Knowledge Discovery, Data Mining and Machine Learning (KDML 2010), Kassel, pages 121-123, 2010
download
[URL]
Anne-Christine Karpf, Bidirectional Rule Learning, Knowledge Engineering Group, TU Darmstadt, 2010
linked PDF
Eneldo Loza Mencía and Johannes Fürnkranz, Efficient Multilabel Classification Algorithms for Large-Scale Problems in the Legal Domain, in: Semantic Processing of Legal Texts -- Where the Language of Law Meets the Law of Language, pages 192-215, Springer-Verlag, 2010
download
[DOI]
linked PDF
Jiawei Du, Iterative Optimization of Rule Sets, TU Darmstadt, Knowledge Engineering Group, 2010
linked PDF
Jan-Nikolas Sulzmann and Johannes Fürnkranz, Probability Estimation and Aggregation for Rule Learning, TU Darmstadt, Knowledge Engineering Group, number TUD-KE-2010-03, 2010
attachment
linked PDF
Frederik Janssen and Johannes Fürnkranz, Separate-and-conquer Regression, TU Darmstadt, Knowledge Engineering Group, number TUD-KE-2010-01, 2010
linked PDF
Frederik Janssen and Johannes Fürnkranz, The SeCo-framework for rule learning, TU Darmstadt, Knowledge Engineering Group, number TUD-KE-2010-02, 2010
linked PDF
2009
Lars Wohlrab and Johannes Fürnkranz, A Comparison of Strategies for Handling Missing Values in Rule Learning, TU Darmstadt, Knowledge Engineering Group, number TUD-KE-2009-03, 2009
attachment
linked PDF
Frederik Janssen and Johannes Fürnkranz, A Re-evaluation of the Over-Searching Phenomenon in Inductive Rule Learning, in: Proceedings of the SIAM International Conference on Data Mining (SDM-09), pages 329--340, 2009
[URL]
Jan-Nikolas Sulzmann and Johannes Fürnkranz, A Study of Probability Estimation Techniques for Rule Learning, in: From Local Patterns to Global Models: Proceedings of the ECML/PKDD-09 Workshop (LeGo-09), pages 123--138, 2009
linked PDF
Jan-Nikolas Sulzmann and Johannes Fürnkranz, An Empirical Comparison of Probability Estimation Techniques for Probabilistic Rules, in: Proceedings of the 12th International Conference on Discovery Science (DS-09), Porto, Portugal, pages 317--331, Springer-Verlag, 2009
attachment
[URL]
Eneldo Loza Mencía, Sang-Hyeun Park and Johannes Fürnkranz, Efficient Voting Prediction for Pairwise Multilabel Classification, in: Proceedings of the 17th European Symposium on Artificial Neural Networks (ESANN 2009, Bruges, Belgium), pages 117--122, d-side publications, 2009
[URL]
Eneldo Loza Mencía, Sang-Hyeun Park and Johannes Fürnkranz, Efficient Voting Prediction for Pairwise Multilabel Classification, in: Proceedings of the LWA 2009: Lernen - Wissen - Adaption, Workshop Knowledge Discovery, Data Mining and Machine Learning (KDML-09), Darmstadt, Germany, pages 72--75, 2009
linked PDF
Aleksandrs Galickis, Informationsextraktion aus Lebensläufen, TU Darmstadt, Knowledge Engineering Group, 2009
attachment
linked PDF
Matthias Beckerle, Interaktives Regellernen, TU Darmstadt, Knowledge Engineering Group, 2009
linked PDF
Eneldo Loza Mencía, Segmentation of legal documents, in: Proceedings of the 12th International Conference on Artificial Intelligence and Law, Barcelona, Spain, pages 88--97, ACM, 2009
[DOI]
linked PDF
2008
Jan-Nikolas Sulzmann and Johannes Fürnkranz, A Comparison of Techniques for Selecting and Combining Class Association Rules, in: From Local Patterns to Global Models: Proceedings of the ECML/PKDD-08 Workshop (LeGo-08), pages 154--168, 2008
linked PDF
Jan-Nikolas Sulzmann and Johannes Fürnkranz, A Comparison of Techniques for Selecting and Combining Class Association Rules, in: Proceedings of the LWA 2008: Lernen -- Wissen -- Adaption, pages "", 2008
Frederik Janssen and Johannes Fürnkranz, A Re-Evaluation of the Over-Searching Phenomenon in Inductive Rule Learning, TU Darmstadt, Knowledge Engineering Group, number TUD-KE-2008-02, 2008
attachment
linked PDF
Eneldo Loza Mencía, Sang-Hyeun Park and Johannes Fürnkranz, Advances in Efficient Pairwise Multilabel Classification, TU Darmstadt, Knowledge Engineering Group, number TUD-KE-2008-06, 2008
attachment
linked PDF
Frederik Janssen and Johannes Fürnkranz, An Empirical Investigation of the Trade-Off between Consistency and Coverage in Rule Learning Heuristics, in: Proceedings of the 11th International Conference on Discovery Science (DS-08), pages 40--51, Springer-Verlag, 2008
[DOI]
linked PDF
Frederik Janssen and Johannes Fürnkranz, An Empirical Quest for Optimal Rule Learning Heuristics, TU Darmstadt, Knowledge Engineering Group, number TUD-KE-2008-01, 2008
attachment
linked PDF
Eneldo Loza Mencía and Johannes Fürnkranz, An Evaluation of Efficient Multilabel Classification Algorithms for Large-Scale Problems in the Legal Domain, in: Proceedings of the LREC 2008 Workshop on Semantic Processing of Legal Texts, pages 23-32, 2008
linked PDF
Eneldo Loza Mencía and Johannes Fürnkranz, Efficient Pairwise Multilabel Classification for Large-Scale Problems in the Legal Domain, in: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Disocvery in Databases (ECML-PKDD-2008), Part II, pages 50--65, Springer, 2008
[DOI]
linked PDF
Arno J. Knobbe, Bruno Crémilleux, Johannes Fürnkranz and Martin Scholz, From Local Patterns to Global Models: The LeGo Approach to Data Mining, in: From Local Patterns to Global Models: Proceedings of the ECML/PKDD-08 Workshop (LeGo-08), pages 1--16, 2008
linked PDF
Jan Frederik Sima, Paarweise Hierarchische Klassifikation, TU Darmstadt, Knowledge Engineering Group, 2008
attachment
linked PDF
Eneldo Loza Mencía and Johannes Fürnkranz, Pairwise Learning of Multilabel Classifications with Perceptrons, in: Proceedings of the 2008 IEEE International Joint Conference on Neural Networks (IJCNN-08), IEEE, pages 2900--2907, 2008
[DOI]
linked PDF
Sven Wagner, Supervised Local Pattern Discovery, TU Darmstadt, Knowledge Engineering Group, 2008
attachment
linked PDF
Benedict Werling, Vergleich von Pruning-Algorithmen für Regel-Lerner, TU Darmstadt, Knowledge Engineering Group, 2008
attachment
linked PDF
2007
Frederik Janssen and Johannes Fürnkranz, Meta-Learning Rule Learning Heuristics, TU Darmstadt, Knowledge Engineering Group, number TUD-KE-2007-02, 2007
attachment
linked PDF
Frederik Janssen and Johannes Fürnkranz, Meta-Learning Rule Learning Heuristics, in: Proceedings of ECML-PKDD-07 Workshop on Planning to Learn (PlanLearn-07), pages 9-21, 2007
linked PDF
Frederik Janssen and Johannes Fürnkranz, Meta-Learning Rule Learning Heuristics, in: Proceedings of the German Workshop on Lernen, Wissen, Adaptivität - LWA2007, pages 167--174, 2007
Eneldo Loza Mencía and Johannes Fürnkranz, Pairwise Learning of Multilabel Classifications with Perceptrons, TU Darmstadt, Knowledge Engineering Group, number TUD-KE-2007-05, 2007
attachment
linked PDF
2006
Jun Ying, Analysis and Comparison of Existent Information Extraction Methods, TU Darmstadt, Knowledge Engineering Group, 2006
attachment
linked PDF
Sven Burges, Meta-Lernen einer Evaluierungs-Funktion für einen Regel-Lerner, TU Darmstadt, Knowledge Engineering Group, 2006
attachment
linked PDF
Frederik Janssen and Johannes Fürnkranz, On Trading Off Consistency and Coverage in Inductive Rule Learning, in: Proceedings of the German Workshop on Lernen, Wissen, Adaptivität - LWA2006, pages 306--313, Gesellschaft für Informatik e. V. (GI), 2006
[URL]
Marc Ruppert, Vergleich von AQ, CN2 und CN2 mit Weighted Covering, TU Darmstadt, Knowledge Engineering Group, 2006
attachment
linked PDF