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Abstract. Rule learning is known for its descriptive and therefore com-
prehensible classification models which also yield good class predictions.
However, in some application areas, we also need good class probability
estimates. For different classification models, such as decision trees, a
variety of techniques for obtaining good probability estimates have been
proposed and evaluated. However, so far, there has been no systematic
empirical study of how these techniques can be adapted to probabilistic
rules and how these methods affect the probability-based rankings. In
this paper we apply several basic methods for the estimation of class
membership probabilities to classification rules. We also study the effect
of a shrinkage technique for merging the probability estimates of rules
with those of their generalizations.

1 Introduction

The main focus of symbolic learning algorithms such as decision tree and rule
learners is to produce a comprehensible explanation for a class variable. Thus,
they learn concepts in the form of crisp IF-THEN rules. On the other hand,
many practical applications require a finer distinction between examples than is
provided by their predicted class labels. For example, one may want to be able
to provide a confidence score that estimates the certainty of a prediction, to rank
the predictions according to their probability of belonging to a given class, to
make a cost-sensitive prediction, or to combine multiple predictions.

All these problems can be solved straight-forwardly if we can predict a prob-
ability distribution over all classes instead of a single class value. A straight-
forward approach to estimate probability distributions for classification rules is
to compute the fractions of the covered examples for each class. However, this
näıve approach has obvious disadvantages, such as that rules that cover only a
few examples may lead to extreme probability estimates. Thus, the probability
estimates need to be smoothed.

There has been quite some previous work on probability estimation from
decision trees (so-called probability-estimation trees (PETS)). A very simple,
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but quite powerful technique for improving class probability estimates is the
use of m-estimates, or their special case, the Laplace-estimates (Cestnik, 1990).
Provost and Domingos (2003) showed that unpruned decision trees with Laplace-
corrected probability estimates at the leaves produce quite reliable decision tree
estimates. Ferri et al. (2003) proposed a recursive computation of the m-estimate,
which uses the probability disctribution at level l as the prior probabilities for
level l + 1. Wang and Zhang (2006) used a general shrinkage approach, which
interpolates the estimated class distribution at the leaf nodes with the estimates
in interior nodes on the path from the root to the leaf.

An interesting observation is that, contrary to classification, class probabil-
ity estimation for decision trees typically works better on unpruned trees than
on pruned trees. The explanation for this is simply that, as all examples in a
leaf receive the same probability estimate, pruned trees provide a much coarser
ranking than unpruned trees. Hüllermeier and Vanderlooy (2009) have provided
a simple but elegant analysis of this phenomenon, which shows that replacing a
leaf with a subtree can only lead to an increase in the area under the ROC curve
(AUC), a commonly used measure for the ranking capabilities of an algorithm.
Of course, this only holds for the AUC estimate on the training data, but it still
may provide a strong indication why unpruned PETs typically also outperform
pruned PETs on the test set.

Despite the amount of work on probability estimation for decision trees, there
has been hardly any systematic work on probability estimation for rule learning.
Despite their obvious similarility, we nevertheless argue that a separate study of
probability estimates for rule learning is necessary.

A key difference is that in the case of decision tree learning, probability
estimates will not change the prediction for an example, because the predicted
class only depends on the probabilities of a single leaf of the tree, and such local
probability estimates are typically monotone in the sense that they all maintain
the majority class as the class with the maximum probability. In the case of rule
learning, on the other hand, each example may be classified by multiple rules,
which may possibly predict different classes. As many tie breaking strategies
depend on the class probabilities, a local change in the class probability of a
single rule may change the global prediction of the rule-based classifier.

Because of these non-local effects, it is not evident that the same methods
that work well for decision tree learning will also work well for rule learning.
Indeed, as we will see in this paper, our conclusions differ from those that have
been drawn from similar experiments in decision tree learning. For example, the
above-mentioned argument that unpruned trees will lead to a better (training-
set) AUC than pruned trees, does not straight-forwardly carry over to rule learn-
ing, because the replacement of a leaf with a subtree is a local operation that
only affects the examples that are covered by this leaf. In rule learning, on the
other hand, each example may be covered by multiple rules, so that the effect
of replacing one rule with multiple, more specific rules is less predictable. Mo-
roever, each example will be covered by some leaf in a decision tree, whereas



Fig. 1. The LeGo framework (Knobbe et al., 2008)

each rule learner needs to induce a separate default rule that covers examples
that are covered by no other rule.

In most cases the probabilistic rule learning task can be divided into three
more or less separable phases: the local pattern discovery, which generates a
number of candidate rules (local patterns), the pattern set discovery, which se-
lects a rule set (pattern set) from the candidate rules and the global modeling,
which generates a global model according to the probability estimates of the
rules in the rule set. So probabilistic rule learning may be considered as an ex-
ample for the recently proposed LeGo data mining framework (see Figure 1)
for combining local patterns into a global model (Knobbe et al., 2008).

The rest of the paper is organized as follows: In section 2 we briefly describe
the basics of probabilistic rule learning and recapitulate the estimation tech-
niques used for rule probabilities. In section 3 we explain our two approaches for
the generation of a probabilistic rule set and describe how it is used for classifi-
cation. Our experimental setup and results are analyzed in section 4. In the end
we summarize our conclusions in section 5.

2 Rule Learning and Probability Estimation

This section is divided into two parts. The first one describes briefly the proper-
ties of conjunctive classification rules and of its extension to a probabilistic rule.
In the second part we introduce the probability estimation techniques used in
this paper. These techniques can be divided into basic methods, which can be
used stand-alone for probability estimation, and the meta technique shrinkage,
which can be combined with any of the techniques for probability estimation.

2.1 Probabilistic Rule Learning

In classification rule mining one searches for a set of rules that describes the data
as accurately as possible. As there are many different generation approaches and



types of generated classification rules, we do not go into detail and restrict our-
selves to conjunctive rules. The premise of these rules consists of a conjunction
of number of conditions, and in our case, the conclusion of the rule is a single
class value. So a conjunctive classification rule r has basically the following form:

condition1 ∧ · · · ∧ condition|r| =⇒ class (1)

The size of a rule |r| is the number of its conditions. Each of these conditions
consists of an attribute, an attribute value belonging to its domain and a com-
parison determined by the attribute type. For our purpose, we consider only
nominal and numerical attributes. For nominal attributes, this comparison is a
test of equality, whereas in the case of numerical attributes, the test is either
less (or equal) or greater (or equal). If all conditions are met by an instance, the
instance is covered by the rule (r ⊇ x) and the class value of the rule is predicted
for the instance. Consequently, the rule is called a covering rule for this instance.

This in mind, we can define some statistical values of a data set which are
needed for later definitions. A data set consists of |C| classes and n instances
from which nc belong to the class c respectively (n =

∑|C|
c=1 nc). A rule r covers

nr instances which are distributed over the classes, so that nc
r instances belong

to class c (nr =
∑|C|

c=1 nc
r).

A probabilistic rule is an extension of a classification rule, which does not
only predict a single class value, but a set of class probabilities, which form a
probability distribution over the classes. This probability distribution estimates
all probabilities that a covered instance belongs to any of the class in the data
set, so we get one class probability per class. The example is then classified with
the most probable class. The probability that an instance x covered by rule r
belongs to c can be viewed as a conditional probability Pr(c|r ⊇ x).

In the next section, we discuss some approaches for estimating these class
probabilities.

2.2 Basic Probability Estimation

In this subsection we will review three basic methods for probability estimation.
Subsequently, in section 2.3, we will describe a technique known as shrinkage,
which is known from various application areas, and show how this technique can
be adapted to probabilistic rule learning.

All of the three basic methods we employed, calculate the relation between
the number of instances covered by the rule nr and the number of instances
covered by the rule but also belong to a specific class nc

r. The differences between
the methods are the minor modifications of the calculation of this relation.

The simplest approach to rule probability estimation directly estimates a
class probability distribution of a rule with the fraction of examples that belong
to each class.

Pr
näıve

(c|r ⊇ x) =
nc

r

nr
(2)



This näıve approach has several well-known disadvantages, most notably that
rules with a low coverage may be lead to extreme probability values. For this
reason, Cestnik (1990) suggested the use of the Laplace- and m-estimates.

The Laplace estimate modifies the above-mentioned relation by adding one
additional instance to the counts nc

r for each class c. Hence the number of covered
instances nc

r is increased by the number of classes |C|.

Pr
Laplace

(c|r ⊇ x) =
nc

r + 1
nr + |C|

(3)

It may be viewed as a trade-off between Prnäıve(c|r ⊇ x) and an a priori proba-
bility of Pr(c) = 1/|C| for each class. Thus, it implicitly assumes a uniform class
distribution.

The m-estimate generalizes this idea by making the dependency on the prior
class distribution explicit, and introducing a parameter m, which allows to trade
off the influence of the a priori probability and Prnäıve.

Pr
m

(c|r ⊇ x) =
nc

r + m · Pr(c)
nr + m

(4)

The m-parameter may be interpreted as a number of examples that are dis-
tributed according to the prior probability, which are added to the class fre-
quencies nc

r. The prior probability is typically estimated from the data us-
ing Pr(c) = nc/n (but one could, e.g., also use the above-mentioned Laplace-
correction if the class distribution is very skewed). Obviously, the Laplace-
estimate is a special case of the m-estimate with m = |C| and Pr(c) = 1/|C|.

2.3 Shrinkage

Shrinkage is a general framework for smoothing probabilities, which has been
successfully applied in various research areas.1 Its key idea is to “shrink” prob-
ability estimates towards the estimates of its generalized rules rk, which cover
more examples. This is quite similar to the idea of the Laplace- and m-estimates,
with two main differences: First, the shrinkage happens not only with respect
to the prior probability (which would correspond to a rule covering all exam-
ples) but interpolates between several different generalizations, and second the
weights for the trade-off are not specified a priori (as with the m-parameter in
the m-estimate) but estimated from the data.

In general, shrinkage estimates the probability Pr(c|r ⊇ x) as follows:

Pr
Shrink

(c|r ⊇ x) =
|r|∑

k=0

wk
c Pr(c|rk) (5)

where wk
c are weights that interpolate between the probability estimates of the

generalized rules rk. In our implementation, we use only generalizations of a rule
1 Shrinkage is, e.g., regularly used in statistical language processing (Chen and Good-

man, 1998; Manning and Schütze, 1999)



that can be obtained by deleting a final sequence of conditions. Thus, for a rule
with length |r|, we obtain |r|+1 generalizations rk, where r0 is the rule covering
all examples, and r|r| = r.

The weights wk
c can be estimated in various ways. We employ a shrinkage

method proposed by Wang and Zhang (2006) which is intended for decision tree
learning but can be straight-forwardly adapted to rule learning. The authors
propose to estimate the weights wk

c with an iterative procedure which averages
the probabilities obtained by removing training examples covered by this rule. In
effect, we obtain two probabilities per rule generalization and class: the removal
of an example of class c leads to a decreased probability Pr−(c|rk ⊇ x), whereas
the removal of an example of a different class results in an increased probability
Pr+(c|rk ⊇ x). Weighting these probabilities with the relative occurrence of
training examples belonging to this class we obtain a smoothed probability

Pr
Smoothed

(c|rk ⊇ x) =
nc

r

nr
· Pr−(c|rk ⊇ x) +

nr − nc
r

nr
· Pr+(c|rk ⊇ x) (6)

Using these smoothed probabilities, this shrinkage method computes the
weights of these nodes in linear time (linear in the number of covered instances)
by normalizing the smoothed probabilities separately for each class.

wk
c =

PrSmoothed(c|rk ⊇ x)∑|r|
i=0 PrSmoothed(c|ri ⊇ x)

(7)

Multiplying the weights with their corresponding probability we obtain “shrinked”
class probabilities for the instance.

Note that all instances which are classified by the same rule receive the same
probability distribution. Therefore the probability distribution of each rule can
be calculated in advance.

3 Rule Learning Algorithm

For the rule generation we employed the the rule learner Ripper (Cohen, 1995),
arguably one of the most accurate rule learning algorithms today. We used Rip-
per both in ordered and in unordered mode:

Ordered Mode: In ordered mode, Ripper learns rules for each class, where the
classes are ordered according to ascending class frequencies. For learning the
rules of class ci, examples of all classes cj with j > i are used as negative
examples. No rules are learned for the last and most frequent class, but a
rule that implies this class is added as the default rule. At classification time,
these rules are meant to be used as a decision list, i.e., the first rule that
fires is used for prediction.

Unordered Mode: In unordered mode, Ripper uses a one-against-all strategy
for learning a rule set, i.e., one set of rules is learned for each class ci, using
all examples of classes cj , j 6= i as negative examples. At prediction time, all



rules that cover an example are considered and the rule with the maximum
probability estimate is used for classifying the example. If no rule covers the
example, it classified by the default rule predicting the majority class.

We used JRip, the Weka (Witten and Frank, 2005) implementation of Ripper.
Contrary to William Cohen’s original implementation, this re-implementation
does not support the unordered mode, so we had to add a re-implementation of
that mode.2 We also added a few other minor modifications which were needed
for the probability estimation, e.g. the collection of statistical counts of the sub
rules.

In addition, Ripper (and JRip) can turn the incremental reduced error prun-
ing technique (Fürnkranz and Widmer, 1994; Fürnkranz, 1997) on and off. Note,
however, that with turned off pruning, Ripper still performs pre-pruning using
a minimum description length heuristic (Cohen, 1995). We use Ripper with and
without pruning and in ordered and unordered mode to generate four set of
rules. For each rule set, we employ several different class probability estimation
techniques.

In the test phase, all covering rules are selected for a given test instance. Using
this reduced rule set we determine the most probable rule. For this purpose
we select the most probable class of each rule and use this class value as the
prediction for the given test instance and the class probability for comparison.
Ties are solved by predicting the least represented class. If no covering rules exist
the class probability distribution of the default rule is used.

4 Experimental Setup

We performed our experiments within the WEKA framework (Witten and Frank,
2005). We tried each of the four configuration of Ripper (unordered/ordered and
pruning/no pruning) with 5 different probability estimation techniques, Näıve
(labeled as Precision), Laplace, and m-estimate with m ∈ {2, 5, 10}, both used as
a stand-alone probability estimate (abbreviated with B) or in combination with
shrinkage (abbreviated with S). As a baseline, we also included the performance
of pruned or unpruned standard JRip accordingly. Additionally our unordered
implementation of JRip using Laplace stand-alone for the probability estimation
is comparable to the unordered version of Ripper which is not implemented in
JRip.

We evaluated these methods on 33 data sets of the UCI repository (Asun-
cion and Newman, 2007) which differ in the number of attributes (and their
categories), classes and training instances. As a performance measure, we used
the weighted area under the ROC curve (AUC), as used for probabilistic deci-
sion trees by Provost and Domingos (2003). Its key idea is to extend the binary

2 Weka supports a general one-against-all procedure that can also be combined with
JRip, but we could not use this because it did not allow us to directly access the
rule probabilities.



Fig. 2. CD chart for ordered rule sets without pruning

AUC to the multi-class case by computing a weighted average the AUCs of the
one-against-all problems Nc, where each class c is paired with all other classes:

AUC(N) =
∑
c∈C

nc

|N |
AUC(Nc) (8)

For the evaluation of the results we used the Friedman test with a post-hoc
Nemenyi test as proposed in (Demsar, 2006). The significance level was set to
5% for both tests. We only discuss summarized results here, detailed results can
be found in the appendix.

4.1 Ordered Rulesets

In the first two test series, we investigated the ordered approach using the stan-
dard JRip approach for the rule generation, both with and without pruning.
The basic probability methods were used standalone (B) or in combination with
shrinkage (S).

The Friedman test showed that in both test series, the employed combinations
of probability estimation techniques showed significant differences. Considering
the CD chart of the first test series (Figure 2), one can identify three groups of
equivalent techniques. Notable is that the two best techniques, the m-Estimate
used stand-alone with m = 2 and m = 5 respectively, belong only to the best
group. So they are the only methods that differ significantly from the worst
methods that belong to the second and third group and can be therefore con-
sidered optimal choices for this scenario. On the other hand, the näıve approach
seems to be a bad choice as both techniques employing it rank in the lower half.
However our benchmark JRip is positioned in the lower third, which means that
the probability estimation techniques clearly improve over the default decision
list approach implemented in JRip.

Comparing the stand-alone techniques with those employing shrinkage one
can see that shrinkage is outperformed by their stand-alone counterparts. Only
precision is an exception as shrinkage yields increased performance in this case.
In the end shrinkage is not a good choice for this scenario.



Fig. 3. CD chart for ordered rule sets with pruning

The CD-chart for ordered rule sets with pruning (Figure 3) features four
groups of equivalent techniques. Notable are the best and the worst group which
overlap only in two techniques, Laplace and Precision used stand-alone. The first
group consists of all stand-alone methods and JRip which dominates the group
strongly covering no shrinkage method. The last group consists of all shrinkage
methods and the overlapping methods Laplace and Precision used stand-alone.
As all stand-alone methods rank before the shrinkage methods one can conclude
that stand-alone methods outperform the shrinkage methods in this scenario,
too. Though performing best in this scenario JRip is indistinguishable from the
stand-alone methods.

4.2 Unordered Rule Sets

Test series three and four used the unordered approach employing the modified
JRip which generates rules for each class. Analogous to the previous test se-
ries the basic methods are used as stand-alone methods or in combination with
shrinkage (left and right column respectively). Test series three used no pruning
while test series four did so. The results of the Friedman test showed that the
techniques of test series three and test series four differ significantly.

Regarding the CD chart of test series three (Figure 4), we can identify four
groups of equivalent methods. The first group consists of all stand-alone tech-

Fig. 4. CD chart for unordered rule sets without pruning



Fig. 5. CD chart for unordered rule sets with pruning

niques, except for Precision, and the m-estimates techniques combined with
shrinkage and m = 5 and m = 10, respectively. Whereas the stand-alone meth-
ods dominate this group, m = 2 being the best representative, and also belong to
this group. Apparently these methods are the best choices for this scenario. The
second and third consist mostly of techniques employing shrinkage and overlap
with the worst group in only one technique. However our benchmark JRip be-
longs to the worst group being the worst choice of this scenario. Additionally
the shrinkage methods are outperformed by their stand-alone counterparts.

The CD chart of test series four (Figure 5) shows similar results. Again four
groups of equivalent techniques groups can be identified. The first group consists
of all stand-alone methods and the m-estimates using shrinkage and m = 5 and
m = 10 respectively. This group is dominated by the m-estimates used stand-
alone with m = 2, m = 5 or m = 10. The shrinkage methods are distributed over
the other groups, again occupying the lower half of the ranking. Our benchmark
JRip is the worst method of this scenario.

4.3 Unpruned vs. Pruned Rule Sets

Rule pruning had mixed results, which are briefly summarized in Table 1. On the
one hand, it improved the results of the unordered approach, on the other hand
it worsened the results of the ordered approach. In any case, in our experiments,
contrary to previous results on PETs, rule pruning was not always a bad choice.
The explanation for this result is that in rule learning, contrary to decision tree
learning, new examples are not necessarily covered by one of the learned rules.
The more specific rules become, the higher is the chance that new examples are
not covered by any of the rules and have to be classified with a default rule. As
these examples will all get the same default probability, this is a bad strategy
for probability estimation. Note, however, that JRip without pruning, as used
in our experiments, still performs an MDL-based form of pre-pruning. We have
not yet tested a rule learner that performs no pruning at all, but, because of the
above deliberations, we do not expect that this would change the results with
respect to pruning.



Table 1. Unpruned vs. pruned rule sets: Win/Loss for ordered (top) and unordered
(bottom) rule sets

Jrip Precision Laplace M 2 M 5 M 10

Win 26 23 19 20 19 18 20 19 20 19 20
Loss 7 10 14 13 14 15 13 14 13 14 13

Win 26 21 9 8 8 8 8 8 8 8 6
Loss 7 12 24 25 25 25 25 25 25 25 27

5 Conclusions

The most important result of our study is that probability estimation is clearly
an important part of a good rule learning algorithm. The probabilities of rules
induced by JRip can be improved considerably by simple estimation techniques.
In unordered mode, where one rule is generated for each class, JRip is out-
performed in every scenario. On the other hand, in the ordered setting, which
essentially learns decision lists by learning subsequent rules in the context of
previous rules, the results were less convincing, giving a clear indication that
the unordered rule induction mode should be preferred when a probabilistic
classfication is desirable.

Amongst the tested probability estimation techniques, the m-estimate typi-
cally outperformed the other methods. Among the tested values, m = 5 seemed
to yield the best overall results, but the superiority of the m-estimate was not
sensitive to the choice of this parameter. The employed shrinkage method did
in general not improve the simple estimation techniques. It remains to be seen
whether alternative ways of setting the weights could yield superior results. Rule
pruning had mixed results, so contrary to PETs pruning is not always a bad
choice.

In (Sulzmann and Fürnkranz, 2008) we surveyed and evaluated several op-
tions for selecting a subset of class association rules and for combining their
predictions into a global rule model. Our next step will be to investigate how
the generation algorithm for classification rules deployed in this paper can be
modified for the generation of probabilistic rules and how the selecting and com-
bining strategies perform on probabilistic rules. Thus, we hope to obtain a solid,
well-founded procedure for obtaining probabilistic classifiers from local patterns.
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A Detailed experimental results (tables)

Table 2. Weighted AUC results with rules from ordered, unpruned JRip.

Name Jrip Precision Laplace M 2 M 5 M 10
B S B S B S B S B S

Anneal .983 .970 .971 .970 .970 .970 .970 .971 .971 .970 .970
Anneal.orig .921 .917 .920 .920 .919 .920 .919 .920 .920 .919 .919
Audiology .863 .845 .843 .832 .836 .840 .844 .839 .841 .831 .832
Autos .904 .907 .901 .900 .891 .907 .902 .904 .902 .903 .898
Balance-scale .823 .801 .812 .821 .812 .820 .811 .821 .812 .821 .815
Breast-cancer .591 .577 .581 .578 .580 .578 .580 .578 .579 .577 .579
Breast-w .928 .930 .929 .935 .930 .935 .931 .935 .932 .935 .933
Colic .736 .739 .741 .747 .746 .748 .746 .748 .745 .748 .746
Credit-a .842 .849 .857 .861 .859 .861 .859 .861 .862 .861 .864
Credit-g .585 .587 .587 .587 .587 .587 .587 .587 .587 .587 .587
Diabetes .642 .654 .656 .655 .656 .655 .656 .655 .656 .655 .655
Glass .806 .803 .795 .790 .787 .794 .797 .793 .799 .792 .795
Heart-c .762 .765 .775 .796 .777 .796 .777 .796 .780 .796 .789
Heart-h .728 .737 .755 .758 .757 .758 .755 .758 .757 .758 .757
Heart-statlog .763 .759 .781 .806 .782 .806 .783 .806 .790 .806 .791
Hepatitis .679 .661 .661 .660 .663 .660 .665 .660 .663 .660 .663
Hypothyroid .971 .973 .974 .974 .974 .974 .974 .974 .974 .973 .974
Ionosphere .884 .885 .897 .903 .900 .903 .899 .903 .900 .903 .902
Iris .957 .889 .876 .889 .878 .889 .878 .889 .878 .889 .878
Kr-vs-kp .993 .994 .994 .995 .994 .995 .994 .995 .994 .995 .994
Labor .812 .800 .810 .794 .810 .793 .806 .793 .795 .793 .783
Lymph .750 .739 .748 .748 .745 .746 .748 .744 .746 .749 .746
Primary-tumor .649 .636 .652 .615 .638 .645 .656 .641 .653 .642 .662
Segment .983 .964 .944 .967 .943 .966 .944 .967 .943 .966 .943
Sick .922 .928 .929 .929 .929 .929 .929 .929 .929 .929 .929
Sonar .774 .771 .779 .784 .778 .783 .778 .783 .779 .783 .781
Soybean .962 .971 .972 .966 .971 .973 .972 .967 .973 .967 .971
Splice .938 .934 .938 .943 .938 .943 .938 .943 .938 .943 .939
Vehicle .772 .799 .811 .811 .816 .812 .813 .811 .816 .812 .819
Vote .952 .954 .950 .955 .949 .955 .949 .955 .952 .953 .956
Vowel .884 .906 .909 .909 .906 .909 .910 .911 .910 .910 .907
Waveform .847 .850 .853 .872 .854 .872 .854 .873 .855 .873 .858
Zoo .916 .899 .916 .902 .897 .908 .900 .907 .895 .899 .890

Average .834 .830 .834 .836 .832 .837 .834 .837 .834 .836 .834
Average Rank 6.79 8.24 6.62 5.11 7.62 4.26 6.03 4.68 5.33 5.53 5.79



Table 3. Weighted AUC results with rules from ordered, pruned JRip.

Name Jrip Precision Laplace M 2 M 5 M 10
B S B S B S B S B S

Anneal .984 .981 .980 .981 .981 .981 .980 .981 .980 .980 .980
Anneal.orig .942 .938 .937 .936 .936 .937 .936 .936 .937 .935 .936
Audiology .907 .865 .854 .810 .776 .852 .840 .839 .826 .834 .801
Autos .850 .833 .836 .821 .829 .829 .830 .823 .830 .821 .819
Balance-scale .852 .812 .810 .815 .810 .815 .810 .816 .811 .816 .811
Breast-cancer .598 .596 .597 .596 .597 .596 .597 .598 .599 .598 .602
Breast-w .973 .965 .956 .965 .956 .964 .956 .964 .957 .961 .957
Colic .823 .801 .808 .804 .815 .809 .815 .813 .815 .816 .816
Credit-a .874 .872 .874 .873 .874 .874 .874 .874 .873 .875 .874
Credit-g .593 .613 .612 .613 .612 .613 .612 .613 .612 .613 .612
Diabetes .739 .734 .736 .734 .736 .734 .736 .734 .736 .734 .736
Glass .803 .814 .810 .822 .825 .820 .818 .820 .817 .820 .812
Heart-c .831 .837 .818 .843 .818 .842 .818 .845 .823 .847 .825
Heart-h .758 .739 .742 .740 .740 .740 .742 .741 .742 .742 .741
Heart-statlog .781 .792 .776 .790 .776 .790 .776 .791 .775 .790 .773
Hepatitis .664 .600 .596 .600 .596 .599 .596 .599 .595 .597 .586
Hypothyroid .988 .990 .990 .990 .990 .990 .990 .990 .990 .990 .990
Ionosphere .900 .904 .909 .907 .909 .908 .909 .910 .910 .910 .909
Iris .974 .888 .889 .890 .891 .890 .891 .890 .891 .890 .891
Kr-vs-kp .995 .994 .993 .994 .993 .994 .993 .994 .994 .994 .994
Labor .779 .782 .755 .782 .761 .781 .764 .768 .759 .746 .745
Lymph .795 .795 .767 .788 .772 .790 .773 .779 .773 .777 .774
Primary-tumor .642 .626 .624 .622 .627 .630 .622 .627 .622 .629 .628
Segment .988 .953 .932 .953 .933 .954 .932 .953 .932 .953 .933
Sick .948 .949 .949 .950 .949 .950 .949 .950 .950 .950 .950
Sonar .759 .740 .734 .742 .737 .743 .737 .746 .740 .744 .744
Soybean .981 .980 .970 .968 .965 .978 .970 .971 .967 .969 .966
Splice .967 .956 .953 .957 .953 .957 .953 .957 .954 .957 .954
Vehicle .855 .843 .839 .844 .843 .844 .842 .843 .843 .842 .844
Vote .942 .949 .947 .949 .947 .949 .947 .949 .947 .949 .947
Vowel .910 .900 .891 .898 .891 .904 .892 .905 .893 .898 .892
Waveform .887 .880 .862 .880 .863 .880 .862 .881 .863 .881 .863
Zoo .925 .889 .909 .887 .895 .895 .902 .895 .901 .889 .893

Average .855 .843 .838 .841 .836 .843 .838 .842 .838 .841 .836
Average Rank 3.52 5.88 7.92 5.98 7.62 4.65 7.06 4.55 6.79 5.29 6.74



Table 4. Weighted AUC results with rules from unordered, unpruned JRip.

Name Jrip Precision Laplace M 2 M 5 M 10
B S B S B S B S B S

Anneal .983 .992 .989 .992 .991 .994 .989 .994 .989 .994 .989
Anneal.orig .921 .987 .984 .990 .983 .993 .984 .993 .984 .993 .984
Audiology .863 .910 .887 .877 .874 .909 .895 .903 .894 .892 .889
Autos .904 .916 .915 .926 .914 .927 .914 .929 .918 .930 .926
Balance-scale .823 .874 .865 .908 .873 .908 .866 .909 .871 .908 .882
Breast-cancer .591 .608 .587 .633 .605 .633 .589 .632 .606 .632 .617
Breast-w .928 .959 .966 .953 .966 .953 .967 .953 .969 .953 .969
Colic .736 .835 .840 .855 .851 .855 .849 .855 .849 .859 .849
Credit-a .842 .890 .909 .913 .911 .913 .911 .913 .914 .913 .917
Credit-g .585 .695 .717 .716 .716 .716 .716 .716 .716 .716 .718
Diabetes .642 .760 .778 .783 .780 .783 .779 .783 .781 .783 .783
Glass .806 .810 .826 .808 .833 .808 .825 .808 .827 .809 .830
Heart-c .762 .790 .813 .861 .827 .861 .823 .861 .831 .861 .844
Heart-h .728 .789 .803 .851 .839 .853 .819 .849 .835 .852 .837
Heart-statlog .763 .788 .811 .845 .805 .841 .805 .841 .820 .841 .829
Hepatitis .679 .774 .817 .799 .819 .802 .821 .802 .817 .802 .816
Hypothyroid .971 .991 .994 .994 .993 .994 .994 .994 .993 .994 .993
Ionosphere .884 .918 .932 .938 .931 .938 .931 .938 .931 .939 .935
Iris .957 .968 .973 .978 .980 .978 .976 .978 .980 .978 .980
Kr-vs-kp .993 .998 .997 .999 .997 .999 .997 .999 .997 .999 .997
Labor .812 .818 .806 .777 .803 .778 .803 .778 .790 .778 .775
Lymph .750 .843 .852 .891 .857 .887 .848 .881 .852 .884 .878
Primary-tumor .649 .682 .707 .671 .690 .693 .712 .694 .711 .691 .711
Segment .983 .991 .989 .997 .990 .997 .989 .997 .990 .997 .990
Sick .922 .958 .979 .981 .984 .982 .979 .982 .980 .982 .980
Sonar .774 .823 .826 .841 .826 .841 .826 .841 .828 .841 .836
Soybean .962 .979 .981 .982 .979 .985 .981 .984 .981 .985 .981
Splice .938 .964 .968 .974 .968 .974 .968 .974 .969 .974 .970
Vehicle .772 .851 .879 .888 .881 .888 .879 .888 .881 .888 .884
Vote .952 .973 .967 .982 .968 .983 .968 .983 .975 .983 .978
Vowel .884 .917 .919 .922 .920 .922 .921 .922 .920 .922 .920
Waveform .847 .872 .890 .902 .890 .902 .890 .902 .890 .902 .893
Zoo .916 .964 .965 .965 .970 .984 .982 .984 .982 .987 .988

Average .834 .875 .883 .891 .885 .893 .885 .893 .887 .893 .890
Average Rank 10.67 8.15 7.45 4.08 6.65 3.58 7.08 3.68 5.88 3.88 4.91



Table 5. Weighted AUC results with rules from unordered, pruned JRip.

Name Jrip Precision Laplace M 2 M 5 M 10
B S B S B S B S B S

Anneal .984 .987 .988 .984 .986 .987 .985 .986 .986 .986 .986
Anneal.orig .942 .990 .983 .985 .980 .989 .983 .988 .982 .984 .982
Audiology .907 .912 .889 .891 .878 .895 .893 .889 .885 .883 .881
Autos .850 .889 .882 .891 .889 .894 .888 .892 .889 .891 .889
Balance-scale .852 .888 .861 .899 .864 .895 .860 .900 .861 .901 .864
Breast-cancer .598 .562 .555 .557 .555 .557 .555 .557 .555 .560 .558
Breast-w .973 .962 .972 .963 .973 .963 .973 .963 .973 .961 .974
Colic .823 .782 .831 .799 .830 .793 .836 .801 .837 .812 .837
Credit-a .874 .876 .878 .877 .877 .877 .878 .879 .879 .881 .879
Credit-g .593 .702 .711 .703 .711 .703 .711 .703 .711 .705 .711
Diabetes .739 .740 .729 .742 .729 .742 .729 .741 .730 .739 .731
Glass .803 .819 .821 .821 .826 .819 .821 .824 .824 .828 .825
Heart-c .831 .827 .816 .827 .804 .829 .816 .828 .810 .830 .807
Heart-h .758 .739 .740 .735 .736 .737 .738 .736 .737 .735 .736
Heart-statlog .781 .806 .815 .816 .813 .816 .812 .823 .819 .824 .827
Hepatitis .664 .766 .790 .769 .793 .771 .790 .764 .795 .768 .789
Hypothyroid .988 .984 .993 .992 .993 .987 .994 .992 .993 .992 .993
Ionosphere .900 .918 .915 .921 .917 .922 .918 .926 .923 .926 .923
Iris .974 .975 .969 .975 .969 .975 .969 .975 .970 .975 .973
Kr-vs-kp .995 .999 .995 .999 .995 .999 .995 .999 .996 .998 .997
Labor .779 .837 .820 .815 .811 .812 .818 .812 .812 .809 .803
Lymph .795 .858 .832 .849 .833 .853 .836 .851 .842 .851 .856
Primary-tumor .642 .703 .701 .679 .694 .709 .704 .710 .706 .708 .707
Segment .988 .991 .989 .995 .990 .995 .990 .995 .990 .995 .990
Sick .948 .949 .934 .948 .938 .948 .935 .948 .937 .948 .937
Sonar .759 .827 .815 .827 .814 .827 .815 .824 .813 .824 .818
Soybean .981 .989 .981 .988 .981 .990 .981 .989 .981 .989 .981
Splice .967 .973 .967 .974 .967 .974 .967 .974 .968 .974 .968
Vehicle .855 .892 .891 .893 .890 .893 .890 .893 .890 .893 .890
Vote .942 .947 .956 .961 .957 .952 .957 .960 .956 .961 .958
Vowel .910 .921 .915 .924 .915 .925 .915 .925 .916 .924 .915
Waveform .887 .897 .877 .899 .878 .898 .877 .899 .878 .900 .880
Zoo .925 .973 .989 .960 .969 .987 .989 .987 .989 .987 .989

Average .855 .875 .873 .874 .871 .876 .873 .877 .874 .877 .874
Average Rank 8.45 5.61 6.95 5.38 7.59 4.67 6.95 4.14 6.23 4.33 5.7


