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1 I n t r o d u c t i o n

Every day people get in contact with bacteria, viruses or fungi living around us. Some of
these organisms are harmless or even helpful and often nothing happens. But sometimes
people fall ill and catch a disease.

The group of infectious diseases is large and diverse, differing among other things in
the way of transmission. Tuberculosis and influenza are transmitted by air. Measles by
person-to-person contact. Campylobacteriosis by eating contaminated food. Tetanus
through wounds in the skin. Malaria by mosquito bites. For some, but not for all, of the
diseases vaccinations exist that make people immune, or at least reduce the severity of
the symptoms (influenza).

The burden infectious diseases pose on humans is large. Most often, especially in indus-
trialized countries, the costs amount to just production losses or additional doctor visits.
However some diseases, e.g. pneumonia, HIV or dengue fever, cause several hundred
thousands of deaths each year worldwide [45].

The effort of countries to keep infectious diseases in check includes public surveillance,
which is conducted by the Robert Koch Institute for Germany. Its tasks include research,
advising and monitoring. To have a good monitoring system is crucial for fighting an
outbreak. The earlier unusual patterns are detected, the earlier preventive measures can
be carried out. One integral part of the detection mechanism, is to have a good forecast.
Whether an observed number of cases is normal or exceptional, can only be judged by a
comparison of the observed data with a forecast.

A disease which is monitored because of its inherent risk is influenza. Its mutation ability
can cause a very serious and huge worldwide outbreak at any time. Public institutes
monitor the number of reported cases and analyze samples to see how the virus changes.
However, reporting of cases is usually not instantly. Several days to weeks pass by until a
person feels so ill to see a doctor and the laboratory confirms a diagnosis. The FluTrends
monitoring system was created by researchers to earlier detect influenza outbreaks by
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using Google search data [13].1 People who feel ill use Google to search for their symptoms
or medicine before even going to a doctor.

Another monitored disease is campylobacteriosis, a gastrointestinal infection resulting in
vomiting, fever and diarrhea. It is caused by Campylobacter bacteria transmitted from
animals to humans via consumption of contaminated food. In Europe, Campylobacter
is the pathogen most often found by laboratories analyzing fecal samples for every year
since 2005 [12].

Despite many differences between influenza and campylobacteriosis, the two diseases
share a common feature. When plotting the number of observed cases over time, distinctive
seasonal variation can be observed. One factor that often comes to mind when thinking
about seasonality is temperature. Meteorological factors surely play some role in the
process of infection. For influenza, it is well understood how humidity and temperature
affect the virus’ ability to spread from person to person via air [23]. The role of weather
is much less understood for Campylobacter, and research results are ambivalent [19, 10].

Two additional factors make meteorological data enticing to use in models forecasting
case data. First, weather data is readily available. For Germany it is provided by Deutsche
Wetterdienst. Second, the employed weather stations are spread all over the country
providing variation across regions and thus being very well suited for use in models that
have a space and time component.

The thesis is structured as follows: In chapter 2 some background information is given
about the two infectious diseases influenza and campylobacteriosis. Literature that focuses
on the influence of weather is discussed as well. The employed statistical model, the
Endemic-Epidemic Model, is introduced in chapter 3. The various used data sources are
presented in chapter 4. These include case data from the Robert Koch Institute, weather
data from the Deutsche Wetterdienst and population data from the Statistische Bundesamt.
A special section is reserved for explaining the employed procedures to align the data,
i.e. to make the sources compatible. Results are presented in chapter 5 and discussed in
chapter 6.

1However, the system has already closed by now.
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2 B a c k g r o u n d

This chapter describes the two diseases for which case data is used in this study: Campy-
lobacter1 in section 2.1 and influenza in section 2.2. A special focus is made on discussing
literature about the influence of weather on the incidence of the diseases and on its way
of transmission.

2 . 1 C a m p y l o b a c t e r

Campylobacteriosis is a bacterial infection, which is typically transmitted from animal to
humans via the consumption of contaminated food or water. It causes a gastrointestinal
infection, similar to a Norovirus infection, which can result in vomiting, cramps, fever,
severe abdominal pain and (bloody) diarrhea [11, 43].

According to the European Food Safety Authority and European Centre for Disease
Prevention and Control [12], Campylobacter was the bacterial pathogen most often found
in humans having a gastroenteritis for each year since 2005. The number of cases reported
by 37 European countries in 2017 was 246,158, which is an incidence rate of 64.8 per
100,000 population. The reported fatality was low (0.04%), though.

The largest source of infection in the European Union is via eating contaminated poultry,
even though other animals we eat, like swine or cattle, are potential hosts for the bacteria
too, as well as cats or dogs, with whom we live [8]. The prevalence of Campylobacter in
raw poultry meat varies strongly across European countries. On the lower end are Finland
(11%) and Denmark (12%), while on the higher end are Spain (70%) and Austria (71%);
Germany is in the middle with 38% (year 2013). Therefore a large portion (> 50%) of
Campylobacter cases in Nordic countries, can be attributed to imported meat or traveling
[12].

1The term Campylobacter is not only used to refer to the bacteria name, but also to the caused disease.
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Given the purely monitoring nature of the study, no reasons are discussed that could explain
those large differences in the prevalence numbers. It is known that Campylobacter bacteria
are (usually) not transmitted by air and not vertically transmitted, unlike salmonellae,
from the hen to the (contaminated) egg and forward to the hatched chicken [26]. S. J.
Evans et al. [36] report that no Campylobacter was found in the environment of broiler
houses after adequate cleansing and disinfection between flocks - as it is usually done.
Several succeeding flocks were nevertheless later infected by Campylobacter despite
hygiene barriers in place. The ability of Campylobacter to spread within an environment
of a broiler house is very high, given that either no or almost all of the sampled birds testes
positive.

Other, rather unexpected, ways of transmission have been described in the literature too.
As early as 1990, which is 11 years before Campylobacter was included in the public
surveillance in Germany, the Public Health Laboratory Service in the United Kingdom was
already able to spot a fourfold increase in Campylobacter cases in the Ogwr District in
Wales. Conducting interviews with the infected people and a comparable control group2,
they found out that 80% of the infected reported the drinking of milk bottles delivered
to the door and attacked by birds, compared to only 8% of the control group [39]. The
relevance of this transmission path for Germany should be rather low, though.

A striking feature of a time series plotting Campylobacter cases is its seasonality, charac-
terized by increasing case numbers in each spring, a peak during the late spring or early
summer and decreasing numbers in autumn. The weekly case numbers from 2001:01 to
2019:39 for Germany are shown in figure 2.1

This general pattern is very consistent over the years and across most countries in temperate
climate [27, 19]. However, the timing of the peak can vary considerably across European
countries: Early peaks (week 21 to 23) can be observed for example in Wales and late
peaks (week 31 to 34) in Sweden [27]. The peak timing was found to be weakly associated
with the temperature during the winter months, suggesting that higher number of bacteria
are able to survive in the environment during milder winters and can start to replicate
earlier [19].

The shape and timing of the seasonality does not only differ across countries, but also
between regions. Louis et al. [22] documented sharp peaks in early June for Wales, but
far less pronounced peaks in late June for the Southeast of England. In a very simple
regression model, they established a correlation between the number of cases and the

2For each infected person, two non-infected persons were interviewed who were comparable according to
age, sex and area of residence.

1 1



2002 2004 2006 2008 2010 2012 2014 2016 2018 2020

Time

0

200

400

600

800

1000

1200

1400

1600

1800

2000

2200

2400

N
um
be
r 
of
 C
as
es

Figure 2.1: Weekly Campylobacter cases for Germany, from 2001:01 till 2019:39.

meteorological variables temperature, precipitation and hours of sunshine, as well as
variables measuring the degree of urbanization (population density, total number of cattle,
pigs, sheep and poultry).

While no causal relationship can be established in the literature, two groups of reasons
for the observed seasonality are discussed: Seasonal variation in human behavior that
changes the exposure to Campylobacter bacteria (e.g. barbecuing in the summer), and
seasonal variation of the prevalence of the bacteria in its reservoirs. Several authors
focused on investigating whether meteorological factors can explain the variation in the
Campylobacter cases, given the availability of weather data and the prominent role of
seasonality in variables like temperature.

Focusing on the main source of infection, [42] showed that the number of bacteria found
on raw meat of a poultry processing plant in Lancashire, UK, was correlated with the
minimum and maximum temperatures as well as the hours of sunshine. A much weaker
correlation of the prevalence of Campylobacter with meteorological factors was reported
by [30] for raw poultry meat in Denmark, tested during a national monitoring program
from 1998 to 2001. The correlation was higher, though, for the reported number of cases
in humans, with the maximum temperature 4 weeks prior being the best single predictor.

Ambivalent results are reported with regard to the role of weather affecting the number
of infections in humans. [19] used time series data from 14 different countries and
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found almost no effect of short-term variations in temperature on the Campylobacter
incidence. In contrast, [10] conducted an analysis on the regional level, using weather
data (temperature, rainfall) for Wales and England from 2005 to 2009, as well as postcode
information about the laboratory that conducted each Campylobacter proof. They claim
that the relationship between temperature and Campylobacter infections is non-linear
and can account for up to 33.3% of the expected cases.

2 . 2 I n fl u e n z a

Influenza, also called flu, is a highly contagious respiratory infection caused by a group of
influenza viruses. The symptoms, usually including high fever, coughing, severe malaise,
muscle pain and a running nose, occur suddenly and can be mild to severe. For people
at high risk, however, like young children and old people, influenza can be deadly. The
World Health Organization (WHO) estimates that worldwide 290,000 to 650,000 people,
mostly in developing countries, die each year from an influenza infection [44].

The virus is monitored by the WHO and countries around the world because of its inherent
risk. Transmission occurs very easily because every infected person disperses droplets
containing the virus into the air and onto surfaces when coughing or sneezing. Additionally
high mutation rates reduces the body’s ability to detect and fight the virus, which can
lead to global and very severe outbreaks (called pandemics) [46].

Similar to Campylobacter infections, influenza features a seasonality in temperate climates.
However, it is much more pronounced, the cases occur mainly during winter months and
the total number of infected people can vary sharply from year to year. The weekly case
numbers for Germany from 2001:01 till 2019:39 are shown in figure 2.2

Biological, social and environmental factors contributing to the seasonality are discussed
in the literature: Lower melatonin levels in the darker winter months reduces the im-
mune systems of humans and animals. Additionally, people tend to gather indoors (e.g.
Christmas shopping) enhancing the ability of the virus to spread from person to person.
Heating is turned up during colder months as well, which lead to lower air humidity,
which increases the survival of viral particles in the air [21].

The role of meteorological factors in the transmission of influenza is much deeper un-
derstood than for Campylobacter. In an experiment using guinea pigs under varying
temperature and relative humidity conditions, Lowen et al. were able to provide direct
evidence that cold and dry conditions favor the transmission via aerosols together with
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Figure 2.2: Weekly influenza cases for Germany, from 2001:01 till 2019:39.

results suggesting that cold temperatures (5°C) did not lower the responses of the immune
system. Transmission was almost completely blocked when high temperatures (30°C)
were combined with very high relative humidity (80%) [23]. Measuring the temperature,
humidity and CO2 levels in classrooms at two Minnesota grade schools, Tyler H. Koep
et al. estimate that running an air humidifier for four hours could lower the amount of
virus particles in the air, measured 1 hour afterwards, by 30% [41].

Despite the findings in the guinea pig experiment [23], influenza infections occur through-
out the whole year with almost no seasonality in tropical regions. In those wet and warm
conditions, the virus probably behaves somewhat differently. While the aerosol transmis-
sion is indeed reduced, much more virus particles can be found for a longer duration on
surfaces, increasing the risk of contact transmission [33].

The link between (absolute) humidity and influenza cases was confirmed in studies using
population data, for example [37] use 30 years of health and climate data for the United
States. Inserting meteorological variables like rainfall, temperature and atmospheric
pressure into a time series model proved valuable for warmer regions (Arizona and Hong
Kong) as well [38].
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3 T h e E n d e m i c - E p i d e m i c M o d e l

This chapter introduces the chosen statistical modeling approach, the Endemic-Epidemic
Model. It was created by Held et al. [15, 18] to handle the type of data that typically
arises from public health surveillance. Given needs for privacy protection, the individual
case data is aggregated by health departments such that only the number of reported
cases in a given region during a given time period remains. Statistically, those are event
counts with a time and space dimension leading to the class of multivariate Poisson time
series models.

The used model assumes that the number of reported cases Yit in region i at week
t, conditioned on the known past number of cases Yt−1, follows a negative binomial
distribution with a region- and time-specific mean µit and a time-invariant overdispersion
parameter ψi > 0 controlling the variance.1

Yit|Yt−1 ∼ NB(µit, ψi) (3.1)

Given the large number of counties used in this study, it is further assumed that the
overdispersion parameter is not only constant over time but also constant across regions,
leading to ψi ≡ ψ. Replacing the negative binomial distribution with a more restricting
Poisson distribution (ψi = 0) is never done, because the overdispersion parameter is
consistently and significantly above zero in all estimations.2

1The variance is given by Var(yit) = µit(1 +ψiµit) and exceeds the conditional mean µit as long as ψi > 0.
2Overdispersion can for example arise from under-reporting and reporting delays, or any other unobserved
covariates affecting how many and at what time cases are reported. [31].
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The characteristic feature of the Endemic-Epidemic Model is the additive decomposition
of the conditional mean µit into an endemic and an epidemic component.

µit = λARit Yi,t−1 + λNEit
∑︂
j ̸=i

wjiYj,t−1⏞ ⏟⏟ ⏞
Epidemic

+φitλ
EN
it⏞ ⏟⏟ ⏞

Endemic

(3.2)

The distinction is based on the literature on models for infectious disease counts, in which
the endemic component is described as persistent and stable over-time, in contrast to the
epidemic component, which comprises occasional outbreaks that eventually, and usually,
burn out as time progresses [15].

Mathematically, the central distinction is the epidemic component’s dependency on ob-
served cases from the previous week - either from the same region Yi,t−1 or from different
regions Yj,t−1 with j ̸= i.

The λτit with τ ∈ {AR,NE,EN} describe three distinctive rates of infection of healthy
people. In the autoregressive rate (AR) the healthy are infected by ill people living in the
same region. In contrast, its the ill people from different regions j ̸= i who are infecting
the healthy in the neighborhood rate (NE). How fast and how far a disease can spread,
is determined by the weights wji. These can either be set or estimated within the model,
for example assuming a power-law distance decay [24].3

The third rate, the endemic (EN), comprises all other causes of infection, which are
independent of disease counts from the previous week. The endemic λENit is typically
scaled by some population measure φit, as it is a useful approximation to the theoretical
quantity of the number of healthy people who are at risk of becoming ill [25].

The above mentioned characteristic equation 3.2 can be enriched by modeling each of the
three rates λτit with τ ∈ {AR,NE,EN} in a log-linear way with an intercept ατ

i and up to
K possibly time- and region-varying covariates.

log(λτit) = ατ
i +

K∑︂
k=1

βτkx
τ
it (3.3)

3The power-law distance decay assumes the functional form wji = o−d
ji with oji being the order in a

neighborhood graph of the regions, and d the so-called decay parameter, which is to be estimated.

1 6



While fixed-effects estimations (FE) or random-effects estimations (RE) of the region-
varying intercept(s) ατ

i is possible [31], it is assumed in this study that the intercept in
each component is constant across regions, i.e. ατ

i ≡ ατ for each τ ∈ {AR,NE,EN}. The
reason is that the cross-sectional dimension (401 counties) is very large compared to the
time dimension (104 time points) and thus the estimation, especially the RE case, too
difficult and time consuming.4

The regressors xit, also called covariates or features, can be used like in any linear
regression frameworks. For example, to account for seasonality using the sum of sine
and cosine terms [17].5 Or to incorporate other recurring effects like notification gaps as
done by Held et al. modeling cases of Norovirus gastroenteritis in Berlin [16], or school
closures as done by Bauer et al. modeling cases of hand, foot and mouth disease in the
central north region of China. All the meteorological variables used in this study, like
temperature, rain, hours of sunshine and humidity, will enter the model via this path.

Specification and estimation of the model was done in R, using the surveillance package
[25], in particular the hhh4 method.6 The various used formulations of equation 3.3 are
presented in the (sub-)sections of chapter 5 (Results).

While the development of and the extensions to the Endemic-Epidemic Model were
mainly driven by statistical and practical concerns, the model itself can be viewed as the
statistical equivalent of a theoretical susceptible‐infectious‐removed (SIR) model allowing
for immigration [1]. In SIR models the population is divided into three distinct groups:
healthy people facing the risk of becoming ill (the susceptible), ill people who possibly
infect healthy people (the infectious), and people who were ill but are now healthy again or
dead (the removed). The transit from one group to another is modeled using deterministic
differential equations.

4A random effects estimation assumes αi ∼ N(0, σ2
α). That is each region’s intercept is a random draw

from a normal distribution with mean zero and variance σ2
α, which needs to be estimated.

5One sine-cosine pair with a periodicity of 52 weeks has the formula: β1 sin( t
52
2π) + β2 cos( t

52
2π).

6The package obtains parameter estimates for the model by maximizing its log-likelihood using the quasi-
Newton algorithm, together with the Fisher information, and the model’s analytical score function.
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4 D a t a

This chapter describes all data sources used in the estimation and documents the various
performed preprocessing procedures. Recalling the formula of the model equation 3.2
gives a good idea what data sources are needed.

µit = λAR
it Yi,t−1 + λNE

it

∑︂
j ̸=i

wjiYj,t−1 + φitλ
EN
it

The mean of the negative binomial counts distribution is explained by the number of cases
Yi,t−1 in region i at week t− 1 (see section 4.1), a spillover effect from nearby counties
(see section 4.2) and an endemic component, which is scaled by the county’s population
φit (see section 4.3).

The meteorological data which is incorporated into the above model equation will be
presented in section 4.4. The main challenge encountered during preprocessing, the
aligning of the data from the various sources, will be extensively described in section 4.5.

4 . 1 C o u n t D a t a

Campylobacter and influenza are both infectious diseases which require a notification to
state health departments in case of a positive laboratory diagnosis. The requirement is
stated in the Act on the Prevention and Control of Infectious Diseases in Man, Infektionss-
chutzgesetz – IfSG §7(1) [6].

The notifications are passed on to the Robert Koch-Institut (RKI), which provides access
to an aggregated version of the individual notification data via the SurvStat@RKI 2.0 web
tool [35].
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The number of times a disease was reported in county i at week t can also be called the
cases or the count for county i in week t. At the time of the thesis, these counts were
available starting from week 1 in 2001 to week 40 in 2019. Despite the availability of
the counts, all estimations with data about influenza were restricted to the period 2008
to 2019, because broader notification requirements [35], starting March 2007, lead to a
structural break in the time series by considerably increasing the number of counts.

Three data preparation steps were needed. First, cases assigned to the county called
unknown were deleted. Second, the counts for the 12 districts of Berlin were merged
together, because population and polygon map data for each district was not available (see
sections 4.2 and 4.3). Third, all data registered for some week 53 were removed because
the employed statistical model works on the assumption that every year has exactly 52
weeks. The years 2004, 2009 and 2015 are affected by this.

4 . 2 N e i g h b o r h o o d D a t a

For the neighborhood component of the model, λNE
it

∑︁
j ̸=iwjiYj,t−1, knowledge about the

location of each county in Germany and its neighbors is needed, in particular, the weights
wij need to be specified.

The needed data is freely available for academic and non-commercial use from GADM,
the Database of Global Administrative Areas.1 It is basically a map of Germany, made
up of a collection of polygons, one for each county. The R library sp [34, 3] was used to
adjust the map data, as it provides functionality for a SpatialPolygonsDataFrame, which is
used for storing the data.

Three changes were applied to the downloaded data. First, the polygon Bodensee was
deleted. It was included as a water body, despite not being a separate county. Second,
encoding errors were eliminated. Some counties with parentheses as part of the name,
like Fürth (Kreisfreie Stadt), had the Unicode replacement character U+FFFD instead of
the ü. Third, the two polygons Osterode am Harz and Göttingen were merged, because
their fusion, which happened on the 1st of November in 2016 [20], was not incorporated.

The polygon map was subsequently used to specify the weights wji. The rather sim-
ple assumption that disease transmission is only allowed from direct neighbors is used

1The data was downloaded as version 3.6 on the 15th of May in 2019 using the URL: h t t p s : / / b i o g e o
. u c d a v i s . e d u / d a t a / g a d m 3 . 6 / R s p / g a d m 3 6 _ D E U _ 2 _ s p . r d s

1 9

https://biogeo.ucdavis.edu/data/gadm3.6/Rsp/gadm36_DEU_2_sp.rds
https://biogeo.ucdavis.edu/data/gadm3.6/Rsp/gadm36_DEU_2_sp.rds


throughout all estimations. This restricts the weights to wji = 1 if county j and county i
are directly adjacent, and wji = 0 otherwise. Note that wji = wij , given the symmetry of
the neighbor relation.

4 . 3 P o p u l a t i o n D a t a

Population data for each county i and each week t is needed in the endemic component
of the model for scaling purposes - it is the φit in φitλEN

it .

I chose to use data provided by the Federal Statistical Office (Statistische Bundesamt) as
part of the census 2011 [40]. Several pieces of unnecessary information needed to be
filtered out: Population information of larger, aggregated areas like Regierungsbezirke or
Bundesländer, information about the gender split in each region, and the comparison with
past population forecasts. The needed data entries were identified using the Amtliche
Gemeindeschlüssel: Counties possess a five-digit code, while larger administrative areas
have only two or three digits.

Each county’s population is further divided by the total population of Germany. That is,
the population fraction is used in the estimations. It is also assumed that this fraction is
constant over time, resulting in φit ≡ φi.

4 . 4 W e a t h e r D a t a

A broad variety of meteorological measurements is available from the Climate Data Center
(CDC) [9] run by the Deutsche Wetterdienst (DWD). The measurements of their weather
stations are available to the public free of charge, according to the laws GeoNutzV §2 [7]
and DWD-Gesetz §6 (2a) and §6 (6) [5].

The measurements of most weather features consist of a set of time series, one for each se-
lected weather station, and are available for download in various versions: high-frequency
data providing hourly measurements or aggregated versions providing daily, monthly or
yearly data. Of those, monthly or yearly data could not be used because of the weekly
frequency of the count data.2

2Monthly and yearly data could technically be used. However, a lot of variation and thus information would
be needlessly thrown away.
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The selected set of measures is shown in table 4.1. For each measure, the DWD already
aggregated the hourly measurements to daily measurements by using the average, sum,
minimum or maximum functions. Other available but not selected weather measures
include: cloud amount, wind direction and wind strength, as well as amount and type of
fresh-fallen snow.

For each measure a different number of weather stations is initially available, as docu-
mented in column 3. For example, precipitation is measured by 4278 stations, while
sunlight measurements are only offered by 383 stations. Humidity and the four temper-
ature measures are provided by around 700 different stations. However, many stations
do not cover the whole selected data range from November 1, 2000, to January 7, 2019.
This happens, among other things, when stations need to get repaired, are moved to
an entirely different site or are not yet deployed on the 1st of November in 2000. After
filtering out all those stations, only 34% of the initially available rain stations are available.
For humidity and temperature about 57% remain and for sunlight 34%. The absolute
numbers are shown in column 4 of table 4.1. Note that for some measures the number
of available stations is already below 401, the number of different counties in Germany,
without even accounting for the geographical spread of the weather stations.

Table 4.1: Used weather measures, their CDC file name and the number of available
weather stations before and after filtering.

Number of stations

Weather measure and its measurement unit File name Before After

Average humidity in % UPM_MN004 714 414
Sum of precipitation (rain and snow) in mm RS_MN006 4278 1458
Sum of sunlight in hours SDK_MN004 383 271
Maximum temperature in °C TXK_MN004 683 392
Minimum temperature in °C TNK_MN004 683 392
Average temperature in °C TMK_MN004 714 413
Minimum temperature in °C at ground level CTGK_MN004 697 406

Every meteorological variable is available as a daily measure. All temperature variables, except the
minimum ground temperature, are measured at 2 meter height. The columns Before and After refer to
the filtering of stations which do not cover the whole period 2000/11/01 - 2019/01/07.
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4 . 5 A l i g n i n g t h e D a t a

Several data preprocessing procedures needed to be conducted before being able to plug
in the various kinds of data, described in the sections above, into the same statistical
estimation model. In particular, the count data, weather data and population data needs
to be provided in matrices of the same size, one row for each week and one column for
each county.

Preparing the population matrix was easy given the constant-over-time assumption. The
population of each county just needed to stay the same in each week, resulting in a matrix
with identical rows.

4 . 5 . 1 A g g r e g a t i n g W e a t h e r M e a s u r e s

The daily weather data needed to be aggregated to be aligned to the weekly count data. I
mostly used the same set of aggregation functions the DWD already used for the hourly-
to-daily transformation. Potentially, every aggregation function could be used on any
measure, however, I restricted the combinations to the somewhat more sensible ones. That
is, I refrained from summing up temperature variables. The made choices are documented
in table 4.2. For the precipitation measurements, henceforth called rain, a new aggregation
function was used: The number of days with positive, i.e. existing, rainfall were counted.
This variable can range from 0 (days) to 7 (days) and is called rain ndays.

4 . 5 . 2 M a p p i n g W e a t h e r S t a t i o n s t o C o u n t i e s

Given the incorporation of weather as a feature into a spatial-temporal estimation model,
a mapping between the weather measurements and the counties needs to be established.

The data supplied by the Deutsche Wetterdienst mainly consists of two parts: The raw
data and metadata. Each row of the raw data stores one measurement, its timestamp and
the ID of the weather station conducting the measurement. The metadata is organized
as a set of files, one for each weather station. It has technical information about the
used instruments as well as information about the location, given as a triple of latitude,
longitude and elevation.

To translate that triple to an address, I used the Nominatim (h t t p s : / / n o m i n a t i m . o p
e n s t r e e t m a p . o r g / ) search engine for OpenStreetMap (OSM) data [28]. However,
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Table 4.2: Names of the weather variables used in the estimations, and their descriptions.

№ Name of the variable Description

1 Humidity Average humidity
2 Rain mean Average fallen rain
3 Rain ndays Number of days in week some rain has fallen
4 Sun sum Weekly sum of hours of sunlight
5 Mean(°CMax) Average of the maximum temperature of each day
6 Max(°CMax) Maximum temperature of the week
7 Mean(°CMean) Average of the average temperature of each day
8 Mean(°CMin) Average of the minimum temperature of each day
9 Min(°CMin) Minimum temperature of the week
10 Mean(°CMin, 5cm) Average of the minimum temperature of each day
11 Min(°CMin, 5cm) Minimum temperature of the week

The measure rain is officially called precipitation by the DWD and includes snowfall as well.
Variables 5 to 9 are measured at 2m height. Variables 10 and 11 at 5cm height.

querying the county field from the returned address was often not successful. For some
OSM addresses, especially in cities, the county information was empty. For others it
returned an administration area of a higher, more aggregated level than needed, e.g.
Regierungsbezirk instead of Stadt- or Landkreis.

Therefore, I decided to extract the zip codes (Postleitzahl) from the OSM addresses
and link those to the counties. The zip code information was hardly ever missing and
OpenStreetMap data, compiled by h t t p s : / / w w w . s u c h e - p o s t l e i t z a h l . o r g / ,
provided the needed information [29]. 8,173 zip code-county pairs for Germany were
documented in the file.3 However, some zip code areas overlap with county borders,
resulting in 117 zip codes that are shared between two counties and 5 zip codes that
are shared between three counties. In case of sharing, I decided that a city always had
precedence over the region around the city (39 times) and if no city was involved, the zip
code was given to the preceding county in alphabetical order.

In a given county, there can either be none, one, or more than one weather station be
located (after filtering). If one weather station is available, it will, of course, be selected.

3Actually, 13,108 places in Germany, like villages or cities, were listed together with its zip code and county
information. The zip code-county number is lower because several villages from the same county also
share a zip code.
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If more than one is available, the station with the lowest ID gets selected, and if none are
available, the station closest to the county is selected. For computing that distance, the
locations of counties missing a station is defined as the longitude and latitude of county’s
central node in the OSM data, which was again queried using Nominatim [28].

Howmany different stations remain and are used for each weather measure is documented
in table 4.3. For comparison, recall that (count) data for 401 counties is used. Thus, in
the case of humidity, each station needs to represent about 8.5 counties on average. In
the case of precipitation, each station only needs to represent 1.4 counties on average.
It is to be expected, that the resulting regional variation of the weather feature in the
estimation will be higher the more stations are used.

Table 4.3: The number of different weather stations used for each weather measure.

Weather measure Stations used

Average humidity in % 47
Sum of precipitation (rain and snow) in mm 281
Sum of sunlight in hours 79
Maximum temperature in °C 162
Minimum temperature in °C 161
Average temperature in °C 160
Minimum temperature in °C at ground level 122

For comparison: There are 401 counties in Germany.

4 . 5 . 3 L a g g i n g W e a t h e r V a r i a b l e s

When forecasting the expected number of counts for week t+ 1, at some time in week t,
the weather features for that week t cannot be used because of two reasons. First, the
measurements of the current week are not yet available. Second it takes time for people
to show symptoms, see a doctor, submit samples to a laboratory and notify the RKI. This
’reporting lag’ leads to a situation that the cases reported in week t are mostly people
falling ill during week t− 1. Thus the weather of week t− 1 (or earlier) is more relevant
and should be used in the estimation. This usage of weather data from past periods, is
called: using lagged weather variables.

When lagging the weather variables, attention to detail is needed. As mentioned in section
4.1, some years have a week 53 and the statistical estimation procedure is not able to
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cope with a varying number of weeks per year. Thus, the counts for that extra week were
deleted. However, the week 53 weather measurements cannot be deleted likewise. As
illustrated in table 4.4, the weather data from x weeks prior to the week 53 needs to
be deleted, where x is the lag order of the weather variable used. For example, when
forecasting the counts for week 2 in 2010, also written 2010:02, the count data from the
previous week 2010:01 is used in the estimation, together with weather data from some
earlier week. If a one-week lag is used, the weather measure needs to be from 2009:53,
and if a two-week lag is used, the weather measure needs to be from 2009:52 instead.

Table 4.4: Illustration of the difficulties arising from years with 53 weeks and the lagging
of weather variables.

Actual ISO week 2010:02 2010:01 2009:53 2009:52 2009:51

Count data used 2010:02 2010:01 - 2009:52 2009:51
Weather lag(1) 2010:01 2009:53 - 2009:51 2009:50
Weather lag(2) 2009:53 2009:52 - 2009:50 2009:49
Dates are in the YYYY-WW format. Lag(x) means that the weather variable of x weeks
prior is used.

4 . 5 . 4 E n s u r i n g I d e n t i c a l C o l u m n O r d e r

All the used data need to be provided with an identical column order [c1, c2, ..., c401], with
ci being column i. Expressed differently, if a given county finds its data to be in column i
in the population matrix, the same county’s data needs to be in column i in the count
matrix, the weather matrix and the neighborhood matrix as well.4

Ensuring identical column orders comes with obstacles, though. The data hails from four
different sources and each source uses slightly different names for the counties and no
unique identifier shared by all sources exists to easily merge the data. To provide an idea
how the county names vary across data sources, three counties were selected and its
various spellings are shown in table 4.5.

In general, the spelling variations could be grouped in systematic and unsystematic
disparities. An example for an unsystematic disparity can be found in column 2. The
sources 2 and 4 have shortened parts of the county name and use i.d.OPf. instead of in

4In fact, the county’s data need to be in row i of the neighborhood matrix too, given its symmetry.
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der Oberpfalz. What makes this unsystematic, is the lack of a straightforward rule to not
only identify counties that have their names shortened but to also provide the exact way
of transforming a county’s name from one version to the other. To still be able to find
the corresponding, slightly changed spellings for each county, an algorithm that provides
close matches instead of exact matches was used. It did well most of the time and the
seldom cases for which it failed were spotted by manual checking the logs.

Systematic differences in the spelling across the data sources, are based on the way
how the two types of counties, the Landkreis (rural district) and the Stadtkreis (urban
district), are identified and distinguished: Source 1 uses the (Stadtkreis) suffix for urban
districts and no prefix or suffix for rural districts. Source 2 uses the prefixes LK and SK
for Landkreis and Stadtkreis, respectively. Source 3 and 4, on the other hand, use an
additional variable to distinguish between the two types. This information needs to stay
attached for identification purposes in the reordering process.

Table 4.5: The spellings used for three different counties in the four different data source.

Source Example 1 Example 2 Example 3

1 Neumarkt in der Oberpfalz Karlsruhe (Stadtkreis) Karlsruhe
2 LK Neumarkt i.d.OPf. SK Karlsruhe LK Karlsruhe
3 Landkreis Neumarkt in der Oberp-

falz
Karlsruhe Karlsruhe

4 Neumarkt i.d.OPf Karlsruhe Karlsruhe
The sources are: [1] the Germany map (neighborhood), [2] the SurvStat-RKI data (counts), [3] the zip
code to county data (weather) and [4] census data (population). The bottom two data sources use an
additional identifier for differentiating between the urban and rural district of Karlsruhe.
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5 R e s u l t s

This chapter presents the results of several forecast experiments, each estimating the model
equation µit = λAR

it Yi,t−1 + λNE
it

∑︁
j ̸=iwjiYj,t−1 + φitλ

EN
it with varying configurations of

the endemic and autoregressive component, including various weather measures. The
usefulness for forecasting is evaluated for each configuration using rolling one-week-ahead
forecasts, µ̂i,t+1, for the identical period: week 1 through week 52 of 2018. The forecasts
are compared to the true counts yit and averaged over time (52 weeks) and counties
(401).

The evaluation measures used for comparison are the Mean Absolute Error (MAE)

MAE =
1

52

52∑︂
t=1

1

401

401∑︂
i=1

|µ̂i,t − yi,t| (5.1)

and the Mean Squared Error (MSE), which places a larger penalty on higher deviations.

MSE =
1

52

52∑︂
t=1

1

401

401∑︂
i=1

(µ̂i,t − yi,t)
2 (5.2)

For each week t, the set of time points used to fit the model is adjusted by adding the
newest time point and removing the oldest. Thus each one-week-ahead forecast is based
on the same number of time points. Models computing the forecast for week t > 1 use the
parameter estimates of the previous week’s model as the starting point of the optimization
procedure. The model for week 1 uses estimates of a corresponding basic model, which
differs only by using less or no weather features.
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5 . 1 C a l i b r a t i o n P e r i o d

While the evaluation period is fixed to 2018:01 to 2018:52, it is unclear how many weeks
of data should be used to fit the model when conducting a one-week-ahead forecast.

To answer that question, the following very basic form of the model equation 3.2 will be
used, with φi being the population fraction in county i.

µit = λARYi,t−1 + λNE
∑︂
j ̸=i

wjiYj,t−1 + φiλ
EN
t (5.3)

log(λAR) = αAR (5.4)
log(λNE) = αNE (5.5)

log(λEN
t ) = αEN + βtt+ β1 sin(

t

52
2π) + β2 cos(

t

52
2π) (5.6)

wji = 1 if distance between j and i is 1 and 0 otherwise. (5.7)

Each component’s intercept, ατ with τ ∈ {AR, EN, NE}, is assumed to be time-invariant
and identical across regions. Seasonality is only specified in the endemic component,
modeled as one sine-cosine pair and a time trend t (see equation 5.6). Transmission
in the neighborhood component is only allowed from directly adjacent counties (see
equation 5.7). Note that the population fraction φi provides variation across counties for
the endemic component, despite λEN

t being identical for all counties.1

The various tested lengths of calibration periods (called sample periods) and the corre-
sponding MSE and MAE figures are shown in table 5.1. Only multiples of full years were
considered, with a minimum of 2 years.2 For influenza, the sample was restricted to data
starting January of 2008, because an expansion of the notification requirements in March
of 2007 resulted in a structural break of the time series.

It can be seen that, for both diseases, all forecast error measures in table 5.1 are declining
from top to bottom. That is, the lowest (best) value in each column is achieved with the
sample period 2016:01 till 2017:52. The dominance of shorter sample periods over longer

1Note that multiplying with φi in equation 5.3 is the same as using log(φi) in the log-linear form of equation
5.6.

2Strictly speaking, the number of weeks of count data which needs to be provided for a sample period of x
years is x ∗ 52 + 1. The additional week is needed because of the Yi,t−1 in the AR- and NE-component.
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Table 5.1: Various sample period lengths and the resulting MSE and MAE.

Campylobacter Influenza

Sample Period Length MSE MAE MSE MAE

2002:01 - 2017:52 16 9.69 1.979 - -
2003:01 - 2017:52 15 9.64 1.972 - -
2004:01 - 2017:52 14 9.58 1.964 - -
2005:01 - 2017:52 13 9.57 1.964 - -
2006:01 - 2017:52 12 9.49 1.953 - -
2007:01 - 2017:52 11 9.48 1.951 - -
2008:01 - 2017:52 10 9.42 1.947 632.5 6.517
2009:01 - 2017:52 9 9.34 1.944 635.5 6.566
2010:01 - 2017:52 8 9.26 1.939 575.1 6.059
2011:01 - 2017:52 7 9.22 1.938 580.3 6.046
2012:01 - 2017:52 6 9.11 1.933 563.1 5.987
2013:01 - 2017:52 5 8.90 1.911 562.0 5.952
2014:01 - 2017:52 4 8.72 1.896 548.4 5.928
2015:01 - 2017:52 3 8.47 1.883 547.3 5.908
2016:01 - 2017:52 2 8.31 1.882 531.8 5.870
The sample period is given in the YYYY:WW format. Column 2, Length, denotes
the length of the sample period in years. MSE stands for Mean Squared Error and
MAE for Mean Absolute Error; see equations 5.1 and 5.2, respectively.
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ones, might be the result of a seasonality that changed over time (e.g. shape or timing of
the peak). In that case recent years are more representative for forecasting than years
further in the past.

All following experiments use data from the 2-year period 2016:01 to 2017:52 for fitting
the week 1 (2018) forecast model. For week 2, the adjusted, same-length period 2016:02
- 2018:01 is used. For week 3, 2018, the period 2016:03 - 2018:02 is used, and so on.

5 . 2 C h r i s t m a s a n d N e w Y e a r

In this section, an idea from Held et al. is examined, who added an indicator variable
for calendar weeks 52 and 1 to the endemic component when modeling norovirus and
rotavirus incidence in Berlin [16]. The idea is ”to capture changes in reporting behaviour
or social contact patterns during the Christmas break” [4, p. 10].

Thus, equation 5.8 presents the new formulation of the endemic component that replaces
equation 5.6. The only change is the added indicator variable dt. Its effect is measured by
βd.

log(λEN
t ) = αEN + βtt+ β1 sin(

t

52
2π) + β2 cos(

t

52
2π) + βddt

with dt = 1 in certain weeks and 0 otherwise.
(5.8)

Three different types of the indicator variable dt are considered. First, the suggested
indicator for calendar weeks 52 and 1, called Last Week & First Week. Second, a slightly
adjusted version, called Christmas & New Year, which is 1 for weeks including the 25th
of December or the 1st of January. Differences are seldom, but the adjusted version for
example does not have a New Year in 2016, because of its removal as a part of calendar
week 53, 2015.3 As a third version, an indicator for calendar week 2 is tested. Instead of
modeling a (potential) dip in reported cases over Christmas and New Year, the idea is to
model a potential surge afterwards.

Results for the two diseases, Campylobacter and influenza, are shown in table 5.2. For
comparison, the row None presents the MSE and MAE obtained when no indicator was
used; those results were already shown in table 5.1.
3Calendar week 53 in 2015 ranges from December 28, 2015, to January 3, 2016.
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Even though the coefficients for the two types Last Week & First Week and Christmas & New
Year were always significantly different from zero, including an indicator variable of those
types is not helpful for forecasting - the MSE is about the same as the one obtained by None.
The only improvement was obtained by using the Week 02 indicator for Campylobacter:
The MSE decreased from 8.31 to 8.20. No improvement was detected for influenza.
Perhaps, the increase of cases in week 2 for Campylobacter, picked up by the indicator
variable, is a result of people getting infected preparing poultry meat (duck, goose, ...) for
Christmas or New Year.4

Table 5.2: MSE and MAE for the Christmas - New Year experiment.

Campylobacter Influenza

Type MSE MAE MSE MAE

None 8.31 1.882 531.8 5.870
Last Week & First Week 8.32 1.884 532.0 5.874
Christmas & New Year 8.32 1.881 531.9 5.878

Week 02 8.20 1.871 533.5 5.882
The column ’Type’ specifies which weeks the dummy variable dt marks
with a 1. None of the 95%-confidence intervals for the dummy’s coeffi-
cient contained the 0.

Therefore, the Week 02 indicator variable will stay in the endemic component for the
following experiments - but only for Campylobacter. For influenza, the formulation from
equation 5.6, which excludes any indicator variable, is used.

5 . 3 W e a t h e r F e a t u r e s

In this section, several model formulations are examined that introduce meteorological
variables into the model. Simple extensions of the endemic component are considered
first, before slightly more complex formulations, and extensions to the autoregressive
component are tested.

4All coefficients for the Week 02 indicator variable were positive, meaning that there are some additional
cases in week 2 which are not picked up by the sine-cosine pair modeling the seasonality.
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5 . 3 . 1 S i n g l e V a r i a b l e

The first formulation of the model allowing for weather effects, extends the endemic
component by including one past week of one single weather variable. The weather
variable is used as originally measured and not differenced, also called its level form.

The new endemic component’s equation is shown in 5.9. Note that the weather variable
zi,t−j brings new between-county variation that was not present before, leading to λit
instead of λt. As for the weather variable, data from 1 week ago up to 5 weeks ago is
tested to find the best lag j∗ ≥ 1 for zi,t−j providing the lowest MSE and MAE. Results
are shown in table 5.3 for Campylobacter, and table 5.4 for influenza.

log(λEN
it ) = αEN + βtt+ β1 sin(

t

52
2π) + β2 cos(

t

52
2π) + βdd

(Campyl.)
t + βzzi,t−j

with dt = 1 in calendar weeks 2, otherwise 0. Only used for Campylobacter.
(5.9)

Table 5.3: MSE and MAE when adding one weather feature in the endemic component
for Campylobacter.

MSE MAE

Measure L1 L2 L3 L4 L5 L1 L2 L3 L4 L5

Humidity 8.23 8.20 8.19 8.20 8.21 1.875 1.870 1.869 1.869 1.870
Rain mean 8.19 8.20 8.20 8.18 8.20 1.869 1.869 1.870 1.868 1.870
Rain ndays 8.18 8.19 8.19 8.20 8.20 1.868 1.869 1.869 1.870 1.870
Sunshine sum 8.23 8.20 8.19 8.19 8.21 1.876 1.871 1.869 1.869 1.871
Mean(°CMax) 8.21 8.20 8.17 8.21 8.22 1.873 1.872 1.868 1.872 1.873
Max(°CMax) 8.21 8.20 8.18 8.21 8.21 1.873 1.871 1.868 1.873 1.872
Mean(°CMean) 8.20 8.22 8.19 8.22 8.21 1.872 1.874 1.870 1.873 1.873
Mean(°CMin) 8.19 8.23 8.21 8.22 8.21 1.871 1.873 1.872 1.872 1.872
Min(°CMin) 8.18 8.21 8.22 8.21 8.21 1.869 1.871 1.872 1.871 1.871
Mean(°CMin, 5cm) 8.19 8.24 8.22 8.23 8.21 1.870 1.873 1.873 1.872 1.872
Min(°CMin, 5cm) 8.18 8.21 8.23 8.21 8.21 1.869 1.870 1.872 1.870 1.871
Lx denotes the lag operator, meaning that the weather measure of x weeks prior was used. Rain ndays
= The number of days with precipitation > 0.
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Note that each column’s title indicates the lag length of the weather feature using the
lag operator notation, as defined e.g. by [14, ch. 2]. The lag operator L denotes that a
measure one time point prior is used, that is Lzt = zt−1. If the operator is applied j times,
it becomes Lj = Lj−1(Lzt) = Lj−1zt−1 = ... = zt−j .

For each weather measure (row) the best forecast error value is presented in bold. Overall
best results are additionally underlined. Judging by the MSE values, the overall best
results for Campylobacter are obtained with Mean(°CMax) at lag length 3. The achieved
8.17 is a tiny bit better than the 8.20 from the model without a weather variable included
(see table 5.2). For MAE, there is a four-way tie for the best forecast model: Mean(°CMax)
at lag length 3, Max(°CMax) at lag length 3, Rain ndays at lag length 1 and Rain mean
at lag length 4 all achieve an error of 1.868. For each weather variable, MSE and MAE
consider the same lag lengths to be the best.

Table 5.4: MSE and MAE when adding one weather feature in the endemic component
for Influenza.

MSE MAE

Measure L1 L2 L3 L4 L5 L1 L2 L3 L4 L5

Humidity 533.3 532.1 532.0 532.2 531.8 5.874 5.870 5.874 5.872 5.869
Rain mean 531.4 530.9 531.1 532.0 531.9 5.870 5.871 5.873 5.873 5.873
Rain ndays 530.0 529.9 531.4 532.0 531.7 5.865 5.866 5.874 5.875 5.869
Sunshine sum 529.8 531.4 532.1 532.7 531.9 5.863 5.869 5.878 5.876 5.872
Mean(°CMax) 529.4 529.3 532.1 532.1 532.9 5.854 5.860 5.874 5.872 5.887
Max(°CMax) 531.5 530.7 531.9 532.0 532.6 5.867 5.864 5.871 5.869 5.880
Mean(°CMean) 528.6 528.6 532.2 532.0 532.9 5.853 5.860 5.876 5.870 5.887
Mean(°CMin) 533.3 532.1 532.0 532.2 531.8 5.874 5.870 5.874 5.872 5.869
Min(°CMin) 529.8 529.1 532.0 532.1 532.7 5.863 5.869 5.876 5.872 5.884
Mean(°CMin, 5cm) 530.0 529.1 531.7 532.1 532.9 5.864 5.866 5.878 5.872 5.888
Min(°CMin, 5cm) 528.9 528.6 532.1 532.1 532.7 5.856 5.861 5.878 5.870 5.883
Lx denotes the lag operator, meaning that the weather measure of x weeks prior was used. Rain ndays
= The number of days with precipitation > 0.

For influenza, presented in table 5.4, both forecast error measures agree that Mean(°CMean)
at lag length 1 is the best. When judging by MSE, two same-scoring alternatives exist:
Mean(°CMean) at lag length 2 instead of 1 and Min(°CMin, 5cm) using L2. The obtained
MSE of 528.6 is hardly an improvement over 531.8, which was achieved without weather
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variables.

Overall, both result tables show a remarkable low level of variation between the measured
forecast errors. It hardly matters what weather measure or lag length is used.

In the following experiments, reporting of MAE results is omitted given the agreement
between the two error measures. The MAE scores were nevertheless computed and
checked to detect a situation of disagreement (none found). Additionally, only lag lengths
of 1 to 4 are considered, given the very low variation and the slight preference for lower
lag lengths.

5 . 3 . 2 P o l y n o m i a l

In this section, the equation of the endemic component is changed to allow (more) non-
linearity by incorporating a third-degree polynomial in the weather feature zi,t−j .5 The
third-degree was chosen to balance the need for flexibility - a cubic function can have one
inflection point - while limiting the possibility of over-fitting and keeping estimation times
low.

The new equation is presented in 5.10. As before, the indicator for calendar week 2 dt is
only used for Campylobacter and the best lag j∗ ≥ 1 for the weather variable needs to be
determined. Note that the data of all three parts of the polynomial is from the same week,
i.e. zi,t−j , z2i,t−j and z3i,t−j have the identical j.

log(λEN
it ) = αEN + βtt+ β1 sin(

t

52
2π) + β2 cos(

t

52
2π) + βdd

(Campyl.)
t +

βz1zi,t−j + βz2z
2
i,t−j + βz3z

3
i,t−j (5.10)

The results for Campylobacter and influenza are presented together in table 5.5. No MSE
values are shown for humidity as the estimation procedure had problems to converge.

For Campylobacter, the MSE is not better than using only one single variable. In fact,
for each weather measure there is a lag length configuration which provides a better or
the same MSE by omitting the quadratic and cubic terms z2i,t−j and z3i,t−j . For Influenza,
the MSE values are a little lower. For example, the temperature measure Min(°CMin, 5cm)
achieves an MSE of 521.9, which is equivalent to an improvement of 7.2 or 1.36%.
5The relationship between the counts and weather was already non-linear because the mean of an underlying
negative binomial distribution is modeled, instead of the counts itself.
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Table 5.5: MSE, separately for Campylobacter and Influenza, when using a 3rd-degree
polynomial in the weather measure.

Campylobacter Influenza

Measure L1 L2 L3 L4 L1 L2 L3 L4

Humidity - - - - - - - -
Rain mean 8.19 8.19 8.20 8.18 530.3 528.5 530.8 532.1
Rain ndays 8.21 8.19 8.19 8.21 529.7 529.5 531.2 532.4
Sun sum 8.24 8.20 8.20 8.20 530.7 531.4 532.7 532.2
Mean(°CMax) 8.31 8.25 8.19 8.22 525.8 528.6 536.2 534.6
Max(°CMax) 8.29 8.24 8.19 8.23 532.3 529.8 533.9 533.8
Mean(°CMean ) 8.30 8.27 8.20 8.22 524.1 527.3 535.5 534.3
Mean(°CMin) 8.25 8.25 8.22 8.22 523.4 526.3 534.0 533.6
Min(°CMin) 8.23 8.22 8.22 8.22 525.7 526.2 533.8 533.6
Mean(°CMin, 5cm) 8.25 8.26 8.23 8.22 521.9 525.4 533.7 533.3
Min(°CMin, 5cm) 8.22 8.22 8.23 8.21 526.3 527.5 533.3 533.7
Lx denotes the lag operator, meaning that the weather measure of x weeks prior was used. Rain ndays
= The number of days with precipitation > 0. There are no results for humidity as the estimation
procedure had problems to converge.
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5 . 3 . 3 P a i r s

In this section, the equation of the endemic component is changed to incorporate two
weather features instead of only one. As can be seen in the new formulation in equation
5.11, there are two weather features z(1) and z(2) as well as the interaction z(1)z(2). There
are no quadratic or cubic terms.

log(λEN
it ) = αEN + βtt+ β1 sin(

t

52
2π) + β2 cos(

t

52
2π) + βdd

(Campyl.)
t +

βz1z
(1)
i,t−j + βz2z

(2)
i,t−j + βz1,z2z

(1)
i,t−jz

(2)
i,t−j (5.11)

As before, dt is an indicator for calendar week 2 and only used for Campylobacter. To
determine the MSE minimizing j∗ ≥ 1, lag lengths of 1 to 4 are considered. The two
weather features and the interaction term need to be from the same past week. To lower
the amount of pairings, only one rain and one temperature measure is selected, based on
the single variable results for Campylobacter (see table 5.3).

Table 5.6: MSE, separately for Campylobacter and Influenza, when using pairs of weather
features.

Campylobacter Influenza

Measure L1 L2 L3 L4 L1 L2 L3 L4

Humidity & Rain mean 8.22 8.19 8.19 8.19 532.9 531.3 531.4 532.5
Humidity & Sun sum 8.23 8.19 8.20 8.20 530.9 531.4 533.3 533.4
Humidity & Mean(°CMax) 8.26 8.23 8.19 8.21 536.0 534.3 532.7 533.0
Rain mean & Sun sum 8.24 8.20 8.20 8.19 529.8 531.0 531.8 533.0
Rain mean & Mean(°CMax) 8.21 8.19 8.19 8.19 525.4 525.6 531.9 532.2
Sun sum & Mean(°CMax) 8.26 8.25 8.20 8.22 537.6 534.2 534.2 533.3
Lx denotes the lag operator, meaning that the weather measure of x weeks prior was used.

For Campylobacter, the results from the pair experiment shown in table 5.6 are in line with
the 8.18 achieved by the polynomial formulation (see table 5.5) and the 8.17 achieved by
using a single weather measure (see table 5.3). All pairs except for the last one reached
8.19.
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For Influenza, most of the scores are even worse than the ones achieved in table 5.4 using
only one single variable, except for the Rain mean & Mean(°CMax) pairing. That pair
achieved a MSE of 525.4, which is better than the best single weather measure score of
528.6 but not as good as the polynomial results (521.9).

Browsing the logs, which document the coefficient estimates of each one-week-ahead
forecast, reinforces the insight that using pairs is not helpful. Several of the weather
variables and/or the interaction term were insignificant. Thus, the pairing of weather
measures does not seem to provide any extra information or exploitable variation. It
could be that the weather features are too heavily correlated, or that the functional form
assumption - the additive individual effects in level form and the multiplicative interaction
term - is way too restricting or just wrong.

5 . 3 . 4 F i r s t D i f f e r e n c e s

In this section, a new formulation of the endemic component is proposed and tested,
in which the weather variable is used in its differenced form instead of its level form.
Differencing a variable with a time dimension like zt means computing the difference
between the value at time t and the value of the same variable at some earlier time t− j,
with j > 1. The variable is said to be first-differenced if j = 1 and thus the difference
between the value at t and t−1 is computed: ∆zt = zt−zt−1, which is just the one-period
change.

Adding first differences in the weather variable to the endemic component will give us
equation 5.12.

log(λEN
it ) = αEN + βtt+ β1 sin(

t

52
2π) + β2 cos(

t

52
2π) + βdd

(Campyl.)
t +

βz∆zi,t−j (5.12)

As before, dt is an indicator for calendar week 2 and only used for Campylobacter, and lag
lengths of 1 to 4 are considered to determine the MSE minimizing j∗ ≥ 1.

The results, presented in table 5.7, only slightly differ from the other results. The best
scores are between 8.19 and 8.21 for Campylobacter and between 529.9 and 531.8 for
influenza - a tiny bit worse compared to the single variable in its level form formulation
(see tables 5.3 and 5.4). Several coefficients were insignificant.
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Table 5.7: MSE, separately for Campylobacter and Influenza, when using a single weather
features in first difference form.

Campylobacter Influenza

Measure j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

Humidity 8.21 8.21 8.21 8.21 532.2 533.0 531.6 532.2
Rain mean 8.21 8.21 8.21 8.20 532.0 532.0 531.8 532.0
Rain ndays 8.20 8.20 8.21 8.20 532.0 531.9 531.7 531.7
Sun sum 8.21 8.20 8.21 8.20 531.6 533.5 531.2 531.9
Mean(°CMax) 8.20 8.20 8.19 8.24 532.3 530.6 531.8 532.2
Max(°CMax) 8.19 8.21 8.20 8.24 532.0 531.5 531.6 532.5
Mean(°CMean) 8.21 8.19 8.19 8.24 532.5 529.9 531.6 532.1
Mean(°CMin) 8.23 8.19 8.19 8.23 532.5 530.4 531.5 532.0
Min(°CMin) 8.22 8.20 8.21 8.21 532.6 530.7 531.5 531.9
Mean(°CMin, 5cm) 8.24 8.19 8.19 8.22 532.5 530.8 531.3 531.9
Min(°CMin, 5cm) 8.23 8.20 8.21 8.21 532.5 531.4 531.0 531.8
j = x refers to the value for j in equation 5.12. Rain ndays = Number of days with precipitation > 0.

5 . 3 . 5 T h r e e L a g g e d F i r s t D i f f e r e n c e s

Instead of using information of only one past weather measure change, three consecutive
weekly changes are considered in this section. The resulting formulation of the endemic
component is given in equation 5.13.

log(λEN
it ) = αEN + βtt+ β1 sin(

t

52
2π) + β2 cos(

t

52
2π) + βdd

(Campyl.)
t +

βz1∆zi,t−j + βz2∆zi,t−j−1 + βz3∆zi,t−j−2 (5.13)

As before, dt is an indicator for calendar week 2 and only used for Campylobacter, and
values 1 to 4 are considered for j. Results are shown in table 5.8. For Campylobacter, the
MSE scores are almost equal to the results in 5.7 when using only a single past change. The
MSE score is at most 0.01 lower when using three weekly changes. For Influenza, the MSE
score tends to be a bit lower when three differenced terms are used instead of only one.
The improvement is especially noticeable for the temperature measures Mean(°CMean)
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and Mean(°CMin). However, the results are not as good as in the formulation using a 3-rd
degree polynomial (521.9).

Table 5.8: MSE, separately for Campylobacter and Influenza, when using the changes in
the weather variable of three consecutive past weeks.

Campylobacter Influenza

Measure j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

Humidity 8.22 8.21 8.22 8.22 534.8 533.2 532.0 532.5
Rain mean 8.21 8.20 8.21 8.21 532.0 531.7 531.8 530.7
Rain ndays 8.20 8.20 8.21 8.21 531.0 530.1 531.2 531.8
Sun sum 8.21 8.20 8.21 8.22 532.6 532.5 531.2 532.2
Mean(°CMax) 8.17 8.21 8.22 8.25 529.3 529.9 532.5 532.6
Max(°CMax) 8.18 8.23 8.24 8.25 530.9 531.4 533.1 533.0
Mean(°CMean) 8.18 8.21 8.23 8.24 527.6 528.4 532.3 532.6
Mean(°CMin) 8.20 8.21 8.22 8.22 527.5 528.4 532.0 532.6
Min(°CMin) 8.21 8.21 8.22 8.21 529.2 529.4 531.9 532.4
Mean(°CMin, 5cm) 8.22 8.20 8.21 8.21 528.0 528.5 531.9 532.6
Min(°CMin, 5cm) 8.22 8.21 8.22 8.21 529.5 529.6 530.9 531.8
j = x refers to the value for j in equation 5.13. Rain ndays = Number of days with precipitation > 0.

Overall none of the formulations provided much - if any - success. One feature all formula-
tions had in common, is that the endemic component was used to incorporate the weather
variables. The next section will explore how and if results differ when the autoregressive
component is used instead.

5 . 3 . 6 A u t o r e g r e s s i v e C o m p o n e n t

This section will present the results from two model formulations that incorporate the
weather features into the autoregressive component instead of the endemic component.
Therefore, the endemic component will be the one shown in equation 5.14. It still
captures seasonality with the sine-cosine pair and has the calendar week 2 indicator dt for
Campylobacter.

log(λEN
t ) = αEN + βtt+ β1 sin(

t

52
2π) + β2 cos(

t

52
2π) + βdd

(Campyl.)
t (5.14)
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For the autoregressive component, two different formulations are considered. The first,
shown in equation 5.15, adds a single weather feature in its level form.

log(λAR
it ) = αAR + βz1zi,t−j (5.15)

The second formulation is presented in equation 5.16. It adds three past weeks of the
differenced weather feature.

log(λAR
it ) = αAR + βz1∆zi,t−j + βz2∆zi,t−j−1 + βz3∆zi,t−j−2 (5.16)

Again, values from 1 to 4 were considered for j. When incorporating the weather variable
into the autoregressive component, one has to keep in mind that the λAR

it is multiplied
by Yi,t−1 in the model equation µit = λAR

it Yi,t−1 + λNE
it

∑︁
j ̸=iwjiYj,t−1 + φitλ

EN
it . While it

does not make much sense at first glance to use weather features from any other week
than t− 1, effects like reporting delays and incubation times of the diseases potentially
lead to a misalignment of the count and weather data. Cases reported for week t fell ill
before, probably because of weather effects in t− 1 or earlier.

Table 5.9: MSE, separately for Campylobacter and Influenza, when using a single weather
variable in the autoregressive component.

Campylobacter Influenza

Measure j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

Humidity 8.17 8.18 8.18 8.18 796.7 796.4 621.4 533.8
Rain mean 8.26 8.24 8.23 8.22 510.0 529.3 540.2 533.6
Rain ndays 8.23 8.24 8.23 8.22 525.9 556.0 559.7 508.9
Sun sum 8.14 8.15 8.18 8.17 776.9 823.5 625.1 503.5
Mean(°CMax) 8.09 8.13 8.16 8.12 917.2 1661.5 1329.1 834.2
Max(°CMax) 8.10 8.14 8.16 8.13 548.6 558.3 743.5 727.7
Mean(°CMean) 8.07 8.10 8.15 8.12 1170.3 2072.2 1335.1 775.9
Mean(°CMin) 8.07 8.11 8.16 8.13 1188.0 1805.9 1061.3 650.3
Min(°CMin) 8.08 8.13 8.17 8.15 830.5 1098.6 906.5 652.2
Mean(°CMin, 5cm) 8.08 8.13 8.17 8.14 886.2 1320.9 878.9 613.0
Min(°CMin, 5cm) 8.09 8.13 8.17 8.15 681.2 872.5 778.2 626.4
j = x refers to the value for j in equation 5.15. Rain ndays = Number of days with precipitation > 0.
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The results for the first, single variable formulation are shown in table 5.9. For Campy-
lobacter the MSE scores are lower for most measures than in any other formulation tested
before. The overall best score of 8.07 is 0.1 points better than the 8.17 scored in the single
variable formulation using the endemic component. The best j is j = 1, i.e. the change
from the beginning to the end of past week (t− 2 to t− 1).

For influenza, the variations in MSE are huge. There is variation between measures, with
rain measures being better than temperature measures, and variation across the different
j. Unlike Campylobacter, influenza favors a high j of 4. The lowest MSE for influenza is
503.5, when the weekly sum of sunlight from 4 weeks prior is used. This is lower than
the lowest MSE achieved when using the endemic component (521.9 with the polynomial
formulation). However, some measure - lag length combinations are multitudes worse than
any other, formerly used formulation, including models without any weather variables. It
is concerning that very similar weather measures like Mean(°CMax) and Max(°CMax) can
exhibit so different MSE scores.

Table 5.10: MSE, separately for Campylobacter and Influenza, when using three lags of
the differenced weather feature in the autoregressive component.

Campylobacter Influenza

Measure j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

Humidity 8.23 8.22 8.21 8.22 556.4 567.1 540.1 508.4
Rain mean 8.22 8.21 8.21 8.21 483.7 490.8 545.2 573.4
Rain ndays 8.20 8.20 8.20 8.22 452.7 428.4 542.3 572.0
Sun sum 8.21 8.21 8.21 8.23 507.1 555.7 550.3 531.4
Mean(°CMax) 8.18 8.23 8.24 8.25 341.4 533.1 634.8 661.1
Max(°CMax) 8.20 8.24 8.24 8.24 450.6 362.8 478.6 599.8
Mean(°CMean) 8.18 8.22 8.24 8.23 322.2 613.1 734.9 692.1
Mean(°CMin) 8.19 8.21 8.22 8.19 321.5 619.7 734.8 652.6
Min(°CMin) 8.19 8.20 8.21 8.19 330.3 467.4 631.1 637.6
Mean(°CMin, 5cm) 8.19 8.20 8.21 8.17 324.8 503.5 644.0 630.0
Min(°CMin, 5cm) 8.20 8.20 8.21 8.19 361.9 421.7 567.6 627.4
j = x refers to the value for j in equation 5.16. Rain ndays = Number of days with precipitation > 0.

The results for the second formulation of the autoregressive component, equation 5.16,
with the 3 lagged differences in the weather features are shown in table 5.10. For
Campylobacter, the obtainedMSE are in line with the results from all the formulations using
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the endemic component. The lower MSE value from the first autoregressive component
experiment (8.07), table 5.9, could not be obtained again.

For influenza, the MSE values are the best values obtained so far, by a huge margin. The
weather measure Mean(°CMin) achieved a score of 321.5 and several other measures
scored well below 400. Even the 508.4 from humidity and 507.1 from sunlight are lower
than any other MSE value. The variation across different j values is still noticeable, but
not as large as in the first experiment using a single weather variable in the autoregressive
component.

In the next section, the two different formulations used in this section will be joined by
their corresponding endemic component versions. Desirable results are an even lower
forecast error or less variation across different configurations.

5 . 3 . 7 B o t h C o m p o n e n t s

In this section, the meteorological features will simultaneously enter the model through
the endemic and autoregressive component. The same two formulations from last section’s
autoregressive component tests are used, together with their endemic equivalent.

The two equations shown in 5.17 summarize the endemic and autoregressive component
of the first model formulation. Each component features only a single weather variable
used in its level form. Both components were already used separately before. The endemic
component in section 5.3.1, and the autoregressive component in section 5.3.6.

log(λEN
it ) = αEN + βtt+ β1 sin(

t

52
2π) + β2 cos(

t

52
2π) + βdd

(Campyl.)
t + βzEN zi,t−j

log(λAR
it ) = αAR + βzARzi,t−j

(5.17)

The second model formulation, shown in equation 5.18, is equivalently composed of an
endemic and an autoregressive component, which were already used separately. The
former in section 5.3.5 and the latter in section 5.3.6.
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log(λEN
it ) = αEN+βtt+ β1 sin(

t

52
2π) + β2 cos(

t

52
2π) + βdd

(Campyl.)
t

+βz1∆zi,t−j + βz2∆zi,t−j−1 + βz3∆zi,t−j−2

log(λAR
it ) = αAR+βz4∆zi,t−j + βz5∆zi,t−j−1 + βz6∆zi,t−j−2 (5.18)

As usual, dt is an indicator for calendar week 2 and only used in the Campylobacter
estimation. Both model formulations restrict the index variable j to be the same across
components. That is, the weather feature in the endemic component needs to use data
from the same prior week as the (same) weather feature in the autoregressive component
- and vice versa.

Table 5.11: MSE, separately for Campylobacter and Influenza, when a single weather
feature is used in the endemic and autoregressive component.

Campylobacter Influenza

Measure j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

Humidity 8.15 8.11 8.09 8.11 802.2 807.5 640.9 549.5
Rain mean 8.25 8.24 8.24 8.20 510.0 533.5 542.1 533.5
Rain ndays 8.26 8.22 8.23 8.20 538.2 572.9 568.4 511.5
Sun sum 8.16 8.10 8.12 8.11 798.0 838.7 652.7 521.7
Mean(°CMax) 8.09 8.10 8.09 8.12 919.3 1621.1 1330.3 840.4
Max(°CMax) 8.09 8.10 8.08 8.12 555.5 562.8 749.5 735.8
Mean(°CMean) 8.07 8.11 8.10 8.13 1184.4 2013.4 1344.0 788.9
Mean(°CMin) 8.07 8.13 8.14 8.15 1216.1 1756.2 1060.7 659.0
Min(°CMin) 8.08 8.13 8.17 8.15 863.4 1086.9 911.7 661.4
Mean(°CMin, 5cm) 8.08 8.15 8.16 8.17 928.8 1297.3 878.5 622.6
Min(°CMin, 5cm) 8.09 8.14 8.18 8.16 716.9 874.8 775.9 637.1
j = x refers to the value for j in equation 5.17. Rain ndays = Number of days with precipitation > 0.

The results for the formulation using a single weather variable are shown in table 5.11.
For Campylobacter, the MSE values are very similar to the ones obtained when the single
weather feature was only used in the autoregressive component (see table 5.9). Almost all
temperature variables achieve the exact same MSE value (between 8.07 and 8.09), with
j = 1 being the preferred lag length. The measures humidity, sunlight, rain mean and
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rain ndays show slight improvement. The former advantage of the temperature measures
over those 4 partly vanished.

For influenza, the overall picture very much resembles the one from the autoregressive-
only formulation. The best MSE values are obtained with the rain measures or sunlight
and these 3 are the only measures for which the obtained MSE is better than in the
endemic-only formulation. Including the weather feature additionally in the endemic
component, as it is done in this both-component formulation, is useless though. All MSE
values are worse than in the autoregressive-only formulation.

Table 5.12: MSE, separately for Campylobacter and Influenza, when using three lags of
the differenced weather feature in the endemic and autoregressive component.

Campylobacter Influenza

Measure j = 1 j = 2 j = 3 j = 4 j = 1 j = 2 j = 3 j = 4

Humidity 8.24 8.23 8.23 8.23 530.5 557.0 542.2 509.7
Rain mean 8.22 8.21 8.21 8.21 483.9 490.8 548.3 577.1
Rain ndays 8.20 8.20 8.21 8.22 454.2 431.9 549.3 573.2
Sun sum 8.22 8.22 8.22 8.24 501.1 552.5 556.6 533.4
Mean(°CMax) 8.17 8.22 8.23 8.26 337.0 515.8 645.7 674.9
Max(°CMax) 8.19 8.25 8.24 8.26 453.8 362.6 481.7 611.6
Mean(°CMean) 8.17 8.22 8.23 8.24 319.8 594.1 756.8 720.1
Mean(°CMin) 8.19 8.21 8.21 8.20 324.8 611.4 761.4 684.7
Min(°CMin) 8.21 8.21 8.22 8.19 335.8 462.8 642.9 654.5
Mean(°CMin, 5cm) 8.21 8.20 8.20 8.18 329.5 506.4 670.2 664.9
Min(°CMin, 5cm) 8.22 8.21 8.22 8.20 366.0 421.0 575.2 646.1
j = x refers to the value for j in equation 5.18. Rain ndays = Number of days with precipitation > 0.

The results for the both-component version using the 3 lags of the first differenced weather
variable (see equation 5.18) are presented in table 5.12. The MSE values obtained for both
diseases do not really differ from those obtained in the autoregressive-only formulation,
shown in table 5.10. The both-component formulation very slightly improved upon the
autoregressive-only for some measures like the overall-best Mean(°CMean). The endemic-
only formulation showed about the same Campylobacter results but a lot worse MSE
values for influenza (see table 5.8).

Concluding, using both components together does not show much promise. The driv-
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ing force behind the results had been the autoregressive-only formulation in each case.
Whenever the autoregressive-only formulation had an advantage over the endemic-only
formulation, that advantage could be retained. But the both-component formulation was
incapable of exploiting any advantage of the endemic-only formulation.

5 . 4 R o b u s t n e s s C h e c k

While the incorporation of meteorological variables did not show much promise for most
of the tested models, especially the ones using the endemic component, there were two
exceptions. Using a single weather feature in the autoregressive component was useful for
Campylobacter, and using 3 lags of a first-differenced temperature variable was useful for
influenza. The best feature for both diseases had been Mean(°CMin). It lead to an MSE
improvement from 8.20 to 8.07 for Campylobacter and 531.8 to 321.5 for influenza.

However, those two model formulations were only evaluated on data from 2018. While
the whole evaluation period comprises 52 weeks, it is not much when a seasonality
with a period length of 52-weeks is present - each time point (week) of the seasonality
was evaluated only once. This section will therefore try to examine if the two model
formulations are robust, that is if the model formulations are still good when other
evaluation periods are used.

5 . 4 . 1 D i f f e r e n t E v a l u a t i o n P e r i o d s

To recapitulate, the two best model formulations are both using the autoregressive com-
ponent to incorporate the meteorological variables into the model. Thus, the endemic
component is without any weather features and just models the seasonality with a sine-
cosine pair and, for Campylobacter only, the calendar week 2 effect dt. The formulation
from section 5.3.6 is repeated in equation 5.19.

log(λEN
t ) = αEN + βtt+ β1 sin(

t

52
2π) + β2 cos(

t

52
2π) + βdd

(Campyl.)
t (5.19)

The two formulations for the autoregressive component are equation 5.20 for Campy-
lobacter and 5.21 for influenza. Both use the weather measure Mean(°CMin) as zi,t. The
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usually present lag length j was already replaced with the value 1, as it was determined
to be the best.

log(λAR
it ) = αAR + βz1zi,t−1 (5.20)

log(λAR
it ) = αAR + βz1∆zi,t−1 + βz2∆zi,t−2 + βz3∆zi,t−3 (5.21)

Table 5.13: Comparison over various evaluation periods of a model for Campylobacter with
the weather feature Mean(°CMin) in the autoregressive component against
the same model without weather features.

Evaluation MSE MAE

Year With Without With Without

2018 8.07 8.20 1.87 1.87
2017 9.45 9.62 1.95 1.96
2016 7.57 7.69 1.76 1.77
2015 6.47 6.52 1.69 1.69
2014 6.89 6.94 1.73 1.73
2013 6.54 6.64 1.60 1.60
2012 5.78 5.85 1.58 1.59
2011 8.27 8.52 1.72 1.73
2010 7.04 7.11 1.64 1.65
2009 5.79 5.79 1.59 1.59
2008 6.36 6.46 1.63 1.64
2007 6.72 6.80 1.68 1.69
2006 4.91 4.99 1.44 1.44
2005 6.26 6.31 1.60 1.60
2004 5.41 5.48 1.48 1.48

Each model was fit using 2 years prior to the evaluation
year. The autoregressive component’s formulation is
equation 5.20.

The resulting MSE values for the first model formulation for Campylobacter from equation
5.20 is shown in table 5.13 together with the results from the corresponding model without
any weather features. One can quickly detect that the model with the weather feature
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was never worse than the model without. Judging by the MSE values, the model with was
better for each evaluation period, except for 2009, for which it was equally good as the
model without. The two models are more often tied when MAE is used instead of MSE.
The size of the MSE differences are comparable across the different evaluation periods.
Thus, 2018 was not exceptionally different from any other year before.

Table 5.14: Comparison over various evaluation periods of a model for influenza with three
lags of the differenced weather feature Mean(°CMin) in the autoregressive
component against the same model without weather features.

Evaluation MSE MAE

Year With Without With Without

2018 321.5 531.8 4.60 5.87
2017 74.1 80.7 2.24 2.37
2016 43.0 45.7 1.64 1.70
2015 75.7 77.8 2.00 2.04
2014 1.5 1.5 0.35 0.35
2013 45.5 46.9 1.78 1.78
2012 3.9 3.9 0.49 0.49
2011 36.8 32.4 1.41 1.36
2010 4.8 3.4 0.60 0.57

Each model was fit using 2 years prior to the evaluation
year. The autoregressive component’s formulation is equa-
tion 5.21.

The same type of forecast error comparison over various evaluation years is repeated
for the best influenza model, equation 5.21. The results are presented in table 5.14.
Judging by MSE, the model ’with’ was worse in 2010 and 2011, equally good in 2012 and
2014 and better for every other evaluation period. The size of the MSE values itself vary
considerably over the years. Some years like 2010, 2012 and 2014 have extremely small
MSE values, while it is enormous for 2018. Potentially, because the 2018 influenza season
extraordinarily changed its form compared to the past two years or an extraordinary
number of people got infected. In either case, both models made very large forecast errors
in 2018, but the model with the weather measure did considerably better than the model
without.

Given that the MSE for 2018 is at least four times as large as in any other years, there is a
need to analyze in more detail why the weather model for influenza was so much better
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in that particular year. The following section tries to shed light onto that question.

5 . 5 D e t a i l e d E x a m i n a t i o n o f t h e I n fl u e n z a M o d e l f o r 2 0 1 8

As the first inspection step, the obtained weekly MSE values were plotted for both influenza
models in figure 5.1.
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Figure 5.1: Weekly MSE values when evaluated for 2018, for the model including weather
features and a control model.

The values obtained by the model with the weather feature are presented in dark, while
the values obtained by the control model (without weather features) are presented in
light gray. A huge variation of the MSE values across weeks can be seen. For weeks 16
to 52, almost no errors were made by both models. Between weeks 1 and 15, both lines
start near 0, increase very fast until reaching a peak in week 10 and then fall as fast as
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before towards zero. There are some weeks in the ascent when the MSE shortly decreases
and likewise some weeks in the descent when the MSE shortly increases before the lines
follow their original trajectory.

The dark line is either very close to the light gray line or considerably below. Thus, the
weather model is equally good as the control model in most weeks and fares considerably
better in some weeks. There are three weeks with an especially large disparity, that drive
the overall advantage of the weather model: Week 12, week 8 and week 10. The MSE
disparity between the control model and the model with weather are 3952 to 1023, 4197
to 1310 and 7555 to 5114, respectively.

5 . 5 . 1 C o u n t i e s D r i v i n g t h e R e s u l t

The next step of the inspection aims to detect which counties are most important in
establishing the advantage of the weather model over the control model. For the three
most important weeks, week 8, 10, 12, the difference between the absolute forecast errors
of the two models is computed. The equation is given by 5.22.

∆AEit = |µ̂weather
i,t − yweather

i,t | − |µ̂controli,t − ycontroli,t | (5.22)

Two things are worthy to point out. First, ∆AEit lacks the averaging over space and time
and, thus, varies across counties and weeks. Second, it can be positive and negative. If
∆AEit > 0, then the weather model has a smaller absolute error for that specific county
and week combination and if ∆AEit < 0, then the control model has the smaller absolute
error.

Which ∆AEit values the 401 counties obtain in week 8, 10 and 12 is plotted in figure 5.2.
Each week is shown separately, week 8 in 5.2a at the top, week 10 in 5.2b in the middle
and week 12 in 5.2c at the bottom. Outlier detection is supported by the box plot overlay
in each graph.

The median of the distribution is the value which splits the dark and light area in the box.
The lower (left) end of the box is the 25%-percentile, also called lower quartile, and the
upper (right) end is the 75%-percentile, or upper quartile. The whiskers extend to 1.5
IQR of the 25%-percentile to the left and 1.5 IQR of the 75%-percentile to the right. IQR
is the interquartile range, the difference between the upper and the lower quartile, i.e.
the width of the box.
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Figure 5.2: Distribution of the county-specific absolute error differences between the
weather and the control model, computed for week 8, 10 and 12 (2018).
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The median of the ∆AEit values is clearly positive (to the right of zero) for weeks 8 and
12. For week 10, the median is almost zero - its value is 0.2. The reason why week 10
still contributes so heavily to the advantage of the weather model over the control model,
are large and positive outliers, especially Berlin. The ∆AE value for Berlin in week 10 is
532.9, which is very large given that this measures works with the absolute values instead
of any squared error values. While there are other big and positive ∆AE as well, none
comes close to the value of Berlin. It almost makes the average AE for week 10 positive
by itself. The largest outliers for the other weeks are Hamburg (458.3) for week 8, with
Berlin following on the second place, and Halle (Saale) with a value of 237.1 for week 12.
The outliers for week 8, though, are much closer to the box plot than for the other two
weeks.

5 . 5 . 2 O b s e r v e d C a s e s O v e r T i m e

After figuring out which weeks and counties are the primary forces behind the advantage
of the influenza weather model, it is about time to look at the observed cases, instead of
the forecast error measures. Figure 5.3 plots the observed cases over time, from week
1, 2016, until week 52, 2018, for the three largest outlier counties in terms of ∆AE:
Hamburg as the ’winner’ of week 8, Berlin for week 10 and Halle (Saale) for week 12.

The plot offers three findings. First, the general shape of the time series plotting the
observed cases pretty much resembles the time series when weekly MSE values are plotted.
Thus, the more cases are observed, the higher the risk to make wrong forecasts and the
higher the actual forecast error. The models have no problem with the summer and
autumn weeks that have almost zero reported cases.

The second striking feature is that this general shape is quite similar for the three counties.
The absolute number of cases is different, but so is the population in each county, which
is used in the estimation. Thus, the made assumption of a seasonality component that is
the same across counties, looks quite reasonable.

Third, the influenza season of 2018 had about 3 times as many reported cases compared to
the two years before. The peak of each time series is a lot higher in 2018, which results in
a relative importance of the autoregressive component of the model. Even if the endemic
component’s seasonality were to estimate a peak value of about 600 observed cases for
Berlin based on the years 2016 and 2017, this would be 1200 cases too low in 2018.
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Figure 5.3: The weekly number of observed cases for three selected cities from 2016-01
to 2018-52.

5 . 5 . 3 S e a s o n a l i t y

The three figures 5.4, 5.5 and 5.6 were created to get an idea if and how the seasonal
pattern changes over the year. The number of observed cases are plotted separately for
each of the three counties, Berlin, Hamburg and Halle (Saale), but this time each year’s
time series share the same x-axis. Thus, for each x-value (week of year), there are 3
y-values (observed cases): One for 2016, one for 2017 and one for 2018.

Several similarities can be observed. For each county, there are (similar) differences in
the height of the peak and the timing of the peak. The middle gray (2017) line has the
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Figure 5.4: Weekly observed cases in Berlin for 2016, 2017 and 2018.
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Figure 5.5: Weekly observed cases in Hamburg for 2016, 2017 and 2018.
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Figure 5.6: Weekly observed cases in Halle (Saale) for 2016, 2017 and 2018.

earliest peak, and the light gray (2016) line has the latest peak. The highest peak, by far,
has the dark line (2018).

Differences in the general pattern between the three counties are rather small but do
exist. For example Hamburg, see figure 5.5, experienced their influenza season peak in
2017 a bit later: week 8 instead of week 6 (Berlin) or week 5 (Halle). For Berlin, see
figure 5.4, the peaks of the 2016 and 2017 influenza season had the same height, unlike
the peaks in Hamburg or Halle, which both experienced a less severe influenza season in
2016 compared to 2017.

To sum up, there is a lot more variation of the observed number of cases over time than
across counties for influenza. The variation over time not only concerns the absolute
number of cases but also the timing, which makes the endemic component’s seasonality
very ill-equipped to forecast the correct number of cases. Seasonality is seen as something
regularly occurring, with the same strength and timing. The observed shifts do not
fit into that picture or the way seasonality is formulated in the model equation. The
autoregressive component, on the other hand, has the necessary ignorance of calendar
time to help forecasting too-early, too-strong or too-late increases or decreases.
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Thus, it might come as little surprise that the two most (or only) promising models had
incorporated the weather features via the autoregressive component.

5 . 5 . 4 C o r r e s p o n d i n g W e a t h e r

We have seen in section 5.3.6, together with the box plots in figure 5.2, that the weather
measure Mean(°CMin) is helpful for forecasting the observed number of cases when
plugged into the autoregressive component - especially for week 8, 10 and 12 of the
influenza season in 2018 (see figure 5.1).

Weather data from that period, together with the observed number of cases and the pre-
dictions of the model incorporating the weather variable and the control model excluding
it, are shown in the figures 5.7 (Berlin), 5.8 (Hamburg) and 5.9 (Halle).

Each upper figure is a time series plot of the observed counts and the predictions of the
two models. Only the first 12 weeks of 2018 are shown to focus on the important weeks
8 to 12, which drive the results. The weather model predictions are in dark gray. The
observed cases in middle gray and the predictions from the control model in light gray.
Note that the y-axis scaling is different for each county, depending on the number of cases.
Thus peaks that look the same at first glance, can be quite different when the y-axis values
are taken into account - as seen in figure 5.3 when plotted together.

When looking at the upper figures, it stands out that the control time series (light gray)
looks like a shifted-to-the-right version of the observed series (middle gray). Every kink
of the observed series is present in the control series. However, the kinks and all other
movements (accelerations, deceleration etc.) are one week too late. Well visible around
the peak week, which is week 10 in Berlin and Halle, and week 9 in Hamburg. The
observed cases decrease in the week after, while the control series is still increasing.

The weekly predictions of the weather model (dark gray series) look differently because of
its ability to incorporate weather information. In this case information about the measure
Mean(°CMin) and in particular the last 3 weekly changes. The respective weekly changes
are plotted in the lower half of each figure. The x-Axis denotes the week of first usage
in forecasting. For example, a forecast for week 7 is the first period which can use the
temperature change listed at x-value 7. Together with the temperature changes 6 and 5,
because the last 3 changes can be used.

How this works can be showcased for Berlin, figure 5.7. A decrease in the observed counts
(middle gray) can be observed from week 5 to 6. This decrease is used in the prediction for
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Figure 5.7: Observed weekly counts in Berlin 2018, together with weather and control
model predictions [upper figure]. The change in Mean(°CMin) and its first
usage for forecasting [lower figure].
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Figure 5.8: Observed weekly counts in Hamburg 2018, together with weather and control
model predictions [upper figure]. The change in Mean(°CMin) and its first
usage for forecasting [lower figure].
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Figure 5.9: Observed weekly counts in Halle (Saale) 2018, together with weather and
control model predictions [upper figure]. The change in Mean(°CMin) and its
first usage for forecasting [lower figure].
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week 7, resulting in a corresponding decrease in the control model. The weather model,
however, observes a large drop in the temperature variable of over 5°C, which sharply
increases its own forecast.

Another example is the forecast for week 11. The observed counts just showed a jump
of almost 600 cases (to its peak). The prediction of the control model increases equally
strong, but not the prediction of the weather model. That model just observed a quick
rise in the temperature measure, which dampens the infection process. It is not enough
to completely reverse the prediction, given the strong increase in observed cases and
temperature decreases observed in the two weeks before, but it is enough to considerably
change the prediction.

It is as if the weather model, at this point in time, is able to foresee the beginning of
the subsiding phase of the influenza season. But how often do those situations appear?
The weather model was considerably better only for 2018. Is the weather model suited
for a particular sort of (extraordinary) situation that did not happen in any of the other
evaluation years, or was it just pure luck?
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6 D i s c u s s i o n

The goal of this study was to investigate the usefulness of meteorological data in surveil-
lance systems for disease outbreaks. The ability of those systems hinges on the quality
of forecasting the number of observed cases. Extraordinary events, like jumps and dips,
can only be detected by comparing the observed case number to some kind of expected
number - a forecast made earlier.

The data that typically arises from surveillance systems is the number of reported cases in
a given region during a given time period. A statistical model able to handle such event
count data with a space and time dimension, while simultaneously incorporating data from
additional data sources, is the Endemic-Epidemic Model [15, 18, 32]. Its characteristic
feature is the additive decomposition of the region- and time-specific mean into an endemic
and epidemic component. The central distinction is the epidemic component’s dependency
on observed cases from the previous week - either from the same region (autoregressive)
or from different regions (neighborhood). The endemic component comprises all other
persistent effects that are independent of disease counts. Each of these components can
be enriched with time- and region-varying covariates, e.g. weather and population data.

Estimations of this model were run on case data, provided by the Robert Koch Institute
[35], for two diseases that exhibit a strong seasonality when plotted over time. Campy-
lobacteriosis, a gastrointestinal infection caused by Campylobacter bacteria, and the
viral infection influenza. Monitoring each disease is important: Campylobacter is the
food-based disease with the highest incidence rate in Europe for every year since 2005.
Influenza’s ability to spread rapidly from person-to-person, together with its high mutation
rate, makes the disease very dangerous - as observed e.g. during the 1918 influenza
pandemic known as Spanish flu.

Additional employed data sources include a polygon map for Germany, used in the
neighborhood component, from the Database of Global Administrative Areas (GADM),
population data from the Federal Statistical Office as part of the census 2011 [40], and
various types of weather data, measured and compiled by the Deutsche Wetterdienst
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[9]. Measurements include relative humidity, hours of sunlight, amount of rain and
temperature.

Several necessary preprocessing steps were needed to be carried out. The two most
important were the deletion of data from calendar weeks 53, because the statistical model
works on the assumption of 52 weeks per year, and the creation of a mapping between
the weather measurements and counties. To achieve the latter, OpenStreetMap [28] was
used to get addresses, including the zip code, from the longitude and latitude information
provided for each weather station. The zip code was in turn transformed into a county
name. Counties lacking a weather station got assigned the closest station as a replacement.

Various configurations of the endemic-epidemic model were run and evaluated using mean
squared error (MSE) and mean absolute error (MAE) computed from rolling one-week-
ahead forecasts for the 52 weeks of 2018. First tests revealed the helpfulness of a calendar
week 2 indicator variable for Campylobacter and a preference for using only the last 2
years of data, instead of more prior years, for fitting the model.

The first set of experiments used the endemic component to incorporate the weather
information. Considered was the inclusion of a single variable, a differenced variable, a
polynomial, pairs of variables and three lags of a differenced variable. However, none of
the specifications were able to reliably improve upon the control model, which excluded
any weather information. In fact, it hardly mattered what weather measure or what
specific formulation was used.

The epidemic component, in particular the autoregressive component, was used instead to
incorporate weather information in the second set of experiments. Two formulations were
tested and both proved useful. For Campylobacter, the basic single variable formulation
decreased the MSE from 8.20 to 8.07. For influenza, 3 lags of the differenced variable
hugely improved the MSE from 531.8 to 321.5, an improvement equivalent to 39.5%. The
best weather measure for both specifications turned out to be Mean(°CMin), the weekly
mean of the daily minimum temperature.

Letting the meteorological features enter the model simultaneously through the endemic
and autoregressive component did not show much promise as the both-component for-
mulation was incapable of improving upon the autoregressive-only formulation. In fact
allowing both entry channels was sometimes even worse.

The best model for each disease was further evaluated on varying evaluation periods. It
turned out that the model for Campylobacter was each year slightly better than a control
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model. The influenza model was similarly evaluated. However, the huge 39.5% improve-
ment for the 2018 evaluation period was a one-of-a-kind event. No major improvement
was observable for any other evaluation period.

A thorough investigation revealed several facts about the influenza season in 2018. First,
it was an exceptional season with 3 to 4 times more observed cases than in the years
before. Second, the advantage of the model incorporating weather effects can be traced to
a better forecasting performance for weeks 8, 10 and 12. For each of these three weeks, a
handful of counties exist (Berlin, Hamburg and Halle) with a huge impact on the average
mean squared error.

Plotting the case numbers observed in these three counties for the evaluation period 2018
and the two years used for fitting the model, 2016 and 2017, showed that there is a lot
more variation over time than across counties. Not only does the number of infected
people differ considerably each year, but the timing is quite different. This leaves the
endemic component’s seasonality very ill-equipped to forecast the correct number of cases.
Seasonality is seen as something regularly occurring, with the same strength and timing.
The observed shifts do not fit into that picture and the way seasonality is formulated in
the model equation. The autoregressive component, on the other hand, has the necessary
ignorance of calendar time to help forecasting too-early, too-strong or too-late increases
or decreases.

A simultaneous examination of the observed case numbers and the weather changes in the
three counties uncovered that large temperature changes coincided with large changes in
the number of infected people. The autoregressive component was able to make good use
of the weather information in that case. However, it remains unclear if the model would
be as useful in a future situation as it was in 2018. It is very concerning that the model
showed no considerable advantage over the control model in any other year.

For Campylobacter one can conclude that meteorological effects are certainly not the
primary driver behind infections. A result in line with the literature, that produces
very ambivalent results about the role of weather [19, 10], besides documenting a clear
seasonality in the case data. However, the inconsistent results for influenza are a bit
surprising given how well the role of temperature and humidity is understood [23].

Thus other factors might play a role in preventing the model to pick up the information
present in the weather data. It could be that the variation of the weather data is too
low. For example because too many weather stations were excluded during the filtering.
Instead of entirely removing stations with gaps in its data, the available data could be
used and measurements from close stations used to fill the gaps. Maybe the remaining
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variation of the weather variables is too low after weekly averaging balanced out daily
differences across regions.

Another aspect to consider is the employed model. Its functional form assumptions with
regard to using the weather are very restricting. A zero-inflated model might be an
alternative, given the large number of observations with a value of 0. There might be too
many counties relative to weeks used in the model. Especially if the used specification
does not really make use of the regional aspect besides the neighborhood component.
Models that allow for more county-specific effects might be appropriate.

Due to time and computation restrictions, several of the available model specifications
could not be tested. These include random and fixed effects, county-specific overdispersion,
other formulations of neighborhood weights, seasonality in the epidemic component and
the HHH4 add-on [4], that allows for conditioning on more past count values in the
autoregressive component. However, it is unclear how this has changed the weather
variable’s ability to pick up its true effects: it might have been hindered or improved given
that no other competing county-varying variables were present.

Lastly it must be said that even if more information were to be extracted from weather
data by some other means, it would be useful only for a handful of diseases - most likely
influenza. Many infectious diseases neither exhibit a seasonality nor is there anything
known about a role for weather in the infection process.
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