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Abstract

Most commonly used inductive rule learning algorithms employ a hill-climbing search,
whereas local pattern discovery algorithms employ exhaustive search. In this paper, we
evaluate the spectrum of different search strategies to see whether separate-and-conquer
rule learning algorithms are able to gain performance in terms of predictive accuracy or
theory size by using more powerful search strategies like beam search or exhaustive search.
Unlike previous results that demonstrated that rule learning algorithm suffer from over-
searching, our work pays particular attention to the connection between the search heuristic
and the search strategy, and we show that for some rule evaluation functions, complex
search algorithms will consistently improve results without suffering from the over-searching
phenomenon. In particular, we will see that this is typically the case for heuristics which
perform bad in a hill-climbing search. We interpret this as evidence that commonly used
rule learning heuristics mix two different aspects: a rule evaluation metric that measures
the predictive quality of a rule, and a search heuristic that captures the potential of a
candidate rule to be refined into highly predictive rule. For effective exhaustive search,
these two aspects need to be clearly separated.

1. Introduction

Most classification rule learning algorithms use hill-climbing as their method for greedily
adding conditions to a rule, whereas local pattern discovery algorithms, such as association
rule or subgroup discovery often use some form of exhaustive search. Beam search can be
viewed as a means for trading off between these two. The question that we pose in this
paper is how the quality of the found theories changes with increased search effort.
Several authors have previously observed a phenomenon called over-searching, which
essentially says that increased search effort will not only not improve the results but may
even lead to a decrease in accuracy. For example, Murthy and Salzberg (Murthy & Salzberg,
1995) have found that increasing the look-ahead in decision tree induction will typically no
longer improve the results, and may also produce larger and less accurate trees. Specifically
for inductive rule learning, Quinlan and Cameron-Jones (Quinlan & Cameron-Jones, 1995)
showed that more search has not to lead to better predictive accuracy. However, their work
was limited to the use of a single heuristic for evaluating rules, the Laplace error.
Following this direction, our work aims at re-evaluating the over-searching problem for
many other heuristics and on different datasets. The key difference to the previous work is
that we evaluate nine different heuristics which have been recently evaluated for heuristic
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search (Janssen & Fiirnkranz, 2008). Most of them are well-known for heuristic search, but
have never been used for exhaustive search before. Collectively, they span a wide variety
of different biases for evaluating a single rule. We will show that the search mechanism is
interweaved directly with the search heuristic. Our results confirm the previous results, but
we argue that the over-searching phenomenon depends on the used heuristic. This paper
gives evidence that, for several search heuristics, a complete search does not only result in
a smaller theory, as also observed in (Quinlan & Cameron-Jones, 1995), but also in a more
accurate one. This is particularly likely to happen for heuristics that perform badly in hill-
climbing search, while other heuristics, that perform rather well, will lead to a decrease in
performance when used in exhaustive search. The main conclusion that we will draw from
this investigation is that heuristics that are tailored to hill-climbing search, also have to
capture the potential that the current rule can be refined in to a rule with a high predictive
quality, and that it is mainly this aspect that is responsible for these observed performance
differences.

We begin the paper with a brief recapitulation of separate-and-conquer rule learning,
and, in particular, describe our implementation in some detail. In Section 3, we discuss
the three different search strategies. Thereafter, the rule learning heuristics we used for the
study are summarized in Section 4. The experimental setup is described in Section 5 and
the results of the experiments are presented in Section 6. Section 7 gives a conclusion of
the work conducted in this study.
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Algorithm 1 FINDBESTRULE (Ezamples,h)

InitRule = ()
InitVal = EVALUATERULE (InitRule, Examples,h)
BestRule = <InitVal,InitRule>
Rules = { BestRule}
while Rules # ()
Candidates = SELECTCANDIDATES (Rules, Examples)
Rules = Rules \ Candidates
for Candidate € Candidates
Refinements = REFINERULE (Candidate, Examples)
for Refinement € Refinements
Evaluation = EVALUATERULE (Refinement, Examples,h)
NewRule = < Fvaluation, Refinement>
Rules = INSERTSORT (NewRule, Rules)
if NewRule > BestRule
BestRule = NewRule
Rules = FILTERRULES (Rules, Examples)
return(BestRule)

2. Separate-and-Conquer Rule Learning

The goal of an inductive rule learning algorithm is to automatically learn rules that allow to
map the examples of a domain to their respective classes. Algorithms differ in the way they
learn individual rules, but most of them employ a separate-and-conquer or covering strategy
for combining rules into a rule set (Firnkranz, 1999). For the sake of the reproducibility of
the results, we use this section to describe our particular implementation. It can be safely
skipped by readers that are primarily interested in the experimental results.

2.1 Overview of the strategy

Separate-and-conquer rule learning can be divided into two main steps: First, a single
rule is learned from the data (the conquer step) by a procedure called FINDBESTRULE.
Following (Firnkranz, 1999), Figure 1 shows a generic version of this procedure which can
be instantiated into various specific search algorithms. In particular, it can simulate the
three strategies that we will describe in Section 3.

The procedure FINDBESTRULE searches the hypothesis space for a rule that optimizes
a given quality criterion h. It maintains Rules, a sorted list of candidate rules, which is
initialized with an empty set of conditions. New rules will be inserted in appropriate places
(INSERTSORT), so that Rules will always be sorted in decreasing order of the heuristic eval-
uations h, which are determined by EVALUATERULE. At each cycle, SELECTCANDIDATES
selects a subset of these candidate rules, which are then refined using REFINERULE. In our
case, a refinement is the addition of an attribute-value test. Each refinement is evaluated
and inserted into the sorted Rules list. If the evaluation of the NewRule is better than the
best rule found previously, BestRule is set to NewRule. FILTERRULES selects the subset
of the ordered rule list that will be used in subsequent iterations, and, when all candidate
rules have been processed, returns the best encountered rule. The three search strategies
used in this paper, hill-climbing, beam search, exhaustive search, can be realized by allow-
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ing FILTERRULES to let only the best n refinements pass for the next iteration (n is the
beam width, n = 1 results in beam search, and n = oo produces an (inefficient) exhaus-
tive search). For hill-climbing and beam search, SELECTCANDIDATES will always return all
Rules, whereas an exhaustive search will only look at the first element in this sorted list.

Then, the main covering loop removes all examples that are covered by the learned rule
from the training set (the separate step), and the next rule is learned on the remaining
examples. The two steps are repeated as long as positive examples are left in the training
set. This ensures that every positive example is covered at least by one rule (completeness)
and no negative example is included (consistency). The origin of this strategy is the AQ-
Algorithm (Michalski, 1969) but it is still used in many algorithms, most notably in RIPPER
(Cohen, 1995), arguably the most accurate rule learning algorithms today.

2.2 Implementation

For our experiments, we implemented a simple separate-and-conquer algorithm with a top-
down strategy for selecting individual rules. The rule refinement process follows closely
the general procedure described in Algorithm 1. At the moment, the algorithm can only
handle nominal attributes, we are currently working on an implementation that can also
use numeric attributes.

The algorithm can be ran with different heuristics and is able to handle multi-class
problems by employing a simple one-against-all class binarization where the classes are
ordered in ascending frequency. Thus all instances that belong to the current class are
treated as positive examples and all other examples represent the negative class label.
When the algorithm has finished learning ¢ — 1 of ¢ classes it predicts the most frequent
class (the last one) as default class. For classification of a new example, each rule in the
(decision) list is checked whether it covers the example or not and the first one that “fires”
is used to classify the example. If no rule in the list covers the example the default class
is predicted. The heuristic value of this exceptional rule is also used as a minimum quality
measure for all rules. If no rule could be found that outperforms the default rule the theory
remains empty. Missing values are treated as examples that are never covered. For rules
with equal evaluation a tie breaking on the covered positive examples is done. This is
especially important for the heuristic Precision and is discussed in detail in Section 6.5.

Our algorithm does not feature a special pruning or optimization phase. Nevertheless
some pruning is done in both loops: the outer covering loop does not add the rule BestRule
to the theory if the rule returned by FINDBESTRULE is empty or if it covers fewer positive
than negative examples. When the negative coverage is higher than the positive a rule will
never increase the accuracy of the theory. The procedure FINDBESTRULE stops refining
the current rule NewRule if no negative examples are covered or a simple forward pruning
criterion fires.

Forward pruning (also called pruning with “optimistic value” in (Webb, 1995)) is used to
cut off subtrees of the search space without losing performance. In the used implementation
it works as follows: Assume the current rule NewRule covers p positive and n negative
examples. The best rule that could be yielded by this refinement process would be one that
covers p positives (does not loose a positive) and 0 negatives (excludes all negatives). If
h(NewRule) < h(BestRule) NewRule is not refined any more (not inserted into Rules).
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Figure 1: Hill-Climbing and Beam Search
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3. Search Strategies

Most global rule learning algorithms employ a hill-climbing strategy (Lavrac, Flach, Kasek,
& Todorovski, 2002; Cohen, 1995) whereas algorithms for association rule discovery typ-
ically perform an exhaustive search that discovers all patterns that satisfy a given set of
constraints. The first technique starts with a rule that covers all examples (the empty rule)
and evaluates all possible conditions. The best one according to a heuristic measure is
selected, all others are discarded and based on this first condition all candidate rules with
two conditions are generated. The second mechanism at each conquer step generates and
evaluates all rules that can be built from the data and selects the best one.

To trade off between these two methods usually a beam search is used where a parameter
n determines how many rules are refined in a single steps.

Another method for searching good theories is to generate all possible theories rather
than search all single rules. The computational demands of this approach are far beyond
the mechanism that only generates all rules. Therefore we concentrated on evaluating
different strategies for searching a single rule and left the main covering loop of the algorithm
untouched.

3.1 Hill-Climbing

Hill-climbing represents the instantiation of a beam search with beam size n = 1. The
advantage of this method clearly lies in its efficiency concerning both memory and time
issues. The disadvantage is that the search can be stuck in a local optimum without finding
the global optimum. Note that for any refinement process there is exactly one path through
the search space. In the first step of the FINDBESTRULE procedure all attribute-value pairs
are generated and evaluated. Until then the used conditions are stored so that they are not
generated twice.
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Figure 1 (left) shows an example for a refinement path through the search space. Assume
that there are only the attributes A and B that can be selected in the first test (attribute
values are omitted). Hill-climbing now adds the attribute with the highest evaluation value
(in this case A). In the second step there are only 3 possible Tests (B,C and D). Attribute
D is selected, B and C are remaining, hill-climbing selects B and then only C remains.
Note that now the refinement process is terminated because no more attributes exist. The
returned rule has not to be AADABAC — CLASS since any of the previously generates
ones can have a higher evaluation value and thus would be returned.

3.2 Beam Search

Beam search is useful for avoiding situations where the locally optimal choices of hill-
climbing makes a globally suboptimal choice. The idea is simply to refine n rules simulta-
neously. If n — oo the beam search turns into an exhaustive search. There is some work on
determining a good beam size for a single dataset (Quinlan & Cameron-Jones, 1995) but it
is still an open question how to choose n. In our experiments we simply tested the beam
sizes 1,24, ...,2048.

Our implementation of the beam search generates all attribute-value pairs in each step
but only adds a rule if it is not contained in the current beam. Thus, the search space is
basically unordered due to many possible refinement paths starting from different attribute
tests. Therefore, the algorithms only remembers what attributes are already used for one
single rule because for nominal attributes a test of an attribute should only occur once in
a rule.

Figure 1 also displays an example for a beam search with a size of 2. Assume the same
start situation as in the example before. Beam Search is able to both refine A and B. It adds
conditions in the same way as done in hill-climbing. At last both rules contain 4 conditions
and are semantically the same rule but with a different ordering of conditions. In this case,
as described above, the second one would not be added to the current beam. Instead, the
rule with the second best evaluation is included in the beam.

3.3 Exhaustive Search

There are some global rule learning systems that incorporate an exhaustive search, most
notably OPUS (Webb, 1995). The naive implementation sketched in Section 2.1 suffers
from the problem that the same rule can be reached over multiple refinement paths, as also
shown in Figure 1. Presumably for this reason, Quinlan and Cameron-Jones did not include
a true exhaustive search into their comparison, but used a maximum beam width of 512.
We implemented a more efficient version, based on the ordered search algorithm of the
OPUS? rule learner. As shown in Figure 2, the algorithm only generates each rule once,
and therefore does not have to check if it is already contained in the beam. This is because
the procedure has to construct every single rule anyway. Thus, the computational demands
of the exhaustive search are much smaller than those of a beam search with n — oo because
the latter may generate multiple paths that end in the same refinement. Note that the
sequence in which the rules are generated may differ from the sequence generated by the
beam search. Therefore, for some datasets, the performance of the two search strategies
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Figure 2: Exhaustive search

may be different, because we cannot guarantee that, among rules with identical evaluations,
the same rule is selected in both algorithms.

4. Rule Learning Heuristics

A rule learning heuristic is a function h that evaluates candidate rules for their potential of
being refinable into good rules. Most commonly used heuristics base the evaluation of a rule
r on its coverage statistics on the training set. A good heuristic should, on the one hand,
maximize the number of positive examples p that are covered by the rule (coverage), and, on
the other hand, the rule should cover as few negative examples n as possible (consistency). A
simple way of achieving both objectives is to subtract the number of covered negatives from
the covered positives. The resulting heuristic (haccuracy = P — ) is equivalent to accuracy,
which computes the percentage of correctly classified examples among all training examples
(P positive and N negative). Other heuristics employ more complex ways to reach these
two objectives.

In this study we experimented with 9 heuristics displayed in Table 1. All of these
heuristics employ different strategies for evaluating a single rule. Precision, for example,
tends to learn many rules which usually contain of a lot of conditions. On the contrary
WRA (Lavrac, Flach, & Zupan, 1999) often settles for very few rules that are overly gen-
eral (Todorovski, Flach, & Lavraé¢, 2000; Janssen & Fiirnkranz, 2008). In this sense, each
heuristic has its own strategy for navigating the search process in the right direction. In
a recent study (Janssen & Fiirnkranz, 2008), we have evaluated the performance of these
heuristics in a hill-climbing search (with the exception of the Odds Ratio). In this study, we
also determined parameters for the two heuristics which allow to trade off between optimiz-
ing consistency and coverage. For the m-estimate we have chosen m = 22.466, and for the
relative cost measure we selected ¢ = 0.342 as recommended in (Janssen & Fiirnkranz, 2008)
for hill-climbing search. The final heuristic has been Meta-learned using linear regression
on various characteristics of the training set, such as the positive and negative coverage and
the precision of the rule, the class distribution of the problem, etc. It tries to predict the
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Table 1: The used heuristics

heuristic ‘ formula
— >
Precision 1?711
pT
Laplace pnt)
. ptm pry
m-estimate W
; ; n
Weighted Relative Accuracy PN
Accuracy p—n
Relative Cost Measure c-B5-—(1-¢) %
Odds ratio p(N—n)

(P—p)n
p(N—n)—n-(P—p)

\/P-N-(p+n)-(P—p+N—n)
Meta-learned meta-learned combination
of p, n, P and N

Correlation

out-of-sample precision of the final rule, based on training set characteristics of the current
rule. For a detailed description we refer to (Janssen & Fiirnkranz, 2007, 2008).

It should be noted that classical rule evaluation metrics typically focus on evaluating
the discriminatory power of a rule. However, if we consider the learning of a rule as a
search problem, as we do in this work, a rule should rather be evaluated by its potential
of being refined into a such a rule. In particular for the parametrized and meta-learned
heuristics mentioned above, the parameter has been optimized in the context of a hill-
climbing algorithm, and will implicitly take this into account.

5. Experimental Setup

Our goal was to experiment on a large number of data sets with many different beam sizes.
The primary interest was how the accuracy achieved in average on all datasets varies. To
illustrate the effects of increasing beam sizes we also experimented with a rule learner that
only learns one single rule for each class. Ideally, these effects are illustrated best on datasets
where local minima occur or which are hard to learn. As there are some datasets that show
strong performance variations among different beam sizes, we also include some plots of
individual datasets.

Some of the commonly used UCI datasets (Newman, Blake, Hettich, & Merz, 1998) were
too big to use (in terms of attribute-value pairs and classes) due to the vast memory demands
of larger beam sizes. The datasets we used were autos-d, balloons, breast-cancer, breast-w-
d, bridges2-d, colic. ORIG-d, contact-lenses, hayes-roth, hepatitis-d, monk1, monk2, monk3,
mushroom, primary-tumor, promoters, solar-flare, soybean, tic-tac-toe, titanic, vote-1, vote,
z00. We focused on datasets with primarily nominal attributes, but also included some that
contained numeric attributes (marked with a “-d”). In this case, the numeric attributes
were discretized into 10 different values, using equal-width discretization.

On each dataset a 10-fold stratified Cross Validation implemented in Weka (Witten &
Frank, 2005) was used to obtain performance statistics for all different combinations. As a
crude measure for comparing the performance of heuristics we use macro-averaged accuracy



AN EMPIRICAL COMPARISON OF HILL-CLIMBING AND EXHAUSTIVE SEARCH IN INDUCTIVE RULE LEARNING

(the average fraction of correctly classified examples over all datasets). However, we will
also look at the behavior of individual datasets. We do not report training set accuracy, as
it will typically increase with increased search effort.

We also report the size of the theory, typically in terms of numbers of conditions of
all rules. Especially in Section 6.1 the number of rules is also used. Along with these we
employed a ranking based on the accuracy of the heuristics. Note that the ranking handles
heuristics that achieve the same accuracy by dividing the number of them by the sum
of their “standard” positions, i.e., for three heuristics that have the same accuracy their
rank would be ﬁ = 0.5. The ranking gives additional information about the quality
of the heuristic that sometimes are not detectable when only using accuracy values. Often
there are large differences in the variances of the accuracies of individual datasets that are
neglected when the ranking is used as evaluation method. Finally, we also report runtime
measurements.

6. Results

This section provides a detailed discussion of our empirical study. We examine each single
heuristic in terms of predictive accuracy, theory size (number of conditions) and the run-
time of each metric (Section 6.1). Subsequently, results on single data sets are discussed
(Section 6.3). To illustrate how the rules change when they are searched more exhaustively
we also included a version of the algorithm where the main covering loop is only iterated
once, so that there is one single rule for each class (Section 6.4). Following from the previ-
ous observations we identify several interesting properties of Covering algorithms used with
complex search mechanisms which are discussed in Section 6.5.

6.1 Varying the Beam Size

Figure 3 displays the results in terms of accuracy (left y-axis) and number of conditions
(right y-axis) for all heuristics. The x-axis displays the varied beam sizes in logarithmic
scaling. A beam size of 10000 is used for denoting exhaustive search. The solid (red) line
displays the average accuracy and the dotted (blue) line the number of conditions over
various beam sizes.

The results for the heuristics are quite different. Some of them show a clear profit of
the simultaneous refinement of more than one search path. Precision, for example, is able
to constantly gain performance (with some fluctuation) and simultaneously decreases the
theory size. This is a bit surprising, as one might expect that exhaustive search will be more
likely to discover overfitting rules that cover only a few positive and no negative examples.
However, the opposite seems to be the case: exhaustive search is able to discover pure rules
that are shorter and have a higher coverage (it should be noted that positive coverage is
used as a tie breaker when multiple rules have the same evaluation).

Laplace, on the other hand, shows much more fluctuation and ends up with a lower
accuracy than those reached with simple hill-climbing. This, essentially, confirms the results
of (Quinlan & Cameron-Jones, 1995). Interestingly, contrary to the results of Precision, the
theory size seems to increase steadily (with the exception of the outlier for a beam size of 2).
However, both Precision and Laplace seem to arrive at very similar theories with about 65
conditions on average, and an average predictive performance of about 78.7%. Apparently,
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Figure 3: Accuracies vs. Number of Conditions for all heuristics
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while the Laplace measure is effective in preventing overfitting for hill-climbing algorithms,
its performance degrades to the performance of Precision.

Weighted Relative Accuracy (WRA), on the other hand, is a very stable heuristic. The
reason for this behavior is that it effectively over-generalizes. It learns by far the smallest
theories (only about 6.5 conditions on average), with a performance that lags considerably
behind the performance of the above two heuristics. Thus, the optimal rules are typically
found at very shallow search depths and comparably small beam sizes.

The final minor jump in predictive accuracy when moving from a beam size of 2048 to
exhaustive search is due to the different order of the exploration of the search space with
beam search and exhaustive search (cf. Figure 1 and 2). As a result, the two algorithms
may pick different rules when they have the same heuristic value and the same tie-breaking
statistics, which in turn, due to the covering loop, may result in entirely different theories.
Apparently, this happens several times in the cross-validations of the 22 datasets, producing
this minor deviation. This effect also has to be taken into account in several other cases, but

10
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Table 2: Runtimes (in sec.) of the heuristics with different beam sizes

beam size Precision Laplace m-estimate WRA Accuracy RCM Odds Ratio Correlation Meta-learned
1 884.2 808.4 495.6 299.2 741.3 234.5 615.0 586.3 457.5
2 1405.1 1243.7 632.3 362.7 1024.6 334.7 793.2 836.8 627.9
4 1447.4 1292.6 684.7 386.0 1037.3 360.6 832.3 938.2 710.6
8 1520.8 1423.8 729.4 431.3 1063.1 359.0 890.9 1007.5 764.8
16 1586.9 1571.1 817.0 439.9 1141.1 363.0 920.0 1074.7 826.8
32 1721.7 1787.1 879.1 481.3 1211.2 376.8 981.6 1170.4 924.1
64 1891.5 1950.7 935.6 503.1 1288.1 394.2 1112.6 1291.8 1074.0
128 2102.4 2098.5 1066.1 577.2 1443.1 412.0 1387.6 1495.1 1218.1
256 2466.0 2518.8 1279.7 679.0 1660.5 436.2 1651.1 1861.2 1445.1
512 3380.5 3341.6 1670.2 786.9 2061.3 480.9 2042.8 2379.7 1871.4
1024 4626.4 5183.8 2344.2 976.1 2727.1 526.0 2802.2 3300.6 2885.0
2048 8227.3 7638.2 3395.8 1473.0 3904.4 576.3 4076.6 5174.1 3903.2
exh. 12061.1 11764.1 3078.9 928.8 5596.6 1714.3 4310.4 5076.4 4359.7

it should also be noted that in many cases (e.g., Accuracy), we can still observe changes at
beam sizes > 1000, so that the increase in performance when moving from beam sizes 2048
to exhaustive search, which can be observed in 7 of the 9 heuristics, has some credibility.

In terms of accuracy gain the Odds Ratio works best with 1.3% average accuracy gain
from hill-climbing to the best working beam size of 2048. The theory size could be decreased
and has its minimum at a beam size of 64 where the corresponding accuracy has already
exceeded those of hill-climbing. The Accuracy heuristic also shows a big performance gain
of 0.51% average accuracy that goes along with a decrease of conditions of 14.78.

Interestingly all three heuristics that were optimized for hill-climbing (m-estimate, rel-
ative cost measure (RCM), and the Meta-learned heuristic) do not perform well under
deeper searches. In all cases, exhaustive search finds simpler theories than greedy search,
but these are of a lesser quality. This is consistent with several previous results that show
that contrary to the assumptions of Occam’s razor, simpler theories often exhibit a worse
performance (we refer to (Domingos, 1999) for a summary of such results). We explain
these results with the fact that these heuristics have been optimized for hill-climbing, and
that they thus implicitly take the search process into account. As discussed above, a good
heuristic for a hill-climbing search should try to predict the quality of the best rule to which
it can be refined to, in order to make sure that the path to the best final rule can be found.
This, on the other hand, is not necessary for exhaustive search, where we are guaranteed
to find the best rule.

6.2 Runtime of the search methods

Table 2 shows the runtimes of the different methods in seconds. Not surprisingly, the
runtime generally increases for more exhaustive searches. However, it is interesting to
look at the relative increase of time for consecutive beam sizes. Some measurements are
practically the same (cf. Accuracy with beam size 2 to 16) which means that the number
of evaluated rules does not change much. This, again, reflects the fact that some heuristics
prefer general rules, and these are already found with low beam sizes.

On the other hand, both Precision and Laplace have a strong bias towards overfit-
ting rules which is also reflected in their runtimes. As the beam grows, the runtime of
the algorithm increases. When changing the search to an exhaustive one the time grows
again. Precision with over 3 hours takes the maximum amount of total runtime among all
heuristics.
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Note that the implementation of the exhaustive search sometimes even is more efficient
than the beam search with n = 2048. But this is mostly with heuristics that do not induce
many candidate rules as described above.

6.3 Results for Individual Datasets

Of course, macro-averaged accuracy over several datasets is a very crude and not very
meaningful summary measure that we only used because of the lack of a better alternative.
To illustrate the effects of the different search mechanisms without averaging the values,
Figure 4 displays results of all interesting heuristics (those where some changes happen) on
six selected datasets. The x-axis displays the beam size in a logarithmic scaling (beam size
of 10000 encodes exhaustive search), and the y-axis depicts the cross-validated accuracy on
this dataset. Most of the heuristics show some fluctuation between different different beam
sizes, but typically a clear trend can be recognized.

There are some heuristics, primarily WRA, that remain quite constant over all sizes and
data sets, for reasons we already discussed above. Thus, we only included this heuristic in
the plot for “monk2” because its performance there was superior. After a degradation of
1.78% in accuracy it achieves the highest value with a beam size of 8 and from then on does
not change any more. The strongest variations are visible on the data set “breast-cancer”
where only Correlation and the Relative Cost Measure remain fairly constant.

The set “autos-d” is one example for the constant performance gain of the heuristic
Odds Ratio, but also of its bad performance in hill-climbing. Until a beam size of 64 it
profits from bigger beam sizes before the accuracy falls down again. High beam sizes > 512
show a comparable accuracy but the theory size dropped by 2 conditions. The data set
also is a good example for the different behavior of the heuristics. As mentioned above
Odds Ratio constantly gains performance, has an optimum at a beam size of 64 (22.93%
accuracy gain) and ends up about 17% more accurate than with a simple hill-climbing
search. Otherwise the relative cost measure looses performance. The performance of all
other heuristics variates slightly, some end up better others worse than hill-climbing.

Among all plots, the one of “breast-w-d” shows the strongest fluctuations. However,
this is partly due to the different scale: note that the y-axis only displays about 2% of
change in accuracy. Another interesting plot is the one of “primary-tumor”. The variations
with all different beams are not that strong but nearly all heuristics show a clear peak
when changing the beam search to the exhaustive search. This data set has 17 nominal
attributes which have 43 values in total and 22 classes. Thus the search space for this data
set is rather large. In several datasets, we can also see that, as we have already observed
above, the performance of Precision and Laplace become increasingly similar with larger
beam sizes.

6.4 Searching for single rules

Table 3 displays results for a learning algorithm that only induces one rule per class. The
purpose of these experiments is to observe the difference of the behavior not on entire
theories, but on single rules.

For each heuristic, Table 3 compares the performance of the hill-climbing search (first
line) to the performance of exhaustive search (second line). The accuracies are obtained by
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Figure 4: Beam size vs. accuracy for single data sets
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using the rules in the same way as a complete model. Invariably, for all heuristics, exhaustive
search finds rules that are longer, but more accurate. This can also be observed if we look
at the average number of conditions per rule in the scenario that learns complete theories.
Although the theories generally tend to become smaller in size, the individual rules tend to
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Table 3: Accuracy and Theory Size when learning a single rule

Heuristic | beam | accuracy in % | # conditions
precision 1 64.67 6.82
exh. 68.55 9.59
laplace 1 66.13 6.86
exh. 68.78 9.64
m- 1 70.87 7.23
estimate | exh. 71.32 7.36
1 68.14 3.23
WRA exh. 68.81 3.5
Accuracy 1 72.50 6.64
exh. 73.45 9.55
1 72.31 5.64
RCM exh. 72.69 6.00
Odds 1 63.99 4.05
Ratio exh. 65.57 5.05
Corr. 1 72.41 7.14
exh. 72.72 8.95
Meta- 1 70.38 7.27
L. exh. 70.30 7.50

become longer with increasing beam sizes. This is because the FINDBESTRULE procedure
is able to find more complex rules that show a tendency to cover more examples than those
induced by the simple hill-climbing search. As a result, the learned rules often become
longer but cover more examples, so that fewer rules are necessary in total to cover all
positive examples.

If we compare the results with those where complete models are learned in terms of
accuracy, it is rather surprising that they achieve such high values. Most of the heuristics
only lack about 10% accuracy in average, Accuracy and Correlation only decrease their
performance by approximately 5%. Comparing their model size, both Precision and Laplace
are able to achieve the described accuracies with theories that are about 7 times smaller
than the complete theories, for the other the sizes are reduced to approximately half the
size.

6.5 Covering algorithms and deep search

The previous discussions of the different results revealed some problems and inconvenient
observations. In some cases a deeper search leads to theories that have a lower training
set accuracy as their hill-climbing or low beam size variants. At first this seems to be very
strange because usually a better search should induce models that describe the training
data more accurate. This results from the ability of the FINDBESTRULE procedure to find
rules that cover more examples but remain at a high quality level. However, this holds only
for Precision because this heuristic ensures that a rule is only added if it covers no negative
examples, if there is any (which usually is assured for datasets without inconsistencies).
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All of the other heuristics do not optimize the consistency of a rule in that excessive way.
Thus, most of the found rules do cover negative examples and still are able to receive a high
evaluation.

With a deeper search the probability of finding a rule that still satisfies the criterion of
achieving a higher evaluation than the current best rule but covers a significantly higher
number of negative examples (and positives, of course) increases. In general Covering
algorithms are not able to exclude negative examples, that are covered once in further
conquering steps. Thus, if in an early loop of the main covering procedure a rule is added,
that, for example, covers more negative examples than the complete theory learned with
hill-climbing, the accuracy of the theory cannot be improved any more. Therefore the
differences from theories learned by hill-climbing and exhaustive search mostly lie in the
smaller number of rules where those for the latter usually contain a higher number of
conditions (as often observed in Figures 3 and 4 and Table 3).

Following from these observations we are able to draw another conclusion. All of the
used heuristics are designed to induce a single rule that, in some certain sense, optimizes a
quality criterion. This criterion differs among the heuristics used in this paper. But all of
them have in common that they not aim to induce a rule that optimizes the whole theory.
A known problem of Covering algorithms is that the rule is not learned in context to the
incomplete theory that is learned so far. This effect also manifests in the stopping criterion
described in Section 2.2 which states that a rule is only added to the theory if it covers
more positives than negatives. If assumed that the best rule that could be found on the
data is one that does not fulfil this criterion it would not be added although no better rule
can be found. However, if we assume that the same heuristic is used to induce a single rule
which evaluates the whole theory, a constant gain in performance should be measurable.
As seen in Figure 4e this actually holds for the heuristic Accuracy. We are sure that if a
rule is evaluated in context of the theory that is learned so far it would profit very much
when using deeper search. On the contrary, if the theory size is of no concern, hill-climbing
methods will work better because the induced rules do not cover as many negatives as with
an exhaustive search.

7. Conclusion

The main conclusion that we draw from the experiments reported in this paper is that the
over-searching phenomenon is highly dependent on the search heuristic. The performance of
heuristics that have a bad performance with greedy search (such as Odds Ratio or Precision)
can be considerably improved with exhaustive search, whereas heuristics that are optimized
for greedy search will lose performance when used for guiding exhaustive search. This is,
maybe most obvious when we compare the performance of Precision and Laplace, which
differ greatly in their performance in a hill-climbing search, but perform almost identically
when used in exhaustive search.

In general, we found that heuristics that perform badly with hill-climbing search (such
as Precision or Odds Ratio) could be improved with exhaustive search, whereas the per-
formance of heuristics that performed well for hill-climbing decreased with increased beam
widths. In particular, the three heuristics that we had optimized for hill-climbing search in
previous work, performed best, and their performance decreased steadily and substantially
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when used with increasing beam widths, as is predicted by the over-searching phenomenon.
In these cases, they learned much fewer, but substantially longer rules. Among the heuris-
tics that we looked at, there was no counter-part that performed as well in exhaustive search
than these heuristics performed in hill-climbing.

However, we would be careful not to interpret this as conclusive evidence that exhaustive
search is detrimental and will necessarily lead to the over-searching phenomenon. Instead,
we attribute this result to the fact that search heuristics for rule learning algorithms have
to address several goals simultaneously: on the one hand, they have to estimate a rule’s
predictive quality, on the other hand, they have to evaluate the rule’s potential for being
refined into a rule that has a high predictive quality. However, with increasing search depth,
the importance of the latter point decreases, because the chances that high-quality rules
will be found without guidance of the search increase.

Thus, we think that good heuristics for exhaustive search have different requirements
than good heuristics for hill-climbing search. Most of the efforts in inductive rule learning
have been devoted only to the latter problem, whereas we would argue that finding a
suitable metric for exhaustive rule induction is still an open problem. We plan to address
this in future way in a similar study as we have previously performed for hill-climbing search
(Janssen & Fiirnkranz, 2008). As soon as we have identified a good evaluation metric for
predictive rule learning, we can address the second step, which is to clearly separate the
search heuristic and the rule evaluation metric in inductive rule learning algorithms.
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