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ABSTRACT
An overwhelming number of legal documents is available in dig-
ital form. However, most of the texts are usually only provided
in a semi-structured form, i.e. the documents are structured only
implicitly using text formatting and alignment. In this form the
documents are perfectly understandable by a human, but not by
a machine. This is an obstacle towards advanced intelligent legal
information retrieval and knowledge systems. The reason for this
lack of structured knowledge is that the conversion of texts in con-
ventional form into a structured, machine-readable form, a process
called segmentation, is frequently done manually and is therefore
very expensive.

We introduce a trainable system based on state-of-the-art Infor-
mation Extraction techniques for the automatic segmentation of le-
gal documents. Our system makes special use of the implicitly
given structure in the source digital file as well as of the explicit
knowledge about the target structure. Our evaluation on the French
IPR Law demonstrates that the system is able to learn an effective
segmenter given only a few manually processed training docum-
ents. In some cases, even only one seen example is sufficient in
order to correctly process the remaining documents.

1. INTRODUCTION
In this age of digital communication, great efforts are being made

to publish legal documents in digital form. Official gazettes are
made available online and oftentimes paper is abandoned com-
pletely. Documents from the pre-digital era, too, are digitalized
and published. An example are the almost 2 million U.S. court
decisions that were recently released on the Internet.1 These docu-
ments are normally provided in a human-readable format, i.e. the
HTML or PDF documents contain formatting and text alignment
that aids human users in recognizing the structure and organization
of a document and facilitates navigation and finding concrete le-
gal provisions within the text. This corresponds to the traditional
way of using legal documents. However, the overwhelming num-
ber of documents as well as the advances in information retrieval

1http://bulk.resource.org/courts.gov/
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and semantic processing in databases demand for more intelligent
means of storage and processing, involving machine-readable and
understandable formats. A first step are the different XML formats
that were developed in recent times for the machine-readable stor-
age of law documents and the interchangeability of legal knowl-
edge [16]. Usually these conversions are done manually, which
demands a great amount of time, e.g. with XML editing tools such
as Vex or Jaxe for the MetaLex standard.2 More advanced editors
such as the Norma-Editor [21] include regular expression patterns
in order to recognize certain specific parts of the document in an
automatic way. However, these patterns are usually static and need
to be defined by the user, so the process is still very cumbersome.
In this paper we present a framework that allows to automatically
or semi-automatically convert legal documents in a conventional
text format into a machine-readable and structured format. More
specifically, we concentrate on the task of separating a law docu-
ment into its individual articles. In a way the task can be described
as reconstructing the original structure of a document. We call this
process segmentation.

We present a trainable approach based on techniques from the
field of Information Extraction. These techniques are adapted and
combined in order to make use of the peculiarities of segmentation
of legal texts: We introduce techniques with the aim of taking ad-
vantage of the semi-structured source formats and the hierarchical
organization of legislative texts in order to increase effectiveness
and hence reduce the required human effort.

We applied our algorithms to the subset of the French Intellectual
Property Code provided by the Legifrance platform.3 The French
IPR law was the starting point of the EU-funded ALIS project (Au-
tomated Legal Intelligent System), which aims at investigating au-
tomated reasoning in computational logic and game theory in the
legal domain.4 We showed that by providing only a few manually
processed documents the system was able to effectively process the
entire Code. Though we set our focus on this repository, the sys-
tem is easily configurable for different sources and different target
formats.

This document is organized as follows: We first give an extensive
overview of Information Extraction and Segmentation in Sections 2
and 3. The segmentation of the Legifrance documents into articles
is described in Section 4, followed by the experimental results and
our conclusions in Sections 5 and 6.

2. INFORMATION EXTRACTION
Information Extraction (IE) is the task of identifying certain types

2http://legacy.metalex.eu/downloads
3http://www.legifrance.gouv.fr/
4http://www.alisproject.eu/
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of information in documents. When information extraction is ap-
plied to natural language text documents, a common task is e.g.
Named Entity Recognition, which aims at finding names of peo-
ple, organizations, places, temporal expressions or numerical ex-
pressions. Typically, for training an information extraction system
or algorithm, one needs a large training set of documents that has
been manually processed in the way the system is intended to do
it automatically. This means e.g. that the relevant text segments
are marked in the documents so that they can be identified by the
processing system. This task is often called annotation and is done
by the user, usually by domain experts.

The resulting system is then able to automatically extract the de-
sired information in new, unseen documents and is therefore called
extractor, recognizer or wrapper. The piece of information that the
user has previously marked as relevant is commonly called anno-
tation, target entity, mark-up or field. Consequently, the process of
automatically extracting this information is called (automatic) an-
notation or marking up. We refer to [23] for a general introduction
to Information Extraction.

2.1 Information Extraction as a Classification
Problem

The first approaches that used methods from machine learning
for information extraction were mainly rule based and applied fi-
nite state machines or statistical approaches such as Markov mod-
els or conditional random fields (cf. [23]). These approaches were
usually strongly adapted to the specific extraction problem under
consideration. In recent years, more and more approaches have ap-
peared that translate the IE task into a classical classification prob-
lem, which is nowadways considered the most popular approach.
Classification is the task of sorting instances or objects into a given
set of classes. Learning algorithms automatically induce such clas-
sifiers from a set of training instances for which the class is known.

The advantage of this approach is twofold: on the one hand, the
researchers can choose from a wide range of established and pow-
erful state-of-the-art classification algorithms and therefore directly
benefit from the most current advances achieved in the machine
learning community. On the other hand, this allows for a greater
focus on the actual task, the extraction task itself, since it is now
decoupled from the algorithmic design. The scope is shifted from
the development of a specialized algorithm to the extraction of use-
ful information, exploration of the corpus to be analyzed and the
design and architecture of the overall IE system.

The most common approach is to transform each text position,
i.e. usually each text token in the document, into a classification
example. The features or attributes of the generated classification
example are derived from the underlying text position and context,
where different characteristics can be chosen. The class informa-
tion of the instance depends on whether the underlying text token
is a part or boundary of the target annotation or not. The annotated
documents are transformed in this manner to a set of classification
training examples which are used to train a classifier. At extraction
time, the new (non-annotated) documents are also transformed into
feature vectors. The trained classifier is then used to receive class
information for each of these instances. By means of this class
information and the text position, it is possible to reconstruct the
annotations. Different approaches and techniques exist for these
steps, some of them are introduced in the following sections.

2.2 Boundary Classification
As already described earlier, boundary classification denotes the

labeling of a text position as an annotation boundary or non-boundary.
This information is used to train the classifier which is later used

by the extractor to predict the boundaries on new text.
For our experiments we use the Begin/End approach, since it is

simple and especially appropriate for the recognition of long text
segments, making it the best choice for segmentation. The start
and the end of each annotation, i.e. only the boundaries, are marked
with the tag START or END, the rest is marked as negative exam-
ples with NEG. An example can be seen in Figure 1. When using
the extractor on new texts, an annotation is started at a token with
the predicted class START and ended at the next token with END
as class. If there is an annotation which only includes one token,
the token is classified as UNIQUE.

Of course an imperfect prediction can lead to an inconsistent tag-
ging result and therefore to unresolvable cases in the reconstruction
process. However, similar inconsistencies also appear during the
reconstruction in other boundary tagging schemes. A simple ap-
proach is to ensure that an opening tag is always preceded by a
closing tag and to eliminate the remaining inconsistent tags. This
approach is often coupled with checking whether the length of the
resulting annotation deviates from the seen examples [14].

Other boundary classification approaches include Inside/Outside,
Begin/Continue/End or Begin/Continue/Outside (see also [3]). They
have in common that they are not as appropriate for long text seg-
ments as the Begin/End scheme family, since a long sequence of
text tokens between start and end have to be predicted correctly.
Additionally, such positions and their contexts are less likely to
contain information about the boundaries since they may not be
close enough.

2.3 Feature Generation
The boundary classification step generates the class information

for each training instance, but up to now these instances are empty,
containing no information other than the ID and the class assign-
ment. The instances lack features that could be used for learning.
The simplest features which can be added are the occurrences of
the different tokens themselves. Consider e.g. the first row of the
token features in Figure 1: the field the=1 denotes that the feature
the is set for this instance, otherwise it is zero. This representation
is called a sparse representation, because only values unequal to the
default value zero are saved.

This approach is also called the set-of-words approach and gen-
erates very specific feature vectors. More sophisticated methods
additionally analyze the token form, the capitalization of the words,
or the token type. A simple approach is the one used by the Rec-
ommended.TokenFE5 module of MinorThird, which analyzes the
structure of the words in a very simple way. An example of the
produced features is given in the character patterns row in Fig. 1.
The following notation is used: X denotes a capital character, x
a lower case character, and + means that the preceding letter is
present one or more times. In consequence Xxx denotes a capi-
talized word with three letters, xxxxx a word with five letters in
lower case, and X + x+ means that a word begins with one or
more upper case letters and is followed by one or more lower case
letters.

Though these character-based methods are very simple, they are
very effective when used together with the normal token features
and windowing since they enhance the very specific set-of-words
approach by more general features. Note that although it can be
expected that most of the generated features are uninformative, the
classifier will automatically learn which of them are useful and ig-
nore the rest. An additional advantage is that this approach is lan-

5http://minorthird.sourceforge.net/javadoc/
edu/cmu/minorthird/ui/Recommended.TokenFE.
html
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token The quick brown fox jumps over the lazy dog

position 1 2 3 4 5 6 7 8 9

class NEG START NEG END NEG NEG NEG NEG NEG

token the=1 quick=1 brown=1 fox=1 jumps=1 over=1 the=1 lazy=1 dog=1
features +1.quick=1 +1.brown=1 +1.fox=1 +1.jumps=1 +1.over=1 +1.the=1 +1.lazy=1 +1.dog=1

-1.the=1 -1.quick=1 -1.brown=1 -1.fox=1 -1.jumps=1 -1.over=1 -1.the=1 -1.lazy=1

character Xxx=1 xxxxx=1 xxxxx=1 xxx=1 xxxxx=1 xxxx=1 xxx=1 xxxx=1 xxx=1
patterns X+x+=1 x+=1 x+=1 x+=1 x+=1 x+=1 x+=1 x+=1 x+=1

history -1.NEG=1 -1.START=1 -1.NEG=1 -1.END=1 -1.NEG=1 -1.NEG=1 -1.NEG=1 -1.NEG=1
features -2.NEG=1 -2.START=1 -2.NEG=1 -2.END=1 -2.NEG=1 -2.NEG=1 -2.NEG=1

Figure 1: Transformation of a text sentence with the tagged text fragment quick brown fox into a classification problem. Each column
shows a token and exemplarily the generated class information and attribute values of the corresponding classification instance.

guage independent, as it works on arbitrary character strings (ex-
cept perhaps languages that use symbols such as Chinese).

Our system also allows using methods from natural language
processing (NLP) that analyze the lemma of the token, part of
speech (POS), semantic classes from a list of gazetteers, the named
entity type, stemming etc. However, the output of automatic NLP
tools are far from producing perfect results. Perhaps as a conse-
quence of this, researchers have often determined that including
linguistic features does not improve the performance of their IE
algorithms in a significant way (e.g. [5, 13]). This applies also
to standard text classification [17], although it is often stated that
the more features a system uses, the better the performance it can
achieve (e.g [15]). For further information, refer to the experimen-
tal study by [10] on the influence of POS, token orthography and
token gazetteer category features on IE.

Finally, there can be a lot of information that can be extracted
from the (partial) structure of the document, such as HTML-tag
information, formatting, placements in tables, or simply the place-
ment at the beginning or end of a line in the source code. This
aspect is described in more detail in Section 3.1. Since we are deal-
ing with partially structured documents and we also wanted to be
language independent, we left out NLP for feature generation in
our analysis.

2.4 Windowing
In boundary classification the context of the analyzed token is

equally or even more important than the token itself. Therefore,
the surrounding tokens are also included in the feature generation
process. This method is called windowing because a window is
opened around the tokens through which the surrounding tokens
can also be observed. The window can involve a subsentence, a
sentence, or even a paragraph, but usually a fixed number of pre-
ceding and following tokens are used. This number is referred to
as the window size.

There exist different methods in order to merge the features of
the neighborhood tokens. The approach which we use encodes the
relative position into the features, so that it does matter where a
word was seen in the window [22, 4]. This method can be seen in
Figure 1 in the token features rows: -1. and +1. indicate the pre-
ceding resp. following token. Other approaches do not distinguish
between the position of a token in the window, or take into account
the distance from the center in the feature weight [14].

Usually the window size is set to a value higher than 3, more
commonly a minimum value of 5. The highest values are 10, very
rarely 15 [7, 8]. Note that a window size of n means to take into
account information about 2n + 1 words. The number of features

and thus the computational costs grows very quickly with increas-
ing window size. It has been also shown that a window size greater
than a certain value does not improve the performance any further
and may even deteriorate the results due to the increased noise, i.e.
uninformative features.

2.5 Usage of Classification History
The goal in sequence predicting or sequence labeling is to predict

the next sequence element using only information about the preced-
ing elements in the sequence [20]. This problem often appears in
genetics, but POS-Tagging can also be seen as a sequence labeling
task (e.g. a noun is often preceded by a determiner). A common ap-
proach, as in boundary classification, is to represent each element
as a feature vector and to include the information of the preceding
elements as features. This approach is very similar to windowing,
with the difference that we are only able to look back. Similarly to
the window size a history size is set. The obtained features for our
running example and a history size of 2 is presented in the history
features row in Figure 1.

At classification time, the predicted class X for instance n is used
to generate the corresponding features -1.X=1 for yet unclassified
instance n + 1 and -2.X=1 for instance n + 2.

2.6 Selection of the Classification Algorithm
Support Vector Machines have shown to be very suitable for in-

formation extraction and are widely used in recent systems [5, 14,
15, 8, 7, 9, 10]. A number of advantages qualify them in order to
be used for information extraction:

• The ability to deal with a relatively large number of features.
Rule or tree learners are much more sensitive to this.

• The ability to find a discriminating boundary although the
data is not linearly separable. In this context, linearly sep-
arable means that there is a hyperplane in the feature space
of the instance that divides positive from negative examples.
Though they are linear classifiers, SVMs are able to find
such a hyperplane when the data is not linearly separable by
means of the so called Kernel trick (cf. e.g. [1]). However in
IE it is typically not necessary to use this trick.

• SVMs find the maximum-margin hyperplane. They are there-
fore considered to generalize very well.

We thus use Support Vector Machines as our classification al-
gorithm, in particular the well-known LibSVM implementation [2]
included in MinorThird. The standard settings are used, in particu-
lar a linear kernel.



3. SEGMENTATION
The typical tasks in information extraction involve retrieving small

relevant pieces of information out of text documents (cf. Section
2). In comparison to this, segmentation aims at automatically di-
viding a document into parts. In an extended setting, it aims at
automatically structuring a document, i.e. providing a text with a
structure in an explicit way (in the sense that it is not only visually
accessible by human beings as in text on paper or rendered on the
screen but directly accessible electronically by a machine). This
is done by dividing the text into text segments which have clearly
defined relations between themselves such as is-followed-by or is-
contained-in.

Consider the following scenario: a text book is usually divided
into chapters, sections, subsections and paragraphs. A book’s struc-
ture is clearly defined: a book contains a sequence of non-overlapping
chapters, a chapter contains a sequence of non-overlapping sec-
tions, ..., a chapter is not allowed to directly contain subsections
etc. Although book texts possess such a structure, it is not clearly
reflected in their electronic representation and organization. A hu-
man being is able to naturally detect the structure with the aid
of layout and formatting information, the use of spaces and line
breaks, enumerations, etc. Automatic segmentation tries to imitate
this behavior and to provide an unstructured book text with a struc-
ture.

Segmentation works similarly to information extraction, i.e. it
is based on a specific algorithm that learns from given correctly
preprocessed examples and tries to induce a system, usually called
segmenter in this context, which is able to automatically process the
examples in the previously presented way. We can therefore treat a
segmentation task also as a classification problem (Section 2.1) and
also use the same sub-techniques, however configuring and modi-
fying them adaptively respecting the changed characteristics. The
main characteristics of a text segmentation information extraction
task are the following:

• The annotations, i.e. the segments, have clear restrictions
and obligations regarding especially their encapsulation, i.e.
which type can or has to be contained in another type of seg-
ment (e.g. subsection in section), and the ordering, i.e. which
type can or has to follow another type. These requirements
may be e.g. given by a XML Schema Definition (XSD file).6

• The underlying source files are often of a structured or at
least semi-structured nature as opposed to raw natural lan-
guage texts. In this context (semi-)structured text typically
refers to HTML documents, since they contain information,
mainly formatting information, about the underlying natural
language text that helps to give the text a structure. HTML
is e.g. used to mark up headings, emphasize text segments,
define paragraphs, tables.

• The segments are usually large in comparison to e.g. named
entity recognition tasks, where an annotation rarely encloses
more than three words. Text segmentation normally begins
at sentence length. However short segments can also exist,
such as in the case of heading extraction and, even shorter,
section numbering extraction.

3.1 Usage of structure information
As we are currently only dealing with HTML documents, we

focus our analysis on this type of documents. HTML contains,
apart from the underlying text, special elements that serve to de-
note certain characteristics of the content text. These elements are
6XSD, http://www.w3.org/TR/xmlschema11-2/

called mark-up tags. Let us mark-up our running example in HTM-
L/XML, consider the following example:

The <I>quick brown <B>fox</B></I> jumps over the
lazy dog

In HTML, the I mark-up denotes an italic font formatting and B de-
notes bold text. There are different ways to preprocess this source
text for information extraction. Their usage depends on the con-
crete characteristics and demands of the IE task. The first aspect
is the tokenization of the document. One extreme is to completely
ignore XML information and only regard the text between the tags.
The resulting document would only contain the raw sentence text,
making it impossible to exploit the additional structure information
contained in the XML mark-up. The other extreme is to treat the
XML code entirely as normal text. Depending on the tokenization
variant used, this could result in a token sequence such as The, <,
I, >, quick, brown, <, B, >, fox, . . . The usage of prefix and suf-
fix string patterns is a very effective method to extract information
from HTML texts, as has been shown by [12, 11] with his fam-
ily of pre- and suffix wrappers WIEN. However this approach is
problematic since it introduces a high number of XML-specific to-
kens and thus complicates the usage of text features. Remember
the windowing technique described in Section 2.4. With the ad-
ditionally introduced XML token, we have to significantly enlarge
the window size in order to be able to detect a relationship between
e.g. fox and jumps or even brown. Enlarging the window size has
a significant impact on the number of features and hence on the
effectiveness (computational costs) and efficiency (noisiness of the
data) of the algorithm.

In order to find a compromise between the two extremes, we
chose to decode whole tags as tokens, which results in the token
sequence The, <I>, quick, brown, <B>, fox . . . The learning algo-
rithm is able to use the XML-specific information if it is determined
to be useful, while maintaining the ability to look at the surround-
ing text since the window size is not decreased too much. This
setting achieved the best results in preliminary tests.

Actually, HTML mark-ups are simple annotations as we have
been discussing them for information extraction, with the peculiar-
ity that they mainly say something about the formatting of the anno-
tated text fragment, or position or relevance for the document struc-
ture (as with headings, paragraphs, tables etc.). As done in Section
2.3 with language and token characteristics, we can transform this
information into features for the token positions. We therefore add
the feature I=1 to token 2-4 and B=1 to token 4. To differentiate
between the relative positions inside the annotation, we can add
features for starts and ends of annotations, token 2 would e.g. ob-
tain the feature value start_I=1 and token 4 end_I=1.

In a further step we plan to additionally make use of the hier-
archical information included in XML-structured documents. Note
that the B annotation is nested in the I mark-up. This can be used to
indicate the hierarchical ordering of several mark-ups, not only the
simple presence, by adding e.g. a feature I.B=1 to the token fox. It
is also possible to add the XPath query of the elements as features.
XPath7 is a language for accessing and selecting nodes in a XML
document. Using these type of features allows us to intensively ex-
ploit the XML or HTML structure of a document as it is normally
only known from a specialized wrapper. The wrapper algorithm
STALKER [18, 19] in particular e.g. uses a query language very
similar to XPath and is hence able to learn XPath-like queries for
documents in XML format in order to extract certain elements. The
SoftMealy system induces finite state transducers using XML tags
as states [6].
7http://www.w3.org/TR/xpath
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3.2 Construction of combined extractors
Until now we have only analyzed the case of extracting one type

of annotation. When the task is to extract several entities out of
the same text, which is the case for the law articles extraction task,
there are some aspects that may be used to improve the effective-
ness and efficiency of the process.

Consider the case that we want to extend the extraction task in
Figure 1, which we can consider as extracting the actor of a sen-
tence, to additionally detecting the action and also entities describ-
ing attributes of the actor. We thus extend our running example by
these annotations:

The quick| {z }
attribute

brown| {z }
attribute

fox

| {z }
actor

jumps| {z }
action

over the lazy dog

The simplest approach would consider to learn three independent
extractors, one for each annotation type. Each learning algorithm
would only have information about its own annotation. A step fur-
ther, we could set the extractors in a concrete ordering, i.e. the
extractors are trained and applied in a predetermined order. Having
this, it is now possible for an extractor to exploit the results of the
preceding extractors. Consider the ordering actor, action, attribute:
after the extractor for actor has annotated a text, the action extrac-
tor can make use of the annotations that the previous annotator has
provided, and assuming that actor entities appear near their actions,
this is very useful information. The same applies for the attribute
case. In order to be able to use this information in the extraction
process, it has to be available during the training process, therefore
the strict ordering of the extractors. In the example the training for
the combined extractors would be the following: show text, train
actor extractor, enrich text by actor annotations, train action ex-
tractor, enrich text by action annotations, train attribute extractor.

The main problem of this approach is the substantial influence of
the preceding extractors’ performance on the following extractors,
and consequently the propagation of errors in the chain of extrac-
tors. Nevertheless by using a relatively error robust algorithm this
approach has the potential to improve the performance in compari-
son to an ensemble of independently trained and applied extractors.

Hierarchically structured entities.
When the entities to be extracted are organized in some way, as

is often the case in segmentation (cf. Section 3), this information
can also be used in order to produce a more accurate and efficient
ensemble of combined extractors. Consider again our running ex-
ample, and assume the following constraints on the entities: an ac-
tor entity must not overlap with an action entity, an attribute entity
has to be surrounded by an actor entity. These restrictions can be
translated to the following training process: show text, train actor
extractor, restrict text to actor text fragments, train attribute extrac-
tor, restrict text to non-actor text fragment, train action extractor.
The extraction process has the same course.

This approach reduces the amount of text that has to be pro-
cessed, both during training and extraction. Considering that the
imbalance between negative and positive examples, i.e. having a
lot of NEG examples and only a few other examples, is an impor-
tant aspect regarding the performance of IE algorithms [5, 15, 8],
one can expect an improvement in effectiveness due to the implicit
instance selection, in addition to the efficiency gain.

However, the propagation of errors is even more dangerous than
for the ordered extractor combination, since the subsequent extrac-
tors do not have the possibility to correct an error, as their field
of vision is restricted by the result of the preceding extractors. A

  

Home > INTELLECTUAL PROPERTY CODE - Legislative Part

                              > PART I - Literary and Artistic Property

                                 > BOOK I - Copyright

                                    > TITLE III - Exploitation of Rights

                                       > CHAPTER II - Special Provisions for Certain Contracts

                                          > SECTION V - Pledging the Right to Exploit Software

Article L132-34

(inserted by Act No. 94-361 of 10 May 1994 art. 7 Official Journal
of 11 May 1994)

       Notwithstanding the provisions of the Act of March 17, 1909,
on the Sale and Mortgaging of Businesses, the right of 
exploitation of an author of software, as defined in Article L122-6, 
may be pledged subject to the following conditions:
       The pledge shall be set out in writing on pain of nullity.
       The pledge shall be entered, failing which it shall not be 
invokable, in a special register kept by the National Institute of 
Industrial Property. The entry shall state precisely the basis for 
the security and, particularly, the source codes and operating 
documents.
       The ranking of entries shall be determined by the order in 
which they are requested.
       The entries of pledges shall lapse, unless renewed 
beforehand, on expiry of a period of five years.
       A Conseil d'Etat decree shall lay down the implementing 
conditions for this Article.

Figure 2: Representation of the document http://195.83.
177.9/code/liste.phtml?lang=uk&c=36&r=2507
containing article L132-34. Text fragments are surrounded
by colored rectangles. Green mark ups indicate annotations
related to the classification while blue lines denote article text
related entities.

solution could be to relax the strict vision field limitations allow-
ing to look at the surrounding text. This would be similar to the
two-level approach of [5] where a second classifier is learned on
the surrounding text of the output of the first classifier in order to
correct or validate these predictions. However correcting the pre-
dictions of the preceding classifiers is not trivially solvable and a
research topic itself.

In the case that the ensemble is trained without making use of
hierarchical structures e.g. due to the issues just mentioned, it has
to be ensured that the result is consistent with the existing structure,
i.e. that none of the derived constraints are violated. An intuitive
solution is to determine an extraction ordering beforehand, prefer-
ably respecting the hierarchy, and to eliminate every annotation that
violates the constraints and previous annotations.

4. SEGMENTATION OF LEGAL DOCUM-
ENTS INTO ARTICLES

We describe in this section the recognition of articles in the French
IPR Law, however the described methodology can be applied to any
other law corpus since we deal with a trainable system.

4.1 Legifrance Dataset
The site http://www.legifrance.gouv.fr/ is main-

tained by the French government and hosts a database of French
Law documents that ranges from the French constitution to the
Journal Officiel. In addition to this, the site provides an English8

8http://195.83.177.9/code/index.phtml?lang=
uk
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http://195.83.177.9/code/liste.phtml?lang=uk&c=36&r=2507
http://www.legifrance.gouv.fr/
http://195.83.177.9/code/index.phtml?lang=uk
http://195.83.177.9/code/index.phtml?lang=uk


< td width="100%" c l a s s =" Tex te1 "><B><A name=" a r t 9 8 4 4 ">
A r t i c l e L132−34< /A>< / B><br>

< i > ( i n s e r t e d by Act No . 94−361 of 10 May 1994 a r t . 7
O f f i c i a l J o u r n a l o f 11 May 1994) < / i ><br>

&nbsp ;& nbsp ;& nbsp ;& nbsp ;&
nbsp ;& nbsp ;& nbsp ; N o t w i t h s t a n d i n g t h e p r o v i s i o n s o f
t h e Act o f March 17 , 1909 , on t h e S a l e and
Mor tgag ing o f B u s i n e s s e s , t h e r i g h t o f e x p l o i t a t i o n
o f an a u t h o r o f s o f t w a r e , a s d e f i n e d i n A r t i c l e L122
−6, may be p l e d g e d s u b j e c t t o t h e f o l l o w i n g
c o n d i t i o n s : <br>&nbsp ;& nbsp ;& nbsp ;& nbsp ;& nbsp ;& nbsp ;&
nbsp ; The p l e d g e s h a l l be s e t o u t i n w r i t i n g on p a i n
o f n u l l i t y . <br>&nbsp ;& nbsp ;& nbsp ;& nbsp ;& nbsp ;& nbsp ;&
nbsp ; The p l e d g e s h a l l be e n t e r e d , f a i l i n g which i t
s h a l l n o t be i n v o k a b l e , i n a s p e c i a l r e g i s t e r k e p t
by t h e N a t i o n a l I n s t i t u t e o f I n d u s t r i a l P r o p e r t y .
The e n t r y s h a l l s t a t e p r e c i s e l y t h e b a s i s f o r t h e
s e c u r i t y and , p a r t i c u l a r l y , t h e s o u r c e codes and
o p e r a t i n g documents . <br>&nbsp ;& nbsp ;& nbsp ;& nbsp ;&
nbsp ;& nbsp ;& nbsp ; The r a n k i n g o f e n t r i e s s h a l l be
d e t e r m i n e d by t h e o r d e r i n which t h e y a r e r e q u e s t e d .
<br>&nbsp ;& nbsp ;& nbsp ;& nbsp ;& nbsp ;& nbsp ;& nbsp ; The
e n t r i e s o f p l e d g e s s h a l l l a p s e , u n l e s s renewed
be fo rehan d , on e x p i r y o f a p e r i o d o f f i v e y e a r s . <br>
&nbsp ;& nbsp ;& nbsp ;& nbsp ;& nbsp ;& nbsp ;& nbsp ;A < I >
C o n s e i l d ’ E t a t < / I > d e c r e e s h a l l l a y down t h e
i m p l e m e n t i n g c o n d i t i o n s f o r t h i s A r t i c l e . < / td >

Figure 3: Source code excerpt of the document depicted in Fig-
ure 2.

and Spanish9 translation of the current French Law in force. The
documents show the consolidated text of the law, i.e. changes to
the wording of a particular law resolved later in a different law, as
is common in legal systems, are already included.

We are especially interested in the French Intellectual Property
Law (IPR-Law), which is divided into a Legislative and a Regula-
tory Part. We recursively retrieved in total 222 HTML files from the
site10, of which 112 belong to the legislative and 110 to the regula-
tory part. However only 181 are of particular use as the remaining
81 only exist for navigation purposes, i.e. actually do not contain
any articles. An (edited) example document is shown in Figure
2.The documents contain in total 488 legislative articles that are
numbered from L111-1 to L811-4 and 658 regulatory articles that
range from R111-1 to R422-51-14. The goal is now to automati-
cally retrieve these 1146 articles by only seeing a few of them. In
addition to the raw article text, we have defined some interesting
fields that will be also extracted.

French law is organized according to a classification system, and
the classification of the contained articles is indicated in each docu-
ment. Consequently each document contains the names of the fol-
lowing categories: code in which the article is included, part of the
code, book, title, chapter and finally section. For each of these en-
tities the name and the corresponding number is extracted, except
for the code where no number exists. As part of the article body
we have identified the following interesting fields: article heading,
article ID, remarks to the consolidated version if available, and the
consolidated article law text. At this point we do not stick with
standard formats for legal sources such as MetaLex and Akoma
Ntoso [16], which are certainly more precise and thourough, since
the chosen granularity is sufficient for the needs of the ALIS project
and for the demonstration of the framework. The structure of a Le-
gifrance document and of each article is represented in Figure 4.
Note that several articles can be included in one document while
9http://195.83.177.9/code/index.phtml?lang=
esp

10the files were retrieved on November 11, 2007

the other fields can only appear once. In addition, some of the cat-
egory fields are sometimes not available. Figure 2 shows a docu-
ment with the corresponding text fragments marked up. An excerpt
of the source code is shown in Figure 3.

Since existing annotated documents were not available and man-
ual annotation is too expensive, we developed a simple static seg-
menter using regular expressions for the extraction. We were able
to accurately annotate the Legifrance corpus in this way so that we
were able to train and evaluate our algorithms.

We are completing a tool that allows to manually annotate doc-
uments of any type with annotations of any type in a visually and
interactive manner. This would permit to easily and quickly adapt
the system to a new corpus or domain. It is also planned to ex-
tend the tool with active learning functionalities. The idea is that
a user opens a document, adds new annotations and while this is
being done, the system learns an extractor using the already avail-
able training data. The predictions of the extractor are presented to
the user as suggestions which can be accepted or rejected, leading
again to new training examples. This would accelerate the anno-
tation process in a substantial way, limiting the interaction of the
user to a minimum. We will see in Section 5 that sometimes only
one manual annotation is necessary to correctly predict the follow-
ing annotations. This functionality additionally permits the expert
user to instantly and directly revise the performance of the learned
extractor as the training process can directly be checked.

5. EVALUATION
The next sections describe the process and the experiments con-

ducted in order to find the optimal parameters for training the seg-
menter of the French IPR law.

5.1 Algorithmic Setup
As already described, we use the Begin/End boundary classifi-

cation scheme. The window size was varied between 5 and 15, the
history size was always set to the same value. The learning algo-
rithm used is LibSVM with its default settings. For the construction
of the combined extractor we use the ordered variant where the ex-
tractors are put in a fixed ordering and the following extractors use
the predicted annotation of the previous ones. The ordering was
chosen according to the hierarchical structure of the law docum-
ents.

Experiments were in general conducted in the following way:
The law files are ordered according their natural position in the law
text, i.e. articles are sorted with ascending article number (articles
from the legislative part first). Ten documents are taken out from
the beginning of the list in order to be used as training data. The
ten following documents are then selected for testing.

5.2 Evaluation Measures
As for classification and multilabel classification, there exist sev-

eral measures for evaluating information extraction tasks. In par-
ticular, recall and precision are commonly used, since they provide
meaningful percentage values which can be interpreted directly.

Since we are interested in exact matches, i.e. in completely cor-
rect extractions, we present only span based results that ignore par-
tially correct extractions. Span recall/precision only accepts per-
fect matchings, i.e. the predicted starting and end boundaries have
to exactly match the real ones. We present two equations that per-
mit a direct and intuitive interpretation of the meaning of recall and
precision for spans:

PREC
def
=

# perfect span matchings
# extracted spans

http://195.83.177.9/code/index.phtml?lang=esp
http://195.83.177.9/code/index.phtml?lang=esp
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Figure 4: Structure of a Legifrance document.

REC
def
=

# perfect span matchings
# real spans

The number of span matchings and total number of spans are
counted over all documents and not for each document individually.

5.3 Impact of Features
In order to discover the influence of the used features, we tried

three different feature sets: the token itself, character pattern based
features as produced by the Recommended.TokenFE module of
MinorThird (cf. 2.3), and features generated from the HTML mark-
ups (cf. 3.1). Mark-up start and end indicating features were gener-
ated for the predetermined window size, but inside-a-mark-up fea-
tures were only generated for the current token. No XPath-like
features were generated. We abbreviate the token features with T,
the character patterns with C and the mark-up derived features X. A
window size of 5 was chosen. The results for the different feature
sets are shown in Tables 1, 2, 3 and 5.

The token feature set shows the best results, followed by char-
pattern and XML-derived features sets. Note however that the T
set produced 19.881 different feature sets, while C required only
3.682, and X was able to achieve the results with an impressive 697
features. Note also that the extractor trained on the XML features
achieves perfect accuracy on the article text related annotations.
There were more training examples available for these fields, since
we found 94 articles in the first ten documents, while the law clas-
sification annotations were present only once in each document, or,
as in the case of Section, only in the last three of the ten training
documents. This explains why no fields were found at all for this
annotation.

Extracting the category information seems to be in general a
harder problem than extracting the article bodies. One explanation
is of course the limited number of training examples. But another
explanation could be the similar surroundings for the six annotation
types, and the absence of landmarks especially for Book and Title,
i.e. patterns in the surroundings of the boundaries that are easy to
recognize. Note however that the achieved precision is 100%, i.e.
the extractors (except for X) never predict a wrong annotation, they
simply do not predict every annotation. We additionally repeated
the experiment using the TX feature set, with the hope of benefit-
ing from the informative XML features. The extractor combination
achieved the same performance after 10 documents as with only
using the T features.

5.4 Impact of Number of Training Examples
For analyzing the influence of the number of training examples

we tested the extractor (using the same test set as before) after each

of the ten training examples. This methodology was chosen be-
cause it indicates how fast a correct extractor is learned, and vary-
ing the parameters allows to find out which settings are responsi-
ble for the decrease or gain of performance. The convergence of
a learning algorithm is an important aspect in IE because training
documents usually have to be produced by humans (in a typical real
world scenario), which is an expensive process.

Table 4 shows the performance for the experiment of Table 1
in dependency of both the number of documents and the number
of actual annotations seen. Only the performance of those anno-
tations are shown where recall and precision changed from using
only the first to using all ten documents. This means in particular
that a performance of 100% is achieved for the fields Code Name,
Part Name, Part Number, Article Body, Article Heading and Arti-
cle ID already after only one seen training example. In comparison
Article Remarks needs (at most) 13 and the Article Text extractor
(at most) 43 examples to reach a flawless prediction. It seems to be
a difficult task to find a recognizable boundary between the article
remarks and the article text itself since the end of Article Head-
ing, which coincides with either the start of remarks or article text,
and the boundary end of Article Body, which coincides with the
end of the article text, are detected perfectly from the beginning.
In fact, as can be seen in Figure 3, the space between the end of
the remarks at "11 May 1994" and the start of the article text at
"Notwithstanding" is filled up with standard whitespace and forced
HTML whitespace "&nbsp;" used for formatting. This sequence
of whitespace appears repeatedly in the source code after each line
break "<br>", making it apparently difficult for the algorithm to
recognize the right sequence. From an overall perspective, we can
nevertheless observe a steep learning curve for the segmenters al-
lowing to restrict the necessary human effort to a minimum and
consequently decreasing costs.

5.5 Impact of Window Size
As already mentioned, window sizes of 5 to 15 are common. We

therefore conducted experiments with window sizes of 5, 10 and
15. The TX feature set combination was used. Tables 5, 6 and 7
show the results for the different window sizes.

It is remarkable to see that increasing the window size from 5
to 10 does not improve the performance at all (except for the Sec-
tion annotations), and that the further increase to 15 even deteri-
orates the recall of the Chapter predictions. Apparently the clas-
sification algorithm has difficulties to find relevant patterns within
the increased amount of useless information due to the addition of
more and more uninformative context. On the other hand, the ad-
ditional features served the algorithm to find reasonable patterns in
order to detect the Section annotation, and this after only three seen
annotations.



span PREC REC

Code Name 100.00% 100.00%
Part Name 100.00% 100.00%
Part Number 100.00% 100.00%
Book Name 100.00% 20.00%
Book Number 100.00% 20.00%
Title Name 100.00% 20.00%
Title Number 100.00% 66.67%
Chapter Name 100.00% 90.00%
Chapter Number 100.00% 100.00%
Section Name 0.00% 0.00%
Section Number 0.00% 0.00%
Article Body 100.00% 100.00%
Article Heading 100.00% 100.00%
Article ID 100.00% 100.00%
Article Remarks 100.00% 100.00%
Article Text 100.00% 100.00%

Table 1: Features: T. Window size: 5

span PREC REC

Code Name 100.00% 100.00%
Part Name 100.00% 100.00%
Part Number 100.00% 100.00%
Book Name 100.00% 20.00%
Book Number 100.00% 20.00%
Title Name 100.00% 20.00%
Title Number 100.00% 66.67%
Chapter Name 100.00% 30.00%
Chapter Number 100.00% 33.33%
Section Name 0.00% 0.00%
Section Number 0.00% 0.00%
Article Body 100.00% 100.00%
Article Heading 100.00% 100.00%
Article ID 100.00% 100.00%
Article Remarks 100.00% 100.00%
Article Text 100.00% 100.00%

Table 2: Features: C. Window size: 5

span PREC REC

Code Name 0.00% 0.00%
Part Name 0.00% 0.00%
Part Number 0.00% 0.00%
Book Name 100.00% 20.00%
Book Number 100.00% 20.00%
Title Name 0.00% 0.00%
Title Number 0.00% 0.00%
Chapter Name 0.00% 0.00%
Chapter Number 0.00% 0.00%
Section Name 0.00% 0.00%
Section Number 0.00% 0.00%
Article Body 100.00% 100.00%
Article Heading 100.00% 100.00%
Article ID 100.00% 100.00%
Article Remarks 100.00% 100.00%
Article Text 100.00% 100.00%

Table 3: Features: X. Window size: 5

1 2 3 4 5 6 7 8 9 10
Title Name 0 / 0% 0 / 0% 0 / 0% 100 / 20% 100 / 20% 100 / 20% 100 / 20% 100 / 20% 100 / 20% 100 / 20%
Title Number 0 / 0% 0 / 0% 0 / 0% 100 / 67% 100 / 67% 100 / 67% 100 / 67% 100 / 67% 100 / 67% 100 / 67%
Chapter Name 100 / 10% 100 / 80% 100 / 80% 100 / 80% 100 / 80% 100 / 80% 100 / 80% 100 / 90% 100 / 90% 100 / 90%
Chapter Number 100 / 11% 100 / 100% 100 / 100% 100 / 100% 100 / 100% 100 / 100% 100 / 100% 100 / 100% 100 / 100% 100 / 100%

0 2 3 4 13 20 21 21 23 23
Article Remarks 0 / 0% 100 / 74% 100 / 68% 100 / 63% 100 / 100% 100 / 100% 100 / 100% 100 / 100% 100 / 100% 100 / 100%

5 9 18 27 43 54 62 79 86 94
Article Text 100 / 51% 100 / 97% 100 / 92% 100 / 92% 100 / 100% 100 / 100% 100 / 100% 100 / 100% 100 / 100% 100 / 100%

Table 4: PREC / REC accuracy after each of the 10 training documents for selected annotation types. The row over the accuracy
rows of the annotation types indicate the number of seen examples for this annotation. Features used: T. Window size: 5.

Note also that the feature set size increases significantly with a
growing window size. The 20,164 features for window size 5 al-
most doubles to 38,430 when doubling the windows size, a window
of 15 even produces 56,663 features. This high value is only man-
ageable by the system because of the extreme sparseness of the
feature vectors typical for boundary classification tasks, i.e. only a
few of the total number of features are set in each instance. This
allows an effective memory management and, in the case of SVMs
and related algorithms, an effective exploitation of the gaps.

5.6 Combination of Topic Annotation Types
The preceding experiments have shown that the only serious prob-

lem of our extractor seems to be the law topic fields included in the
head of the documents, especially the ones in the middle levels such
as Book, Title and Chapter. Independently of the exact reason for
this, the reduced number of training examples or the absence of
clear landmarks, the following approach seems to be a reasonable
solution: Given the fact that on the one hand the annotated text
fragments for the different annotation types have a similar form,
namely "> category_type number - category_name" (cf. Figure 2),
and on the other hand the annotations are aligned in a predefined
order, namely Code, Part, Book, Title, Chapter, Section, the idea
arises to treat all annotation types as only one, namely to combine
them to one annotation type called Category. The first point would
provide the learning algorithms with more training examples per
document, namely five to six, and possibly allow to find better land-
marks. The second point would guarantee a correct reconstruction
of the original annotations (cf. Section 3.2).

We conducted an experiment by replacing the original annota-
tions with the annotations Category and Category Number. The

span PREC REC

Category Name 100.00% 100.00%
Category Number 100.00% 100.00%
Article Body 100.00% 100.00%
Article Heading 100.00% 100.00%
Article ID 100.00% 100.00%
Article Remarks 100.00% 100.00%
Article Text 100.00% 100.00%

Table 8: The different category annotation types were mapped
to one single annotation type Category Name and the sub-
annotation Category Number.

window size was 10 and the feature set was TX. The results are de-
picted in Table 8. We can see a clear improvement in the accuracy
of the prediction, reaching a perfect span extraction.

5.7 Final Configuration
In this experiment we tried to make use of the conclusions from

the preceding experiments in order to train a segmenter that is able
to accurately segment all presented IPR law documents and there-
fore can be used in production settings. Note that until now we have
uniquely applied our extractor to the following ten documents after
the initial ten training documents, with 161 remaining documents
to evaluate on. In this experiment we therefore train on the first
ten documents and apply the learned extractor on all the following
documents.

Since the previous configuration of the algorithm resulted in such
good results, we keep the parameters. However, there seems to be



span PREC REC

Code Name 100.00% 100.00%
Part Name 100.00% 100.00%
Part Number 100.00% 100.00%
Book Name 100.00% 20.00%
Book Number 100.00% 20.00%
Title Name 100.00% 20.00%
Title Number 100.00% 66.67%
Chapter Name 100.00% 90.00%
Chapter Number 100.00% 100.00%
Section Name 0.00% 0.00%
Section Number 0.00% 0.00%
Article Body 100.00% 100.00%
Article Heading 100.00% 100.00%
Article ID 100.00% 100.00%
Article Remarks 100.00% 100.00%
Article Text 100.00% 100.00%

Table 5: Features: TX. Window size: 5

span PREC REC

Code Name 100.00% 100.00%
Part Name 100.00% 100.00%
Part Number 100.00% 100.00%
Book Name 100.00% 20.00%
Book Number 100.00% 20.00%
Title Name 100.00% 20.00%
Title Number 100.00% 66.67%
Chapter Name 100.00% 50.00%
Chapter Number 100.00% 55.56%
Section Name 100.00% 100.00%
Section Number 100.00% 100.00%
Article Body 100.00% 100.00%
Article Heading 100.00% 100.00%
Article ID 100.00% 100.00%
Article Remarks 100.00% 100.00%
Article Text 100.00% 100.00%

Table 6: Features: TX. Window size: 10

span PREC REC

Code Name 100.00% 100.00%
Part Name 100.00% 100.00%
Part Number 100.00% 100.00%
Book Name 100.00% 20.00%
Book Number 100.00% 20.00%
Title Name 100.00% 20.00%
Title Number 100.00% 66.67%
Chapter Name 100.00% 20.00%
Chapter Number 100.00% 22.22%
Section Name 100.00% 100.00%
Section Number 100.00% 100.00%
Article Body 100.00% 100.00%
Article Heading 100.00% 100.00%
Article ID 100.00% 100.00%
Article Remarks 100.00% 100.00%
Article Text 100.00% 100.00%

Table 7: Features: TX. Window size: 15

span PREC REC

Category Name 100.00% 100.00%
Article Body 100.00% 100.00%
Article Heading 100.00% 100.00%
Article ID 100.00% 100.00%
Article Remarks 100.00% 99.28%
Article Text 100.00% 99.71%

Table 9: Performance for each annotation type. Trained on 10
first documents, tested on remaining, window size was 10 and
used features were TX.

a bug in the routines of MinorThird that compute the precision and
recall values so that the computation is aborted for the Category
Number annotation after a few examples. Note however that this
bug only affects the report of the results.

The results are shown in Table 9. We can see a nearly perfect
performance of the extractors. E.g. for Article Text every recog-
nized field was correct and only three of in total 820 were not re-
trieved. This is an excellent result for an information extraction
task, since e.g. the state-of-the-art extractors in named entity ex-
traction achieve around 90% accuracy.11 However it has to be ad-
mitted that a named entity recognition task is of a different type
than a segmentation task which can directly benefit from previ-
ously available structure information. But even for wrappers this
is an excellent result.

6. CONCLUSIONS AND FUTURE WORK
We have presented a framework for the specialized IE task of

segmentation, making use of structure information already present
in the documents, including hierarchical organization of the desired
information. The framework was configured in order to be applied
to the Legifrance database, and the performance was evaluated in
an extensive and detailed empirical study. We have shown that the
presented system is perfectly usable for the automatic segmenta-
tion of law documents into articles. In some cases only one train-
ing example was sufficient in order to correctly learn a particular
annotation.

11http://www.itl.nist.gov/iaui/894.02/
related_projects/muc/info/whats_ie.html

Moreover, the framework can easily be adapted to other docu-
ments, e.g. to law corpora from other countries. A relevant dete-
rioration of the effectiveness is not expected due to the language-
independent methods used. However, if necessary, the modular de-
sign would permit the use of natural language processing.

Additionally, the aforementioned annotation tool, which is cur-
rently in development, will aid the user in providing the system
with the necessary training information.
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