
First Steps Towards Learning from Game Annotations
Christian Wirth and Johannes Fürnkranz 1

Abstract.
Most of the research in the area of evaluation function learning is

focused on self-play. However in many domains, like chess, expert
feedback is amply available in the form of annotated games. This
feedback comes usually in the form of qualitative information due to
the inability of humans to determine precise utility values for game
states. We are presenting a first step towards integrating this qual-
itative feedback into evaluation function learning by reformulating
it in terms of preferences. We extract preferences from large-scale
database for annotated chess games and use them for calculating the
feature weights of a heuristic chess position evaluation function. This
is achieved by extracting the feature weights out of the linear ker-
nel from a learned SVMRANK model, based upon the given prefer-
ence relations. We evaluate the resulting function by creating multi-
ple heuristics based upon different sized subsets of the trainings data
and compare them in a tournament scenario. Although our results did
not yield a better chess playing program, the results confirm that pref-
erences derived from game annotations may be used to learn chess
evaluation functions.

1 Introduction

For many problems, human experts are able to demonstrate good
judgment about the quality of certain courses of actions or solution
attempts. Typically, this information is of qualitative nature (e.g., “A
treatment a is more effective than treatment b), and cannot be ex-
pressed numerically without selecting arbitrary values. This is due to
the fact that humans are not able to determine a precise utility value
of an option, but are typically able to compare the quality of two op-
tions. The emerging field of preference learning tries to make this
information usable in the field of machine learning, by introducing
concepts and methods for applying qualitative preferences to a wide
variety of learning problems [12].

In the game of chess, qualitative human feedback is amply avail-
able in the form of game notations. For example, the company
Chessbase3 specializes in the collection and distribution of chess
databases. Their largest database contains annotations for over 66000
games, according to the official page. However, this rich source of in-
formation about the game has so far been ignored in the literature on
machine learning in chess [21, 11]. Much of the work in this area has
concentrated on the application of reinforcement learning algorithms
to learn meaningful evaluation functions [3, 4, 7]. These approaches
have all been modeled after the success of TD-Gammon [24], a learn-
ing system that uses temporal-difference learning [22] for training a
game evaluation function [23]. However, all these algorithms were
trained exclusively on self-play, entirely ignoring human feedback
that is readily available in annotated game databases.

1 TU Darmstadt, Germany, [cwirth,juffi]@ke.tu-darmstadt.de

In this paper, we report the results of a first study that aims at learn-
ing a heuristic function for chess based on a large amount of quali-
tative feedback from experts available in annotated game database.
In particular, we show how preferences can be extracted from chess
databases, and show how state-of-the-art ranking algorithms can be
used to successfully learn an evaluation function. The learning setup
is based on the methodology used in [16], where it has been used for
learning evaluation functions from move preferences of chess play-
ers of different strengths. However, to our knowledge this is the first
work that reports on results from learning evaluation functions from
game annotations.

In Section 2, we are explaining which information can be con-
tained in annotations for chess games, especially concerning portable
game notation files with numeric annotation glyphes [8]. A widely
available data format. Section 3 details the object ranking by pref-
erences method in general, as well as how to extract the preference
information. In our experimental setup (Section 5), we are training
a SVM with the preference data, based upon the state feature val-
ues given by a strong chess engine. This enables the creation of a
new heuristic evaluation function by using the learned (linear) SVM
model. The quality of the resulting function is evaluated in a chess
engine tournament. Section 7 is concluding the paper and gives a
short overview over possible further work.

2 Game Annotations in Chess
Chess is a game of great interest, which has generated a large amount
of literature that analyzes the game. Particularly popular are game
annotations, which are frequently published after important or inter-
esting games have been played in tournaments. These annotations
reflect the analysis of a particular game by a (typically) strong pro-
fessional chess player., They have been produced without any time
constraints, and the annotators can resort to any means they deem
necessary for improving their judgement (such as consulting col-
leagues, books, or computers). Thus, these annotations are usually
of a high quality.

Annotated chess games are amply available, not only in chess
books or magazines. Chess databases, such as those provided by
companies like Chessbase3, are storing millions of games, many of
them annotated. Chess players of all strengths use them regularly to
study the game or to prepare against their next opponent.

Chess annotators use a standardized set of symbols for annotating
moves and positions, which have been popularized by the Chess In-
formant book series. Portable game notation (PGN) files are chess
games recorded in standard algebraic notation with optional nu-
meric annotation glyphes (NAG) [8]. Those annotation symbols can
be divided into three major categories: move, position and time eval-
uation.



Figure 1. An annotated chess game (screen-shot taken from
http://chessbase.com/).

move evaluation: Each move can be annotated with a symbol indi-
cating its quality. Six symbols are commonly used:

• very poor move (??),

• poor move (?),

• speculative move (?!),

• interesting move (!?),

• good move (!),

• very good move (!!).

position evaluation: Each move can be annotated with a symbol in-
dicating the quality of the position it is leading to:

• white has a decisive advantage (h),

• white has a moderate advantage (c),

• white has a slight advantage (f),

• equal chances for both sides (j),

• black has a slight advantage (g),

• black has a moderate advantage (e),

• black has a decisive advantage (i),

• the evaluation is unclear (k).

time evaluation: Each move can be annotated with a symbol indi-
cating a time constraint that arose at this move. This information
is not used in our experiments.

In addition to annotating games with NAG symbols, annotators
can also add textual comments and move variations to the game, i.e.,
in addition to the moves that have actually been played in the course
of the game, an annotator provides alternative lines of play. Those
are usually suggestions in the form of short move chains that are
leading to more promising states than the move chain used in the
real game. Variations can also have NAG symbols, and may contain
subvariations.

Figure 1 shows an example for an annotated chessgame. The left-
hand side shows the game position after the 13th move of white.
Here, black is in a difficult position after the mistake he made.
(12...Qg6? ). From the suggested moves, 13...a5?! is the best, but

even here white has the upper hand at the end of the variation
(18.Rec1!c ), as well as in the end of the suggested move chain
starting with 13...QXc2 . On the other hand, 13...NXc2?? is an even
worse choice, ending in a position that is clearly lost for black (h).

It is important to note that this feedback is of qualitative nature,
i.e., it is not clear what the expected reward is in terms of, e.g., per-
centage of won games from a position with evaluation c. However,
it is clear that positions with evaluation c are preferable to positions
with evaluation f or worse (j, g, e, i).

Also note that the feedback for positions typically applies to the
entire sequence of moves that has been played up to reaching this
position (a trajectory in reinforcement learning terminology). The
qualitative position evaluations may be viewed as providing an eval-
uation of the trajectory that lead to this particular position, whereas
the qualitative move evaluations may be viewed as evaluations of the
expected value of a trajectory that starts at this point.

However, even though there is a certain correlation between these
two types of annotations (good moves tend to lead to better positions
and bad moves tend to lead to worse positions), they are not inter-
changable. A very good move may be the only move that saves the
player from imminent doom, but must not necessarily lead to a very
good position. Conversely, a bad move may be a move that misses
a chance to mate the opponent right away, but the resulting position
may still be good for the player.

3 Learning an Evaluation Function from
Preferences

For learning the mentioned SVM model, it is required to formulate
the task as a binary classification problem. We are showing how this
can be done by using preference learning.

3.1 Preference Learning
Preference learning is about inducing predictive preference mod-
els from empirical data. This establishes a connection between ma-
chine learning and research fields like preference modeling or deci-
sion making. Especially “learning to rank by preferences” is deemed
promising by the community. Preference learning can be applied to
label ranking, by defining preferences over a set of labels concern-
ing a specific set of objects [25]. But it is also possible to define
preference directly over a set of objects, for creating a ranking of
those objects [14]. Preferences themselves are constraints that can
be violated, which leads to higher flexibility concerning the solv-
ing process, opposed to hard constraints. These constraints can be
described via a utility function or preference relations. [12] We are
only considering preference relations in this work, because they can
be represented in a qualitative manner.

Object Ranking is about learning how to order a subset of objects
out of a (potentially infinite) reference set Z . Those objects z ∈ Z
are usually given as a vector of attribute/value pairs, but this is no
necessary property. The trainings data is given in the form of rank-
ings, which is decomposed into a finite set of pairwise preferences
zi � zj. The object ranker is then learning a ranking function f(·)
which returns a (ranked) permutation of a given object set. [12]

3.2 States and Actions
In chess, we are searching for the best action a ∈ A for a state s ∈
S. For game tree exploration concerns or suboptimal play, it can also
be required to determine the expected quality of an suboptimal action



a′ ∈ A. When defining this quality in a relative way, as opposed
to an absolute value, we are searching for a rank. Because of the
high amount of legal states in chess (roughly 1050 states [2]), it is
not feasible to learn those ranking functions directly. Considering the
chess transition function f : S×As → Ss, with Ss ⊂ S as the set of
states that can be reached from s by an action a ∈ As possible in s,
we can rewrite the problem as the search for a ranking for all s ∈ Ss

. This ranking is also not dependent on the current state s, because
the state/action history is not relevant for a chess state (excluding the
fifty-moves and the threefold repetition draw rules). This reduces the
problem to a object ranking problem over all s ∈ S.

3.3 SVM-based ranking
Following [16], we can use state preferences of the form si � sj for
training the SVMRANK ranking support vector machine proposed
by [13].2 Its key idea is to reinterpret the preference statements as
constraints on the evaluation function, i.e.,

si � sj ⇔ h(si) > h(sj).

If the function h is a linear, i.e., it is a weighted sum

h(s) =
∑
f

wf · f(s)

of features f , the latter part is equivalent to

h(si − sj) =
∑
f

wf · f(si − sj)

=
∑
f

wf · (f(si)− f(sj)) > 0

Thus, essentially, the training of the ranking SVM corresponds to the
training of a classification SVM on the pairwise differences si − sj

between positions si and sj . The pairwise ranking information can
thus be converted to binary training data in the form of a feature
distance vector

−→
A with the preference relation r ∈ {<,>} as the

binary class vector.

4 Generating Preference Data from Game
Annotations

The training data that are needed for an object ranking algorithm
like SVMRANK can be generated from game annotations of the type
discussed in Section 2. For our first experiments, we only focused on
move preferences, and ignored state preferences.

Our algorithm for generating preferences from move annotations
is sketched in Algorithm 1: a given list of games G in PGN format
is parsed, and triplets (s,a,n),n ∈ Ns,a with Ns,a being the list
of NAG in (s, a) are created for each occurrences of a NAG sym-
bol. A state is represented by its Forsyth-Edwards Notation (FEN).
It is a serialized representation of the game board, capturing all data
that is required to uniquely identify a chess state [8]. Actions are
saved in the Long Algebraic Notation (LAN). After collecting this
data for every game, all triples containing the same FEN state are
compared. The NAG symbols are checked against a static relation
list and a pairwise preference relation for the attached actions is cre-
ated, if possible. The static relation table contains entries like n1:??
n2:!? → n1 < n2. In rare cases, we may get multiple conflicting
annotations for a pair (s,a), which are then ignored.

2 Available from http://svmlight.joachims.org.

Algorithm 1 Preference Generation
Require: list of games G, initial position s0

1: triples← ∅, prefs← ∅, seen← ∅
2: for all g ∈ G do
3: s← s0
4: for all (a,Ns,a) ∈ g do
5: s← MOVE(s, a)
6: for all n ∈ Ns,a do
7: triples← triples ∪ {(s, a, n)}
8: seen← seen ∪ {s}
9: end for

10: end for
11: end for
12: for all s′ ∈ seen do
13: for all Ns′,a, Ns′,a′ ∈ triples with a 6= a′ do
14: r ← RELATION(Ns′,a, Ns′,a′)
15: if r 6= ∅ then
16: s1 ← MOVE(s′, a), s2 ← MOVE(s′, a′)
17: prefs← prefs ∪ {(s1, s2, r)}
18: end if
19: end for
20: end for
21: return prefs

When applying this algorithm to the example given in
Figure 1, it would yield the following action preferences:
(s, QXc2 �NXc2 ),(s,a5 �NXc2 ),(s,a5 �QXc2 ) with s be-
ing the state shown in the example.

In a last step, action preferences (s,a1 � a2) are converted to
state preferences by applying a1 and a2 to s, resulting in state pref-
erences s1 � s2, where si = MOVE(s,ai). A practical problem
is, that annotated moves are usually not leading to a stable state to
which the qualitative evaluation can be directly applied. For exam-
ple, in the middle of an exchange sequence, the first player will be
behind by one piece after the initial move but may gain a significant
advantage after a short chain of moves. For this reason, preferences
are not applied to the positions si, but to quiet positions that result
from a fixed-depth search starting in si (we use depth 7), followed by
a quiescence search. The positions s̄i at the leaves of these searches
are then used in the state preferences.

Additionally, most variations added to the PGN data are also move
chains and not single moves, hence we are applying the suggested
move chain to the state and not only the first, single move. This is
implemented in step 16 of algorithm 1.

5 Experimental Setup

For showing the usefulness of preference data, we are training a
SVM model based on preference data generated from annotated
chess games (Section 5.1), and employ it in the strong open source
chess engine CUCKOO (Section 5.2). All states are represented by the
heuristic features created by the position evaluation function. Train-
ing a linear kernel model allows us to simply extract the feature
weights for the linear sum function. The quality of the preferences
can now be analyzed by comparing the playing strength of our re-
weighted chess engine.



Feature Type # Features Description
material difference 1 Difference in the sum of all piece values per player.
piece square 6 Position dependent piece values by static piece/square tables. A single value for every piece type.
pawn bonus 1 Bonus for pawns that have passed the enemy pawn line , while also considering its distance to the enemy

king.
trade bonus 2 Bonus for following the “when ahead trade pieces, when behind trade pawns” rules.
castle bonus 1 Evaluates the castling possibility.
rook bonus 1 Bonus for rooks on (half-) open files.
bishops scores 2 Evaluating the bishops position by attack possibilities, if trapped and relative positioning.
threat bonus 1 Difference in the sum of all piece values under attack.
king safety 1 Evaluates the kings position relative to the rooks.

Table 1. Features used in the linear evaluation function of the CUCKOO chess engine.

5.1 ChessBase

As a data source we are using the Mega Database 2012, provided by
Chessbase.3 To the authors’ knowledge, it is the largest database of
professionally annotated chess games available. The annotations are
commonly, but not exclusively provided by chess grandmasters. In
this first study, we only considered action preferences, and ignored
state preferences, mostly because of complexity considerations.

In the more than 5 million games contained in the database,
we identified 86,767 annotated games with 1.67 million annotated
moves in total. 343,634 NAG symbols occurred pairwise concern-
ing the same state, but different moves. Out of these, the preference
generation process yielded 271,925 preferences with 190,143 being
unambiguous and not equal. The rest are incomparable symbol pairs,
and were ignored in our data generation process.

5.2 CUCKOO Chess Engine

We used the CUCKOO chess engine4 for our experiments, because
of its combination of high playing strength5 and good modifiability.
It facilitates BitBoards [19, 1] as state representation and NegaScout
[18] as search algorithm.

Most state of the art chess engines are using a heuristic position
evaluation function, while searching for the best, currently reach-
able position with enhanced Alpha-Beta search algorithms like Ne-
gaScout. For performance reasons, evaluation functions are com-
monly linear sums over abstract, manually constructed features. Usu-
ally, features like material difference or usefulness of pieces in their
current position are used. Table 1 shows the 16 features shown by
CUCKOO. We used these features for describing a state.

The CUCKOO Chess Engine was used in a single thread configu-
ration. All experiments haven been executed on systems with 2 cores
or more, ensuring independence of the available computing power
for each player.

5.3 Training Data

In our experimental setup, we are creating the object preferences as
described in Section 4. The pairwise preference data is used as train-
ing data for SVMRANK, which is an optimized implementation of
the SVM based ranker described in 2.4, which can handle pairwise

3 http://www.chessbase.com/
4 http://web.comhem.se/petero2home/javachess/
5 http://www.computerchess.org.uk/ccrl/

preference data directly [13]. The feature weights can now be ex-
tracted out of the SVMRANK model and be applied to the CUCKOO

chess engine.
The features have not been standardized or normalized, because

they are already internally normalized to a pico-pawn scale, hence
no significant improvement in classification accuracy was expected.
This was also confirmed in experiments.

Annotators can disagree concerning the exact quality of a move,
but the same relative outcome is expected when comparing two
moves. E.g. an annotator may use n1:? instead of n1:??, but not
n1:!! if the consensus is n1 < n2, n2:!?. Tests confirmed the ex-
pected low amount of directly contradicting preferences (< 0.2%),
but it is still possible for subsets to indicate a different valuation of
features.

We created 6 different engines, based upon different training set
sizes. 5%, 10%, 25%, 50%, 75% and 100% randomly sampled ele-
ments of the available preference data have been used to create the
different engines. The results have been generated by averaging over
three all-against-all tourneys, including the player with the original
feature weighting as upper bound and a random player as baseline.
The random engine is picking new random weights for each posi-
tion evaluation. The distribution for those weights is a uniform distri-
bution, bounded by the min/max values observed within all learned
SVMRANK models. Each pairing played 100 games with a 5min
timeframe and no increments.

5.4 Evaluation

All results are reported in terms of Elo ratings [9], which is the com-
monly used rating system for rating chess players. It not only consid-
ers the absolute percentage of won games, but also takes the strength
of the opponent into account. A rating difference of a 100 points ap-
proximately means that the stronger player has an expected win rate
of 5/8. It also enables the reporting of upper and lower bounds for the
playing strength of each player. For calculating the Elo values, a base
Elo of 2600 was used, because this it the rating for the Cuckoo Chess
Engine as reported by the Computer Chess Rating List6. It should
be noted that computer engine Elo ratings are not directly compa-
rable to human Elo ratings, because they are typically estimated on
independent player pools, and thus only reflect relative strengths.

6 http://www.computerchess.org.uk/ccrl/



6 Results
6.1 Predictive Accuracy
We first compared the predictive accuracy of different classifiers on
the binary classification problem of learning a preference relation
from the collected preference set. The binary classification accuracy
a can be compared to the average amount of swapped pairs over all
pairs metric e of the original ranking problem by a = 1 − e. The
Weka7 implementation of all classifiers was used, if not stated other-
wise.

Table 2 shows that multilayer perceptrons and random forests
yielded the best results, whereas LIBLINEAR and SVMRANK per-
formed the worst. This seems to indicate that a non-linear combina-
tion of the base features is able to yield a better performance than the
linear combination that is used in the chess program.

We can also see the performance of the original position evalu-
ation function of CUCKOO, which is a linear function that assigns
a uniform weight to all features. IT is somewhat higher than the
trained linear functions, but considerably below the best non-linear
functions.

Classifier Accuracy
MULTILAYER PERCEPTRON [5] 0.6871
RANDOM FOREST [6] 0.6864
NAIVE BAYES TREE [15] 0.6799
J48 [17] 0.6719
PEGASOS [20] 0.6651
LIBLINEAR8[10] 0.6521
SVMRANK9[13] 0.6505
CUCKOO 0.6620

Table 2. Comparison of the predictive performance of different classifiers
and the CUCKOO chess engine (10-fold CV).

6.2 Playing Strength
For evaluating the playing strength we were limited to using a lin-
ear evaluation function because only those could be easily plugged
into the chess program. We chose evaluation functions learned by
SVMRANK. Figure 2 shows the development of the rating over the
percentage of used preferences in the training data. It is clearly rec-
ognizable in that an increase in the amount of used preference data
is leading to an improved chess engine, which we take as evidence
that the game annotations provide useful information for learning an
evaluation function. The playing strength is clearly above the random
baseline, which reached an average Elo rating of 2332±32, but well
below the original player and its average Elo rating of 2966± 43.

6.3 Stability
The player that was trained on 5% of the data is a clear outlier, re-
sulting from the comparably high variance in the training data at this
point. The variance of the feature weights at this setting is shown in
Figure 3.

However, most features are showing convergence and a mostly sta-
ble average value. Figure 4 shows the development of the feature

7 http://www.cs.waikato.ac.nz/ml/weka/
8 http://www.csie.ntu.edu.tw/˜cjlin/liblinear/
9 http://www.cs.cornell.edu/people/tj/svm_light/svm_
rank.html

% preferences

E
LO

0 20 40 60 80 100
2520

2540

2560

2580

2600

2620

2640

Figure 2. Learning curve, measured in Elo rating.

values (average, standard deviation and min/max values) for all fea-
tures. The 10 features in the left and the middle graph are quite sta-
ble, whereas the features in the right graph are rather unstable. For
the features castleBonus and bishopB, a possible explanation could
be the sparsity of these values. The feature value difference for these
values is 0 in 84.6% and 99.7%, respectively, of all training exam-
ples.

7 Conclusion

This paper presented the results of a preliminary study that uses ex-
pert feedback in the form of game annotations for the automated
construction of an evaluation function for the game of chess. It
was shown how annotated chess games can be used for the cre-
ation of preference data. This is especially interesting because of the

-10

-5

0

5

10

bishopsSquare queensSquare rooksSquare castleBonus bishopB
Feature

Figure 3. Learned weight for the 5 most variant features, based on 10
different 5% samplings



% preferences

5 10 25 50 75 10
0

w
ei

gh
t

-3

-2

-1

0

1

2

3

5 10 25 50 75 100

tradeBehind
rookBonus

bishopA
threatBonus
kingSafety

5 10 25 50 75 10
0

% preferences

5 10 25 50 75 10
0

w
ei

gh
t

-0.5

0

0.5

1

1.5

2

2.5

3

3.5

5 10 25 50 75 100

kingsSquare
pawnsSquare
knightsSquare

tradeAhead
pawnBonus

5 10 25 50 75 10
0

% preferences

5 10 25 50 75 10
0

w
ei

gh
t

-4

-2

0

2

4

6

8

10

12

5 10 25 50 75 100

bishopsSquare
queensSquare
rooksSquare
castleBonus

bishopB

Figure 4. Average and variance for the feature weights, averaged over 10 samples per subset size. Weights are scaled to materialDifference= 1.

widespread availability of annotated chess games, which enables the
creation of large-scale datasets.

Following the approach shown by Paulsen et al [16], the prefer-
ences have been successfully used to learn the feature weights for
an position evaluation function. It can be observed, that the playing
strength of the chess engine is scaling with the amount of trainings
data. This is a first step towards using qualitative feedback in game
playing scenarios.

However, alhthough we can observe a correlation with the amount
of seen preferences and the playing strength of the learned players,
their overall strength was not able to reach the strength of the orig-
inal player. We still have to investigate the reasons for this, but it
should be noted that the original feature weighting is outperforming
the learned weights. Thus, SVMRANK was only able to find subop-
timal feature weights.

Moreover, in this work we have essentially ignored state pref-
erences and focused on action preferences. The reason for this
was pragmatic, because action preferences relate to a single state,
whereas state preferences can be widely compared, even across mul-
tiple games. For example, every position evaluated with h can be
considered to be better than every position evaluated with j, all of
which can, in turn, be considered to be preferred over positions that
are evaluated with i. This approach gives rise to a vast number of
preferences. One could consider to only apply this to positions of the
same game, because different annotators may have a different cali-
bration of the used symbols. This would also reduce the complexity.
These issues are currently under investigation.

REFERENCES
[1] G. M. Adel’son-Vel’skii, V. L. Arlazarov, A. R. Bitman, A. A. Zhiv-

otovskii, and A. V. Uskov, ‘Programming a computer to play chess’,
Russian Mathematical Surveys, 25(2), 221, (1970).

[2] V. Allis, Searching for Solutions in Games and Artificial Intelligence,
Ph.D. dissertation, University of Limburg, The Netherlands, 1994.

[3] J. Baxter, A. Tridgell, and L. Weaver, ‘Learning to play chess using
temporal differences’, Machine Learning, 40(3), 243–263, (September
2000).

[4] D. F. Beal and M. C. Smith, ‘Temporal difference learning applied to
game playing and the results of application to Shogi’, Theoretical Com-
puter Science, 252(1-2), 105–119, (2001). Special Issue on Papers from
the Computers and Games 1998 Conference.

[5] C. M. Bishop, Neural Networks for Pattern Recognition, Clarendon
Press, Oxford, UK, 1995.

[6] L. Breiman, ‘Random forests’, Machine Learning, 45(1), 5–32, (2001).

[7] S. Droste and J. Fürnkranz, ‘Learning the piece values for three chess
variants’, International Computer Games Association Journal, 31(4),
209–233, (2008).

[8] S. J. Edwards. Portable game notation, 1994. accessed on 14.06.2012.
[9] A. E. Elo, The Rating of Chessplayers, Past and Present, Arco, New

York, 2nd edn., 1978.
[10] R.-E. Fan, K.-W. Chang, C.-J. Hsieh, X.-R. Wang, and C.-J. Lin, ‘Li-

blinear: A library for large linear classification’, Journal of Machine
Learning Research, 9, 1871–1874, (2008).

[11] J. Fürnkranz, ‘Machine learning in computer chess: The next genera-
tion’, International Computer Chess Association Journal, 19(3), 147–
161, (1996).

[12] J. Fürnkranz and E. Hüllermeier (eds.), Preference Learning, Springer-
Verlag, 2010.

[13] T. Joachims, ‘Optimizing search engines using clickthrough data’, in
Proceedings of the 8th ACM SIGKDD International Conference on
Knowledge Discovery and Data Mining (KDD-02), pp. 133–142. ACM
Press, (2002).

[14] T. Kamishima, H. Kazawa, and S. Akaho, ‘A survey and empirical com-
parison of object ranking methods’, In Fürnkranz and Hüllermeier [12],
181–201.

[15] R. Kohavi, ‘Scaling up the accuracy of naive-bayes classifiers: a
decision-tree hybrid’, in Proceedings of the 2nd International Confer-
ence On Knowledge Discovery And Data Mining, pp. 202–207. AAAI
Press, (1996).

[16] P. Paulsen and J. Fürnkranz, ‘A moderately successful attempt to train
chess evaluation functions of different strengths’. In C. Thurau, K.
Driessens, and O. Missura (eds.) Proceedings of the ICML-10 Work-
shop on Machine Learning and Games, Haifa, Israel, (2010).

[17] J. R. Quinlan, C4.5: Programs for Machine Learning, Morgan Kauf-
mann, San Mateo, CA, 1993.

[18] A. Reinefeld, ‘An improvement to the scout tree-search algorithm’, In-
ternational Computer Chess Association Journal, 6(4), 4–14, (Decem-
ber 1983).

[19] A. L. Samuel, ‘Some studies in machine learning using the game of
checkers’, IBM Journal on Research and Development, 3, 210–229,
(1959).

[20] Y. Singer and N. Srebro, ‘Pegasos: Primal estimated sub-gradient solver
for SVM’, In Z. Ghahramani (ed.) Proceedings of the 24th International
Conference on Machine Learning (ICML-07), pp. 807–814, (2007).

[21] S. S. Skiena, ‘An overview of machine learning in computer chess’, In-
ternational Computer Chess Association Journal, 9(1), 20–28, (1986).

[22] R. S. Sutton, ‘Learning to predict by the methods of temporal differ-
ences’, Machine Learning, 3, 9–44, (1988).

[23] G. Tesauro, ‘Practical issues in temporal difference learning’, Machine
Learning, 8, 257–278, (1992).

[24] G. Tesauro, ‘Programming backgammon using self-teaching neural
nets’, Artificial Intelligence, 134(1-2), 181–199, (January 2002). Spe-
cial Issue on Games, Computers and Artificial Intelligence.

[25] S. Vembu and T. Gärtner, ‘Label ranking algorithms: A survey’, In
Fürnkranz and Hüllermeier [12], 45–64.


