
Technische Universität Darmstadt
Knowledge Engineering Group

Hochschulstrasse 10, D-64289 Darmstadt, Germany

http://www.ke.informatik.tu-darmstadt.de

Technical Report TUD–KE–2008–01

Frederik Janssen, Johannes Fürnkranz

An Empirical Quest for Optimal Rule
Learning Heuristics

An Empirical Quest for Optimal Rule Learning Heuristics

Frederik Janssen janssen@ke.informatik.tu-darmstadt.de

Johannes Fürnkranz fuernkranz@informatik.tu-darmstadt.de

Knowledge Engineering Group
Department of Computer Science
TU Darmstadt, Germany

Abstract

The primary goal of the research reported in this paper is to identify what criteria are
responsible for the good performance of a heuristic rule evaluation function in a greedy top-
down covering algorithm. We first argue that search heuristics for inductive rule learning
algorithms typically trade off consistency and coverage, and we investigate this trade-off by
determining optimal parameter settings for five different parametrized heuristics. In order
to avoid biasing our study by known functional families, we also investigate the potential of
using meta-learning for obtaining alternative rule learning heuristics. The key results of this
experimental study are not only practical default values for commonly used heuristics and a
broad comparative evaluation of known and novel rule learning heuristics, but we also gain
theoretical insights into factors that are responsible for a good performance. For example,
we observe that consistency should be weighed more heavily than coverage, presumably
because a lack of coverage can later be corrected by learning additional rules.

1. Introduction

The long-term goal of our research is to understand the properties of rule learning heuristics,
that will allow them to perform well in a wide variety of datasets. Although different clas-
sification rule learning algorithms use different heuristics, there has not been much work on
trying to characterize their behavior. Notable exceptions include (Lavrač, Flach, & Zupan,
1999), which proposed weighted relative accuracy as a novel heuristic, and (Fürnkranz &
Flach, 2005), in which a wide variety of rule evaluation metrics were analyzed and com-
pared by visualizing their behavior in ROC space. There are also some works on comparing
properties of association rule evaluation measures (e.g., (Tan, Kumar, & Srivastava, 2002))
but these have different requirements than classification rules (e.g., completeness is not an
issue there).

In this paper, we will try to approach this problem empirically. We will first empirically
compare and analyze a number of known rule learning heuristics. Rule learning heuristics,
in one way or another, trade off consistency and coverage. On the one hand, rules should
be as consistent as possible by only covering a small percentage of negative examples. On
the other hand, rules with a high coverage tend to be more reliable, even though they might
be less precise on the training examples than alternative rules with lower coverage. An
increase in coverage of a rule typically goes hand-in-hand with a decrease in consistency,
and vice versa. In fact, the conventional top-down hill-climbing search for single rules follows
exactly this principle: starting with the empty rule, conditions are greedily added, thereby
decreasing coverage but increasing consistency.

Frederik Janssen, Johannes Fürnkranz

In this work, we will show that five well-known rule evaluation metrics (a cost trade-off,
a relative cost trade-off, the m-estimate, the F -measure, and the Klösgen measures) provide
parameters that allow to control this trade-off. In an extensive experimental study—to our
knowledge the largest empirical comparison of rule learning heuristics to date—we aimed
at determining optimal values for each of their respective parameters. We will compare
these settings to standard heuristics and show that the new settings outperform the fixed
consistency/coverage trade-offs that are commonly used as rule learning heuristics. By
testing the performance of the optimized heuristics on an additional selection of datasets
not used for optimization, we will ensure that this performance gain is not due to overfitting
the training datasets.

However, optimizing parameters constrains the candidate heuristics to known functional
shapes. Consequently, we will then try to leave these constraints behind and try to discover
entirely new heuristics. The key idea is to meta-learn such a heuristic from experience,
without a bias towards existing measures. Consequently, we created a large meta data set
(containing information from which we assume that the ”true” performance of a rule can
be learned) and use various regression methods to learn to predict this performance. On
this dataset, we learn an evaluation function and use it as a search heuristic inside our
implementation of a simple rule learner. We report on the results of our experiments with
various options for generating the meta datasets, with different feature sets and different
meta-learning algorithms. In particular, we try to evaluate the importance of rule length
as an additional feature and consider a delayed-reward scenario where the learner tries to
predict the performance of the completed rule from its incomplete current state in the search
space.

The paper is organized as follows: we start with a brief recapitulation of separate-and-
conquer learning and describe our simple ruler learner, which is used for generating the
meta data and for evaluating the learned heuristics (Section 2). Section 3 then provides a
survey of the heuristics that are experimentally compared in this paper. In this section, we
also briefly recapitulate the use of coverage space isometrics for visualizing the preference
structure of rule learning heuristics. After a brief description of the experimental setup that
will be used throughout the paper (Section 4), the main part of the paper describes our
experimental work in optimizing known heuristics (Section 5) and meta-learning new heuris-
tics (Section 6). The paper is wrapped up with a brief discussion of related work (Section 7)
and a summary of the most important conclusions drawn from this study (Section 8).

Parts of this paper have previously appeared as (Janssen & Fürnkranz, 2006) and
(Janssen & Fürnkranz, 2007).

2. Separate-and-Conquer Rule Learning

The goal of an inductive rule learning algorithm is to automatically learn rules that allow
to map the examples of the training set to their respective classes. Algorithms differ in
the way they learn individual rules, but most of them employ a separate-and-conquer or
covering strategy for combining rules into a rule set (Fürnkranz, 1999).

Separate-and-conquer rule learning can be divided into two main steps: First, a single
rule is learned from the data (the conquer step). Then all examples which are covered by
the learned rule are removed from the training set (the separate step), and the remaining
examples are “conquered”. The two steps are iterated until no more positive examples are

2

An Empirical Quest for Optimal Rule Learning Heuristics

Algorithm 1 SeparateAndConquer(Examples)
loop until all positive examples are covered
Theory ← ∅
while Positive(Examples) 6= ∅

find the best rule
Rule ← GreedyTopDown(Examples)

stop if it doesn’t cover more pos than negs
if |Covered(Rule, Positive(Examples))|
≤ |Covered(Rule, Negative(Examples))|
break

remember rule and remove covered examples
Theory ← Theory ∪ Rule
Examples ← Examples \ Covered(Rule,Examples)

return Theory

left. This ensures that every positive example is covered at least by one rule (completeness)
and no negative example is included (consistency). The origin of this strategy is the AQ-
Algorithm (Michalski, 1969) but it is still used in many algorithms, most notably in Ripper
(Cohen, 1995), arguably one of the most accurate rule learning algorithms today.

For the purpose of this empirical study, we implemented a simple separate-and-conquer
or covering rule learning algorithm within the SeCo-Framework, a modular architecture for
rule learning (Fürnkranz, 1999; Thiel, 2005).1 Both the covering algorithm and the top-
down refinement inside the covering loop are fairly standard. We believe that it is not a
fundamental point which rule learner is used, as long as it allows to only vary the search
heuristics and keep all other options stable. However, covering algorithms often differ in
details, so we believe it is worth-while to specify exactly how we proceeded.

Algorithm 1 shows the basic covering loop. It repeatedly learns one rule by calling
GreedyTopDown, removes all examples covered by this rule from the training set, and
adds the rule to the final theory. This is repeated until no more positive examples are left
or until adding the best learned rule would not increase the accuracy of the rule set on the
training set (which is the case when the rule covers more negative than positive examples).

Algorithm 2 shows the basic algorithm for learning a single rule with greedy top-down
search. The algorithm starts with an initially empty rule (a rule that covers all examples).
The rule is successively refined by adding conditions to its body. Conditions are either tests
for equality with a specific value of a discrete attribute, or, in the case of a continuous
attribute, a comparison (≤ or >) with a threshold value (a value that occurs for this
attribute in the training set). All candidate refinements are evaluated with a heuristic
EvaluateRule, and the best refinement is stored in MaxRule. It is then checked whether

1. The SeCo framework defines a generic separate-and-conquer rule learner that allows to configure specific
variations by specifying appropriate modules. Its implementation within the Weka machine learning
library is currently under development in our group.

3

Frederik Janssen, Johannes Fürnkranz

Algorithm 2 GreedyTopDown(Examples)
remember the rule with the best evaluation
BestRule ← MaxRule ← null
BestEval ← EvaluateRule(BestRule,Examples)

do
compute refinements of the best previous rule
Refinements ← Refinements(MaxRule)

find the best refinement
MaxEval ← −∞
for Rule ∈ Refinements

Eval ← EvaluateRule(Rule,Examples)
if Eval > MaxEval

MaxRule ← Rule
MaxEval ← Eval

store the rule if we have a new best
if MaxEval ≥ BestEval

BestRule ← MaxRule
BestEval ← MaxEval

break loop when no more refinements
until Refinements = ∅

return BestRule

MaxRule is better than the current best rule, and the procedure recursively continues with
the refinements of MaxRule. If no further refinements are possible, the search stops and the
best rule encountered during the search is returned.

Thus, the algorithm works like CN2 (Clark & Niblett, 1989), but differs from Foil (Quin-
lan, 1990), which forms the basis of many rule learning algorithms, most notably Ripper
(Cohen, 1995). Foil-based algorithms do not evaluate refinements on an absolute scale, but
relative to their respective predecessors. Hence, the evaluation of two rules with different
predecessors is not directly comparable. For this reason, Foil-like algorithms always return
the last rule searched. Thus, their performance crucially depends on the availability of a
pruning heuristic or a stopping criterion, which determines when the refinement process
should stop. On the other hand, algorithms of the type shown in Algorithm 2 not neces-
sarily return the last rule searched, but the rule with the highest evaluation encountered
during the search. In this case, a stopping heuristic assumes the role of a filtering criterion,
which filters out unpromising candidates, but does not directly influence the choice of the
best rule (Clark & Boswell, 1991).

Because we wanted to gain a principal understanding of what constitutes a good eval-
uation metric for inductive rule learning, we did not employ explicit stopping criteria or
pruning techniques for overfitting avoidance, but solely relied on the evaluation of the rules
by the used rule learning heuristic. Note, however, that this does not necessarily mean that

4

An Empirical Quest for Optimal Rule Learning Heuristics

we learn an overfitting theory that is complete and consistent on the training data (i.e.,
a theory that covers all positive and no negative examples), because many heuristics will
prefer impure rules with a high coverage over pure rules with a lower coverage.

Our implementation of the algorithm made use of a few optimizations that are not shown
in Algorithm 2. Among them are stopping the refinement process when no more negative
examples are covered, random tie breaking for rules with equal heuristic evaluations, and
filtering out candidate rules that do not cover any positive examples (this may make a
huge difference in the number of rules generated for the accuracy heuristic). To speed up
the implementation, we also stop searching the refinements of a rule if its best possible
refinement—the virtual rule that covers all remaining positive examples and none of the
remaining negative examples—has a lower evaluation than the current best rule. Rules
are added to the theory until a new rule would not increase the accuracy of the theory on
the training set (this is the case when the learned rule covers more negative than positive
examples).

3. Rule Learning Heuristics

The goal of a rule learning algorithm is to find a simple set of rules that explains the
training data and generalizes well to unseen data. This means that individual rules have to
simultaneously optimize two criteria:

Coverage: the number of positive examples that are covered by the rule should be maxi-
mized and

Consistency: the number of negative examples that are covered by the rule should be
minimized.

Thus, each rule can be characterized by

• p and n ≡ the positive/negative examples covered by the rule

• P and N ≡ the total amount of positive/negative examples in the training set

Consequently, most rule learning heuristics depend on p, n, P , and N , but combine
these values in different ways.

A few heuristics also include other parameters, such as

• l ≡ the length of the rule and

• p′ and n′ ≡ the number of positive and negative examples that are covered by the
rule’s predecessor.

Later on in this paper, we will evaluate the utility of taking the rule’s length into account
(cf. Section 6.2.2). However, as our goal is to evaluate a rule irrespective of how it has been
learned, we will not consider the parameters p′ and n′. Heuristics like Foil’s information
gain (Quinlan, 1996), which include p′ and n′, may yield different evaluations for the same
rule, depending on the order in which its conditions have been added to the rule body. We
will not further consider heuristics of this type in this paper.

5

Frederik Janssen, Johannes Fürnkranz

As P and N are constant for a given learning problem, heuristics effectively only differ
in the way they trade off completeness (maximizing p) and consistency (minimizing n).
Thus they may be viewed functions h(p, n). We will denote rule evaluation heuristics by
the letter h with a subscript to differentiate between them. As all heuristics depend only
on the number of covered positive and negative examples, they are unable to discriminate
between rules that cover the same number of positive and negative examples. So it follows
that h (Ri) ≡ h (ni, pi) holds for all rules Ri. Furthermore it is obvious that R1 6= R2 9
h (R1) 6= h (R2).

In the following, we will survey the heuristics that will be investigated in this paper.
Most (but not all) of these heuristics have already been discussed by (Fürnkranz & Flach,
2005), so we will keep the discussion short. We discriminate between basic heuristics (Sec-
tion 3.2), which primarily focus on one aspect, composite heuristics (Section 3.3), which
provide a fixed trade-off between consistency and coverage, and parametrized heuristics
(Section 3.3), which provide a parameter that allows to tune this trade-off. However, first
we will briefly recapitulate coverage spaces, which will be our primary means of visualizing
the behavior of the investigated heuristics.

3.1 Visualization with Coverage Space Isometrics

(Fürnkranz & Flach, 2005) suggested to visualize the behavior of rule learning heuristics by
plotting their isometrics in coverage space, an un-normalized version of ROC-space. Unlike
ROC-spaces, the coverage space plots p (the absolute number of covered positive examples)
on the y-axis and n (the absolute number of covered negatives) on the x -axis. For example
the point (0, 0) represents the empty theory where no example is covered at all. A good
algorithm should navigate the learning process in the direction of the point (0, P), which
represents the optimal theory that covers all positive examples and no negatives. The point
(N, 0) represents the opposite theory, and the universal theory, covering all P positive and
N negative examples, is located at (N,P).

We can also represent individual rules Ri by a point (ni, pi) where ni ∈ N are the
covered negative examples and pi ∈ P are the covered positives. Isometrics connect rules
R1, ..., Rm which have an identical heuristic value but cover different numbers of examples.
The preference bias of different heuristics may then be visualized by plotting the respective
heuristic values of the rules on top their locations in coverage space, resulting in a 3-
dimensional (3-d) plot (p, n, h(p, n)) (right picture of Figure 1). A good way to view this
graph in two dimensions is to plot the isometrics of the learning heuristics, i.e., to show
contour lines that connect rules with identical heuristic evaluation values. Figure 1 shows
examples of a 2-d and 3-d coverage space that both contain isometrics of precision (p/p+n).
The left one shows the respective values assigned by the heuristic as numbers attached to
the contour lines whereas the right one shows them as a 3-d surface. The rules R1 (covering
30 negatives and 20 positives) and R2 (n = 48, p = 32) both have a precision of 0.4 and
therefore lie on the same isometric. For visualization, one is primarily interested in the
shape of the isometrics. Thus, we will typically omit the evaluation value from the graph
and prefer the 2-d plots.

6

An Empirical Quest for Optimal Rule Learning Heuristics

 0 10 20 30 40 50 60

 0
 10

 20
 30

 40

 0

 0.2

 0.4

 0.6

 0.8

 1

h
eu

ri
st

ic
 e

v
al

u
at

io
n

negatives

positives

 0 10 20 30 40 50 60

 0
 10

 20
 30

 40

 0

 0.2

 0.4

 0.6

 0.8

 1

h
eu

ri
st

ic
 e

v
al

u
at

io
n

negatives

positives

Figure 1: Isometrics in 2-d and 3-d coverage space

3.2 Basic Heuristics

• true positive rate (recall) htpr = hrec = p
P

computes the coverage on the positive examples only. It is – on its own – equivalent to simply
using p (because P is constant). Due to its independence of covered negative examples, its
isometrics are parallel horizontal lines.

• false positive rate hfpr = n
N

computes the coverage on the negative examples only. Its isometrics are parallel vertical
lines.

• full coverage hcov = p+n
P+N

computes the fraction of all covered examples. The maximum heuristic value is reached by
the universal theory, which covers all examples (the point (N,P) of the coverage space).
The isometrics are parallel lines with a slope of −1 (similar to those of the lower right graph
in Figure 3).

3.3 Composite Heuristics

The heuristics shown in the previous section only optimize one of the two criteria, consis-
tency or coverage. In this section, we will discuss a few standard heuristics that provide a
fixed trade-off between consistency and coverage.

• precision hprec = p
p+n

computes the fraction of correctly classified examples (p) among all covered examples (p+n).
Its isometrics are rotating around the origin as depicted in Figure 1. Precision is known
to overfit. More precisely, for rules with high consistency, coverage becomes less and less
important. All rules with maximum consistency (hprec = 1.0) are considered to be equal,

7

Frederik Janssen, Johannes Fürnkranz

irrespective of their coverage. This can be seen nicely from the isometric structure, where
the slopes of the isometrics become steeper and steeper when they approach the P -axis,
which by itself forms the isometric for the maximum consistency case. The inverse behavior
(preferring coverage over consistency for regions with high coverage) can also observed near
the N -axis, but this regions is not interesting for practical rule learning systems.

• Laplace hLap = p+1
p+n+2

is an attempt to alleviate the overfitting behavior of hprec by initializing the counts for
p and n with 1, thereby effectively moving the rotation point of precision to (−1,−1) in
the coverage space. It is used in the CN2-algorithm (Clark & Niblett, 1989). However,
it is known that the Laplace heuristic will still lead to serious overfitting if used without
appropriate pruning heuristics. Thus, it also places too strong emphasis on consistency over
coverage.

• accuracy hacc = p− n

computes the percentage p+(N−n)/P+N of correctly classified examples among all training
examples. As P and N are typically constant for the evaluation of a set of candidate rules,
this is equivalent to the simpler p − n. Its isometrics in coverage space are parallel lines
with a slope of 1 (45 degrees). Accuracy has been used as a pruning criterion in I-REP
(Fürnkranz & Widmer, 1994), and (with a penalty on rule length) as a selection criterion in
Progol (Muggleton, 1995). We will see later in this paper that his measure over-generalizes,
i.e., it places too strong emphasis on coverage.

• weighted relative accuracy (WRA) hWRA = htpr − hfpr

computes the difference between the true positive rate and the false positive rate. The basic
idea of weighted relative accuracy (Lavrač et al., 1999) is to compute accuracy on a normal-
ized distribution of positive and negative examples. As a result, the lines of the isometrics
are now parallel to the diagonal of the coverage space instead of those of hacc which have a
slope of 1 (cf. upper right graph of Figure 3). The measure has been successfully used in
subgroup discovery (Lavrač, Kavšek, Flach, & Todorovski, 2004). However, for inductive
rule learning, the experimental evidence of (Todorovski, Flach, & Lavrac, 2000), which is
consistent with our own experience presented later in this paper, suggests that this measure
has a tendency to overgeneralize.

• correlation hcorr = pN−nP√
P ·N ·(p+n)·(P−p+N−n)

computes the correlation coefficient between the predicted and the target labels. Like hWRA,
its isometrics are symmetrical around the diagonal, but their ends are bended towards
the (0, 0) and (N,P) points. The measure has exhibited a very good performance in the
inductive rule learning algorithm Fossil (Fürnkranz, 1994) (where it was formulated as
a Foil -type gain heuristic, i.e., p′ and n′ were used instead of P and N), and has been
frequently used in association rule and subgroup discovery (Brin, Motwani, & Silverstein,
1997; Xiong, Shekhar, Tan, , & Kumar, 2004).

8

An Empirical Quest for Optimal Rule Learning Heuristics

3.4 Parametrized Heuristics

Although the measures discussed in the previous section aim at trading off consistency and
coverage, they implement a fixed trade-off, which, as experience shows, is not optimal, i.e.,
it often unduly prefers consistency or coverage. In this section, we will discuss five heuristics
that allow to tune this trade-off with a parameter. We will start with two cost measures,
which directly trade off absolute or relative positive and negative coverage. Thereafter, we
will see three measures that use hprec for optimizing consistency, but use different measures
(hrec, hWRA, hcov) for optimizing coverage.

• cost measure hc = c · p− (1− c) · n

allows to directly trade off consistency and coverage with a parameter c. c = 0 only considers
consistency, c = 1 only coverage. If c = 1/2, the resulting heuristic is equivalent to hacc.
The isometrics of this heuristics are parallel lines, with a slope of (1− c)/c.

• relative cost measure hcr = cr · htpr − (1− cr) · hfpr

trades off the true positive rate and the false positive rate. This heuristic is quite similar to
hc. In fact, for any particular data set, the cost measure and the relative cost measure are
equivalent if cr = P

P+N · c. However, the performance of fixed values of c and cr over a wide
variety of datasets with different class distributions will differ. Clearly, setting cr = 1/2
implements hWRA.

• F -measure hF = (β2+1)·hprec·hrec

β2·hprec+hrec

The F -measure (Salton & McGill, 1986) has its origin in Information Retrieval and trades
off the basic heuristics hprec and hrec. Its isometrics are illustrated in Figure 2. Basically,
the isometrics are identical to those of precision, with the exception that the rotation point
does not originate in (0, 0) but in a point (−g, 0), where g depends on the choice of β.
If β → 0, the origin move towards (0, 0), and the isometrics correspond to those of hprec.
The more the parameter is increased the more the origin of the isometrics is shifted in the
direction of the negative N -axis. The observable effect is that the lines in the isometrics
becomes flatter and flatter. Conversely if β → ∞ the resulting isometrics approach those
of hrec which are horizontal parallel lines.

• m-estimate hm =
p+m· P

P+N

p+n+m

The idea of this parametrized heuristic (Cestnik, 1990) is to presume that a rule covers m
training examples a priori, maintaining the distribution of the examples in the training set
(m · P/P+N examples are positive). For m = 2 and assuming an equal example distribution
(P = N), we get hLap as a special case.

If we inspect the isometrics in relation to the different parameter settings, we observe a
similar behavior as discussed above for the F -measure, except that the origin of the turning
point now does not move on the N -axis, but it is shifted in the direction of the negative
diagonal of the coverage space (cf. (Fürnkranz & Flach, 2005) for an illustration). m = 0

9

Frederik Janssen, Johannes Fürnkranz

Figure 2: General behavior of the F -Measure

corresponds to precision, and for m → ∞ the isometrics become increasingly parallel to
the diagonal of the coverage space, i.e., they approach the isometrics of hWRA. Thus, the
m-estimate trades off hprec and hWRA.

• Klösgen hω = (hcov)
ω ·
(
hprec − P

P+N

)
trades off Precision Gain (the increase in precision compared to the default distribution
P/P+N) and Coverage. The isometrics of Precision Gain on its own behave like the isomet-
rics of precision, except that their labels differ (the diagonal now always corresponds to a
value of 0).

Setting ω = 1 results in WRA, and ω = 0 yields Precision Gain. Thus, the Klösgen
measure starts with the isometrics of hprec and first evolves into those of hWRA, just like the
m-estimate. However, the transformation takes a different route, with non-linear isometrics.
The first two graphs of Figure 3 shows the result for the parameter settings ω = 0.5 and
ω = 1 (WRA), which were suggested by Klösgen.

With a further increase of the parameter, the isometrics converge to hcov. The middle
left graph shows the parameter setting ω = 2, which was suggested by (Wrobel, 1997).
Contrary to the previous settings, the isometrics now avoid regions of low coverage, because
the influence of the coverage is increased. A further increase of the parameter results in
sharper and sharper bends of the isometrics. The influence of WRA (the part parallel to the
diagonal) vanishes except for very narrow regions around the diagonal, and the isometrics
gradually transform into those of coverage.

Another interesting variation of the Klösgen measure is to divide hcov by 1−hcov instead
of raising it to the ω-th power. It has been shown before (Klösgen, 1992) that this is
equivalent to hcorrelation. This family of measures was first proposed by (Klösgen, 1992),
and has been frequently used for subgroup discovery.

10

An Empirical Quest for Optimal Rule Learning Heuristics

Figure 3: Klösgen-Measure for ω = 0.5, 1, 2, 7, 30, 500

4. Experimental setup

The primary goal of our experimental work is to determine search heuristics that are optimal
in the sense that they will result in the best overall performance on a wide variety of datasets.
Thus, we have to keep several things in mind. First, our results should be valid for a wide
variety of datasets with different characteristics. Second, we have to be careful not to overfit
the selected datasets. Finally, we have to select ways for assessing the performance of a
heuristic. In this section, we will describe our choices for addressing these concerns.

11

Frederik Janssen, Johannes Fürnkranz

4.1 The Datasets

We arbitrarily selected the following 27 tuning datasets from the UCI-Repository (Newman,
Blake, Hettich, & Merz, 1998).

anneal, audiology, breast-cancer, cleveland-heart-disease, contact-lenses, credit,
glass2, glass, hepatitis, horse-colic, hypothyroid, iris, krkp, labor, lymphography,
monk1, monk2, monk3, mushroom, sick-euthyroid, soybean, tic-tac-toe, titanic,
vote-1, vote, vowel, wine.

Only these datasets were used for making comparative choices between different heuris-
tics (e.g., for optimizing a parameter of a heuristic, or for meta-learning a heuristic).

To check the validity of the optimization results, we selected 30 additional validation
datasets.

auto-mpg, autos, balance-scale, balloons, breast-w, breast-w-d, bridges2, colic,
colic.ORIG, credit-a, credit-g, diabetes, echocardiogram, flag, hayes-roth, heart-
c, heart-h, heart-statlog, house-votes-84, ionosphere, labor-d, lymph, machine,
primary-tumor, promoters, segment, solar-flare, sonar, vehicle, zoo.

These datasets were used for validation only, no choices were based on the results of
these datasets.

4.2 Evaluation methods

Our primary method for evaluating heuristics is to use these heuristics inside the rule
learner, and observe the resulting predictive accuracies across a variety of datasets. On
each individual dataset, predictive accuracy is estimated using a single stratified 10-fold
cross validation, as implemented in Weka (Witten & Frank, 2005). As we have a large
number of different individual results, a key issue is how to combine the individual results
into an overall performance measure. We chose the following options:

Our primary method was the Macro-Averaged-Accuracy over all datasets.

Macro-Averaged-Accuracy is the average of the accuracies on them individual datasets.

Accmacro =
1
m

m∑
i=1

pi + (Ni − ni)
Pi +Ni

A key disadvantage of this method is that the variance of the performances of the
algorithms may differ considerably, and the differences in average performance may be
dominated by the performance on a few high-variance dataset.

However, there are other sensible choices for combining individual results. For example,
as one can often observe a correlation between dataset size and variance in performance, we
may resort to Micro-Averaged Accuracy, which assign the same weight to each misclassified
example. In effect, this method assigns a higher weight to datasets with many examples
and those with few examples get a smaller weight.

12

An Empirical Quest for Optimal Rule Learning Heuristics

Micro-Averaged-Accuracy is the fraction of correctly classified examples in all examples
in the union of all examples of the different datasets.

Accmicro =

m∑
i=1

(pi +Ni − ni)
m∑
i=1

(Pi +Ni)

As there are large differences in the variances of the accuracies of the individual datasets,
one could also focus only on the ranking of the heuristics and neglect the magnitude of the
accuracy differences. Small random variations in ranking performance will cancel out over
multiple datasets, but if there is a consistent small advantage of one heuristic over the other
this will be reflected in a substantial difference in the average rank.

Average Rank is the average of the individual ranks ri on each dataset.

Rank =
1
m

m∑
i=1

ri

In addition, we also measured the Size of the learned theories by the average number of
conditions.

Average Size is the average number of conditions of the rule sets Ri.

Size =
1
m

m∑
i=1

|Ri|

As mentioned above, we used 27 sets for finding the optimal parameters, and 30 ad-
ditional sets for checking the validity of the found values. In order to assess this validity,
we compute the Spearman Rank Correlation between the rankings of the various heuristics
on these two sets (different parametrizations of the same heuristic are counted as separate
heuristics).

Spearman Rank Correlation Given two (averaged and rounded) rankings ri and r′i for
the heuristics hi, i = 1 . . . k, the Spearman Rank Correlation ρ is defined as

ρ = 1− 6
m · (m2 − 1)

k∑
i=1

(ri − r′i)2

In the meta-learning experiments, we also evaluated the fit of the learned heuristic
function to the target values in terms of its mean absolute error, again estimated by one
iteration of a 10-fold cross validation on each individual training set.

Mean Absolute Error is the average deviation of the predicted heuristic value h′ from
the target value h on n instances

MAE(h′) =
1
n

n∑
j=0

|h′(j)− h(j)|

13

Frederik Janssen, Johannes Fürnkranz

Algorithm 3 SearchBestParameter(a, b, i, h, dataSets)
global parameter
accformer ← accbest
initialize candidate params
params← createList(a, b, i)
pbest ← getBestParam(h, params, dataSets)
accbest ← getAccuracy(pbest)
stop if no substantial improvement (t = 0.001)

if (accbest − accformer) < t then
return pbest

end if
continue the search with a finer resolution
SearchBestParameter(pbest − i

2 , pbest + i
2 ,

i
10 , h, dataSets)

Note, however, that the mean absolute error measures the error made by the regression
model on unseen data. A low mean absolute error on a dataset does not implicate that the
function works good as a heuristic. For example, a systematic, large over-estimation of the
heuristic value may result in a higher absolute error than a small random fluctuation around
the correct value, but may produce a much better performance if the correct ordering of
values is preserved.

5. Optimization of Parametrized Heuristics

In this section, we will determine optimal parameters for the five parametrized rule evalua-
tion metrics that we introduced in Section 3.4. We will analyze the average accuracy of the
different heuristics under various parameter settings, identify optimal parameter settings,
compare their coverage space isometrics, and evaluate their general validity.

5.1 Search Strategy

This section describes our method for searching for the optimal parameter setting. Our
expectation was that for all heuristics, a plot of accuracy over the parameter value will
roughly result in an inverse U-shape, i.e., there will be overfitting for small parameter
values and over-generalization for large parameter values, with a region of optimality in
between.

Thus, we adopted a greedy search algorithm that continuously narrows down the region
of interest. First, it tests a wide range of intuitively appealing parameter settings to get
an idea of the general behavior of each of the five parametrized heuristics. The promising
parameters were further narrowed down until we had a single point that represents a region
of optimal performance.

Algorithm 3 shows the algorithm in detail. We start with a lower (a) and upper (b)
bound of the region of interest, and sample the space between them with a certain interval
width i. For measures with parameter space [0,∞] we used a logarithmic scale. For each
sampled parameter value, we estimate its macro-averaged accuracy on all tuning datasets,
and, based on the obtained results, narrow down the values a, b, and i.

14

An Empirical Quest for Optimal Rule Learning Heuristics

Intuitively, the farther the lower border a and the upper border b of the interval are
away from the best parameter pbest, and the denser the increment, the better are our
chances to find the optimal parameter, but the higher are the computational demands. As
a compromise, we used the following approach for adjusting the values of these parameters:

a← pbest −
i

2
, b← pbest +

i

2
and i← i

10

This procedure is repeated until the accuracy does not increase significantly. As we com-
pare macro-averaged accuracy values over several datasets, we adopted a simple approach
that stops whenever the accuracy improvement falls below a threshold t = 0.001.

For illustration, Table 1 shows a sample search.
Obviously, the procedure is greedy and not guaranteed to find a global optimum. In

particular, there is a risk to miss the best parameter due to the fact that the global best
parameter may lie under or above the borders (if the best one so far is 1 for example, the
interval that would be searched is [0.5, 1.5]; if the global optimum is 0.4, it would not be
detected). Furthermore, we may miss a global optimum if it hides between two apparently
lower values. If the curve is smooth, these assumptions are justified, but on real-world data
we should not count on this.

The second point can be addressed by keeping a list of candidate parameters that are
all refined and from which the best one is selected. Hence it has to be defined how many
candidates should be maintained. Therefore it is necessary to introduce a threshold that
discriminates between a normal and a candidate parameter. It is not trivial to determine
such a threshold. Due to this the number of candidate parameters is limited to 3 (all
experiments confirmed that this is sufficient). The first problem could be addressed by
re-searching the entire interval at a finer resolution, but, for the sake of efficiency, we chose
the more efficient version.

However, also note that it is not really important to find an absolute global optimum.
If we can identify a region that is likely to contain the best parameter for a wide variety of
datasets, this would already be sufficient for our purposes. We interpret the found values
as good representatives for optimal regions.

5.2 Optimal parameters for the five heuristics

Our first goal was to obtain optimal parameter settings for the five heuristics. As discussed
above, the found values are not meant to be interpreted as global optima, but as repre-

Table 1: A sample parameter search

Run set which has to be searched increment best parameter Accuracy
1 {0.1, ..., 1.0} 0.1 0.4 84.5658
2 {0.35, ..., 0.45} 0.01 0.42 84.6852
3 {0.415, ..., 0.425} 0.001 0.418 84.7015
4 {0.4175, ..., 0.4185} 0.0001 0.4176 84.7045
5 {0.41755, ..., 0.41765} 0.00001 0.4176 84.7045

15

Frederik Janssen, Johannes Fürnkranz

50

55

60

65

70

75

80

85

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Parameter

A
cc

u
ra

cy

(a) cost measure

50

55

60

65

70

75

80

85

90

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

Parameter

A
cc

u
ra

cy

(b) relative cost measure

55

60

65

70

75

80

85

90

0.01 0.1 1 10 100 1000 10000 100000 1E+06 1E+07 1E+08 1E+09
Parameter

A
cc

ur
ac

y

(c) F -measure

81.5

82

82.5

83

83.5

84

84.5

85

85.5

86

0.01 0.1 1 10 100 1000 10000 100000 1000000
Parameter

A
cc

ur
ac

y

(d) m-estimate

55

60

65

70

75

80

85

90

0.0001 0.001 0.01 0.1 1 10 100 1000
Parameter

A
cc

ur
ac

y

(e) Klösgen-measures

Figure 4: Macro-averaged Accuracy over parameter values for the five parametrized heuris-
tics

sentatives for regions of optimal performance. Figure 4 shows the obtained performance
curves.

5.2.1 Cost Measures

Figures 4 (a) and (b) show the results for the two cost measures. Compared to the other
measures, these curves are comparably smooth, and optimal values could be identified quite
easily. Optimizing only the consistency (i.e., minimizing the number of negative examples

16

An Empirical Quest for Optimal Rule Learning Heuristics

without paying attention to the number of covered positives) has a performance of close
to 80 %. Not surprisingly, this can be improved considerably for increasing values of the
parameters c and cr. The best performing values were found at c = 0.437 (for the cost
metric) and cr = 0.342 (for the relative cost metric). Further increasing these values will
decrease performance because of over-generalization. If the parameter approaches 1, there
is a steep descent because optimizing only the number of covered examples without regard
to the covered negatives is, on its own, a very bad strategy.

It is interesting to interpret the found values. For the cost metric, The optimal value
c = 0.437 corresponds to a slope of 1−c/c ≈ 1.3, i.e., one false positive corresponds to approx-
imately 1.3 true positives. Thus, consistency is favored over coverage. More interestingly,
this bias towards consistency not only holds for absolute numbers but also for the true
positive and false positives rates. Note that weighted relative accuracy, which has been
previously advocated as rule learning heuristic (Todorovski et al., 2000), corresponds to a
value of cr = 0.5, equally weighting false positive rate and true positives rate. Comparing
this to the optimal region for this parameter, which is approximately between 0.3 and 0.35,
it can be clearly seen that it pays off to give a higher weight to the false positive rate,
thereby favoring consistency over coverage.2

It is also interesting to compare the results of the absolute and relative cost measures:
although, as we have stated above, the two are equivalent in the sense that for each individ-
ual dataset, one can be transformed into each other by picking an appropriate cost factor,
the relative cost measure has a clearly better peak performance exceeding 85%. Thus, it
seems to be quite important to incorporate the class distribution P/P+N into the evaluation
metric. This is also confirmed by the results of the m-estimate and the Klösgen measures.

5.2.2 Klösgen measures

Figure 4 (e) shows the results for the Klösgen measures. In the region from 0.1 to 0.4 the
accuracy increases continuously until it reaches a global optimum at 0.4323, which achieves
an average accuracy of almost 85 %. After the second iteration of the SearchBestParameter
algorithm, no better candidate parameters than 0.4 were found. The accuracy decreases
again with parametrizations greater than 0.6. As illustrated in Figure 3, the interval [0, 1]
describes the trade-off between Precision (ω = 0) and WRA (ω = 1), whereas values
of ω > 1 trade off between WRA and Coverage. The bad performance in this region
(presumably due to over-generalization) surprised us, because we originally expected that
the behavior that is exhibited by the Klösgen measure for ω = 2, namely to avoid low
coverage regions, is preferable over the version with ω = 0.5, which has a slight preference
for these regions (cf. Figure 3).

5.2.3 F -measure

For the F -measure the same interval as with the Klösgen measures is of special interest
(Figure 4 (c)). Already after the first iteration, the parameter 0.5 turned out to have the
highest accuracy of 82.2904 %. A better one could not be found during the following itera-

2. Interestingly, the optimal value of c = 0.342 corresponds almost exactly to the micro-averaged default
accuracy of the largest class (for both tuning and validation datasets). We are still investigating whether
this is coincidental or not.

17

Frederik Janssen, Johannes Fürnkranz

tions. After the second pass two other candidate parameters, namely 0.493 with 84.1025 %
and 0.509 with 84.2606 % were found. But both of them could not be refined to achieve
a higher accuracy and were therefore ignored. The main difference between the Klösgen
measures and the F -measure is that for the latter, the accuracy has a steep descent at a
very high parametrization of 1 ·E9. At this point it overgeneralizes in the same way as the
Klösgen measures or the cost measures (at about 55 %).

5.2.4 m-estimate

The behavior of the m-estimate differs from the other parametrized heuristics in several
ways. In particular, it proved to be more difficult to search. For example, we can observe
a small descent for low parameter settings (Figure 4 (d)). The main problem was that
the first iteration exhibited no clear tendencies, so the region in which the best parameter
should be could not be restricted. As a consequence, we re-searched the interval [0, 35]
with a smaller increment of 1 because all parameters greater than 35 got accuracies under
85.3 % and we had to restrict the area of interest. After this second iteration there were 3
candidate parameters, from which 14 achieves the greatest accuracy. After a second run,
23.5 became optimal, which illustrates that it was necessary to maintain a list of candidate
parameters. After a few more iterations, we found the optimal parameter at 22.466. The
achieved accuracy of 85.87 % was the optimum among all heuristics.

5.3 Experimental Results

In this section, we compare the parameters which have been found for the five heuristics (cf.
also Table 2). In terms of macro-averaged accuracy, the m-estimate and the relative cost
measure clearly outperformed the other parametrized heuristics, as well as a few standard
heuristics, which we had also briefly mentioned in Section 3.4. Interestingly, the relative
cost measure performs much worse with respect to micro-averaged accuracy, indicating that
it performs rather well on small datasets, but worse on larger datasets. These two heuristics
also outperform JRip (the Weka-implementation of Ripper (Cohen, 1995)) on the tuning
datasets, but, as we will see further below, this performance gain does not quite carry over
to new, independent datasets.

In order to make sure that our results are not only due to overfitting of the 27 tuning
datasets, we also evaluated the found parameter values on 30 new validation datasets. The
results are summarized in Table 2 for both the tuning datasets (Table 2 a) and the test
datasets (Table 2 b). The numbers in brackets describes the rank of each heuristic according
to the measure of the respective column.

Qualitatively, we can see that the relative performance of the heuristics in comparison
to each other, and in comparison to the standard heuristics does not change much, with
the exception of the considerably better performance of JRip, which indicates that some
amount of overfitting has happened in the optimization phase. However, the performance of
the best metrics is still comparable to the performance of JRip, although the latter achieves
this performance with much smaller rule sizes.

Table 2 (c) shows the Spearman rank correlation coefficients between the ranking of the
heuristics on the tuning datasets and on the test datasets. For all four measurements, we

18

An Empirical Quest for Optimal Rule Learning Heuristics

Table 2: Comparison of various results of the optimal parameter settings of the five heuris-
tics (identified by their parameters), other commonly used rule learning heuristics,
and JRip (Ripper) with and without pruning, sorted by their macro-averaged ac-
curacy.

(a) on the 27 tuning datasets

average accuracy average
Heuristic Macro Micro Rank Size
m = 22.466 85.87 (1) 93.87 (1) 4.54 (1) 36.85 (4)
cr = 0.342 85.61 (2) 92.50 (6) 5.54 (4) 26.11 (3)
ω = 0.4323 84.82 (3) 93.62 (3) 5.28 (3) 48.26 (8)

JRip 84.45 (4) 93.80 (2) 5.12 (2) 16.93 (2)
β = 0.5 84.14 (5) 92.94 (5) 5.72 (5) 41.78 (6)
JRip-P 83.88 (6) 93.55 (4) 6.28 (6) 45.52 (7)

Correlation 83.68 (7) 92.39 (7) 7.17 (7) 37.48 (5)
WRA 82.87 (8) 90.43 (12) 7.80 (10) 14.22 (1)

c = 0.437 82.60 (9) 91.09 (11) 7.30 (8) 106.30 (12)
Precision 82.36 (10) 92.21 (9) 7.80 (10) 101.63 (11)
Laplace 82.28 (11) 92.26 (8) 7.31 (9) 91.81 (10)

Accuracy 82.24 (12) 91.31 (10) 8.11 (12) 85.93 (9)

(b) on the 30 validation datasets

average accuracy average
Heuristic Macro Micro Rank Size

JRip 78.98 (1) 82.42 (1) 4.72 (1) 12.20 (2)
cr = 0.342 78.87 (2) 81.80 (3) 5.28 (3) 25.30 (3)
m = 22.466 78.67 (3) 81.72 (4) 4.88 (2) 46.33 (4)

JRip-P 78.50 (4) 82.04 (2) 5.38 (4) 49.80 (6)
ω = 0.4323 78.46 (5) 81.33 (6) 5.67 (6) 61.83 (8)
β = 0.5 78.12 (6) 81.52 (5) 5.43 (5) 51.57 (7)

Correlation 77.55 (7) 80.91 (7) 7.23 (8) 47.33 (5)
Laplace 76.87 (8) 79.76 (8) 7.08 (7) 117.00 (10)

Precision 76.22 (9) 79.53 (9) 7.83 (10) 128.37 (12)
c = 0.437 76.11 (10) 78.93 (11) 8.15 (11) 122.87 (11)

WRA 75.82 (11) 79.35 (10) 7.82 (9) 12.00 (1)
Accuracy 75.65 (12) 78.47 (12) 8.52 (12) 99.13 (9)

(c) Spearman rank correlation between rankings (a) and (b)

average accuracy average
Heuristic Macro Micro Rank Size
Spearman 0.85315 0.92308 0.88112 0.98601

observe a correlation > 0.85, which makes confident that the found optimal parameters are
not overfitting the tuning datasets, but will also work well on new datasets.

19

Frederik Janssen, Johannes Fürnkranz

Table 3: Win/Loss/Tie Statistics and the p-values of the sign test for the macro-averaged
accuracy of the optimized heuristics vs. standard heuristics on the 30 validation
datasets.

Win/Loss/Tie
p-Value Precision Laplace Accuracy WRA Corr. Sum

Cost 12/17/1 11/17/2 13/16/1 15/14/1 13/14/3 64/78/8
0.458 0.345 0.711 1.000 1.000

Relative Cost 18/9/3 18/8/4 23/7/0 20/6/4 19/9/2 98/39/13
0.122 0.0755 0.00522 0.00936 0.0872

m-Estimate 24/6/0 20/9/1 19/10/1 19/10/1 20/6/4 102/41/7
0.00143 0.0614 0.136 0.136 0.00936

Klösgen 22/8/0 18/10/2 23/7/0 19/10/1 18/8/4 100/43/7
0.161 0.185 0.00522 0.136 0.0755

F -Measure 21/6/3 18/11/1 24/4/2 21/9/0 17/9/4 101/39/10
0.00592 0.265 0.00018 0.0428 0.169

Sum 97/46/7 85/55/10 102/44/4 94/49/7 87/46/17

Table 3 gives a more fine-grained view on the performances of the optimized heuristics
versus the standard heuristics on the 30 validation datasets. It shows for each pair of
optimized and standard heuristic the number of wins, losses, and ties for the optimized
heuristic. Below these three values, we show the p-value for a sign test with these values
(i.e., the error probability for rejecting the hypothesis that the two heuristics are equal).
The last column shows the sum of the values of the previous columns, i.e., they show how
often the heuristic in this row has outperformed any of the heuristics in the columns. The
row sums in the last row can be interpreted analogously.

We can see that, with the exception of the cost metric, all optimized heuristics outper-
form the standard heuristics quite consistently. There is not a single case where a standard
heuristic has more wins that an optimized heuristic. In fact, each optimized heuristics has
at least 17 wins and not more than 10 losses. In many cases, the margin is much larger,
and many of the differences are highly significant, even with the crude sign test.

Interesting is the bad performance of the cost metric. We think that this is due to the
fact that this is the only parametrized heuristic that does not include information about
the class distribution into its evaluation function. The m-estimate, the Klösgen measures,
and the relative cost metric directly include the a priori probability of the positive (P/P+N)
class, whereas the F -measure only normalizes the positive examples. The results from our
meta-learning experiments (Section 6) will support this hypothesis.

5.4 Interpretation of the Learned Heuristics

Figure 5 shows the isometrics of the best parameter settings of the m-estimate, the F -
measure, the Klösgen-measure, and the relative cost measure. It is interesting to compare

20

An Empirical Quest for Optimal Rule Learning Heuristics

0 N
0

P

(a) Klösgen

0 N
0

P

(b) m-Estimate

0 N
0

P

(c) F -measure

0 N
0

P

(d) Relative Cost Measure

Figure 5: Isometrics of the best parameter settings

the implemented preference structures. The Klösgen measure and the m-estimate appear
to implement quite similar behavior. Their isometrics have almost the same shape, except
that those of the Klösgen measures are slightly non-linear. The F -measure is also quite
similar in the upper left region (high coverage and high consistency), but differs slightly
in the low coverage regions, where it is necessarily parallel to the N -axis. The isometrics
for the relative cost measure are confined to parallel lines. The slope of these isometrics
seem to form an average: in high coverage and high consistency regions the slope is less
steep than in the other heuristics, while in low coverage and low consistency regions it is
considerably steeper. In any case, the slop is steeper than the diagonal, i.e., it is obvious
that this heuristic gives a higher weight to consistency than to coverage.

6. Meta-Learning of Rule Learning Heuristics

While the previous section has focussed on determining optimal parameters for a given
functional form, we will now try to learn a function h(p, n) from scratch. In the following,

21

Frederik Janssen, Johannes Fürnkranz

we will frame this problem as a meta-learning task, in which we try to predict the “true”
performance of a rule on the test set.

6.1 Meta-Learning Scenario

The key issue for our work is how to define the meta-learning problem. It is helpful to
view the rule learning process as a reinforcement learning problem: Each (incomplete)
rule is a state, and all possible refinements (e.g., all possible conditions that can be added
to the rule) are the actions. The rule-learning agent repeatedly has to pick one of the
possible refinements according to their expected utility until it has completely learned the
rule. Then, the learner receives a reinforcement signal (e.g., the estimated accuracy of the
learned rule), which can then be used to adjust the utility function. After a (presumably
large) number of learning episodes, the utility function should converge to a heuristic that
evaluates a candidate rule with the quality of the best rule that can be obtained by refining
the candidate rule.

However, for practical purposes this scenario appears to be too complex. (Burges, 2006)
has tried a reinforcement learning approach on this problem, but with disappointing results.
For this reason, we tried another approach: Each rule is evaluated on a separate test set, in
order to get an estimate of its true performance. As a target value, we can either directly
use the candidate rule’s performance (immediate reward), or we can use the performance
of its best refinement (delayed reward). We evaluated both approaches.

6.1.1 Meta Data Generation

We have noted above, that heuristics typically depend on the number of true and false
positives, and on the total number of positive and negative examples. However, most
heuristics model non-linear dependencies between these values. In order to make the task
for the learner easier, we will not only characterize a rule by the values p, n, P , and N , but
in addition also use the following parameters as input for the meta-learning phase:

• tpr = p
P , the true positive rate of the rule

• fpr = n
N , the false positive rate of the rule

• Prior = P
P+N , the a priori distribution of positive and negative examples

• prec = p
p+n , the fraction of positive examples covered by the rule

Thus, we characterize a rule r by an 8-tuple

h(r)← h(P,N,Prior, p, n, tpr, fpr, prec)

In Section 6.2.2, we will also consider the rule length l as an additional input.
As explained above, we try to model the relation of the rule’s statistics measured on

the training set and its ”true” performance, which is estimated on an independent test
set. Thus, a meta-training instance consists of the above-mentioned characteristics for the
corresponding rule. The training signal is the performance of the rule on the test set. For

22

An Empirical Quest for Optimal Rule Learning Heuristics

Algorithm 4 GenerateMetaData(TrainSet,TestSet)
loop until all positive examples are covered

while Positive(TrainSet) 6= ∅

find the best rule
Rule ← GreedyTopDown(TrainSet)

stop if it doesn’t cover more pos than negs
if |Covered(Rule, Positive(Examples))|
≤ |Covered(Rule, Negative(Examples))|
break

loop through all predecessors
Pred ← Rule
repeat

record the training and test coverage
p ← |Covered(Rule,Positive(TrainSet))|
n ← |Covered(Rule,Negative(TrainSet))|
P ← |Covered(Rule,TotalNegative(TrainSet))|
N ← |Covered(Rule,TotalNegative(TrainSet))|
l ←Length(Rule)
p̂← |Covered(Rule,Positive(TestSet))|
n̂← |Covered(Rule,Negative(TestSet))|

print out meta training instance
print P,N, P/(P +N), p, n, p/P, n/N, p/(p+ n), l
print out meta target information
print p̂, n̂, p̂/(p̂+ n̂)

Pred ← RemoveLastCondition(Pred)
until Pred = null

remove covered training and test examples
TrainSet ← TrainSet \ Covered(Rule,TrainSet)
TestSet ← TestSet \ Covered(Rule,TestSet)

assessing the performance of the rule, we typically use its out-of-sample precision, but,
again, we have also experimented with other choices.

As we want to guide the entire rule learning process, we need to record this information
not only for final rules — those that would be used in the final theory — but also for all
their predecessors. Therefore all candidate rules which are created during the refinement
process are included in the meta data as well. Algorithm 4 shows this process in detail.

It should be noted, that we ignored all rules that do not cover any instance on the
test data. Our reasons for this were that on the one hand we did not have any training
information for this rule (the test precision that we try to model is undefined for these

23

Frederik Janssen, Johannes Fürnkranz

rules), and that on the other hand such rules do not do any harm (they won’t have an
impact on test set accuracy as they do not classify any example).

To ensure that we obtain a set of rules with varying characteristics, the following pa-
rameters were modified:

Datasets: All models were trained on the 27 tuning datasets defined in Section 4.1.

5x2 Cross-validation: For each dataset, we performed 5 iterations of a 2-fold cross-
validation. 2-fold cross-validation was chosen because in this case the training and
test sets have equal size, so that we don’t have to account for statistical variance in the
precision or coverage estimates. We performed five iterations with different random
seeds. Note that our primary interest was to obtain a lot of rules which characterize
the connection between training set statistics and the test set precision. Therefore,
we collected statistics for all rules of all folds.

Classes: For each dataset and each fold, we generated one dataset for each class, treating
this class as positive and the union of all the others as the negative class. Rules were
learned for each of the resulting two-class datasets.

Heuristics: We ran the rule learner several times on the binary datasets, each time using
a different search heuristic. We used all basic heuristics described in Section 3. As
discussed there, these heuristics represent a large variety of learning biases, some
overfitting, some overgeneralizing.

In total, our meta dataset contains 87, 380 examples.

6.1.2 Meta-Learning Algorithms

We used two different methods for learning functions on the meta data. First, we used a
simple linear regression using the Akaike criterion (Akaike, 1974) for model selection. A
key advantage of this method is that we obtain a simple, easily comprehensible form of the
learned heuristic function. Note that the learned function is nevertheless non-linear in the
basic dimensions p and n because of the above-mentioned non-linear terms that are used
as basic features.

Nevertheless, the type of functions that can be learned with linear regression is quite
restricted. In order to be able to address a wider class of functions, we also tried a multilayer
perceptron with back propagation algorithm and sigmoid nodes. We used various sizes of
the hidden layer (1, 5, and 10), and trained for one epoch (i.e., we went through the training
data once). We have also tried to train the networks with a larger number of epochs, but
the results no longer improved.

Both algorithms are provided by Weka (Witten & Frank, 2005) and were initialized
with standard parameters.

6.2 Experimental Results

In this section, we discuss our experimental results with the meta-learning approach. We
will start with a straight-forward baseline experiment that uses the meta-data as described
in Section 6.1.1, and then try to experimentally answer the questions whether inclusion

24

An Empirical Quest for Optimal Rule Learning Heuristics

Table 4: Accuracies for several methods
average accuracy

heuristic MAE Macro Micro # conditions
LinearRegression 0.22 77.43% 80.19% 117.6
MLP (1 node) 0.28 77.81% 81.43% 121.3
MLP (5 nodes) 0.27 77.37% 80.45% 1085.8
MLP (10 nodes) 0.27 77.53% 80.27% 112.7

of the rule length improves the result, whether learning in the delayed reward scenario is
better than learning from immediate rewards, and whether other heuristic functions perform
better than (predicted) precision.

6.2.1 Baseline Experiment

In a first experiment, we wanted to see how accurately we can predict the out-of-sample
precision of a rule using the meta data as described in Section 6.1.1. We trained a linear
regression model and a neural network on the eight measurements that we use for charac-
terizing a rule (cf. Section 3) using the precision values measured on the test sets as a target
function. Table 4 displays results for the linear regression and three neural networks with
different numbers of nodes in the hidden layer. The performances of the three algorithms
are quite comparable, with the possible exception of the neural network with 5 nodes in
the hidden layer. The heuristic learned by this network induced very large theories (over
1000 conditions on average), and also had a somewhat worse performance in predictive ac-
curacy. In general, the experiments seem to show that a linear combination of the available
features is sufficient, and that more nodes in the hidden layer will not yield performance
improvements. It can also be seen that, as discussed in Section 4.2, a low mean absolute
error does not necessarily imply an accurate heuristic.

If we compare these results to those of Table 2 (b; column macro-averaged accuracy),
we can see that the learned heuristics outperform all standard heuristics with the excep-
tion of correlation. However, they do not quite reach the performance of the optimized
parametrized heuristics.

6.2.2 Significance of Rule Length

Some rule learning algorithms include the length of the learned rule into their evaluation
function. For example, the ILP algorithm Progol (Muggleton, 1995) uses p−n−l as a search
heuristic for a best-first search. The first part, p−n, directly optimizes accuracy (for a fixed
dataset, i.e., where the total number of positive (P) and negative (N) examples are fixed),
and the length of the rule is used to add an additional bias for simpler rules. However,
as longer rules typically cover fewer examples, penalizing the length of a rule may also be
considered as another form of bias for high-coverage rules, which could also be expressed
by maximizing p (or p + n). In any case, we also experimented with the rule length as
an additional parameter. For both, linear regression and neural networks this did not lead

25

Frederik Janssen, Johannes Fürnkranz

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fr
eq

ue
nc

y

precision on test set

(a) immediate reward

 0

 5000

 10000

 15000

 20000

 25000

 30000

 0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1

fr
eq

ue
nc

y

precision on test set

(b) delayed reward

Figure 6: Histogram of the frequency of observed precision values when the target signal
is the test-set precision of the candidate rule (immediate reward) and when the
target signal is the test-set precision of the final rule (delayed reward).

to significant changes in the performance of the heuristics (e.g., for linear regression, the
performance dropped by 0.03%).

6.2.3 Predicting the Value of the Final Rule

Rule learning heuristics typically evaluate the quality of the current, incomplete rule, and
use this measure for greedily selecting the best candidate for further refinement. However,
as discussed in Section 6.1, if we frame the learning problem as a search problem, a good
heuristic should not evaluate a candidate rule with its discriminatory power, but with its
potential to be refined into a good final rule. Such a utility function could be learned with a
reinforcement learning algorithm, which will learn to predict in each step of the refinement
process which refinement is most likely to lead to a good final rule. Unfortunately, (Burges,
2006) pointed out that this approach does not work satisfactorily.

As an alternative, we applied a method which can be interpreted as an ”offline” version
of reinforcement learning. We simply assign each candidate rule the precision value of its
final rule in one refinement process. As a consequence, in our approach all candidate rules
of one refinement process have the same target value, namely the value of the rule that
has eventually been selected. Because of the deletion of all final rules that do not cover
any example on the test set, we decided to remove all predecessors of such rules as well.
This seemed to be the best way to handle the predecessors because we would not have a
reasonable value to predict. Thus, the new meta data set contains only 77,240 examples in
total.

Figure 6 shows a histogram of the observed test-set precision values for the candidate
rule (immediate reward) and for the final rule that has been learned when refining this
candidate (delayed reward). Clearly, in the case of delayed rewards, the frequency of simple
precision values like 0, 0.5, and 1 increases, because there are much more rules that only
cover a few examples.

26

An Empirical Quest for Optimal Rule Learning Heuristics

Table 5: Macro/Micro avg. Accuracy and number of conditions learned by a version of
linear regression and a neural network trained by delayed rewards.

average accuracy
heuristic MAE Macro Micro # conditions
Linear Regression 0.33 77.95 % 80.97 % 95.63
Neural Network 0.35 78.37 % 81.43 % 53.97

Table 6: Comparison of various heuristics with training-set coverages (p, n) and (p̂, n̂) cov-
erages predicted by the neural network

average accuracy
heuristic args Macro Micro # conditions

Accuracy (p, n) 75.65% 78.47% 99.13
(p̂, n̂) 75.39% 78.62% 110.8

Precision (p, n) 76.22% 79.53% 128.37
(p̂, n̂) 76.53% 80.43% 30.0

WRA (p, n) 75.82% 79.35% 12.00
(p̂, n̂) 69.89% 75.23% 29.97

Laplace (p, n) 76.87% 79.76% 117.00
(p̂, n̂) 76.80% 80.77% 246.8

Correlation (p, n) 77.55% 80.91% 47.33
(p̂, n̂) 58.09% 65.35% 40.4

Table 5 shows the accuracies of two heuristics that were learned in this setting, the
first one with a linear regression and the second one with a neural network with a single
node in the hidden layer. In particular the neural network outperformed the original set-
ting (cf. Table 4) and approaches the performance of the heuristics obtained by parameter
optimization (Table 6).

6.2.4 Predicting Other Heuristic Functions

So far, we focused on directly predicting the out-of-sample precision of a rule, assuming that
this would be a good heuristic for learning a rule set. However, this choice was somewhat
arbitrary. Ideally, we would like to repeat this experiment with out-of-sample values for all
common rule learning heuristics. In order to cut down the number of needed experiments, we
decided to directly predict the number of covered positive (p̂) and negative (n̂) examples.
We then can combine the predictions for these values with any standard heuristic h by
computing h(p̂, n̂) instead of the conventional h(p, n). Note that the heuristic h only gets

27

Frederik Janssen, Johannes Fürnkranz

the predicted coverages (p̂ and n̂) as new input, all other statistics (e.g., P ,N) are still
measured on the training set. This is feasible because we designed the experiments so
that the training and test set are of equal size, i.e., the values predicted for p̂ and n̂ are
predictions for the number of covered examples on an independent test set of the same size
as the training set.

Table 6 compares the performance of various heuristics using the p and n values mea-
sured on the training set, and the p̂ and n̂ values predicted for the test set by a trained
neural network. In general, the results are disappointing. For three of the five heuristics,
no significant change could be observed, but for weighted relative accuracy and correlation
heuristic, the performance degrades substantially.

A surprising observation is the rather low complexity of the learned theories. For in-
stance, the heuristic Precision produces very simple theories when it is used with the out-of-
sample predictions, and, by doing so, increases the predictive accuracy. Apparently, the use
of the predicted values of p̂ and n̂ allows to prevent overfitting, because the predicted posi-
tive/negative coverages are never exactly 0 and therefore the overfitting problem observed
with Precision does not occur any more. The Laplace heuristic shows a similar trend, but
in this case the predictions result in more complex rules than the original ones.

In summary, it seems that the predictions of both the linear regression and the neural
network are not good enough to yield true coverage values on the test set. A closer look at
the predicted values reveals that on the one hand both regression methods predict negative
coverages and that on the other hand for the region of low coverages (which is the important
one) too optimistic values are predicted (for both the positive and the negative coverage).
The acceptable performance is caused by a balancing of the two imprecise predictions (as
observed with the two precision-like metrics) or rather by an induced bias which tries to
omit the extreme values in the evaluations (which are responsible for overfitting).

6.3 Interpretation of the Learned Functions

In this section, we will try to interpret the learned functions by looking at the learned
weights and by looking at their coverage space isometrics.

6.3.1 Coefficients of the Linear Regression

Table 7 shows the coefficients for three learned regression models. In the base-line experi-
ment, three features had a significant weight: the a priori class distribution of the examples
in the training data, the precision of the rule, and the true positive rate. At first it may be
surprising that the false positive rate is practically ignored, but its main role is to ensure
consistency, which can—in the regions of interest—also be ensured with precision. Thus,
we find that the learned heuristic linearly combines class distribution, coverage and consis-
tency. Informally, we can also observe that, in line with our observations from Section 5,
consistency receives a higher weight than coverage, although it is not entirely clear whether
these values are directly comparable.

This can be more clearly seen from the coefficients learned in the delayed reward scenario,
where the function was trained on the test set precision of the best refinement of the rule.
The functions is quite similar to the previous one, except that the consistency is now enforced

28

An Empirical Quest for Optimal Rule Learning Heuristics

T
ab

le
7:

C
oe

ffi
ci

en
ts

of
va

ri
ou

s
fu

nc
ti

on
s

le
ar

ne
d

by
lin

ea
r

re
gr

es
si

on
B

as
el

in
e

E
xp

er
im

en
t

A
cc
m
a
cr
o

=
77
.4

3%
P

N
P

P
+
N

p
n

p P
n N

p
p
+
n

co
ns

t.
0.

00
01

0.
00

01
0.

74
85

-0
.0

00
1

-0
.0

00
9

0.
16

5
0.

0
0.

38
63

0.
02

67
D

el
ay

ed
R

ew
ar

d
Sc

en
ar

io
A
cc
m
a
cr
o

=
77
.5

9%
P

N
P

P
+
N

p
n

p P
n N

p
p
+
n

co
ns

t.
0

0.
00

02
0.

87
72

-0
.0

00
2

0.
00

02
0.

21
03

-0
.2

97
0.

13
67

0.
22

82
D

el
ay

ed
R

ew
ar

d
+

L
og

ar
it

hm
ic

C
ov

er
ag

e
A
cc
m
a
cr
o

=
78
.8

8%
lo

g
(P

+
1
)

lo
g
(N

+
1
)

P
P

+
N

lo
g
(p

+
1
)

lo
g
(n

+
1
)

p P
n N

p
p
+
n

co
ns

t.
0.

07
09

-0
.0

25
5

0.
05

21
0.

11
39

-0
.0

58
8

0.
13

79
-0

.3
67

3
-0

.1
03

2
0.

42
7

29

Frederik Janssen, Johannes Fürnkranz

0 N
0

P

(a) Linear Regression

0 N
0

P

(b) Neural Network

Figure 7: Isometrics of heuristics meta-learned with linear regression and a neural network
in the delayed reward scenario

through two factors: a high negative weight on the false positive rate and a positive weight
on precision.

In both cases, the current coverage of a rule (p and n) and the total example counts of
the data (P and N) have comparably low weights. This is not that surprising if one keeps
in mind that the target value is in the range [0, 1], while the absolute values for p and n
are in a much higher range. We nevertheless had included them because we believe that in
particular for rules with low coverage, the absolute numbers are more important than their
relative fractions. A rule that covers only a single example will typically be bad, irrespective
of the size of the original dataset.

In the light of these results, we made two more experiments: In the first, we removed
the four coverage values from the input, and learned another function from the remaining
four features. This did not change the performance very much (77.20% macro-averaged
accuracy).

In a second experiment, we used the logarithmic values log(P + 1), log(N + 1), log(p+
1), log(n+1) instead, with the idea that the importance of differences in coverage is propor-
tional to the coverage. This considerably improved the results for linear regression. The last
part of Table 7 shows the learned function. There are a few interesting differences to the
previous functions: (i) the logarithmic coverage values get a much higher weight than their
absolute counterparts, (ii) the prior class probability P/P+N receives a much lower weight,
and (iii) precision receives now a negative weight, which is presumably counterbalanced by
the much higher negative weight on the false positive rate.

6.3.2 Isometrics of the Heuristics

To understand the behavior of the learned heuristics, we will again take a look at their
isometrics in coverage space. Figure 7 shows isometrics of the heuristic learned in the
experiment with delayed rewards (without the logarithmic features) in a coverage space
with 60x48 examples (the sizes were chosen arbitrarily). The left part of the figure displays
the isometrics of the heuristic that was learned by linear regression on the data set that

30

An Empirical Quest for Optimal Rule Learning Heuristics

used only the relative features (see Section 6.3.1). The right part shows the best-performing
neural network (the one that uses only one node in the hidden layer).

Apparently, both functions learn somewhat different heuristics. Superficially, the iso-
metrics the linear regression heuristic are quite similar to the parallel lines of the cost
heuristic, but, just as we observed in the experiments of Section 5 (cf. Figure 5 (d)), their
slope is generally > 1, i.e., false positives are weighed more heavily than true positives. The
isometrics for the neural net seems to employ a trade-off similar to those of the F -measure.
The shift towards the N -axis is reminiscent of the F -measure (cf. Figure 2), which tries to
correct the undesirable property of precision that all rules that cover no negative examples
are evaluated equally, irrespective of the number of positive examples that they cover. In-
terestingly, the isometrics of the linear regression function with logarithmic features (not
shown) has a quite similar appearance.

However, in all cases the isometrics have a non-linear shape, which bends them towards
the N -axis when they approach the P -axis. Thus, in regions with high consistency, the bias
that prefers consistency over coverage is even more emphasized. This also has a somewhat
surprising effect, namely a small bias towards rules that cover a low number of positive ex-
amples (compared to regular precision). Intuitively, one would expect the opposite, namely
that rules with low coverage are avoided because they are likely to be unreliable and noisy.
This confirms our results for the Klösgen measure, where we could see that parameter val-
ues ω > 1 encode a bias that avoids low coverage regions (cf., e.g., the graph for ω = 2
in Figure 3), but that these values did not perform well empirically. In some sense, this
may be interpreted as support for the well-known small disjuncts problem, first observed by
(Holte, Acker, & Porter, 1989), namely that rules with low coverage contribute significantly
due the overall error of a rule set, but that they also cannot be omitted without a loss in
accuracy.

7. Related Work

While there are several empirical comparisons of splitting heuristics for decision tree induc-
tion (Mingers, 1989; Buntine & Niblett, 1992), there are, somewhat surprisingly, relatively
few works that empirically compare different rule learning heuristics. For example, (Lavrač,
Cestnik, & Džeroski, 1992a, 1992b) compare several heuristics for inductive logic program-
ming. Most works only perform a fairly limited comparison, which typically introduces a
new heuristic and compares it to the heuristic used in an existing system. A typical example
for work in this area is (Todorovski et al., 2000), where the performance of weighted relative
accuracy was compared to the performance of CN2’s Laplace-heuristic. To our knowledge,
our work reported in this paper is the most exhaustive empirical work in this respect.

On the other hand, considerable progress has been made in the principal understanding
of rule learning heuristics. As discussed in Section 3.1, (Fürnkranz & Flach, 2005) have
introduced coverage space isometrics as a means for visualizing rule evaluation metrics.
Using this tool, they have derived several interesting results, such as that the m-estimate
effectively trades off precision and weighted relative accuracy. While their paper contributed
to a better understanding of rule learning heuristics, the authors concluded that, in general,
rule learning heuristics are not yet well understood.

31

Frederik Janssen, Johannes Fürnkranz

There has also been significant progress on analyzing rule evaluation metrics that are
commonly used in descriptive induction tasks such as association rule discovery or subgroup
discovery. Most notably, (Tan et al., 2002) have surveyed 21 rule learning heuristics and
compared them according to a set of desirable properties. In general, they conclude that the
choice of the right interestingness measure is application-dependent, but they also identify
situations in which many measures are highly correlated with each other. (Bayardo Jr.
& Agrawal, 1999) analyze several heuristics in support and confidence space, and show
that the optimal rules according to many criteria lie on the so-called support/confidence
border, the set of rules that have maximum or minimum confidence for a given support
level. Recently, (Wu, Chen, & Han, 2007) showed that a group of so-called null-invariant
measures (measures that are not influenced by the number of records that do not match the
pattern) can be generalized into a single parametrized heuristic. We plan to analyze this
parametrized heuristic with the apparatus that we have used for our results in Section 5.

Naturally, there are some similarities between heuristics used for descriptive and for
predictive tasks. For example, (Lavrač et al., 1999) derived weighted relative accuracy in
an attempt to unify these two realms, or (Fürnkranz & Flach, 2004) analyzed filtering and
stopping heuristics and showed that Foil’s information gain search and MDL-based pruning
has a quite similar effect as support and confidence thresholds that are commonly used
in association rule discovery. Nevertheless, it is important to note that good heuristics
for descriptive induction are not necessarily suited well for predictive induction (weighted
relative accuracy is a good example). The key difference is that in the latter case one
typically needs to learn an entire rule set, where lack of coverage in individual rules can
be corrected by the entire ensemble of rules. Inconsistencies, on the other hand, cannot be
corrected by the induction of additional rules (at least not in the case of concept learning).
In this light, the result of this paper, that good heuristics for predictive induction will favor
consistency over coverage, appears to be reasonable.

Our results may also be viewed in the context of trying to correct overly optimistic train-
ing error estimates (resubstitution estimates). In particular, in some of our experiments, we
try to directly predict the out-of-sample precision of a rule. This problem has been studied
theoretically by (Scheffer, 2005) and (Mozina, Demšar, Zabkar, & Bratko, 2006). In other
works, it has been addressed empirically. For example (Vapnik, Levin, & Cun, 1994) have
used empirical data to measure the VC-Dimension of learning machines. (Fürnkranz, 2004)
also creates meta data in a quite similar way, and tries to fit various functions to the data.
But the focus there is the analysis of the obtained predictions for out-of-sample precision,
which is not the key issue in our experiments.

8. Conclusions

The experimental study reported in this paper has provided several important insights into
the behavior of greedy inductive rule learning algorithms.

First, we think that this has been the most exhaustive experimental comparison of
different rule learning heuristics to date. We tested five parameter-free heuristics, five
parametrized heuristics with a large number of parametrizations, and several different meta-
learning scenarios. The results confirm several previously known findings (e.g., precision and
Laplace overfit, whereas accuracy and weighted relative accuracy over-generalize), but also

32

An Empirical Quest for Optimal Rule Learning Heuristics

yielded new insights into their comparative performance. In particular, we have determined
suitable default values for commonly used parametrized evaluation metrics such as the m-
estimate. This is of considerable practical importance, as we showed that these new values
outperformed conventional search heuristics and performed comparably to the Ripper rule
learning algorithm.

Second, our results also let us draw important conclusions about what factors influence a
good performance of a rule learning heuristic. For example, we found that heuristics which
take the a priori class distribution into account (e.g., by evaluate relative coverage instead
of absolute coverage) will in general outperform heuristics that ignore the class distribution
(e.g., the F -measure which trades off recall and precision). This is also conformed by the
high weight that this parameter receives in our meta-learned heuristics.

We also found that for a good overall performance, it is necessary to prefer consistency
over coverage, i.e., to weight the false positive rate more heavily than the true positive
rate. This is most obvious in the optimal parameter value for the relative cost metric, but
can also be observed in other well-performing heuristics whose isometrics have a very steep
slope in the important regions. In the experiments with meta-learning and in the good
performance of the correlation heuristic we can also observe that heuristics perform better
if they increase the emphasis on this aspect for rules with high consistency.

This result may also be interpreted as evidence that a good heuristic has to adapt to the
characteristics of the algorithm in which it is used. In our case, this bias towards consistency
seems to be a desirable property for a heuristic that is used in a covering algorithm, where
incompleteness (not covering all positive examples) is less severe than inconsistency (cover-
ing some negative examples), because incompleteness can be corrected by subsequent rules,
whereas inconsistency cannot (at least not in a concept learning scenario). This dependency
on the dynamics of the algorithm is also confirmed by one of the results of the meta-learning
study, in which we observed that training on the test-set performance of the candidate rule
is somewhat less efficient than training on the performance of its best refinement.

However, our results also have their limitations. For example, we have only evaluated
overall performance over a wide variety of datasets. Obviously, we can expect a better
performance if the parameter values are tuned to each individual dataset. We think that
the good performance of Ripper is due to the flexibility of post-pruning, which allows to
adjust the level of generality of a rule to the characteristic of a particular dataset. We have
deliberately ignored the possibility of pruning for this set of experiments, because our goal
was to gain a principal understanding of what constitutes a good rule evaluation metric for
separate-and-conquer learning. It is quite reasonable to expect that pruning strategies could
further improve this performance. In particular, it can be expected that the performance of
parameter values that result in slight overfitting can be considerably improved by pruning
(whereas pruning can clearly not help in the case of over-generalization). We are currently
investigating this issue.

Acknowledgements

This research was supported by the German Science Foundation (DFG) under grant no. FU 580/2-
1.

33

Frederik Janssen, Johannes Fürnkranz

References

Akaike, H. (1974). A new look at the statistical model selection. IEEE Transactions on
Automatic Control, 19 (6), 716–723.

Bayardo Jr., R., & Agrawal, R. (1999). Mining the most interesting rules. In Proceedings of
the 5th ACM SIGKDD International Conference on Knowledge Discovery and Data
Mining (KDD-97), pp. 145–154.

Brin, S., Motwani, R., & Silverstein, C. (1997). Beyond market baskets: Generalizing as-
sociation rules to correlations. In Proceedings of the ACM SIGMOD International
Conference on Management of Data, pp. 265–276.

Buntine, W., & Niblett, T. (1992). A further comparison of splitting rules for decision-tree
induction. Machine Learning, 8, 75–85.

Burges, S. (2006). Meta-Lernen einer Evaluierungs-Funktion für einen Regel-Lerner. Mas-
ter’s thesis, TU Darmstadt. In German (English title: Meta-Learning of an Evaluation
Function for a Rule Learner).

Cestnik, B. (1990). Estimating probabilities: A crucial task in Machine Learning. In Aiello,
L. (Ed.), Proceedings of the 9th European Conference on Artificial Intelligence (ECAI-
90), pp. 147–150, Stockholm, Sweden. Pitman.

Clark, P., & Boswell, R. (1991). Rule induction with CN2: Some recent improvements.
In Proceedings of the 5th European Working Session on Learning (EWSL-91), pp.
151–163, Porto, Portugal. Springer-Verlag.

Clark, P., & Niblett, T. (1989). The CN2 induction algorithm. Machine Learning, 3 (4),
261–283.

Cohen, W. W. (1995). Fast effective rule induction. In Prieditis, A., & Russell, S. (Eds.),
Proceedings of the 12th International Conference on Machine Learning, pp. 115–123,
Tahoe City, CA. Morgan Kaufmann.

Fürnkranz, J. (1994). Fossil: A robust relational learner. In Bergadano, F., & De Raedt,
L. (Eds.), Proceedings of the 7th European Conference on Machine Learning (ECML-
94), Vol. 784 of Lecture Notes in Artificial Intelligence, pp. 122–137, Catania, Italy.
Springer-Verlag.

Fürnkranz, J. (1999). Separate-and-Conquer Rule Learning. Artificial Intelligence Review,
13 (1), 3–54.

Fürnkranz, J. (2004). Modeling rule precision. In Fürnkranz, J. (Ed.), Proceedings of the
ECML/PKDD-04 Workshop on Advances in Inductive Rule Learning, pp. 30–45, Pisa,
Italy.

Fürnkranz, J., & Flach, P. (2004). An analysis of stopping and filtering criteria for rule
learning. In Boulicaut, J.-F., Esposito, F., Giannotti, F., & Pedreschi, D. (Eds.),
Proceedings of the 15th European Conference on Machine Learning (ECML-04), Vol.
3201 of Lecture Notes in Artificial Intelligence, pp. 123–133, Pisa, Italy. Springer-
Verlag.

Fürnkranz, J., & Flach, P. A. (2005). ROC ’n’ Rule Learning - Towards a Better Under-
standing of Covering Algorithms. Machine Learning, 58 (1), 39–77.

34

An Empirical Quest for Optimal Rule Learning Heuristics

Fürnkranz, J., & Widmer, G. (1994). Incremental Reduced Error Pruning. In Proceed-
ings the Eleventh International Conference on Machine Learning, pp. 70–77, New
Brunswick, NJ.

Holte, R., Acker, L., & Porter, B. (1989). Concept learning and the problem of small
disjuncts. In Proceedings of the 11th International Joint Conference on Artificial
Intelligence (IJCAI-89), pp. 813–818, Detroit, MI. Morgan Kaufmann.

Janssen, F., & Fürnkranz, J. (2006). On trading off consistency and coverage in in-
ductive rule learning. In Althoff, K.-D., & Schaaf, M. (Eds.), Proceedings of the
LWA 2006, Lernen Wissensentdeckung Adaptivität, pp. 306–313, Hildesheim, Ger-
many. Gesellschaft für Informatik e. V. (GI).

Janssen, F., & Fürnkranz, J. (2007). On meta-learning rule learning heuristics. In Proceed-
ings of the 7th IEEE Conference on Data Mining (ICDM-07), pp. 529–534, Omaha,
NE.

Klösgen, W. (1992). Problems for Knowledge Discovery in Databases and their Treatment
in the Statistics Interpreter Explora. International Journal of Intelligent Systems, 7,
649–673.

Lavrač, N., Flach, P., & Zupan, B. (1999). Rule evaluation measures: A unifying view. In
Džeroski, S., & Flach, P. (Eds.), Proceedings of the 9th International Workshop on
Inductive Logic Programming (ILP-99), pp. 174–185. Springer-Verlag.

Lavrač, N., Kavšek, B., Flach, P., & Todorovski, L. (2004). Subgroup discovery with CN2-
SD. Journal of Machine Learning Research, 5, 153–188.

Lavrač, N., Cestnik, B., & Džeroski, S. (1992a). Search heuristics in empirical Inductive
Logic Programming. In Logical Approaches to Machine Learning, Workshop Notes of
the 10th European Conference on AI, Vienna, Austria.

Lavrač, N., Cestnik, B., & Džeroski, S. (1992b). Use of heuristics in empirical Inductive
Logic Programming. In Muggleton, S. H., & Furukawa, K. (Eds.), Proceedings of
the 2nd International Workshop on Inductive Logic Programming (ILP-92), No. TM-
1182 in ICOT Technical Memorandum, Tokyo, Japan. Institute for New Generation
Computer Technology.

Michalski, R. S. (1969). On the quasi-minimal solution of the covering problem. In Pro-
ceedings of the 5th International Symposium on Information Processing (FCIP-69),
Vol. A3 (Switching Circuits), pp. 125–128, Bled, Yugoslavia.

Mingers, J. (1989). An empirical comparison of selection measures for decision-tree induc-
tion. Machine Learning, 3, 319–342.

Mozina, M., Demšar, J., Zabkar, J., & Bratko, I. (2006). Why is rule learning optimistic
and how to correct it.. In Machine Learning: ECML 2006, 17th European Conference
on Machine Learning, pp. 330–340.

Muggleton, S. H. (1995). Inverse entailment and Progol. New Generation Computing,
13 (3,4), 245–286. Special Issue on Inductive Logic Programming.

Newman, D., Blake, C., Hettich, S., & Merz, C. (1998). UCI Repository of Machine Learning
databases..

35

Frederik Janssen, Johannes Fürnkranz

Quinlan, J. R. (1990). Learning logical definitions from relations. Machine Learning, 5,
239–266.

Quinlan, J. (1996). Learning First-Order Definitions of Functions. Journal of Artificial
Intelligence Research, 5, 139–161.

Salton, G., & McGill, M. J. (1986). Introduction to Modern Information Retrieval. McGraw-
Hill, Inc., New York, NY, USA.

Scheffer, T. (2005). Finding association rules that trade support optimally against confi-
dence. Intelligent Data Analysis, 9 (3).

Tan, P.-N., Kumar, V., & Srivastava, J. (2002). Selecting the right interestingness measure
for association patterns. In Proceedings of the 8th ACM SIGKDD International Con-
ference on Knowledge Discovery and Data Mining (KDD-02), pp. 32–41, Edmonton,
Alberta.

Thiel, M. (2005). Separate and Conquer Framework und disjunktive Regeln. Master’s
thesis, TU Darmstadt. In German (English title: Separate and Conquer Framework
and Disjunctive Rules).

Todorovski, L., Flach, P., & Lavrac, N. (2000). Predictive performance of weighted relative
accuracy. In Zighed, D. A., Komorowski, J., & Zytkow, J. (Eds.), 4th European
Conference on Principles of Data Mining and Knowledge Discovery (PKDD2000),
pp. 255–264. Springer-Verlag.

Vapnik, V., Levin, E., & Cun, Y. L. (1994). Measuring the VC-dimension of a learning
machine. Neural Computation, 6 (5), 851–876.

Witten, I. H., & Frank, E. (2005). Data Mining — Practical Machine Learning Tools and
Techniques with Java Implementations (2nd edition). Morgan Kaufmann Publishers.

Wrobel, S. (1997). An Algorithm for Multi-relational discovery of Subgroups. In Ko-
morowski, J., & Zytkow, J. (Eds.), Proc. First European Symposion on Principles
of Data Mining and Knowledge Discovery (PKDD-97), pp. 78–87, Berlin. Springer
Verlag.

Wu, T., Chen, Y., & Han, J. (2007). Association mining in large databases: A re-examination
of its measures. In Proceedings of the 11th European Symposium on Principles of
Data Mining and Knowledge Discovery (PKDD-07), pp. 621–628, Warsawa, Poland.
Springer-Verlag.

Xiong, H., Shekhar, S., Tan, P.-N., , & Kumar, V. (2004). Exploiting a support-based
upper bound of pearson’s correlation coefficient for efficiently identifying strongly
correlated pairs. In Proceedings of the 10th ACM SIGKDD International Conference
on Knowledge Discovery and Data Mining (KDD-04), pp. 334–343, Seattle, USA.

36

