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Abstract
In this paper we evaluate the performance of mul-
tilabel classification algorithms on two classifi-
cation tasks related to documents of the EUR-
Lex database of legal documents of the European
Union. It permits different settings of large-scale
multilabel problems with up to 4000 classes with
the same underlying documents. We compared
the well known one-against-all approach (OAA)
and its recently proposed improvement, the mul-
ticlass multilabel perceptron algorithm (MMP),
which modifies the OAA ensemble by respecting
dependencies between the base classifiers in the
training protocol of the classifier ensemble. Both
use the simple but very efficient perceptron algo-
rithm as underlying classifier. This makes them
very suitable for large-scale multilabel classifica-
tion problems, in particular when the number of
classes is high. Our results on the EUR-Lex data-
base confirm that the MMP algorithm has a better
response to an increasing number of classes than
the one-against-all approach. We also show that
it is principally possible to efficiently and effec-
tively handle very large multilabel problems.

1 Introduction
Recently, multilabel classification problems, where the task
is to associate an object with an unrestricted set of classes
instead of exactly one, have received increased attention in
the literature. With the increased attention in recent times
in this type of setting, new algorithms have been develo-
ped or adapted to automatically solve the task of multila-
bel classification. But simultaneously an increased number
of new scenarios have been identified and higher deman-
ds are continuously made to the existing algorithms. This
concerns not only challenges due to large scale instance
spaces, large numbers of instances and numbers of featu-
res, but particularly due to the number of possible classes.

In particular in text classification, these type of problems
are very common. The number of possible categories that
can typically be assigned to each document varies from a
few dozen to several hundred. In this paper, we study a
challenging new domain, namely assigning documents of
the EUR-Lex database to a few of ≈ 4, 000 possible labels.
The EUR-Lex database is a freely accessible document ma-
nagement system for legal documents of the European Uni-
on. We chose this database for several reasons:
• it contains multiple classifications of the same docu-

ments, making it possible to analyze the effects of dif-

ferent classification properties using the same under-
lying reference data without resorting to artificial or
manipulated classifications,

• the overwhelming number of produced documents
make the legal domain a very attractive field for em-
ploying supportive automated solutions and therefore
a machine learning scenario in step with actual practi-
ce,

• and the data is freely accessible.
The simplest strategy to tackle the multilabel problem

with existing techniques is to use the one-against-all bi-
narization, in the multilabel setting also referred to as the
binary relevance method. It decomposes the original pro-
blem into less complex, binary problems, by learning one
classifier for each class, using all objects of this class as po-
sitive examples and all other objects as negative examples.
At query time, each binary classifier predicts whether its
class is relevant for the query example or not, resulting in a
set of relevant labels. While this technique can potentially
be used to transform any binary classifier into a multilabel
classifier and it is often used in practical applications, the
question remains, whether this general approach can ful-
ly adapt to the particular needs of multilabel classification,
because it trains each class independently of all other clas-
ses.

A recently proposed alternative that tries to tackle this
problem is the multilabel multiclass perceptron algorithm
(MMP) developed by Crammer and Singer [2003], which
adapts the one-against-all approach to the multilabel case.
Instead of learning the relevance of each class individual-
ly and independently, MMP incrementally trains the enti-
re classifier ensemble as a whole so that it predicts a real-
valued relevance value for each class. This is done by al-
ways evaluating the performance of the entire ensemble,
and only producing training examples for the individual
classifiers when their corresponding classes are misplaced
in the ranking. It uses perceptrons as base classifiers, be-
cause they are simple and efficient, and because for high-
dimensional problems as text classification linear discrimi-
nants are sufficiently expressive.

A shortcoming of the proposed method is that the resul-
ting prediction is not any more a set of classes as expected
for a multilabel task, but a ranking of class relevance sco-
res. However, it is possible to obtain the desired output in
an additional step that selects classes which exceed a deter-
mined relevance value. Different methods exist for deter-
mining the threshold, a good overview can be found in Se-
bastiani [2002]. Recently, Brinker et al. [2006] introduced
the idea of using an artificial label that encodes the bounda-
ry between relevant and irrelevant labels for each example.
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In this paper, we will concentrate on the topic ranking task,
which also enables a more detailed evaluation of the clas-
sification performance.

The MMP algorithm has already been used on large sca-
le data sets such as the Reuters Corpus Volume 1 with its
over 800,000 examples and approx. 100 classes [Crammer
and Singer, 2003]. In the experiments the MMP algorithm
was able to substantially improve the performance of the
one-against-all method with perceptrons as base classifiers.
In this paper we will analyze if these results can be repea-
ted on two different settings of the EUR-Lex database, one
with approx. 200 and the other with 4000 possible classes.
Note that the latter problem has one order of magnitude
more classes than other known applications of this algo-
rithm.

2 Preliminaries
We represent an instance or object as a vector x̄ =
(x1, . . . , xN ) in a feature space X ⊆ RN . Each instance
x̄i is assigned to a set of relevant labels Y i, a subset of the
K possible classes Y = {c1, . . . , cK}. For multilabel pro-
blems, the cardinality |Y i| of the label sets is not restricted,
whereas for binary problems |Y i| = 1. For the sake of
simplicity we use the following notation for the binary ca-
se: we define Y = {1,−1} as the set of classes so that each
object x̄i is assigned to a yi ∈ {1,−1} , Y i = {yi}.

2.1 Ranking Loss Functions
In order to evaluate the predicted ranking we use different
ranking losses. The losses are computed comparing the ran-
king with the true set of relevant classes, each of them fo-
cusing on different aspects. For a given instance x̄, a rele-
vant label set Y , a negative label set Y = Y\Y and a given
predicted ranking r(x̄) the different loss functions are com-
puted as follows:

ISERR The is-error loss determines whether r(c) < r(c′)
for all relevant classes c ∈ Y and all irrelevant classes
c′ ∈ Y . It returns 0 for a completely correct, perfect
ranking, and 1 for an incorrect ranking, irrespective of
‘how wrong’ the ranking is.

ONEERR The one error loss is 1 if the top class in the
ranking is not a relevant class, otherwise 0 if the top
class is relevant, independently of the positions of the
remaining relevant classes.

ERRSETSIZE The error set size loss returns the number
of pairs of labels which are not correctly ordered. As
ISERR, it is 0 for a perfect ranking, but it additionally
differentiates between different degrees of errors.

E
def= {(c, c′) | r(c) > r(c′)} ⊆ Y × Y (1)

δERRSETSIZE
def= |E| (2)

MARGIN The margin loss returns the number of posi-
tions between the worst ranked positive and the best
ranked negative classes. This is directly related to the
number of wrongly ranked classes, i.e. the positive
classes that are ordered below a negative class, or vice
versa. We denote this set by F .

F
def={c ∈ Y | r(c) > r(c′), c′ ∈ Y}
∪{c′ ∈ Y | r(c) > r(c′), c ∈ Y}

(3)

δMARGIN
def= max(0,max{r(c) | c ∈ Y}
−min{r(c′) | c′ /∈ Y})

(4)

AVGP Average Precision is commonly used in Informati-
on Retrieval and computes for each relevant label the
percentage of relevant labels among all labels that are
ranked before it, and averages these percentages over
all relevant labels. In order to bring this loss in line
with the others so that an optimal ranking is 0, we re-
vert the measure.

δAVGP
def= 1− 1

Y

∑
c∈Y

|{c∗ ∈ Y | r(c∗) ≤ r(c)}|
r(c)

(5)

2.2 Perceptrons
A perceptron is a binary classifier initially developed as
a model of the biological neuron [Rosenblatt, 1958]. In-
ternally, it computes a linear combination of a real-valued
input vector and predicts the positive class if the result is
positive, and the negative class otherwise. More precisely,
given an input vector x̄, the predicted class of a perceptron
is computed as

o′(x̄) = sgn(x̄ · w̄ + ω) (6)

with the weight vector w̄, threshold ω and sgn(t) = 1 for
t ≥ 0 and −1 otherwise. We can interpret a perceptron as a
hyperplane with the formula x̄·w̄ = −ω that divides the N -
dimensional space into two halves. An instance is a point in
this space and its position determines its class membership.
If the two sets of positive and negative points, respectively,
can be separated by a hyperplane, they are called linearly
separable. As a consequence, irrespective of the training al-
gorithm used, linear classifiers as the perceptron cannot ar-
rive at correct predictions for all potential instances unless
the negative and positive instances are linearly separable. In
order to find a possibly existing separating hyperplane, the
weights are adapted according to the following perceptron
training rule:

θi = (yi − o′(x̄i))
w̄i+1 = w̄i + ηθix̄i

ωi+1 = ωi + ηθiδ

(7)

with δ usually being set to 1 and the initial weights set
to zero without loss of generality. The learning rate η can
be ignored if set to be constant [Bishop, 1995], as it will
be the case in this work. When a N -dimensional point is
misclassified, the hyperplane is moved towards this point
(indicated by θ). If the training examples can be seen itera-
tively and the data is linearly separable, the algorithm pro-
vably finds a dividing hyperplane. This is called the per-
ceptron convergence criterion (see, e.g., [Bishop, 1995]).
Irrespective of training until convergence not always being
desirable, this property does not reveal anything about the
performance on unseen data.

Note that the number of errors until convergence de-
pends on the margin between the positive and negative
points. The hyperplane that maximizes the margin to the
closest positive and negative point is called the optimal hy-
perplane. Contrary to support vector machines, perceptrons
will not necessarily find an optimal hyperplane. However,
the size of the margin is an indicator for the hardness of
the learning problem: the smaller the margin the harder
it is for the perceptron algorithm to find a good solution.
On the other hand, perceptrons can be trained efficiently
in an incremental setting, which makes them particularly
well-suited for large-scale classification problems such as



the Reuters 2000 (RCV1) benchmark [Lewis et al., 2004].
For this reason, the perceptron has recently received incre-
ased attention [Freund and Schapire, 1999, Li et al., 2002,
Shalev-Shwartz and Singer, 2005, Dekel et al., 2005].

Certainly, the δ value becomes important when the per-
ceptron is trained in only one epoch: it is easily shown that
|w̄| ≤ |W|· max

x̄∈W|x̄| and |ω| ≤ |W|·δ holds for misclassified
training examples W = {x̄ | o′(x̄) 6= y}. A disproportion
between maxx̄ |x̄| and δ can obviously lead to an excessive
predominance of the threshold and make the scalar product
even superfluous. To circumvent the problem of determi-
ning the right value for δ, we can set it to zero sacrificing
one dimension in the hypothesis space (thus ω=0). Graphi-
cally this means that only separating hyperplanes through
the origin are considered, reducing the number of potenti-
ally solvable problems. In practice, especially in high di-
mensional spaces as for text documents, this is usually not
a very significant restriction, and it additionally renders on-
line learning possible.

2.3 Binary Relevance Ranking
In the binary relevance or one-against-all (OAA) method, a
multilabel training set with K possible classes is decompo-
sed into K binary training sets of the same size that are then
used to train K binary classifiers. So for each pair (x̄i,Y i)
in the original training set K different pairs of instances
and binary class assignments (x̄i, yij ) with j = 1 . . .K are
generated as follows:

yij
=

{
1 cj ∈ Y i

−1 otherwise
(8)

Supposing we use perceptrons as base learners, K different
o′j classifier are trained in order to determine the relevan-
ce of cj . In consequence, the combined prediction of the
one-against-all classifier for an instance x̄ would be the set
{cj | o′j(x̄) = 1}. If, in contrast, we want to obtain a ran-
king of classes according to their relevance, we can simply
use the result of the internal computation of the perceptrons
as a measure of relevance. According to Equation 6 the de-
sired linear combination is the inner product oj(x̄) = x̄ · w̄j

(ignoring ω as mentioned above). So the result of the pre-
diction is a vector ō(x̄) = (x̄w̄1, . . . , x̄w̄K) where compo-
nent j corresponds to the relevance of class cj . We will de-
note the ranking function that returns the position of class
c in the ranking with r(c) ∈ {1 . . .K}. Ties are broken
randomly to not favor any particular class.

2.4 Multiclass Multilabel Perceptrons
MMPs were proposed as an extension of the one-against-all
algorithm with perceptrons as base learners [Crammer and
Singer, 2003]. Just as in one-against-all, one perceptron is
trained for each class, and the prediction is calculated via
the inner products. The difference lies in the update me-
thod: while in the one-against-all method all perceptrons
are trained independently to return a value greater or smal-
ler than zero, depending on the relevance of the classes for
a certain instance, MMPs are trained to produce a good
ranking so that the relevant classes are all ranked above
the irrelevant classes. The perceptrons therefore cannot be
trained independently, considering that the target value for
each perceptron depends strongly on the values returned by
the other perceptrons.

The pseudocode in Fig. 1 describes the MMP training
algorithm. When the MMP algorithm receives a training
instance x̄, it calculates the inner products, the ranking and

Require: Training example pair (x̄, Y), perceptrons w̄1, . . . , w̄K

1: calculate x̄w̄1, . . . , x̄w̄K , loss δ
2: if δ > 0 then . only if ranking is not perfect
3: calculate error sets E, F
4: for each c ∈ F do τc ← 0 . initialize τ ’s
5: for each (c, c′) ∈ E do
6: p← PENALTY(x̄w̄1, . . . , x̄w̄K)
7: τc ← τc + p . push up pos. classes
8: τc′ ← τc′ − p . push down neg. classes
9: σ ← σ + p . for normalization

10: normalize τ ’s
11: for each c ∈ F do
12: w̄c ← w̄c + δ τc

σ
· x̄ . update perceptrons

13: return w̄1 . . . w̄K . return updated perceptrons

Figure 1: Pseudocode of the training method of the MMP
algorithm

the loss on this ranking in order to determine whether the
current model needs an update. For determining the ran-
king loss, any of the methods of Sec. 2.1 is appropriate,
since they all return a low value on good rankings. This al-
lows to optimize the ranking in accordance with the used
ranking loss. If the ranking is perfect, the algorithm is do-
ne, otherwise it calculates the error set of wrongly ordered
class pairs E. The wrongly ranked classes are also repre-
sented in F . In the next step, each class that is present in
a pair of E receives a penalty score. This is done accor-
ding to a selectable penalty function. Crammer and Singer
[2003] propose several methods, including a function that
returns a value proportional to the difference of the scalar
products of both classes. The most successful one, howe-
ver, seemed to be the uniform update method, where each
pair in E receives the same score. In the next step, the up-
date weights τ are normalized and each perceptron whose
class was wrongly ordered is updated.

An example will illustrate the peculiarities of the MMP
update method: Suppose that all classes are correctly or-
dered except for one relevant and three irrelevant classes.
The three negative classes are ranked immediately over the
positive. The error set contains three wrongly ordered pairs
and according to the uniform update method the positive
class will receive in the sum a penalty of 3 and the negati-
ves each 1. Thus the perceptron of the positive class will be
updated to a degree three times as great compared with the
other three, in accordance with the degree to which it con-
tributed to the wrong ranking. Note that regardless of the
used penalty function the positive and the negative classes
receive in total the same penalty scores and these are after-
wards normalized, so that the degree of the overall model
update only depends on δ, i.e. on the quality of the ran-
king. More precisely, the hyperplanes of the perceptrons of
the relevant classes are translated by a total amount of δ x̄,
and the remaining classes by − δ x̄. In summary, the degree
of the update for a particular perceptron depends 1) on the
used penalty method, 2) on how much it contributed to the
wrong ranking, and 3) on the general ranking performance.

3 EUR-Lex Repository
The EUR-Lex/CELEX (Communitatis Europeae LEX) Si-
te1 provides a freely accessible repository for European
Union law texts. The accessible documents include the of-
ficial Journal of the European Union, treaties, international

1http://eur-lex.europa.eu
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Title and reference
Council Directive 91/250/EEC of 14 May 1991 on the legal protection of computer programs

Classifications
EUROVOC descriptor

• data-processing law
• computer piracy
• copyright
• software
• approximation of laws

Subject matter
• Internal market
• Industrial and commercial property

Text
COUNCIL DIRECTIVE of 14 May 1991 on the legal protection of computer programs (91/250/EEC)

THE COUNCIL OF THE EUROPEAN COMMUNITIES,

Having regard to the Treaty establishing the European Economic Community and in particular Article 100a
thereof,

Having regard to the proposal from the Commission (1),

In cooperation with the European Parliament (2),

Having regard to the opinion of the Economic and Social Committee (3),

Whereas computer programs are at present not clearly protected in all Member States by existing legislation
and such protection, where it exists, has different attributes;

Whereas the development of computer programs requires the investment of considerable human, technical and
financial resources while computer programs can be copied at a fraction of the cost needed to develop them
independently;

Whereas computer programs are playing an increasingly important role in a broad range of industries and
computer program technology can accordingly be considered as being of fundamental importance for the
Community’s industrial development;

. . .

Figure 2: Excerpt of a EUR-Lex sample document with the CELEX ID 31991L0250. The original document contains more
meta-information. We trained our classifiers to predict the EUROVOC descriptors and the subject matters based on the text
of the document.

agreements, legislation in force, legislation in preparation,
case-law and parliamentary questions. The documents are
available in in most of the languages of the EU, and in the
HTML and PDF formats. We retrieved the HTML versions
with bibliographic notes recursively from all documents in
the English version of the Directory of Community legisla-
tion in force2, in total 19,601 documents. Only documents
related to secondary law (in contrast to primary law, the
constitutional treaties of the European Union) and interna-
tional agreements are included in this repository. The legal
form of the included acts are mostly decisions (8,917 do-
cuments), regulations (5,706), directives (1,898) and agree-
ments (1,597).

The bibliographic notes of the documents contain infor-
mation such as dates of effect and validity, authors, relati-
onships to other documents and classifications. The classi-
fications include the assignment to several EUROVOC des-
criptors, directory codes and subject matters, hence all clas-
sifications are multilabel ones. We restricted our view to

2http://eur-lex.europa.eu/en/legis/index.htm

the EUROVOC and the subject matter classifications. EU-
ROVOC is a multilingual thesaurus providing a controlled
vocabulary for European Institutions3. Documents in the
documentation systems of the EU are indexed using this
thesaurus.

Figure 2 shows an excerpt of a sample document
with all information that has not been used remo-
ved. The full document can be viewed at http://eur-
lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31
991L0250:EN:NOT.

3,993 different EUROVOC descriptors were identified
in the retrieved documents, each document is associated to
5.37 descriptors in average. In contrast there are only 201
different subject matters appearing in the dataset, with a
mean of 2.23 labels per document.

3.1 Data Preprocessing
The main text was extracted from the HTML documents,
excluding HTML tags, bibliographic notes or other additio-

3http://europa.eu/eurovoc/

http://eur-lex.europa.eu/en/legis/index.htm
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31991L0250:EN:NOT
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31991L0250:EN:NOT
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31991L0250:EN:NOT
http://europa.eu/eurovoc/


1 epoch 2 epochs 10 epochs 20 epochs
OAA MMP OAA MMP OAA MMP OAA MMP

ISERR×100 59.44 49.31 52.35 43.17 46.92 37.32 45.71 37.34
ONEERR×100 27.18 22.96 21.05 18.08 17.04 14.13 16.50 14.33
ERRSETSIZE 81.64 12.57 62.64 11.12 50.07 8.825 46.79 8.356
MARGIN 59.51 10.59 47.40 9.503 38.99 7.643 36.54 7.289
AVGP 64.59 77.95 71.18 81.73 75.21 85.13 76.07 85.25

Table 1: Average losses for the subject matter classification.

1 epoch 2 epochs 5 epochs
OAA MMP OAA MMP OAA MMP

ISERR×100 98.82 98.43 98.03 97.03 96.82 95.24
ONEERR×100 47.29 70.14 40.52 50.37 34.78 36.47
ERRSETSIZE 8422.0 807.2 7320.3 926.7 6530.9 995.6
MARGIN 3214.0 582.4 2981.3 701.0 2794.1 756.9
AVGP 28.01 31.01 33.43 42.07 37.71 49.91

Table 2: Average losses for the EUROVOC descriptor classification.

nal information that could distort the results, and was then
finally tokenized. The tokens were transformed to lower ca-
se, stop words were excluded, and the Porter stemmer al-
gorithm was applied.4 In order to perform cross validation,
the instances were randomly distributed into ten folds. The
tokens were projected into the vector space model using
the common TF-IDF term weighting [Sebastiani, 2002]. In
order to reduce the memory requirements, of the approx.
200,000 resulting features we selected the first 10,000 or-
dered by their document frequency. This feature selection
method is very simple and efficient and independent from
class assignments, although it performs comparably to mo-
re sophisticated methods using chi-square or information
gain computation [Yang and Pedersen, 1997]. In order to
ensure that no information from the test set enters the trai-
ning phase, the TF-IDF transformation and the feature se-
lection were conducted only on the training sets of the ten
cross-validation splits.

4 Evaluation
4.1 Algorithm Setup
For the MMP algorithm we used the ISERR loss function
and the uniform penalty function. This setting showed the
best results in [Crammer and Singer, 2003] on the RCV1
data set. Both algorithms use perceptrons without thres-
holds, as described in Section 2.2, and all perceptrons were
initialized with random values.

4.2 Ranking Performance
The results of a direct comparison of OAA and MMP for
the subject matter and EUROVOC descriptor classificati-
ons are presented in Table 1 and Table 2. The values for
ISERR, ONEERR and AVGP are shown ×100% for better
readability, AVGP is also presented in the conventional way
(with 100% as the optimal value) and not as a loss function.
The number of epochs indicates the number of times that
the online-learning algorithms were able to see the training
instances.

For the subject matter, the results clearly show that the
MMP algorithm outperforms the simple one-against-all ap-
proach (all differences are statistically significant). Especi-
ally on the losses that directly evaluate the ranking perfor-

4The implementation from the Apache Lucene Project (http:
//lucene.apache.org/java/docs/index.html) was used.

mance the improvement is quite pronounced. The smallest
difference can be observed in terms of ONEERR, which
evaluates the top class accuracy. Note also that the MMP
algorithm is not able to improve its performance after 10
epochs. This partially confirms the results of Crammer and
Singer. They observed that after reaching a certain amount
of training examples, the improvement stops and after that
point the performance even becomes worse. This point
seems to be reached at the latest at ten epochs on the EUR-
Lex data for subject matter classification.

The results on the EUROVOC descriptor data set con-
firm the previous results. The differences in ERRSETSIZE
and MARGIN are very pronounced. In contrast, in terms of
ONEERR the MMP algorithm is worse than one-against-
all, even after five epochs. It seems that with an increasing
amount of classes, the MMP algorithm has more difficulties
to push the relevant classes to the top such that the margin
is big enough to leave all irrelevant classes below, although
the algorithm in general clearly gives the relevant classes a
higher score than the one-against-all approach. An expla-
nation could be the dependence between the perceptrons of
the MMP. This leads to a natural normalization of the scalar
product, while there is no such restriction when trained in-
dependently as done in the binary relevance algorithm. As
a consequence there could be some perceptrons that pro-
duce high maximum scores and thereby often arrive at top
positions at the overall ranking.

The fact that in only approximately 5% of the cases a
perfect classification is achieved and in only approx. 65%
the top class is correctly predicted should not lead to an
underestimation of the performance of the two algorithms.
Considering that with almost 4000 possible classes and on-
ly 5.3 classes per example the probability to guess a correct
class is less than one percent, namely 0.13%, the perfor-
mance is indeed substantial.

4.3 Computational Costs
In order to allow a comparison independent from external
factors such as logging activities and the run-time environ-
ment, we measured the computational cost in terms of vec-
tor additions and scalar multiplications. We also ignored
minor operations that have to be performed by both algo-
rithms, such as sorting or internal real value operations. An
overview is given in Table 4.3, together with the CPU-times
that were measured on a AMD Dual Core Opteron 2000

http://lucene.apache.org/java/docs/index.html
http://lucene.apache.org/java/docs/index.html


subject training testing
OAA 48.74 s 5.42 s

3,545,841 mult. 393,960 mult.
+ 44,113 add.

MMP 54.08 s 5.39 s
3,545,841 mult. 393,960 mult.
+ 304,245 add.

EUROVOC training testing
OAA 621.814 s 98.354 s

70,440,513 mult. 7,826,280 mult.
+ 224,615 add.

MMP 818.147 s 93.467 s
70,440,513 mult. 7,826,280 mult.
+ 15,305,659 add.

Table 3: Computational costs in CPU-time and vector mul-
tiplications and additions on both data sets.

MHz for additional reference information.
As per design, for both algorithms the number of scalar

multiplications is equal, namely 3,545,841 for each training
iteration and 393,960 for testing on the subject matter da-
ta and 70,440,513 and 7,826,280 respectively for the EU-
ROVOC data. In contrast, the number of vector addition
operations differ: while the one-against-all method requi-
res 44,113 operations for the subject matter and 224,615
for the EUROVOC classifications (for the first iteration,
cross-validated), the MMP has higher costs with 304,245
and 15,305,659 operations respectively.

If we analyze the number of perceptron updates, i.e. ad-
ditions, as a function of the number of classes, it is in-
teresting to see the contrary behavior of both algorithms:
while the one-against-all algorithm reduces the ratio of
updated perceptrons per training example from 1.23% to
0.32% when increasing the number of classes from 202 to
3993, the MMP algorithm doubles the rate from 9.08% to
21,81%.

For the MMP this behavior is natural: with increasing
numbers of classes the error set size increases and as a con-
sequence the number of updated perceptrons. The MMP
adapts itself to the increased scale and complexity. An ex-
planation for the one-against-all case could be that due to
the decreased number of positive examples for each ba-
se classifier (in average 23 = classes per example / (total
number of classes * number of training examples) for the
EUROVOC classes) the perceptrons quickly adopt the ge-
nerally good rule to always return a negative score, which
leads to only a few errors and consequently to little correc-
tive updates. Note that a base classifier that always predicts
the negative class would make approx. 95,000 errors on the
training set, compared to the 224,615 of the perceptrons in
the training phase.

5 Conclusions
In this paper, we evaluated two known approaches for ef-
ficiently solving multilabel classification tasks on a large-
scale text classification problem taken from the legal do-
main: the EUR-Lex database. The experimental results
confirm that the MMP algorithm, which improves the mo-
re commonly used one-against-all (OAA) approach by em-
ploying a concerted training protocol for the classifier en-
semble, is very competitive and well applicable in practice
for solving large-scale multilabel problems. The increase
in predictive performance has to be paid by the MMP al-

gorithm with a small increase in computational complexity
that in our opinion is not important in practice.

The average precision rate for the EUROVOC classifica-
tion task, a multilabel classification task with 4000 possi-
ble labels, approaches 50%. Rougly speaking, this means
that the (on average) five relevant labels of a document will
(again, on average) appear within the first 10 ranks in the
relevancy ranking of the 4,000 labels. This is a very encou-
raging result for a possible automated or semi-automated
real-world application for categorizing EU legal documents
into EUROVOC categories.

For future research, on the one hand we see space for im-
provement and extension of the MMP algorithm for exam-
ple by using a calibrated ranking approach [Brinker et al.,
2006]. The basic idea of this algorithm is to introduce an
artificial label which, for each class, separates the rele-
vant from irrelevant labels. On the other hand, we are in
the process of evaluating different binarization approaches
such as pairwise learning [Fürnkranz, 2002]. An evaluati-
on of this pairwise approach on the Reuters Corpus Volu-
me 1 [Lewis et al., 2004], which contains over 100 clas-
ses and 800,000 documents, showed a substantial impro-
vement over the MMP method [Loza Mencı́a and Fürn-
kranz, 2007]. The main obstacle to the applicability is the
large memory requirement of the approximately 8,000,000
perceptrons that are needed to represent such an ensemble.
We are currently investigating ways for reducing that num-
ber without losing the effectiveness of pairwise approaches.
Furthermore, we also need to compare our performance to
those of established algorithms that are potentially capable
of handling large-scale multilabel data, such as the Naive
Bayes algorithm.
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A Unified Model for Multilabel Classification and Ran-
king. In Proceedings of the 17th European Conference
on Artificial Intelligence (ECAI-06), 2006.

Koby Crammer and Yoram Singer. A Family of Additi-
ve Online Algorithms for Category Ranking. Journal of
Machine Learning Research, 3(6):1025–1058, 2003.

Ofer Dekel, Shai Shalev-Shwartz, and Yoram Singer. The
Forgetron: A Kernel-Based Perceptron on a Fixed Bud-
get. In Advances in Neural Information Processing Sys-
tems 18, 2005.

Yoav Freund and Robert E. Schapire. Large Margin Classi-
fication using the Perceptron Algorithm. Machine Lear-
ning, 37(3):277–296, 1999.

Johannes Fürnkranz. Round Robin Classification. Journal
of Machine Learning Research, 2:721–747, 2002.

David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li.
RCV1: A New Benchmark Collection for Text Categori-
zation Research. Journal of Machine Learning Research,
5:361–397, 2004.

Yaoyong Li, Hugo Zaragoza, Ralf Herbrich, John Shawe-
Taylor, and Jaz S. Kandola. The Perceptron Algorithm



with Uneven Margins. In Machine Learning, Procee-
dings of the Nineteenth International Conference (ICML
2002), pages 379–386, 2002.

Eneldo Loza Mencı́a and Johannes Fürnkranz. Pair-
wise learning of multilabel classifications with
perceptrons. Technical Report TUD-KE-2007-05,
Technische Universität Darmstadt, Knowledge Engi-
neering Group, 2007. http://www.ke.informatik.tu-
darmstadt.de/publications/reports/tud-ke-2007-05.pdf.

Frank Rosenblatt. The perceptron: a probabilistic model for
information storage and organization in the brain. Psy-
chological Review, 65(6):386–408, 1958.

Fabrizio Sebastiani. Machine learning in automated text
categorization. ACM Computing Surveys, 34(1):1–47,
2002.

Shai Shalev-Shwartz and Yoram Singer. A New Perspecti-
ve on an Old Perceptron Algorithm. In Learning Theo-
ry, 18th Annual Conference on Learning Theory (COLT
2005), pages 264–278. Springer, 2005.

Yiming Yang and Jan O. Pedersen. A comparative stu-
dy on feature selection in text categorization. In ICML
’97: Proceedings of the Fourteenth International Con-
ference on Machine Learning, pages 412–420. Morgan
Kaufmann Publishers Inc., 1997. ISBN 1-55860-486-3.


	Introduction
	Preliminaries
	Ranking Loss Functions
	Perceptrons
	Binary Relevance Ranking
	Multiclass Multilabel Perceptrons

	EUR-Lex Repository
	Data Preprocessing

	Evaluation
	Algorithm Setup
	Ranking Performance
	Computational Costs

	Conclusions

