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Abstract

Multi-Label classification, the process of assigning multiple different labels to a set of examples is a more
complex form of the traditional classification task. It can be achieved using many different approaches.
One such approach is using boosted rule models. The idea here is that each rule by itself provides a weak
prediction as to the overall labels, but by summing all these weak individual predictions up we can achieve
one combined prediction that is actually reasonably strong and is a decent approximation of the learned data.
Using an existing and refined gradient boosting framework for the learning of multi-label classification rules
called BOOMER [28], we are proposing and developing an extension to the original algorithm in order to
facilitate the modification of rules that have already been learned. Prior work in the field focused on other
often more simple rule models or tree models (like SGD Trees[14], RIPPER [4] or IREP [12]) and managed to
achieve good results when applying concepts such as post-pruning or replacing parts of rules with new ones.
While the original algorithm does already provide decent results when using a sufficient number of rules, our
goal is to use these insights and apply them to our chosen algorithm. We want to determine whether or not
these concepts also work on a stochastic gradient descent boosted rule learner for multi-label classification
and can yield better overall models while possibly using less complex rules than were required previously.
We will later analyze our finished implementation using some commonly used classification datasets [31] to
benchmark and appropriate metrics to evaluate whether any progress was made.
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1 Introduction

To introduce this work I will provide an overview of the topics covered and briefly describe some key aspects.
Furthermore, I will outline the overall structure of this thesis.

1.1 Improving Models of a Multi-Label Rule Learner

In the field of knowledge-engineering, or more specifically machine learning, the goal is to extract useful
information from data. Ideally as data-scientists we want to develop very general models with a minimal
amount of developer input. The less human-input an algorithm has the better its chances of actually discov-
ering useful connections within the data to learn, since in most application of machine learning we humans
are not able to comprehend the data in as much detail as an algorithm can, because we can not process these
huge amounts of data all at once.
Machine Learning has become a focus of many new research projects due to the ever increasing amounts
of data we are producing in our everyday life and which need to be analyzed in order to benefit from said
data. While there are many different fields within machine learning, likely the most popular being neural-
networks, [1] offer a decent starting point to dive deeper into neural networks. These networks are inspired
by an early and incomplete understanding of how our brain works, the area we will be taking a closer look
at is rule-learning. [11] Rule learning is one, if not the oldest technique of machine learning and also very
closely connected to our way of thinking. We are easily able to understand how a rule is supposed to work
and are able for the most part to fully comprehend the operations of simple rules.
Rule-based machine learning can also been done in a number of different ways. For instance we can follow
a strategy of ”separate-and-conquer” as presented in several earlier works like [27] or [19]. This probably is
the best understood approach to rule learning while also the easiest to understand. The name ”separate-and-
conquer” (SeCo) is chosen because the data (or the problem) is divided into several sub-sets. Each sub-set
is then covered by a different rule. While this particular approach will not be directly featured in this paper,
the idea of ”SeCo” (as presented in [27]) is also implemented as part of the bigger research project which
the featured algorithm ”BOOMER” ([28]) is a part of. ”BOOMER” is the multi-label rule learning algorithm
this work is trying to extend and add new features to.
This work will focus on a technique known as ”gradient boosting” or ”gradient boosted rules” (as introduced
in [28]), the idea is that our rules are all learned on the same chunk of data known as training data. This
data is usually also being sampled from and rules are then built using different strategies like top-down or
bottom-up rule induction, in the case of ”BOOMER” a greedy top-down search is used to learn rules.
Using the selected strategy and a provided function called a loss function, one can then calculate which new
rules (or set of conditions) minimize the training-objective, a calculated value based on the loss-function and
current model. The rule’s prediction is also more complex than it would usually be with the separate-and-
conquer approach since a rule will provide a real-valued prediction, based on the data it was learned from,
instead of a simple whole-numbered 0 or 1 prediction.
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By minimizing the loss function we are also performing what is called gradient descent, because we are de-
scending down the calculated gradient with each step, thereby minimizing the estimated error. Gradient
boosting as a stage wise learning procedure was initially presented by Friedman et al [8] and was refined
by several researchers (for single-label rules in [6] and [9]). A refinement for the application on multi-label
rules was developed in the Rapp et al ’s ”BOOMER” paper [28]. Some real examples for uses of multi-label
classification include: image-recognition [3] or automatically associating keywords to news articles among
many others. Gradient descent and boosting have become a highly popular topic within machine learning
generally in the last years, as evidenced by the popularity of projects like LightGBM [20] or XGBoost [2],[26]
which are themselves building on the legacy of early boosting algorithms like AdaBoost [7]. This increased
interest is likely linked to the ever-increasing computational power, which allows us to solve more complex
gradient equationsmore quickly and thusmathematically learn or extract information from larger sets of data.

Now that we have briefly outlined the algorithmic landscape of the stochastic gradient descent boosted rule
learning approach we will get to the main contribution of this work.
Our goal is to develop and implement an extension to the previously mentioned ”BOOMER” algorithm [28].
The original algorithm deals with the learning process as a purely sequential procedure, rules are induced
and immediately finalized (no rule-review takes place). This approach appears to offer potential for further
improvement: it might be possible that after a number of rules have been learned, that certain parts of,
or entire rules have essentially become obsolete or are no longer of a high quality when considering the
additional rules learned since its induction. To build on this idea we will develop an algorithmic strategy to
re-evaluate an already learned model of rules, and try to modify it within this new context to possibly achieve
better performance metrics and improve the model. Similar ideas have successfully been explored for other
machine learning approaches like SGDTrees [14] and specifically some simpler rule learning approaches like
in [4] and [12]. The idea is to establish an intermediate solution between the simple ”SeCo” and the more
complex ”boosted” approach, which then requires a smaller number of rules than standard boosting while
still being more precise than a comparable ”SeCo” solution.

1.2 Thesis Structure

We want to briefly outline the scope our the following chapters and highlight their main goals.

• Chapter 2 ”Fundamentals”:
In this chapter we want to survey the landscape of machine learning and our selected approach specif-
ically and thereby provide the reader with a general understanding of the current state within this
research domain. This will allow the reader to more easily follow the later parts of this thesis. We will
break down the individual components of our approach, specifically: Rule Learning, Multi-Label Classi-
fication, Stochastic Gradient Descent, Boosting, Loss functions, evaluation metrics while also providing
appropriate additional context to related papers on the subjects to enable further reading and research
into these topics.

• Chapter 3 ”Approach”:
After having established proper context and fundamental knowledge for this thesis, we will proceed to
discuss our approach to the problem in more details, while supplying additional illustration, examples
and explanations to the reader. We will not extensively revisit parts of the already existing implemen-
tation as that is already introduced as part of the ”BOOMER” paper, but I will instead focus on the

7



extensions that were made and how they fit into the existing algorithm. This should allow the reader
to fully understand how and why the algorithm was built like it is.

• Chapter 4 ”Results”:
The algorithm which has been presented as part of Chapter 3 ”Approach” will then be tested in this
chapter in order to collect data about its real-world performance. In an effort to evaluate whether
the selected extensions are beneficial, by also providing a before and after comparison in the form of
numerous plots and tables with additional test-results.

• Chapter 5 ”Conclusion”:
Finally, we will conclude the paper by summarizing what we developed as part of this work and also
what we learned from the testing of our implementation. We will also present some possible interpre-
tations of these results and provide additional suggestions for future work on the subject.
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2 Fundamentals

In this chapter we will go over some fundamental terminology and functions of the algorithm we are working
with here. The Boomer algorithmwe are working with was introduced during the work of Rapp et al [28] on a
Stochastic Gradient Descent Boosting Learning Algorithm, specifically for multi-label rules. Machine learning
is a quickly growing field of computer-science that tries to deal with the increasingly vast amounts of data
we produce and need to process in a strategic fashion. The process of machine learning can either be done
supervised or unsupervised, even a combination of the two is possible. We will focus on supervised learning
in this thesis. This refers to the process of extracting knowledge from already correctly labeled ”training-
data” (containing a set of labeled attribute-value pairs known as examples). A ”ground-truth” about the data
is available for our algorithm to process and it then extracts information to be able to classify other unseen
instances (attribute-value pairs without a label) later on. These examples used for testing are known as
”testing-data”.

2.1 Rule Learning

First, we want to narrow down the term rule learning here and explain the idea of how it works. Fürnkranz
et al offer a more in-depth dive into rule learning than we will offer here, in the publication ”Foundations of
Rule Learning” [11]). According to Fürnkranz et al an instance is usually describing an example without an
available ground-truth label, essentially an unclassified/unlabeled example. However, sometimes examples
and instances are used interchangeably since both describe attribute-value pairs. Rule Learning describes
the task of using information extracted from data to create what can essentially be seen as a number of if-
statements. These rules are designed to gradually classify parts or certain attributes of the data by assigning
a classification or label prediction to a certain combination of attributes, fitting certain criteria, that was
observed in the training-data. A number of these rules will then form a model of rules. This model since it
usually consists of several rules combines all these rules into one easily interpreted representation. This is
often done in the form of a matrix, which offers the ability to easily and quickly perform computations on the
entire model and abstracts individual rules into one accumulated object. As mentioned Fürnkranz et al [11]
describe the conceptual challenges of rule learning in a lot more detail, we will stick to only the essential
points here.
Every rule consists of both a head and a body. The head refers to the ”then” part of the if-statement if
following this earlier analogy. (if THIS then THAT). The prediction contained in the head is a combination
of one or more labels and their associated confidence score (often just a binary 1/yes or 0/no). Essentially,
this describes how confident our model is that an instance fits the predicted label. These scores can be both
negative and positive. This way we can both express positive correlations and negative correlations observed
within the data. The body of a rule refers to the conditions the rule is made of, these are used to narrow down
our set of instances in order to associate them with the rule’s predicted label and follow a simple structure:
attribute, comparison operator and a target value. (e.g. [height < 25]).
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Another important and fundamental term as far as rule learning basics go is ”coverage”. A rule’s coverage
describes the instances which fit the criteria described by a rule’s conditions. This means an example is
considered ”covered” by a rule if and only if this example satisfies every one of the rule’s conditions. Fur-
thermore, the more conditions a rule has the more ”specific” it becomes, because its coverage is decreasing.
Similarly, the less conditions a rule has the more general it becomes, because its coverage is increasing due to
the less stringent criteria. If rules become ”too specific” during the learning process we will quickly run into
what is known among data-scientists as ”overfitting”, this describes the circumstance where a model or rule
describes the training data with such a high degree of precision that it no longer provides any useful gener-
alized knowledge, an overfitted model basically looks only for copies of what it already saw during training.
Since this is obviously not very useful while trying to extract knowledge and structure from training-data the
goal is to always try and avoid overfitting. Ideally a model should be the most general it can be, while still
describing a majority of the data correctly. Applying this idea results in a delicate balancing act between
over- and underfitting (underfitting being the opposite of overfitting), we need enough specificity to be able
to actually classify, but not too much specificity as to just copy our training data. Furthermore, the featured
”BOOMER” algorithm [28] makes use of inductive rule learning, specifically following top-down search as
mentioned earlier, its search starts with the most general rule and iteratively refined the rule. During the
search the rule continues to become more specific.

2.1.1 Rule Learning Strategies and Ensemble Methods

There are multiple methods of going about building a new rule model, the ones we will feature in this the-
sis are: separate-and-conquer [27] and especially rule-based gradient boosting [28]. Separate-and-conquer
describes the simple idea of learning a rule to describe a subset of the training-data and removing the now
covered examples from the pool of available training data for subsequent rules. This way we will end up
”separating” and ”conquering” the available data over time. This approach is also presented in [27] which
is part of the same research project as the ”BOOMER” algorithm. It has also been explored in earlier work
by Janssen et al who developed a SeCo framework for rule learning in [19]. Gradient Boosting is a modern
refinement of the general idea of boosted-learning, which dates back to early algorithms such as AdaBoost
[7].
Ensemble strategies describe the concept of applying the same algorithm to several classifiers and combine
the results in some way to improve the predictive quality. Boosting as a general ensemble strategy refers
to the concept of combining several weak classifiers to form a single combined strong classifier, each weak
classifier essentially ”boosts” the next classifier. To be more specific: the learners are learned sequentially
and example weights change with each iteration, taking into account the previous results. These ensem-
ble methods are used to achieve better results with otherwise simple algorithms instead of developing huge
monolithic algorithms, which quickly become hard to manage. The final boosted model-prediction is deter-
mined using the weighted average of all its classifiers. Some more recent and popular implementations of
Gradient Boosting specific approaches are XGBoost [2],[26] or LightGBM [20]. Besides Boosting ensembles
there is also the idea of bagging an ensemble, which means that a sort of majority voting policy is used to
determine the final prediction and all classifier are trained in parallel. Essentially an ensemble of classifiers
votes and the most classified result will be selected as the result of the overall ensemble. Examples for and
issues of bagged ensembles are also discussed in [13].
Finally, stacking is another ensemble strategy and essentially learns a hierarchy of learners using the output
of previous learners for the next level of learners, this approach is similar to how neural networks work. Some
of the benefits of stacked classifier ensembles are discussed in [30]
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2.2 Multi-Label Classification

Multi-Label classification is a sub-area of traditional classification tasks which only predict single labels. There
are many possible use cases like image-recognition or automatic text labelling as featured in [3]. In the case
of rule learners multi-label models can be achieved either by learning a set of single-label rules which when
accumulated form a combined model that is capable of performing multi-label classification. Or by learning
multi-label rule heads, this means that each rule can predict for several different classes at once (e.g. ”=>
(house = 0.4 ; car = -0.6; dog = 0.2)”) Both these ways of constructing a multi-label rule model perform
decently well, while the ”full-head”, the one predicting for several classes, is generally more computationally
intensive but can represent more detail. This discussion of Single vs Multi-Label classification is also featured
in [27], [28], [22].

2.3 Sampling and Stochastic Gradient Descent

One issue with machine learning can be the incredibly huge amounts of data, sometimes even computers can
not process all the data quickly enough. This is especially true while performing the gradient computations
required when doing gradient descent, where we need to solve a number of gradient computations during
each step. A solution that established itself is dealing with this explosion in compute time by sampling the
data, using only smaller subsets of the data. Sampling describes the process of selecting a subset (usually
randomly) from a bigger set and learn a model using this subset. If sampling used for a gradient descent
operation is essentially chance based we are performing what is known as Stochastic Gradient Descent. Many
researchers were able to show over the years that Stochastic Gradient Descent can achieve almost identical
performance metrics as a full gradient descent does, while usually generalizing better and thereby under-
scored its usefulness beyond just speeding up the learning process. [15] However, an important requirement
is that we need to ensure the sampling is as unbiased and as representative of the overall data as possible.
Sampling-bias can and often will end up ruining a otherwise decent Stochastic Gradient Descent (SGD) so-
lution. Therefore, it is very important to make sure the sampling is as unbiased as possible when employing
SGD. Possible solutions like importance sampling for SGD are discussed in [25].

2.4 Loss Functions

A key element required in order to perform gradient descent like ”BOOMER” [28] does is a loss-function, a
loss-function serves as a heuristic function to guide us towards an optimal solution. In gradient descent we
calculate the gradients of that loss-function with respect to our current model state. Using these calculation
we can then determine which changes (which rules in our case) are necessary or better and will lead us
towards a superior model (descent the gradient). This gradient descent calculation can get overwhelmingly
big very fast which is why gradient descent is rarely performed without any sampling today. Sampling as ex-
plained in Section 2.3 enables the use of more efficient and generalize-able stochastic gradient descent (SGD).
Some examples for loss functions include: F1-Loss, Hinge-Loss, Mean-Squared-Error-Loss, Cross-Entropy-
Loss, Hamming-Loss or 0/1-Subset-Loss. Wang et al [32] recently conducted a survey and comparison on
31 popular loss functions in machine learning. The last two mentioned are of particular importance to this
thesis and multi-label classification in general. They will be a central loss functions used in this work. I want
to briefly explain these particular loss-functions here (analogous to [28]).
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Hamming-Loss describes the fraction of incorrect labels among all labels. The mathematical definition is
discussed as part of Section 2.5.2 on model evaluation metrics.

Subset-0/1-Loss goes further and describes the fraction of instances for which one or more labels are not
predicted correct. In short it describes the amount of ”perfect” predictions among all predictions. The math-
ematical definition is also discussed as part of the evaluation metrics 2.5.3.

2.4.1 Surrogate-Losses

In this thesis we will not directly be using Hamming-Loss and subset-0/1-loss themselves, but instead approx-
imate them using a surrogate loss-function which very closely approximate the original losses (as can be seen
in [5]). We do this because our model yields numerical confidence scores, instead of traditional 0 or 1 values
in the label vectors. The logistic loss is a continuous loss function, which can be easily minimized for our
application. (as explained in [28]). The specific functions used are label-wise-logistic-loss and example-
wise-logistic-loss as depicted in 2.4.1(adopted from [28]). These surrogate losses are commonly used for
boosting approaches, especially for single-label classification (as seen in [8]).

losslabel−wise−log(yn, p̂n) :=

K∑︂
k=1

log(1 + exp(−ynkp̂nk)) (2.1)

lossexample−wise−log(yn, p̂n) := log(1 +

K∑︂
k=1

exp(−ynkp̂nk)) (2.2)

2.5 Evaluation Metrics

In this thesis we will mainly use Example-wise F1, Precision and Recall, as well as Hamming Accuracy and
Subset-0/1-Loss to evaluate our model’s performance. We are also able to evaluate Macro andMicro averaged
metrics of these, but those did not provide enough additional value in our experiments to be included in most
plots. They might be necessary for further testing, which is why we will briefly cover them as well.

2.5.1 Common Metrics

Some of the most common metrics used to evaluate and test machine learning applications are Precision,
Recall and F-measure also known as F1 or F1-Loss. These are most commonly used to evaluate models
due to the fact that they allow to easily draw conclusions about the model’s overall quality. In some cases
these metrics or functions are also referred to as ”heuristics” as was done in [17]. They allow us to form
statistical conclusions about the model’s predictive qualities. These metrics use the absolute amounts of true
positives (TP), true negatives (TN), false positives (FP) and false negatives (FN) to calculate their scores (P
# all positives; N # all negatives).
Specifically, the metrics use these values, which have been determined by the model’s classifications results
on the test data, and calculate a score ∈ [0, 1] from them. The higher the calculated score for these three, the
better the model’s performance in regard to that metric.
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• Precision is a very well established metric for machine learning in all kinds of classification tasks ranging
from simple binary to multi label classification, some related examples featuring its use in multi-label
classification include [28],[27], [22]. Its use for binary and multi-label classification is also discussed
in [17], [18] and [23]. It describes the amount of true positives among all positive instances (as seen
in [11],[27]) and it is defined as:

Precision :=
TP

(TP + FP )
=

TP

P
(2.3)

• The Recall as a metric tries to reflect and highlight the amount of relevant labels which were predicted
correctly among the total (as described in [11]) and therefore allows us to easily draw conclusions about
whether a model is too specific and does not cover enough relevant examples anymore, it is defined as
[22]:

Recall :=
TP

(TP + FN)
(2.4)

• f-measure or f1-Loss essentially reflects a combination of precision and recall and is usually used to
determine a healthy balance or trade off between the two. It resembles the harmonic mean of the two
values. The specific term f1-measure/loss refers to the regular f-measure with the β parameter set to
1, in order to weigh precision and recall equally and facilitate a balance. The generic and commonly
used term for the f-measure is as follows (as discussed in [11] and [29])

f1 = fβ=1 :=
(1 + β2)× Precision×Recall

β2 × Precision+Recall
(2.5)

2.5.2 Hamming Accuracy

The hamming loss computes the percentage of incorrectly classified labels. Sometimes Hamming Accuracy
is also known simply as ”Accuracy” (as per [18]). Therefore, hamming loss is the error associated with the
hamming accuracy or:
Hamming −Accuracy := 1−Hamming − Loss
Hamming accuracy thereby computes the percentage of correctly classified relevant (TP) and irrelevant labels
(TN) and is defined as follows [27]:

Hamming −Accuracy :=
(TP + TN)

(TP + FP + TN + FN)
=

TP + TN

P +N
(2.6)

It is also of note that hamming loss is the gain metric associated with hamming accuracy as per [27] and
[21]. Unlike other gain-metrics, loss based metrics however will need to be minimized not maximized to
optimize classifier performance. Due to the fact that hamming accuracy and loss are so closely connected and
inverted values, hamming accuracy can be calculated in place of the loss to more closely conform with other
maximizing gain-metrics. The loss can later be calculated based on the corresponding accuracy. Hamming
loss is commonly defined as [27]:

Hamming − Loss :=
(FP + FN)

(TP + FP + TN + FN)
=

(FP + FN)

(P +N)
(2.7)
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2.5.3 Subset 0/1

A more complex to calculate evaluation metric is the subset 0/1 accuracy, it is based on example-based
averaging [27]. By comparing the predicted labels to the true labels of two given vectors VJ and V̂ J for each
individual example Xj . As mentioned in [22], [24] and [33] the metric evaluates to 1 if all predicted labels
match all true labels, if any one of the labels of the given vectors mismatch the evaluation of the metric is 0.
To compute the 0/1 loss on the entire data-set we now need to calculate the mean of all individual examples
m, which results in the subset 0/1 accuracy reflecting the amount of perfect predictions among all predictions
made as noted by [27], [22], [33]. The subset 0/1 loss can be seen as the inverse accuracy and is calculated
as follows:

Subset−Accuracy :=
1

m
×

m∑︂
i=1

Yj = Ŷ j ,

{︄
1, if all labels are equal;
0, if any one label differs;

(2.8)

2.5.4 Evaluating Multi-Label Predictions

Another important area when evaluating a multi label model is the aggregation and averaging of confusion
matrices computed using bipartition evaluation metrics, since we cannot simply apply the samemethods used
for single label data on multi-label classification. (Since we end up with matrices, which need to be trans-
formed, not values) [22], [23]. As presented in [27] the aggregating and averaging of confusion matrices,
specifically those calculated from m instances and n labels using bipartition metrics describes the process of
breaking down these matrices into a single score which can then be easily compared. Bipartition evaluation
metrics are usually considered to be functions on two-dimensional confusion matrices. [21], [24]. These
matrices consist of the true positives (TP), true negatives (TN), false positives (FP) and false negatives (FN)
[21] and describe the behavior of the evaluated prediction. As mentioned in [22] equation 2.9 shows the
calculation of these values, where as variables yi and yî refer to true and predicted label vectors, while 1 and
0 describe whether or not the given label is present in the respective one (adapted from [27]).

TP j
i =

{︄
1, if yi = 1 and ŷi = 1;

0, otherwise
(2.9) FP j

i =

{︄
1, if yi = 0 and ŷi = 1;

0, otherwise
(2.10)

TN j
i =

{︄
1, if yi = 0 and ŷi = 0;

0, otherwise
(2.11) FN j

i =

{︄
1, if yi = 1 and ŷi = 0;

0, otherwise
(2.12)

2.6 The BOOMER Algorithm

To conclude this chapter we want to outline the specific BOOMER algorithm [28] as described by its authors
in more detail. The BOOMER algorithm 1 is based on their refined gradient boosting framework, which we
previously described and which is part of the same publication. The algorithm describes a stagewise process
for learning a gradient boosted [28] ensemble of rules, both single and multi-label rules are possible. This
ensemble is minimizing a given loss-function. The pseudocode cited in Algorithm 1 depicts their general idea
of how the algorithm works. A more detailed explanation can be found in their original paper [28].

1Their implementation of it is available at https://www.github.com/mrapp-ke/Boomer
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Algorithm 1 Learning an ensemble of boosted classification rules (as depicted in [28] Chapt. 4)
Input : Training examples D = {(xn, yn)}Nn , first and second derivative l′ and l′′ of the loss function,
number of rules T , shrinkage parameter η
Output : an ensemble of rules F

1: G = {gn}Nn , H = {Hn}Nn = calculate gradients and Hessians w.r.t. l
′ and l

′′

2: f1 → p̂1 with b1(x), ∀x and p̂1 = FIND_HEAD(D,G,H, b1) ▷ see [28] Section 4.1
3: for t = 2 to T do
4: G,H = update gradients and Hessians of examples covered by ft−1

5: D
′ randomly draw N examples from D (with replacement)

6: ft : bt → p̂t = REFINE_RULE(D′
, G,H) ▷ see Algorithm 2 adapted from [28]

7: p̂t = FINDHEAD(D,G,H,bt)
8: p̂t = η ∗ p̂t
9: return ensemble of rules F = {f1, ..., fT }

Initially when creating their rule model, the empty model does not cover anything so predictions about
new instances cannot be made. The solution is to start with a default rule, which covers every example
and provides a loss-minimizing prediction for the current dataset. (the exact calculations done can be seen
in [28] Section 4.1) The next step is to now start inducing increasingly more specific rules, in order to
shape our model and start fitting it closer to the data. Each rule does contribute to the final model as
discussed earlier, with respect to their calculated confidence scores. During each iteration of rule induction
the gradients and Hessians need to be recalculated according to the current model-state (confidence-scores
and label predictions) and the true labels. As previously mentioned the algorithm can produce single-label or
full-label heads for new rules. The learning of rules after a default rule is induced follows a greedy induction
scheme. A first condition is chosen based on the best evaluated quality and iteratively more conditions are
added, refining the rule until one of the abort criteria is met. (e.g. no more viable candidate-conditions,
condition-limit reached) With each update to the rule body, the rule head also needs to be recalculated
because the coverage could have changed. Some additional measures they take with the algorithm include:
the sampling (random with replacement) of training-data for each new rule learned in order to produce a
more diverse result. As a final measure the algorithm recalculated the rule’s prediction, this time taking into
account the entire training data, in an effort to avoid overfitting to individual sub-samples. Additionally the
shrinkage parameter η ∈ (0, 1], as the name implies, shrinks the predicted scores via multiplication. The
shrinkage parameter acts in a similar way as the learning rate does for other machine learning approaches
and reduces the effect an individual rule has. [16]

2.6.1 BOOMER and the Refinement of Rules

As the authors [28] state, BOOMER employs a top-down greedy search. This greedy search pattern is common
in inductive rule learning. More detailed information about this approach is provided in [11].
The general process of refining a rule is illustrated in Algorithm 2. Without going into too much detail,
the process starts with an empty body, successively adding new conditions. The refining conditions either
describe the results covered in the nominal case or the averaging of adjacent values in the numeric case.
By default the algorithm will also employ random-feature-selection, as introduced for random forests, this
ensures a certain diversity of ensemble members. After a new condition is then added, an updated head
to determined, which in the case of single-label rules cannot change predicted labels. The selected refining
condition will always be the one, which minimized the regularized training objective as seen in 2.6.1, the
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equation is introduced in [28] as the main optimization target. It describes the calculation of the element-
wise sum of the gradient vectors (g), the sum of the Hessian matrices (H) and a L2 regularization term
which is used to avoid extreme predictions. [28] By default the main stopping criteria is reached if no viable
candidate conditions are available.

R̃(ft) = gp̂+
1

2
p̂Hp̂+Ω(ft) (2.13)

Algorithm 2 Refine_Rule (as depicted in [28] Sect. 4.2)
Input : Training examples D = {(xn, yn)}Nn , first and second derivative l′ and l′′ of the loss function,
number of rules T , shrinkage parameter η
Output : an ensemble of rules F

1: f∗ = f
2: A

′
= randomly select log2(L − 1) + 1 out of L attributes from Dpossible condition c on attributes A′ and

examples D
3: f

′
: b

′ → p̂
′
= copy of current rule f

4: add condition c to body b
′

5: p̂
′
= FIND_HEAD(D,G,H, b

′) ▷ see [28], Section 4.1
6: if R̃(f

′
) < R̃(f∗) w.r.t G and H then

7: f∗ = f
′

8: if f∗ ̸= f then
9: D

′
= subset of D covered by f∗

10: return REFINE_RULE(D′
, G,H, f∗)

11: return best rule f∗
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3 Approach

In this chapter will talk in-depth about our approach and what changes were made to the algorithm and for
which purpose, specifically which algorithmic extensions we introduced. As well as illustrate the thought
process behind introducing them.

3.1 Accessing Learned Rules

Our first step in enabling the modification of previously induced rules is to make sure we actually have
access to all rules that were already learned. We will ignore the default rule here as we do not intend
to modify it. For this purpose we introduce a new container, which stores all our rules, the order they
were last modified in and their accumulated predictions to enable easy access to all of the rules currently
contained in our current model, as well as providing a place to store improvement-specific information. Fig
3.1 depicts the planned program flow used to plan and implement the program extension, following the
main-program path strictly from start to end essentially represents the functionality prior to our additions.
Once the improvement operations are finished the program resumes with its original implementation. The
addition of a new container was necessary because the original representation of the model was not made
to be modified after rule induction of a rule was done in the original work [28]. For efficiency purposes
the original code uses a storage efficient representation of the model, which does not keep track of enough
information to be able to freely edit rules afterwards. The current model’s rules are stored ordered inside our
container as their individual conditions and their accumulated effect on the model prediction. The so-called
”prediction-matrix” stores the sum of the predictions of all rules the model currently contains, per example
(y) and per label (x), which is relevant for the processing of our model modifications. This prediction matrix
is accessed by the algorithm via a so-called ”thresholds” object, which essentially represents this matrix and
allows to perform actions on it like filtering, updating and similar operations.

3.2 Introducing Basic Operations for Rule Modification

In this section we will go over all the possible basic operations that could be used to help improve our model
and were selected as part of developing our rule-improvement process. These basic operations are essentially
tools, which more complex operations can use and be built upon, these themselves are not enough to facilitate
meaningful changes. Later, we will go into detail about how the algorithm ends up choosing an improvement
and how often it does so.
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Figure 3.1: A diagram to visualize the planned program flow
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3.2.1 Removing Rules

Now that we can easily access all our current rules in an efficient way, after the initial learning process
is completed, we need operations to perform to facilitate our desired improvement. The first and likely
most simple operation we could apply to change the model is removing an entire rule, by doing this we not
only remove the rule representation with all its conditions (see Algorithm 3 line 7+8), but also remove the
rule-specific prediction, meaning the rule-head from our accumulated prediction matrix of the model, which
contains all predictions of all rules. To do this we will take the current representation of our model-data
called thresholds, which contains the examples we selected from our data for the current iteration and is
filterable by conditions. Then we will proceed to iteratively apply all the conditions of our current rule (see
Algorithm line 3), to filter our subset of examples and select only the ones actually influencing the prediction
of our current rule. Now that we have determined which entries of our model’s prediction-matrix need to be
modified we can use this information to inverse our current rule’s prediction (see Algorithm 3 line 6) and
add the inverted prediction back to the previously filtered matrix positions (see Algorithm 3 line 7). This will
have the effect of negating the influence the rule had on the prediction of our model, in essence completing
the removal process.

Algorithm 3 remove rule
1: procedure removeRule(rule)
2: iter← find(rule)
3: thresholdSubset← getSubset()
4: for all conditions of rule do
5: thresholdSubset.filterThresholds(condition)
6: localInverse← rule.head.getInvertedCopy() ▷ Invert the prediction
7: thresholdSubset.applyPrediction(localInverse) ▷ Add inverted prediction
8: tempRules.erase(iter)

3.2.2 Adding Rules

It should also be possible to add new rules to the model in order to replace the ones we previously removed.
For this reason we need another new operation to add rules. Similarly to when we remove rules, we will
need to add both the rule representation in the form of its conditions (see line 7) as well as its effects on our
model’s prediction matrix. More specifically, just like when we remove a rule we will once again have to filter
our current subset of examples to determine which ones are covered by the current rule within our current
model-sampling. (see line 4) This is done in order to determine the relevant positions in our prediction matrix
which will need to be updated. Since our new rule is not currently part of our model, its prediction is also
not yet part of the prediction matrix. By adding the calculated prediction of our new rule to the prediction
matrix at the positions we determined by filtering for its conditions. And adding the conditions representing
the rule to our temporary rule container, we now have added the new rule to our model successfully.
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Algorithm 4 add rule
1: procedure addRule(rule)
2: thresholdSubset← getSubset()
3: for all conditions of rule do
4: thresholdSubset.filterThresholds(condition)
5: thresholdSubset.applyPrediction(rule.head)
6: tempRules.emplaceBack(rule.body) ▷ Add rule to model container

3.3 Introducing more Complex Operations

3.3.1 Re-Learning Rules

Another rather simple operation that could potentially be useful in improving our model quality is to relearn
a rule, basically removing an existing rule and learning another new rule to replace it on our current instance-
sampling. These operations are particularly inspired by [4] and [12] where they previously used a pruning
approach in combination with additional steps to already achieve decent improvements for their model. Since
we technically use several basic operations during this step, (namely: 1. remove rule 2. induce new rule 3.
add new rule) it should be considered our first ”complex operation”. The induction of the replacement rule
is using the regular rule induction process, as already established by the BOOMER algorithm [28], for the
rule-induction it does not use a new instance-sampling, but reuses the one that is provided for the current
improvement iteration. This is necessary to ensure that all our modification operations can be compared to
each other fairly. If we would just sample new instances for the relearning process the result would be that
the relearning step could not be fairly evaluated or compared to other steps we would want to take, since it
will possibly be biased towards another instance-sampling.

Algorithm 5 relearn rule process during improvement
1: bestRule ←The best rule found so far
2: bestQuality ←The evaluated quality of bestRule
3: bestPos ←The best current position
4: removeRule(rule)
5: backupRule ←rule.getCopy()
6: success, rule ←ruleInduction.induceRule()
7: if success then
8: addRule(rule)
9: quality ←getRuleQuality(rule)

10: if quality < bestQuality AND quality < 0 then
11: bestQuality ←quality
12: bestRule←rule
13: bestPos←the current Pos
14: removeRule(rule)
15: addRule(backupRule) ▷ The original rule is restored
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3.3.2 Removing conditions

Now that we can add and remove new rules, we can also introduce slightly more complex operations that
combine the adding or removing of rules with additional changes. Removing a condition for instance entails
removing our original rule, changing its conditions and updating its prediction, then adding it back into our
model. In essence we are combining two basic operations with a third modification operation: (1. remove
rule 2. modify rule 3. add new rule). The pseudo-code algorithm depicted in 6 shows the functionality of
removing a condition in the context of our improvement process. First we remove the original rule from our
model like described earlier (see Algorithm 6 line 5). Since the new condition(s) of the modified rule can
now possibly cover a broader set of examples we also need to reevaluate and recalculate the rules prediction
while we are modifying it to make sure that the rule still reflects the data accurately. This recalculation is
done by first filtering our thresholds (see Algorithm 6 line 10), thereby removing all non-relevant entries of
our prediction matrix from consideration. Since we are removing a conditions the we will now likely consider
more entries of the prediction matrix than we did while removing the original rule, this is because the rule has
now become less specific. Using these filtered matrix positions we then recalculate the effect of our remaining
conditions on the model to form a new, slightly different prediction for the entire modified rule (see line 11).
Both, these new conditions and the new prediction are then added back into the temporary rule container
and the model’s current prediction matrix respectively and at the matrix positions we determined by filtering
for our conditions (see Algorithm 6 line 12). For the sake of simplicity, the current implementation removes
conditions from back to front, this approach is common and has been established by prior work on pruning
rule models, [12],[10] or [4] come to mind. This enables us to more easily control what the algorithm does,
while also dramatically reducing the amount of permutations of conditions which need to be considered.
This also helps speed up the process and does not appear to noticeably impact the results. Furthermore,
preserving the order in which conditions were learned proves useful for certain rule pruning approaches.

Algorithm 6 remove conditions process during improvement
1: bestRule ←The best rule found so far
2: bestQuality ←The evaluated quality of bestRule
3: bestPos ←The best current position
4: backupRule ←rule.getCopy()
5: removeRule(rule)
6: while rule has conditions > MIN_COND do
7: rule.body.removeLastCondition()
8: thresholdSubset← getSubset()
9: for all conditions of rule do

10: thresholdSubset.filterThresholds(condition)
11: rule.head←recalculatePrediction(thresholdSubset)
12: addRule(rule)
13: quality ←getRuleQuality(rule) ▷ Evaluate the modification
14: if quality < bestQuality AND quality < 0 then
15: bestQuality ←quality
16: bestRule←rule
17: bestPos←the current Pos
18: removeRule(rule)
19: addRule(backupRule) ▷ original rule is restored
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3.3.3 Adding Conditions

Our probably most complex operation of adding additional conditions to an existing rule is split into two
smaller operations, one operation we call ”induceCondition” responsible to determine how the new condition
is supposed to look like and the other ”addConditionToRule” which is solely responsible to actually add the
new, modified rule to the model, very similarly to how removing conditions works. Adding a condition also
consists of two basic operations and a third operation to modify our rule. (1. remove rule 2. modify rule
3. add new rule) the main difference to the previous operation of removing a condition is that instead of
generalizing our rule we are now creating a more specific rule. After we removed the original rule from our
model (see Algorithm 7 line 5), we start modifying it. We achieve this by first inducing a new condition (see
Algorithm 7 line 7), after we have selected our new condition we can then proceed and once again add it to
the current rule conditions (see Algorithm 7 line 8) and begin filtering our thresholds (representation of our
instance-sampling) to select only the matrix positions of our prediction matrix that are affected by these new
conditions (see Algorithm 7 line 11). Finally, just like we did previously we recalculate the rule’s prediction
(see Algorithm 7 line 12), because it is now more specific, its previous prediction is very likely to be slightly
inaccurate. After we determined a new prediction based on the relevant examples, we then proceed to add
our new prediction to our model’s prediction-matrix at the appropriate positions (see Algorithm 7 line 13) ,
which we already determined by filtering for the conditions.

During implementation we noticed that it might be useful to be able to add or remove conditions without
calculating a whole new prediction, especially if the instance-sampling of the initial learning process is no
longer available, but we do still have access to the prediction that was calculated on said sampling. To remedy
this it can be useful to provide both ways of adding a condition to a rule: the option to add rules with a pre-
calculated prediction as well as just adding another condition with a new recalculated prediction based on
the sampling which is currently being used. The process remains the same with the main difference being
that we do not recalculate a prediction but just pass it along.

Inducing new Conditions:
As the second part of adding new conditions we first need to determine how the new condition is supposed
to look like, for this process we adapted a slightly modified version of how the Boomer algorithm [28] learns
rules in general, we essentially reproduce the state of a rule induction that is in progress and execute a single
iteration which induces a condition. We achieve this by passing our current rule, which is then used to filter
our threshold data down to only the relevant examples and their corresponding prediction-matrix positions,
using the rule’s conditions. These are covered by the already existing conditions, those of our ”original rule”.
Now we go about finding a single new condition in the same way the initial algorithm would induce a single
condition of a newly learned rule, by essentially exploring candidate conditions, evaluating their effects on
the model and choosing the one condition that appears to be the most useful as our final refinement condi-
tion. This newly induced condition is then added to our model using the procedure previously established
during Subsection 3.3.3, where its new prediction based on the current instance-sampling is then calculated.

3.3.4 A Real Example of a Modification

In this subsection we want to present a real example of a rule modification and its effect using the prediction
matrix of a very simple model. We are starting with this very simple learned model seen in table 3.1:
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Algorithm 7 add conditions process during improvement
1: bestRule ←The best rule found so far
2: bestQuality ←The evaluated quality of bestRule
3: bestPos ←The best current position
4: backupRule ←rule
5: removeRule(rule)
6: while backupRule has conditions < MAX_COND do
7: (success, cond)←ruleInduction.induceCondition(rule)
8: rule.body.addCondition(cond)
9: thresholdSubset← getSubset()

10: for all conditions of rule do
11: thresholdSubset.filterThresholds(condition)
12: rule.head←recalculatePrediction(thresholdSubset) ▷ Recalculate a new prediction, due to coverage
13: addRule(rule)
14: quality ←getRuleQuality(rule) ▷ Evaluate the modification
15: if quality < bestQuality AND quality < 0 then
16: bestQuality ←quality
17: bestRule←rule
18: bestPos←the current Pos
19: removeRule(rule)
20: addRule(backupRule) ▷ original rule is restored

Table 3.1: The initial rules
Rule number Rule conditions Rule prediction

0 {} (play = 0.44, dontplay = -0.44, playmaybe = -0.67)
1 {temperature >70.5 & humidity >77.5 & outlook != 1.0} (dontplay = 0.68)
2 {windy == 1.0} (dontplay = -0.58)
3 {temperature >64.5} (playmaybe = -0.36)
4 {humidity <= 95.5 & humidity >77.5 & outlook != 1.0} (play = -0.47)

Our first improvement-iteration, after exploring all 4 rules (excluding the default rule) and their modifica-
tions, selects ”add condition” as the best step to take according to its evaluated rule quality, meaning the
rule quality of this specific modification yielded the biggest model change in quality score. The result is the
following set of rules seen in Table 3.2:

Table 3.2: The rules after a modification
Rule number Rule conditions Rule prediction

0 {} (play = 0.44, dontplay = -0.44, playmaybe = -0.67)
1 {temperature >70.5 & humidity >77.5 & outlook != 1.0} (dontplay = 0.68)
2 {windy == 1.0} (dontplay = -0.58)
4 {humidity <= 95.5 & humidity >77.5 & outlook != 1.0} (play = -0.47)
3 {temperature <= 84 & temperature >64.5} (play = 0.44)
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Table 3.3: The initial prediction matrix

Example play dontplay playmaybe

0 -0.0300709 -0.347089 -1.02695
1 -0.0300709 -0.347089 -1.02695
2 -0.0300709 -0.347089 -1.02695
3 0.444444 -1.02901 -1.02695
4 -0.0300709 -1.02901 -1.02695
5 -0.0300709 -1.02901 -1.02695
6 -0.0300709 -1.02901 -1.02695
7 -0.0300709 -0.347089 -1.02695
8 -0.0300709 -1.02901 -1.02695
9 -0.0300709 -0.347089 -1.02695
10 -0.0300709 -0.347089 -1.02695
11 0.444444 -1.02901 -1.02695
12 0.444444 -1.02901 -1.02695
13 -0.0300709 -0.347089 -1.02695

Table 3.4: The modified prediction matrix

Example play dontplay playmaybe

0 0.408844 -0.347089 -0.666667
1 0.408844 -0.347089 -0.666667
2 0.408844 -0.347089 -0.666667
3 0.88336 -1.02901 -0.666667
4 0.408844 -1.02901 -0.666667
5 0.408844 -1.02901 -0.666667
6 -0.0300709 -1.02901 -0.666667
7 0.408844 -0.347089 -0.666667
8 0.408844 -1.02901 -0.666667
9 0.408844 -0.347089 -0.666667
10 0.408844 -0.347089 -0.666667
11 0.88336 -1.02901 -0.666667
12 0.88336 -1.02901 -0.666667
13 0.408844 -0.347089 -0.666667

As a result of that modification our model’s prediction matrix changed from its initial state (see Table 3.3.4)
to its now refined state (see Table 3.4). As we can see, the prediction of the rule changed from ”playmaybe”
to ”play” after adding the new condition. The algorithm determined that the initial rule covered all examples
as we can see from taking a look at what the model is predicting for all examples and label ”playmaybe”
which was the initial label the rule predicted for (see Table 3.1), cells marked in orange are determined to
be covered by rule 3). If we take a look at the modified matrix 3.4 (marked in green: unchanged; marked
in orange: changed) we see that the rule’s prediction, which changed labels, is removed from all examples
it initially covered, and is added back to the new label ”play” for the examples covered by the new rule.
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Therefore, the new rule coverage is now determined to be covering all examples but example 6. This is why
the old prediction (for the old label) was removed from example 6, but no new prediction is added to it (for
the new predicted label). Rule 3, which was modified has become more specific and therefore covers less
examples. The same logic applies to removing conditions just in reverse order, so a removed condition can
cause a rule to cover more examples than before.

As we can see with this really simple example and dataset, the rule modification already causes a large portion
of the table to get altered, this will not remain true with larger datasets, because more rules are required to
properly describe the detail contained in the data. So any single rule will on average cover less and less of
the dataset with increasing size of the dataset.

3.4 Exploring and Evaluating Modifications

Now that we have our fundamental operations available to actually begin and modify our model in the
hopes of achieving better performance-metrics, we need to formulate a strategic approach of searching for
and selecting the appropriate action to take in order to achieve these desired improvements. Our first step
appears to be to iterate over each of the available rules. Then explore all the changes we could apply using
our developed operations to said rule and evaluate these modifications in order to judge their usefulness. The
existing algorithm already and necessarily provides the tools to evaluate the effect of a rule on the model,
expressed essentially as a quality score. This score provides an indicator as to how much the evaluated
rule will benefit the model. Previously rules could only be evaluated ”out-of-sample” meaning on examples
not within the current sample, we added the possibility to also evaluate rules ”in-sample” meaning on the
currently sampled training data. This is done in an effort to test whether the evaluation data has a significant
impact on the quality of selected model improvements. After we explored all possible options and chose
the modification resulting in the biggest desired model-quality change or the lowest rule-quality-score we
now need to apply the improvement we deem to be the most useful and repeat the whole process with our
now modified model. To provide a more detailed insight we will explain the two major loops within our
improvement process.

3.4.1 Exploration Loop

The first and innermost loop of our rule-improvement process called the ”exploration loop” as already outlined
iterates over all existing rules once. During one iteration we apply all of the developed modification options
one after the other. Furthermore, after each step is processed a check is done to see whether the modified
rule, according to its rule-quality, yields a model improvement over the original rule of the current rule-
exploration-iteration. In any case the final action of each individual step is to reset the model back to the
state it was in at the beginning of the current rule-exploration-iteration. This guarantees that all options are
evaluated on an even playing field and are comparable to each-other. This process is also visualized in Fig
3.1. The three specific steps done are simplified in the diagram as one action.

1. During the first step called ”ADD_COND” we systematically call our ”induceCondition” routine to add new
conditions to our rule, up until either:

• the program parameter for maximum amount of conditions is reached,
• no condition can be induced due to the minimum rule coverage dropping too low,
• no useful condition can be found,
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• we already induced enough conditions during this iteration to satisfy our ”MAX_MODIFIED_COND”
parameter which is responsible to limit the number of conditions we can modify per rule-exploration-
iteration.

2. The second step ”REMOVE_COND” systematically removes the last condition of a rule until either:

• only MIN_CONDITIONS remain (1 by default, to avoid essentially changing default rule)
• we already removed enough conditions during this iteration to satisfy ”MAX_MODIFIED_COND

3. The final and last step ”RELEARNING”, will remove the current rule and induce a completely new rule
also using the same initial greedy induction algorithm on the current instance-sampling. This replacement
rule is then evaluated like before. A last model state reset concludes one such rule-exploration-iteration

3.4.2 Improvement Loop

Algorithm 8 the improvement-logic structure
1: [...]
2: [... initial model already induced ...]
3: for NumImprovementIterations do ▷ The so-called improvement-loop
4: [... initialize next iteration ...]
5: for all rules of induced model do ▷ The so-called exploration-loop
6: [... explore rule modifications ...]
7: [... restoreModelState ...]
8: if found Improvement then
9: removeRule(originalRule)

10: addRule(bestRule) ▷ We replace the old with the modified, better rule

Once we found possible improvements and evaluated them we then need to apply the correct improvement
to our current model using the improvement-loop.
The improvement-loop, our outermost loop (a very simplified version of which is depicted in algorithm 8),
repeats as many times as was indicated with the corresponding parameter (rule-improvement-iterations, de-
picted as ”NumImprovementIterations” in Algorithm 8) and is responsible for actually applying the individual
improvements once, every time we finish an improvement iteration. The actual content of the loop is essen-
tially what has been presented in the earlier three ”complex operations” and is therefore not repeated in
this pseudo-code. A visual representation (fig 3.1) of the loop can also be gathered from the initial program
diagram on which the code structure is based on. Previously, during our exploration of all potential modifica-
tions in the exploration-loop we also collected data on which iteration yielded the current-best modification.
After having verified that an improvement was actually found we then remove the rule corresponding to
the exploration iteration that yielded this best improvement and replace it with the best modified rule we
found. This means that during each improvement-iteration (one iteration of this loop) the model ”improves”
or ”modifies” only one of its rules using one of the steps above according to the evaluation of the given loss
function on the current model. This completes one full iteration of the rule-improvement process and should
theoretically have improved our overall model-quality slightly. We would expect that if we were to limit our
taken steps to only adding and removing conditions that a certain convergence of our metrics should arise.
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4 Results

In this chapter we will present the results of our experiments in order to gain some insight into whether
the modifications proved to be useful. Our evaluation of the changes that were made to the algorithm will
perform some comparisons between different algorithmic parameters, as well as different datasets. Plotting
these results should give us a general idea of what the algorithm is doing, and how the changes affect the
model’s predictions and therefore its predictive qualities. We will also try to figure out which parameters yield
the most beneficial results. The evaluated metrics are: example-based F1, Precision and Recall, Hamming
Accuracy/Hamming Loss as well as Subset 0/1 loss/accuracy. These appeared to be the most useful metrics
to evaluate our experiments. Macro Averaged F1, Precision and Recall, Micro-averaged F1, Precision and
Recall are also available, but did not carry enough meaningful, additional information for our experiments.
However, we will rarely report all these metrics for every single tested case, since they tend to behave similarly
and to illustrate certain effects its more useful to restrict the amount of data presented at once. Should we
notice divergent behavior we will note this.

4.1 Testing Methodology

In this section we will outline our testing approach as well as present our results. Based on these results we
will later try to develop conclusions in order to outline potential for further research. Our general expectation
going into the testing and evaluation is that our algorithm should achieve a slight improvement of the target
metric (with possible deterioration of others) or remain about level if no real improvements can be found.
We will use the results gathered as a basis for additional experiments and to help guide the further direction
of these experiments. We will also examine in more detail unexpected behavior in order to try and figure out
possible causes.

4.1.1 Datasets

To evaluate the results we will use some of the most common and publicly available datasets (provided via
the Mulan project [31]) used to test multi-label classification algorithms. Specifically, we use the following
datasets during our testing. (see Table 4.1.1)

4.1.2 Parameters

For the evaluation we use the algorithm running in its original configuration as a baseline to compare against.
Then we run our modified algorithm which applies a number of improvement iterations after the initial
model is built, as discussed earlier. The control-run will appear at iteration 0 on the plots, indicating 0
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Table 4.1: The datasets used, provided via MulanProject [31]

dataset instances attributes labels cardinality density

birds 645 260 19 1.014 0.053
emotions 593 72 6 1.868 0.311
flags 194 19 7 3.3926 0.485
yeast 2417 103 14 4.237 0.303
image 2000 294 5 1.236 0.247
scene 2407 294 6 1.074 0.179

improvement-iterations were done. The main parameters we will take a closer look at are: instance-sub-
sampling, feature-sub-sampling, the loss-function, max-rules and rule-improvement-iterations. We are also
able to vary or disable certain improvement operations, namely: ADD_COND, REMOVE_COND, RELEARN, as
well as the number of modified conditions per iteration. The default configuration will focus on ADD_COND
and REMOVE_COND. The mode of evaluation can be set to either in-sample or out-of-sample. This second set
of parameters is currently set at compile time and therefore we will change these in cases where we identify
them to be able to yield additional information. The shrinkage parameter will by default remain at 1, to
avoid that the default rule overpowers any changes made to the model. This is useful because our tested
models will mostly consist of 20-40 rules, which is much less than BOOMER would usually induce. Any data
presented will also feature the settings used.

4.2 Evaluation the Collected Data

To present the collected data in a simple and easily interpretable way we implemented a simple python script,
to plot a series of runs done by the algorithm in a graph. The additional data provided in the tables associated
to a certain configuration will feature their scores as percent values, the purpose here is that these are easier
to read in a table format. Some abbreviations we will use in the following section are: instance-sub-sampling
- ISS, feature-sub-sampling - FSS and cross-validation - CV

4.2.1 Evaluating Label-Wise-Logistic-Loss

The first configuration we tested was using the label-wise-logistic-loss, the BOOMER algorithm [cite boomer]
uses this loss as a surrogate for the hamming accuracy. This means that this loss will try to optimize our
Hamming Accuracy metric. (the inverse of the Hamming Loss)

1. 20rules 40 iterations, ISS=bagging, No FSS, No CV
In this first configuration the algorithm will be learning 20 rules on the data, use simple bagging for the
instance-sub-sampling, not do feature sub-sampling only do ”ADD_COND” and ”REMOVE_COND” (with
a limit of 1 per iteration) and evaluate the modifications out-of-sample, meaning on all the currently un-
sampled examples.

We can see in Fig 4.1 and 4.2 that in the case of the birds and emotions dataset we see no real upwards
trend for our target metric (Hamming Acc.) this remains true for the other datasets as can be gathered
from 4.2. These ”jumpy” variations in metrics, which we can observe around the initial starting value could
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Figure 4.1: Birds 20 It 40, NoFSS, ISS=Bagging, No CV
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Figure 4.2: Emotions 20 It 40, NoFSS, ISS=Bagging, No CV
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Table 4.2: NoFSS, ISS=bagging, No CV, test,outofsample, additional data, score-format in percent

dataset #iterations Hamming Acc. Ex.-basedF1 Ex.-based Precision Ex.-based Recall Evaluation on

birds 0 95.4863 57.7517 93.8080 56.4705 test-data
birds 10 95.4863 57.7517 93.8080 56.4705 test-data
birds 20 95.5189 58.1026 93.8080 56.8317 test-data
birds 30 95.4049 57.6588 91.9504 56.8317 test-data
birds 40 95.3560 57.7310 92.0536 57.0123 test-data

emotions 0 74.8349 42.8547 77.4752 39.0264 test-data
emotions 10 75.0000 41.8151 79.2904 38.2838 test-data
emotions 20 75.1650 42.2937 79.3729 38.7788 test-data
emotions 30 75.2475 42.4752 79.7854 38.7788 test-data
emotions 40 75.1650 41.6501 80.0330 37.7887 test-data

flags 0 70.9890 68.1159 70.6923 70.1282 test-data
flags 10 71.4285 69.4322 70.4358 72.1282 test-data
flags 20 70.5494 68.5518 68.7948 71.6666 test-data
flags 30 70.7692 68.6617 69.0512 71.6666 test-data
flags 40 68.3516 66.7322 67.8717 69.1538 test-data

yeast 0 78.0806 51.7101 74.0603 42.4102 test-data
yeast 10 78.0806 51.7101 74.0603 42.4102 test-data
yeast 20 78.0806 51.7101 74.0603 42.4102 test-data
yeast 30 78.0806 51.7101 74.0603 42.4102 test-data
yeast 40 78.0806 51.7101 74.0603 42.4102 test-data

image 0 78.0806 51.7101 74.0603 42.4102 test-data
image 10 78.7174 33.8677 81.3293 33.1663 test-data
image 20 78.7174 33.8677 81.3293 33.1663 test-data
image 30 78.6773 35.0701 80.4275 34.3687 test-data
image 40 78.6372 35.7047 79.6259 35.0701 test-data

scene 0 85.9392 35.5908 88.2246 36.3712 test-data
scene 10 85.8416 35.4793 87.8065 36.3712 test-data
scene 20 85.8416 35.4793 87.8065 36.3712 test-data
scene 30 85.8416 35.4793 87.8065 36.3712 test-data
scene 40 84.8244 36.2318 82.0791 38.9214 test-data
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be caused by several things, for instance: instance sampling at each iteration could be causing ”unstable”
changes, which are not actually better on the entire data, but are fitting just the sampled data. It could also
be possible that the initial model is already ”too good” to find valid improvements and the algorithm is unable
to find really useful changes due to the limited changes we allow it to make.
One odd thing of note is that the yeast dataset seems to be somehow unaffected by whatever is causing this
behavior. Finally, we also can not yet rule out that some sort of error within the process of selecting the
correct improvement.
It could be that something is causing the algorithm to select an ”improvement” by accident which was not
compared to the correct value, thereby replacing a rule with one that is actually worse.
Due to the nature of machine-learning algorithms testing for these sorts of errors quickly and efficiently proves
rather difficult since usually a ”desired” or ”perfect” solution to the problem is not yet known. We could
verify, using the program logs and testing outputs, that the algorithm consistently finds better evaluations
(better quality scores) for the modifications applied. An earlier version of the implementation, which used a
slightly different improvement strategy, also did provide actual metric-improvements although these were not
consistent enough. We were also able to verify that each implemented operation has the desired effect on the
model, more specifically: ”REMOVE_COND” removes a specified amount of conditions, ”ADD_COND” adds a
specified number of new conditions to the selected rules and ”RELEARN” learns a new rule in its place, so it
appears most likely that if the cause for the observed behavior is found inside the code, that its located within
the modification selection part of the implementation, given what we were able to observe. Table 4.2 shows
the start and endpoints after 40 iterations with several mid-points, evaluated on the testing-data, which all
appear to follow this same trend. It is evident that the expected slight upwards trend does not arise, even
after performing a number of improvement iterations. The target metric still remains at about the same level
it started at, while most other metrics tend to drop a bit. Furthermore, due to each iteration using a different
sample of the training data the algorithm almost always finds an improvement to apply. The fact that this
configuration does not provide a consistent trend, this does not meet our expectations. It is also a first hint
that something about the process itself might not be working as intended.

2. 40rules 40 iterations No FSS, ISS=bagging, No CV

Next we looked at whether increasing the number of rules has a beneficial effect on the behavior we previously
observed. As we can see in Fig 4.3 increasing the number of rules only really reduces the effects of each
individual modification (dampens fluctuations) but the behavior remains largely unchanged, the metrics still
rise and fall in apparently arbitrary intervals. And the overall trend remains towards a worse model. The
additional data in Table 4.3 also confirms that observation. However, yeast once again remains particularly
stable.
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Figure 4.3: Birds 40 It 40, NoFSS, ISS=bagging, No CV
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Table 4.3: 40 It 40 NoFSS, ISS=bagging, No CV, test,outofsample, additional data, score-format in percent]

dataset #iterations Hamming Acc. Ex.-based F1 Ex.-based Precision Ex.-based Recall Evaluation on

birds 0 95.2256 56.3791 88.6481 58.4829 test-data
birds 10 95.2745 56.4382 88.8889 58.4829 test-data
birds 20 95.2745 56.4382 88.8889 58.4829 test-data
birds 30 95.2958 56.8435 88.4932 58.7925 test-data
birds 40 95.1442 56.1831 85.8617 59.1279 test-data

emotions 0 75.4959 49.9457 68.9356 58.2525 test-data
emotions 10 75.6666 54.2899 69.8151 59.5959 test-data
emotions 20 75.5775 55.9311 68.6881 59.5959 test-data
emotions 30 74.6699 52.3338 65.3282 52.2727 test-data
emotions 40 74.6699 52.3338 65.8333 52.2727 test-data

flags 0 76.7296 74.5455 73.2821 78.2821 test-data
flags 10 75.1648 72.2685 71.6415 75.1538 test-data
flags 20 75.1648 72.2721 71.9487 75.1538 test-data
flags 30 74.5934 71.9559 76.6666 75.5384 test-data
flags 40 73.8461 71.8874 74.3223 75.8461 test-data

yeast 0 78.2676 54.65824 72.1988 47.5581 test-data
yeast 10 78.2754 54.67947 72.1988 47.5854 test-data
yeast 20 78.2754 54.67947 72.1988 47.5854 test-data
yeast 30 78.2754 54.67947 72.1988 47.5854 test-data
yeast 40 78.2754 54.67947 72.1988 47.5854 test-data

3. 20rules 40 iterations no feature subsampling, no instance subsampling, evaluated on training data

Our next experiment is trying to specifically test whether or not our instance-sampling is possibly hindering
our algorithm by creating samples that are not representative of the entire training set. This would could
cause our model to become worse while training on sampled data. This is done by removing instance-sub-
sampling (ISS), feature-sub-sampling(FSS), while evaluating the model on the training-data. We would
expect, now that we are evaluating on the training-data and using no ISS that we should be seeing either a
constant unchanging development or a very slight upwards trend. We also use 10folds for cross validation to
further reduce the influence of poor data splits which could occur if doing no CV.

As Figure 4.4 and Table 4.4 show our initial expectation for the test are once again not full-filled, it appears as
though the development has become a lot more stable but it is somehow still possible to achieve reductions in
the target metric. It appears as if poor ISS might be part of the reason our model is not improving, but there
has to be more to it, since we still experience a decline of metrics initially. This remains true even without
performing CV.
However, we can not yet conclude that this is the only cause for this unexpected behavior, because we still
observed some losses. An interesting note is that the algorithm appears to suddenly stop decreasing its
model quality after several iterations, indicating a stable state. The reason for this might be that the lack of
instance-sampling is causing our algorithm to at some point no longer be able to select viable improvements.
An additional observation confirming this is that all folds of the CV stopped finding any improvements after a
number of changes were applied, that explains why the graphs all flatten out after some iterations. A reason
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for the lack of further improvements is likely the lack of instance-sampling, causing us to stop at a presumably
”ideal” model. We also need to start considering other explanations for this odd behavior.
One possible option might be that one of our modification operations is causing problems and on occasion
is responsible for the selection of bad improvements for some reason, to take a closer look at this we will
run a short evaluation without cross validation (CV) but with ISS activated and color the plot according to
the currently selected operation. This way we can correlate operations to the change in model quality and
possibly draw conclusions about the effect this way.

Table 4.4: 20 It 40, NoFSS, NoISS, 10F CV, EvalOn Training, in-sample, additional data, score-format in per-
cent

dataset #iterations Hamming Acc. Ex.-based F1 Ex.-based Precision Ex.-based Recall Evaluation on

birds 0 95.8357 58.8122 99.9827 56.6364 train-data
birds 10 95.6443 57.4038 98.6581 55.6288 train-data
birds 20 95.6443 57.4038 98.6581 55.6288 train-data
birds 30 95.6443 57.4038 98.6581 55.6288 train-data
birds 40 95.6443 57.4038 98.6581 55.6288 train-data

emotions 0 84.9040 58.3363 98.3104 52.7009 train-data
emotions 10 84.4857 56.8128 98.6851 51.0744 train-data
emotions 20 84.3201 55.9313 99.0787 50.1529 train-data
emotions 30 84.2983 55.8876 99.0880 50.0905 train-data
emotions 40 84.2983 55.8876 99.0880 50.0905 train-data

flags 0 80.8215 76.0123 82.2949 73.4122 train-data
flags 10 79.7735 74.9686 81.3809 72.3527 train-data
flags 20 79.0702 74.1728 80.7475 71.7739 train-data
flags 30 78.9314 74.0115 80.7990 71.4775 train-data
flags 40 78.9314 74.0115 80.7990 71.4775 train-data

yeast 0 79.8619 54.0061 77.2188 44.3370 train-data
yeast 10 79.8619 54.0061 77.2188 44.3370 train-data
yeast 20 79.8619 54.0061 77.2188 44.3370 train-data
yeast 30 79.8523 53.9979 77.1800 44.3370 train-data
yeast 40 79.8523 53.9979 77.1800 44.3370 train-data
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Figure 4.4: Birds 20 It 40, NoFSS, NoISS, 10F CV, EvalOn Training, in-sample
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4. 20rules 40 iterations No FSS, ISS=bagging, evaluated on test data, insample ; color-coded opera-
tions

We can conclude from the coloring (see fig 4.5; Green: ADD_COND; Red: REMOVE_COND) that while a
majority of operations are ”REMOVE_COND” the noticeable dips appear not to be correlated to any specific
operation (on neither evaluation: test vs training-data).
Additional available program logs appear to confirm this assumption, since they show no clear correlation
between model changes and the selected modification either. Therefore, it appears unlikely that the act of
adding and removing conditions is causing the issue in itself, since we can see both rising and falling metrics
following both these operations. This detailed analysis of our testing results has unfortunately not yet yielded
an obvious explanation for the observed behavior. It is possible that even after extensive verification of the
individual parts of the algorithm that we missed something. Both, the individual functions behavior’s and
the model’s prediction matrix remained ”logically consistent” during their evaluation process.
This means no big changes or sudden big swings in values and no ever increasing error-terms were observed.
These could cause the model to become worse over time. Our experiments were unable to help us identify
a clear cause for the unexpected decline of the metrics. It could be possible after reviewing our test results,
that we missed a flaw in the ”improvement-logic” implementation. Specifically, a flaw related to the selection
process appears to be a likely explanation at this point.
However, since we were also unable to observe any meaningful improvement even when evaluating on the
training-data while also not performing ISS it could also be the case that the approach of iterative rule
improvement does not work particularly well on boosted rule models. If the algorithm, by its nature, is not
able to correctly identify ”better” modifications reliably, that would explain what we are able to observe. It
appears as though the algorithm is currently able to select modifications resulting in a worse model, even
though in terms of rule quality an improvement was calculated. This particular observation appears to further
support the assumption that our approach needs to be refined to work on boosted rule models. Due to the
evaluated quality being based on the chosen loss-function, we can be reasonably certain that the quality score
itself should not be causing these issues. Although, it might be that in order to correctly identify valuable
modifications for boosted rule models, additional parameters to regulate the evaluation of the rule qualities
are needed. The assumption that we need to process the quality score of a rule before using it appears to be
supported by the observation that a decline was possible while logs reported an increasing quality score and
not performing ISS on the training data.
Our collected data thus far has on average been relatively stable with some strong hints of some odd behavior.
While the target metric especially does not appear to stray very far from its starting value, this could just be
related to us restricting the size of the changes and only allowing small ones. It also does not appear plausible
that the operations themselves are faulty since this should be unlikely to produce such ”stable” behavior. Given
that metrics flattened somewhat quickly when testing without ISS (see 4.4), it appears as though the type
of instance sampling also plays a role in the quality of selected rule-improvements (and the lack of these),
which does make sense since the learning process also benefits from unbiased sampling.
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Figure 4.5: Birds 20 It 40, NoFSS, ISS=Bagging, No CV, Eval On Testing-data, outofsample, colorcoded oper-
ations
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Table 4.5: Some observed model-size decreases

Dataset #rules #iterations model-size (in kb) # total conditions

birds 20 0 3.19 63
birds 20 20 2.84 53
birds 20 40 2.68 49

emotions 20 0 6.19 109
emotions 20 20 5.58 97
emotions 20 40 5.15 89

flags 20 0 1.93 89
flags 20 20 1.83 83
flags 20 40 1.79 81

4.2.2 Additional observations

One thing we could observe is that our algorithm currently tends to reduce the model size. Given that most
operations performed remove conditions, therefore produce less specific rules with less conditions, this is
to be expected. A result is that we are compressing the model while retaining metrics, usually close to the
original ones. This could potentially be a useful feature for very large models if weighting cost/benefit of this
compression ahead of time. And the user is aware of the potential costs in terms of a slightly reduced model
quality. Table 4.5 table depicts some general trends we were able to observe with respect to model sizes.
These trends obviously apply to both the file-size and the length of individual rules. In these few examples
we were able to in the best case (birds20) reduce the number of conditions down to 78% of their starting
amount, while retaining almost 99% of its target metric performance. The worst case (flags20) still reduced
the number of conditions to 91% while suffering a reduction in the target metric to 96%, so it appears that
if going strictly by the numbers the compression could actually be considered useful in certain cases.

4.2.3 Evaluating Example-Wise-Logistic-Loss

The example-wise-logistic-loss is used as a surrogate loss for the subset 0/1 loss which is why we did replace
the Hamming Acc with the 0/1 subset loss in our data presentation. Even though the example-wise loss
behaves largely the same we do still want to include one of these plots in order to provide a more complete
picture of the observations. Themain differencewe can observe in Figure 4.6 and Table 4.6 is that we observed
more frequent and noticeable fluctuations. This is likely caused by the full head refinement (multi-label rule
heads) we are doing for the example-wise logistic loss. Subset 0/1 Loss increases overall, so the model as
previously said appears to behave largely equivalent. Figure 4.6 shows the emotions dataset performed on
example-wise-log-loss. The behavior remains unsteady with a tendency towards a higher loss, thus a worse
target-metric. Table 4.6 depicts the associated results of the remaining datasets.
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Figure 4.6: Ex.-w. Emotions 20 It 40, NoFSS, ISS=Bagging, No CV, Eval On Testing-data, outofsample
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Table 4.6: Ex.-w. 20 It 40, NoFSS, ISS=bagging, 10F CV, EvalOn Testing-data, out-of-sample, additional data,
score-format in percent

dataset #iterations Subset 0/1 Loss. Ex.-based F1 Ex.-based Precision Ex.-based Recall Evaluation on

emotions 0 77.0095 50.7161 49.5360 55.5063 test-data
emotions 10 78.1705 50.1106 48.8306 55.1129 test-data
emotions 20 78.4142 49.8394 48.5650 54.8036 test-data
emotions 30 78.5266 49.5052 48.2933 54.3538 test-data
emotions 40 78.9196 49.3431 48.0288 54.3642 test-data

flags 0 85.1694 67.6840 64.4989 75.4362 test-data
flags 10 88.7655 65.6302 61.2211 80.3611 test-data
flags 20 87.7927 66.4642 61.5774 80.9171 test-data
flags 30 87.5609 65.8312 62.1780 78.7925 test-data
flags 40 87.6765 66.2068 62.3451 79.1503 test-data

yeast 0 86.6178 59.9422 61.9260 62.2603 test-data
yeast 10 86.3558 59.6929 61.8779 61.6779 test-data
yeast 20 86.4662 59.7263 61.8701 61.8145 test-data
yeast 30 86.6179 59.5067 61.6241 61.5614 test-data
yeast 40 86.7328 59.6285 61.6516 61.8215 test-data

image 0 70.6333 36.9790 39.9583 36.0333 test-data
image 10 70.7722 36.9901 39.9416 36.1083 test-data
image 20 71.4444 36.9207 39.6916 36.3416 test-data
image 30 71.5833 36.5738 39.3944 35.8898 test-data
image 40 71.9055 36.6151 39.2694 36.1509 test-data

scene 0 73.2310 28.9746 30.0832 28.4222 test-data
scene 10 74.0065 28.2422 29.3723 27.6790 test-data
scene 20 75.3315 26.9726 28.1304 26.3956 test-data
scene 30 76.0194 26.3031 27.4702 25.7215 test-data
scene 40 76.0517 26.1785 27.2994 25.6199 test-data

4.2.4 Additional Notes

While performing the ”RELEARN” operation the current implementation tended to gravitate towards doing
mostly that and especially if not performing ISS it produced near identical ”relearned” rules. It appears as
though the relearn operation does not provide much value for boosted rule models. Experiments allowing
more conditions to be changed at once, caused slightly bigger ”swings” while not affecting the overall be-
havior. Enabling FSS caused a very small stabilizing effect in some experiments, but this did not appear to
be significant and is likely just connected to the fact that we sample during each improvement iteration and
thereby achieve a similar effect as not performing FSS would have. The dataset yeast appears to be especially
resistant to the decline of model metrics regularly caused by our algorithm in other datasets. Other research
on post-pruning (like [4], [12],[10]) has sometimes been using a separate sample of the data to perform
improvements, one which has not yet been used during training, since we have not been doing this, mainly
for simplicity purposes it might be one reason contributing towards the poor results. Another thing of note
is, that earlier research especially on post-pruning was able to consistently achieve model-improvements,
which strengthens the suspicion that either our approach/implementation might be flawed or that the con-
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cept of iterative model improvement does not work on gradient boosted rule models like we expected it to
and possibly needs further refinement. Moreover, the new algorithm was only tested on the Boosting im-
plementation ”BOOMER”[28] of the associated rule learning research project so far, a separate-and-conquer
implementation as presented in [27] is also available to conduct further tests on.
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5 Conclusion

We will end the thesis with some concluding remarks and outline what did work and what did not. Finally,
we will derive implications for future work in the field of rule learners.

5.1 Concluding the Results

To conclude this paper, we developed an extension to the BOOMER [28] algorithm on the basis of several
prior works like [14], [4], [12], [10] and in the hopes of achieving an improvement of the model quality
and target metrics by performing these modifications. As can be seen in Chapter 4 our testing showed that
the general idea of improving our model was occasionally successful but was not able to consistently im-
prove our models in each step. A majority of changes either did not influence our results or even worsened
them. We were unable to identify the specific reason for this behavior as of now. Our assumption is, that
either the entire idea of iteratively improving boosted rule models using quality-scores does not work or our
specific implementation is flawed in some way. The evidence does not appear to be sufficient to confirm
either assumption as true yet. The algorithm manages to select ”worse” modifications even though those
should technically produce a worse quality-score than the unmodified rule. This might be related to the
model behaving in a way we did not anticipate, perhaps a new parameter is required to further regulate the
calculated quality-score. Relearning did not appear to have a major impact on the quality of modifications
achieved. Furthermore, relearning rules also tended to be favoured as the best operation while activated.
This is likely because the change of adding an entire rule outweighs smaller changes. Our algorithm also did
perform slightly better when using feature-sub-sampling, but the overall observations in terms of trends as
displayed in 4 still held true. While our approach appears quite plausible in theory, our testing was unable
to verify a consistent improvement does indeed occur. The ”improvements” appear to be pretty inconsistent
or even worsened the model if compared to the starting model. Overall, it appears as though our results
were not conclusive enough to be able to disprove that the approach definitely does not work or to prove
that a malfunction must be the reason. We found indicators supporting both these main assumptions. Nev-
ertheless, we were able to identify that the algorithm still manages to compress our model’s with minimal
losses in the metrics optimized by the loss function. In some cases the difference between compression and
target-metric-loss was as big as 21% as can be seen in 4.2.2

5.2 Future Work

Future research on this specific topic should be trying to develop a better understanding of how changes
to a boosted rule model after induction do affect the model quality and why/how they do that. As noted
earlier the observations appear to show that rule-quality alone is not enough to identify good modifications.
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Prior work like [4], [12],[10] and [14] which appeared to show promising results for modifications to (rule)
models in general by using pruning (and modification) approaches were not able to be reproduced during the
evaluation of our Stochastic Gradient Descent Boosted Rule Learning approach. It might be possible that rule
improvement does not work particularly well for Boosted Rule Learners. This prior research [4], [12],[10]
and [14] used slightly different types of modeling after all. However, I think more research needs to be done
to come to a final conclusion on this. Furthermore, applying the developed algorithm to randomly generated
rule model’s (which will usually be terrible) could be a useful step in verifying that the implementation does
actually and consistently achieve its goal with sufficiently bad starting models. This would enable us to con-
clude whether the models generated by BOOMER are already ”too good” for our algorithm to improve upon
or whether the implementation still needs more work. In the same line of thinking it could prove interesting
to apply the improvement algorithm on the Separate and Conquer rule learner [27], that is also available as
part of the overall research project [28]. Additionally, it might be necessary to calculate a ∆-quality, to more
accurately evaluate the change in quality when comparing the original rule and the modified one with vastly
different qualities. The algorithm was built under the assumption that any modified rule that is improving
will by default also get selected due to a higher quality-score. It might currently be the case that this as-
sumption can be violated. It is possible that a re-implementation of the ideas presented in this thesis could
remove doubts about possible implementation errors and put the assumption that boosted Rules are poorly
modify-able on firmer ground.
Extending the currently existing improvement algorithm by adding even more complex operations (e.g. ”re-
place condition”, add and remove in one iteration via a candidate-search) or even conducting a version of
Beam-Search on improvement candidates could yield interesting results. Also other interesting approaches
would be to use the implementation with more and different loss-functions (like F1 loss or one feature in
[32]). Using several different samplingmethods (apart from bagging,Random-Feature-Selection) for instance
and feature sampling, to validate the effects of sampling quality on the improved models, as was noted earlier
during our test-observations. It might also prove prudent try and perform the modifications of the algorithm
with previously unseen training-data. Finally, as was noted in Section 4.2.2 unexpected compression behav-
ior was visible as a result of running the improvement-algorithm, likely due to the tendency to remove more
conditions than we add, this might also be an interesting direction to dive deeper into to facilitate slightly
easier storage of huge models.
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