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Abstract

The pairwise approach to multilabel classifica-
tion reduces the problem to learning and aggre-
gating preference predictions among the possi-
ble labels. A key problem is the need to query
a quadratic number of preferences for making a
prediction. To solve this problem, we extend the
recently proposed QWeighted algorithm for ef-
ficient pairwise multiclass voting to the multil-
abel setting, and evaluate the adapted algorithm
on several real-world datasets. We achieve an
average-case reduction of classifier evaluations
from n2 to n+dn log n, where n is the total num-
ber of labels and d is the average number of la-
bels, which is typically quite small in real-world
datasets.

1 Introduction
Multilabel classification refers to the task of learning a
function that maps instances x̄ ∈ X to label subsets Rx̄ ⊂
L, where L = {λ1, . . . , λn} is a finite set of predefined la-
bels, typically with a small to moderate number of alterna-
tives. Thus, in contrast to multiclass learning, alternatives
are not assumed to be mutually exclusive, such that mul-
tiple labels may be associated with a single instance. The
predominant approach to multilabel classification is binary
relevance learning (BR), where one classifier is learned for
each class, in contrast to pairwise learning, where one clas-
sifier is learned for each pair of classes.

While it has been shown that the complexity for train-
ing an ensemble of pairwise classifiers is comparable to the
complexity of training a BR ensemble [Fürnkranz, 2002;
Loza Mencı́a and Fürnkranz, 2008b], it remained the prob-
lem that a quadratic number of classifiers has to be eval-
uated to produce a prediction. Our first attempts in ef-
ficient multilabel pairwise classification lead to the algo-
rithm MLPP, which uses the fast perceptron algorithm as
base classifier. With this algorithm, we successfully tackled
the large Reuters-RCV1 text classification benchmark, de-
spite the quadratic number of base classifiers [Loza Mencı́a
and Fürnkranz, 2008b]. Although we were able to beat
the competing fast MMP algorithm [Crammer and Singer,
2003] in terms of ranking performance and were compet-
itive in training time, the costs for testing were not satis-
factory. Park and Fürnkranz [2007] recently introduced a
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method named QWeighted for multiclass problems that in-
telligently selects only the base classifiers that are actually
necessary to predict the top class. This reduced the evalu-
ations needed from n(n− 1)/2 to only n log n in practice,
which is near the n evaluations processed by BR.

In this paper we introduce a novel algorithm which
adapts the QWeighted method to the MLPP algorithm. In
a nutshell, the adaption works as follows: instead of stop-
ping when the top class is determined, we repeatedly apply
QWeighted to the remaining classes until the final label set
is predicted. In order to determine at which position to stop,
we use the calibrated label ranking technique [Fürnkranz et
al., 2008], which introduces an artificial label for indicat-
ing the boundary between relevant and irrelevant classes.
We evaluated this technique on a selection of multilabel
datasets that vary in terms of problem domain, number of
classes and label density. The results demonstrate that our
modification allows the pairwise technique to process such
data in comparable time to the one-per-class approaches
while producing more accurate predictions.

2 Multilabel Pairwise Perceptrons
In the pairwise binarization method, one classifier is trained
for each pair of classes, i.e., a problem with n different
classes is decomposed into n(n−1)

2 smaller subproblems.
For each pair of classes (λu, λv), only examples belong-
ing to either λu or λv are used to train the correspond-
ing classifier ou,v . In the multilabel case, an example is
added to the training set for classifier ou,v if λu is a rel-
evant class and λv is an irrelevant class or vice versa, i.e.,
(λu, λv) ∈ R×I∪I×Rwith I = L\R as negative labelset.
The pairwise binarization method is often regarded as su-
perior to binary relevance because it profits from simpler
decision boundaries in the subproblems [Fürnkranz, 2002;
Hsu and Lin, 2002; Loza Mencı́a and Fürnkranz, 2008b].
This allows us to use the simple but fast (linear, one-layer)
perceptron algorithm as a base classifier, so that we denote
the algorithm as Multilabel Pairwise Perceptrons (MLPP)
[Loza Mencı́a and Fürnkranz, 2008b]. The predictions
of the base classifiers ou,v may then be interpreted as pref-
erence statements that predict for a given example which
of the two labels λu or λv is preferred. In order to con-
vert these binary preferences into a class ranking, we use
a simple voting strategy known as max-wins, which in-
terprets each binary preference as a vote for the preferred
class. Classes are then ranked according to the number of
received votes. Ties are broken randomly in our case.

To convert the resulting ranking of labels into a multi-
label prediction, we use the calibrated label ranking ap-
proach [Fürnkranz et al., 2008]. This technique avoids the



Require: example x̄; classifiers {ou,v | u < v, λu, λv ∈ L}; l0, . . . , ln = 0
1: while λtop not determined do
2: λa ← argminλi∈L li . select top candidate class
3: λb ← argminλj∈L\{λa} li and oa,b not yet evaluated . select second
4: if no λb exists then
5: λtop ← λa . top rank class determined
6: else . evaluate classifier
7: vab ← oa,b(x̄) . one vote for λa (vab = 1) or λb (vab = 0)
8: la ← la + (1− vab) . update voting loss for λa
9: lb ← lb + vab . update voting loss for λb

Figure 1: Pseudocode of the QWeighted algorithm (multiclass classification).

dataset n #instances # attributes ∅ label-set size d density d
n

distinct
scene 6 2407 86732 1.074 17.9 % 15
yeast 14 2417 10712 4.237 30.3 % 198
r21578 120 11367 10000 1.258 1.0 % 533
rcv1-v2 101 804414 25000 2.880 2.9 % 1028
eurlex sj 201 19596 5000 2.210 1.1 % 2540
eurlex dc 412 19596 5000 1.292 0.3 % 1648

Table 1: Statistics of datasets.

need for learning a threshold function for separating rele-
vant from irrelevant labels, which is often performed as a
post-processing phase after computing a ranking of all pos-
sible classes. The key idea is to introduce an artificial cal-
ibration label λ0, which represents the split-point between
relevant and irrelevant labels. Thus, it is assumed to be pre-
ferred over all irrelevant labels, but all relevant labels are
preferred over λ0. As it turns out, the resulting n additional
binary classifiers { oi,0 | i = 1 . . . n} are identical to the
classifiers that are trained by the binary relevance approach.
Thus, each classifier oi,0 is trained in a one-against-all fash-
ion by using the whole dataset with { x̄ |λi ∈ Rx̄} ⊆ X as
positive examples and { x̄ |λi ∈ Ix̄} ⊆ X as negative ex-
amples. At prediction time, we will thus get a ranking over
n+1 labels (the n original labels plus the calibration label).
We denote the MLPP algorithm adapted in order to support
the calibration technique as CMLPP.

3 Quick Weighted Voting for Multilabel
Classification

As already mentioned, the quadratic number of base clas-
sifiers does not seem to be a serious drawback for training
MLPP and also CMLPP. However, at prediction time it is
still necessary to evaluate a quadratic number of base clas-
sifiers.

QWeighted algorithm: For the multiclass case, the
simple but effective voting strategy can be performed
efficiently with the Quick Weighted Voting algorithm
(QWeighted ), which is shown in Figure 1 [Park and
Fürnkranz, 2007]. This algorithm computes the class with
the highest accumulated voting mass without evaluating all
pairwise perceptrons. It exploits the fact that during a vot-
ing procedure some classes can be excluded from the set
of possible top rank classes early on, because even if they
reach the maximal voting mass in the remaining evalua-
tions they can no longer exceed the current maximum. For
example, if class λa has received more than n−j votes and
class λb has lost j binary votings, it is impossible for λb to
achieve a higher total voting mass than λa. Thus further
evaluations with λb can be safely ignored for the compar-
ison of these two classes. Pairwise classifiers will be se-
lected depending on a voting loss value, which is the num-

ber of votes that a class has not received. More precisely,
the voting loss li of a class λi is defined as li := pi − vi,
where pi is the number of evaluated incident classifiers of
λi and vi is the current number of votes for λi. Obvi-
ously, the voting loss starts with a value of zero and in-
creases monotonically with the number of performed pref-
erence evaluations. The class with the current minimal loss
is the top candidate for the top rank class. If all prefer-
ences involving this class have been evaluated (and it still
has the lowest loss), we can conclude that no other class can
achieve a better ranking. Thus, the QWeighted algorithm
always focuses on classes with low voting loss.

QCMLPP1 algorithm: A simple adaptation of
QWeighted to multilabel classification is to repeat the pro-
cess. We can compute the top class λtop using QWeighted,
remove this class from L and repeat this step, until the re-
turned class is the artificial label λ0, which means that all
remaining classes will be considered to be irrelevant. Of
course, the information about which pairwise perceptrons
have been evaluated and their results are carried through the
iterations so that no pairwise perceptron is evaluated more
than once. As we have to repeat this process until λ0 is
ranked as the top label, we know that the number of votes
for the artificial label has to be computed at some point.
So, in hope for a better starting distribution of votes, all in-
cident classifiers oi,0 respectively w̄i,0 of the artificial label
are evaluated explicitly before iterating QWeighted.

QCMLPP2 algorithm: However, QCMLPP1 still per-
forms unnecessary computations, because it neglects the
fact that for multilabel classification the information that a
particular class is ranked above the calibrated label is suffi-
cient, and we do not need to know by which amount. Thus,
we can further improve the algorithm by predicting the cur-
rent top ranked class λt as relevant as soon as it has accu-
mulated more votes than λ0. The class λt is then not re-
moved from the set of labels (as in QCMLPP1), because its
incident classifiers ot,j may be still be needed for comput-
ing the votes for other classes. However, it can henceforth
no longer be selected as a new top rank candidate.

Complexity: It is easy to see that the number of
base classifier evaluations for the multilabel adaptations
of QWeighted is bounded from above by n + d · CQW,



dataset n BR CMLPP QCMLPP1 QCMLPP2 n logn n+ dn logn
scene 6 6 21 11.51 (54.8%) 11.46 (54.6%) 10.75 17.50
yeast 14 14 105 67.57 (64.4%) 64.99 (61.9%) 36.94 170.65
rcv1-v2 103 103 5356 485.23 (9.06%) 456.23 (8.52%) 477.38 1649.70
r21578 120 120 7260 378.45 (5.21%) 325.94 (4.49%) 574.50 843.87
eurlex sj 201 201 20301 1144.2 (5.64%) 825.07 (4.06%) 1065.96 2556.78
eurlex dc 412 412 85078 2610.76 (3.07%) 1288.22 (1.51%) 2480.66 3612.05

Table 2: Computational costs at prediction in average number of predictions per instance. The italic values next to the two
multilabel adaptations of QWeighted show the ratio of predictions to CMLPP.
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Figure 2: Prediction complexity of QCMLPP: number of comparisons needed in dependency of the number of classes n
for different multilabel problems.

since we always evaluate the n classifiers involving the cal-
ibrated class, and have to do one iteration of QWeighted for
each of the (on average) d relevant labels. Assuming that
QWeighted on average needs CQW = n log n base classi-
fier evaluations as suggested in [Park and Fürnkranz, 2007],
we can expect an average number of n+dn log n classifier
evaluations for the QCMLPP variants, as compared to the
≈ n2 evaluations for the regular CMLPP [Fürnkranz et al.,
2008]. Thus, the effectiveness of the adaption to the mul-
tilabel case crucially depends on the average number d of
relevant labels. We can expect a high reduction of pairwise
comparisons if d is small compared to n, which holds for
most real-world multilabel datasets.

4 Evaluation
Table 1 shows the multilabel datasets we used for our ex-
periments. As the QCMLPP algorithms do not change the
predictions of the CMLPP algorithm, and the superiority
of the latter has already been established in other publica-
tions [Loza Mencı́a and Fürnkranz, 2008a,b; Fürnkranz et
al., 2008], we will here focus only on the computational
costs. Descriptions of these datasets and results on the pre-
dictive performance may also be found in the long version
of this paper [Loza Menı́a et al., 2008]. Table 2 depicts the
gained reduction of prediction complexity in terms of the
average number of base classifier evaluations. In addition,

we also report the ratios of classifier evaluations for the two
QCMLPP variants over the CMLPP algorithm.

We can observe a clear improvement when using the
QWeighted approach. Except for the scene and yeast
datasets, both variants of the QCMLPP use less than a
tenth of the classifier evaluations for CMLPP. We also add
the values of n log n and n + dn log n for the correspond-
ing datasets, which allow us to confirm that the number
of classifier evaluations is smaller than the previously es-
timated upper bound of n + dn log n for all considered
datasets. Figure 2 visualizes the above results and allows
again a comparison to different complexity values such as
n, n log n and n2. Though the figure may indicate that a
reduction of classifier evaluations to n log n is still achiev-
able for multilabel classification, especially for QCMLPP2,
we interpret the results more cautiously and only conclude
that n+ dn log n can be expected in practice.

5 Conclusions
The main disadvantage of the pairwise approach in mul-
tilabel classification was, until now, the quadratic number
of base classifiers needed and hence the increased compu-
tational costs for computing the label ranking that is used
for partitioning the labels in relevant and irrelevant labels.
The presented QCMLPP approach is able to significantly
reduce these costs by stopping the computation of the la-



bel ranking when the bipartite separation is already deter-
mined. Though not analytically proven, our empirical re-
sults show that the number of base classifier evaluations is
bounded from above by n+ dn log n, in comparison to the
evaluation of n in the case of binary relevance ranking and
n2 for the unmodified pairwise approach.

The key remaining bottleneck is that we still need to
store a quadratic number of base classifiers, because each
of them may be relevant for some example. We are cur-
rently investigating alternative voting schemes that use a
static allocation of base classifiers, so that some of them
are not needed at all. In contrast to the approach presented
here, such algorithms may only approximate the label that
is predicted by the regular pairwise classifier.
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