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Abstract—The task in multilabel classification is to predict
for a given set of labels whether each individual label should be
attached to an instance or not. Graded multilabel classification
generalizes this setting by allowing to specify for each label a
degree of membership on an ordinal scale. This setting can be
frequently found in practice, for example when movies or books
are assessed on a one-to-five star rating in multiple categories.
In this paper, we propose to reformulate the problem in terms of
preferences between the labels and their scales, which can then be
tackled by learning from pairwise comparisons. We present three
different approaches which make use of this decomposition and
show on three datasets that we are able to outperform baseline
approaches. In particular, we show that our solution, which is able
to model pairwise preferences across multiple scales, outperforms
a straight-forward approach which considers the problem as a
set of independent ordinal regression tasks.

Keywords—graded multilabel classification, ordinal classifica-
tion, learning by pairwise comparisons

I. INTRODUCTION

Multilabel Classification (MLC), the task of learning to
assign multiple labels to a single data item, has received a lot of
attention in the recent machine learning literature [1] because it
has many real-world applications such as tagging of messages
in blogs, annotating images, or assigning keywords to scientific
papers. However, often we need to predict a degree or grade
of membership to a particular category or label, instead of
only whether this label is present or not. Cheng, Dembczyński,
and Hüllermeier [2] introduced this task as Graded Multilabel
Classification (GMLC). For example, TV guides often rate a
movie on a scale from one to five stars in several different
categories such as ‘fun’, ‘action’, ‘sex’, or ‘suspense’, as is
shown in Table I. Users may find the additional information
in the form of grades of memberships in contrast to simple
binary assignments of genres very useful, and appreciate it for
choosing their individual TV programs. Another application
is the prediction of answers from questionnaires, where a
common setting is to ask the probands to answer a series
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of questions and to respond on a graded scale of agreement,
frequency, importance, quality or likelihood.

Although superficially similar, this task differs from a
classical recommendation task [3]. While in both cases one
essentially needs to make ordinal predictions that correspond
to ratings, in recommender systems the training information
is a sparsely populated rating matrix and the task is to
predict (some of) the missing values. In contrast, the training
information for GMLC is a complete matrix where each of the
objects in the lines is characterized with a set of features (e.g.,
features that characterize the respective movie), and the task
is to predict the entries for a new line, given the features that
correspond to this new entry.

In this paper, an extended version is available as [4], we
assume an inherent preference structure between the labels
in combination with their grade of membership, and propose
pairwise preference learning as a suitable technique to exploit
this structure. To this end, we generalize calibrated label
ranking, a technique for tackling multilabel classification in
a pairwise fashion [5], to the case where we have multipartite
instead of bipartite preference information. In particular, we
show how the use of a calibration label, which indicates
the separation between relevant and irrelevant labels in the
predicted ranking, can be generalized to multiple such labels.
As a result, we investigate and experimentally compare three
different variations of this principled approach.

II. PRELIMINARIES

We represent an instance or object as a vector x in a feature
space X. Each instance can be associated with a point yx in
the target space Y. A training set is a finite set of tuples
(x, yx) ∈ X × Y drawn independently from an unknown
probability distribution on X × Y. The goal is to learn a
classifier H : X→ Y which predicts yx for a given x. We will
denote the prediction of H with a circumflex, i.e. ŷ = H(x).
Depending on the form of Y we face different problems
and assumptions. In the simplest case, binary classification,
we have Y = {0, 1}. Ordinal classification generalizes this
problem by extending the value space to a discrete and ordered

TABLE I. EXAMPLE OF RATINGS OF SOME MOVIES ACCORDING TO
THE GERMAN TV GUIDE TVSPIELFILM.DE

Movie title ‘fun’ ‘action’ ‘sex’ ‘suspense’
The other guys ? ? ? ??
A few good men ? ? ? ?
Once upon a time in the west ? ? ? ? ? ? ?
Dirty dancing ? ?



Fig. 1. Different decompositions of graded multilabel classification: vertical
(left), horizontal (center), and complete (right). The illustration shows the
decompositions for a training instance for which label λi has grade µi.

finite space Y = M = {µ1, . . . , µm} that is structured with
a total order ≺, such that µ1 ≺ µ2 ≺ . . . ≺ µm. On the
other hand, multilabel classification extends the label space to
n binary dimensions, i.e. yx = (y1x, . . . , y

n
x) ∈ Y = {0, 1}n.

Alternatively, we may view this as a mapping from x to a
subset Px ⊆ L, where L is a finite set of predefined, non-
mutually exclusive labels {λ1, . . . , λn}. yi is 1 if λi ∈ Px and
0 otherwise. The labels in Px are usually said to be relevant or
positive, whereas L. Nx = L\Px is called the set of irrelevant
or negative labels for x.

III. GRADED MULTILABEL CLASSIFICATION

In graded multilabel classification [2], each label λ in the
set of relevant labels Px of instance x ∈ X is no longer only
relevant or not (M = {0, 1}), but has output values M =
{µ1, . . . , µm} with an ordered scale µ1 ≺ µ2 ≺ . . . ≺ µm as in
ordered classification. It is assumed that the same ordinal scale
is used for all labels, i.e. Y = {µ1, . . . , µm}n, µ1 denoting the
lowest and µn the highest degree of relevance of a label. This
is a strong restriction but is motivated on real applications
such as those sketched in the introduction. On the other hand,
this assumption induces a (limited) comparability between the
grades of the different labels which cannot be assumed in the
more general setting of multi-target ordinal regression.

Following [2], we define the auxiliary membership function
Lx : L → M as Lx(λi) = yix which returns the grade of a
specific label and instance. Let P ′ix = {λ | µi = Lx(λ)} be the
set of labels with grade µi, and P ix = {λ | µi � Lx(λ)} the
labels that are at least as relevant as µi. The latter set allows to
model the assumption that if a label has a membership degree
of µi, it also has all grades µj ≺ µi associated to it. Thus,
since µ1 is the lowest possible grade, it follows that P 1

x = L.

Cheng et al. [2] introduce three straight-forward reduction
schemes in order to decompose the original problem into a set
of well-known and solvable subproblems. Figure 1 illustrates
these reductions on an example where we have four possible
labels L = {λ1, λ2, λ3, λ4} on a scale µ1 ≺ µ2 ≺ µ3 ≺ µ4.

Vertical Reduction: In the vertical reduction, the orig-
inal problem of learning H : X → Mn is reduced to n
ordinal classification problems of learning [H]λ1

, . . . , [H]λn
,

[H]λi
: X → M, one for each label λ1, . . . , λn (cf. Fig-

ure 1 (left)). The aggregation of the individual predictions
is trivially given by H(x) = ([H]λ1

(x), . . . , [H]λn(x)
). A

simple yet effective decomposition strategy for solving the
individual resulting ordinal problems was proposed by Frank
and Hall [6]: the original problem is decomposed into n − 1
independent binary subproblems, each of which contains all
instances with a class value ≺ µi as positive examples and

all others as negative examples. The probabilistic estimations
of the base classifiers are then combined into a distribution
Pr(µi) = Pr(≺ µi+i) − Pr(≺ µi) over the possible class
grades. Obviously, such independent classifiers can not model
interdependencies and correlations between the different la-
bels, which is the main disadvantage of this approach.

Horizontal Reduction: In contrast, the horizontal reduction
transforms the original problem into m = |M| multilabel
classification problems. For each grade µi, i = 1 . . .m we
learn a classifier [H]

i
: X → P (L) using (x, P ix) as training

information. As P 1
x = L, we can ignore grade µ1.

An additional challenge for this approach is that it cannot
be guaranteed that [H]

j
(x) = P̂ jx ⊆ [H]

i
(x) = P̂ ix, µj ≺ µi

holds, although by definition it holds that P jx ⊆ P ix for
µj ≺ µi. Cheng et al. attempt to address this problem by
weighting the evidence for a higher grade higher than the
evidence for a lower grade, effectively proposing to resolve
contradictions by taking for each label λi the maximum
predicted grade max≺{µj ∈ M | λi ∈ P̂ jx}, where max is
defined with respect to the total order relation ≺.

Unlike the vertical scheme, the horizontal reduction scheme
conserves dependencies between labels because each multila-
bel subproblem allows to model the label dependencies at a
certain degree of membership. This information can be taken
into account by algorithms like IBLR-ML [2].

Complete Reduction: The complete reduction learns a
single classifier [H]λiµj

: X → {0, 1} for each of the n · m
possible label/grade combinations using training information
(x, I(µj � yix)) where I is the indicator function (I(x) = 1 if
x is true, and 0 otherwise).

IV. GRADED MULTILABEL CLASSIFICATION BY
PAIRWISE COMPARISON

Learning by pairwise decompositions is based on the idea
of modeling preferences between labels [7]. These preferences
are either derived from the label structure (e.g. a hierarchy) or
given for the training instances at hand, e.g. in the form of a
total or partial, often multipartite ranking. Moreover, pairwise
decomposition implicitly takes label dependencies into account
to some extent, since it explicitly models the cases of pairwise
exclusions. We hence believe that pairwise decomposition is
well suited to the setting of graded multilabel classification.
In particular, we build upon calibrated label ranking (CLR),
a pairwise approach to solving multilabel problems, which we
describe in more detail in the following. Thereafter, we will
introduce three different approaches for generalizing CLR to
the graded case, which are all based on the idea of working
with multiple calibration labels.

A. Calibrated Label Ranking

The pairwise decomposition of multilabel problems inter-
prets the training information as bipartite rankings Nx ≺ Px,
i.e., we can deduce explicit preference statements λu ≺ λv
for all λu ∈ Nx, λv ∈ Px. These preferences are learned
by training classifiers Huv : x → {0, 1} for each of the
possible pairs of labels, 1 ≤ u < v ≤ n. Hence, the problem
is decomposed into n(n−1)

2 smaller binary sub-problems. For
each pair of labels (λu, λv), only examples belonging to either
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Fig. 2. Preferences in calibrated label ranking: on the left, we see all
preferences between the relevant labels Px = {λ1, λ2} and the irrelevant
labels Nx = {λ3, λ4, λ5}, the center graph shows the position of the virtual
label v = λ0, and the right graph shows all generated preferences (the union
of the previous two graphs).

λu or λv are used to train the corresponding classifier Hu,v .
More precisely, classifier Hu,v receives all x where λu is a
relevant label and λv is irrelevant as positive training examples
(x, 1), and those where λv ∈ Px and λu ∈ Nx as negative
examples (x, 0). All other examples are ignored. For making
a prediction, all n(n−1)

2 base classifiers predict a vote for one
of the two corresponding classes. Adding these votes results
in a full ranking over the labels.

To convert the resulting ranking of labels into a multi-
label prediction, we use the calibrated label ranking (CLR)
approach [5]. This technique avoids the need for learning
a threshold function for separating relevant from irrelevant
labels, which is often performed as a post-processing phase
after computing a ranking of all possible classes. The key
idea is to introduce an artificial calibration label v = λ0,
which represents the split-point between relevant and irrelevant
labels. Thus, v is assumed to be preferred over all irrelevant
labels, but all relevant labels are preferred over v (cf. Figure 2).

During prediction, the virtual label is treated like any other
label. Its position in the predicted ranking then denotes a
natural cutting point for dividing the label ranking into two
sets.1

B. Multiple Calibration Labels

The key idea of the proposed pairwise approach to
graded multilabel classification is to generalize calibrated
label ranking to the case of multiple calibration labels V =
{v1, . . . , vm−1}, where each label represents an intermediate
grade vi between the original grades µi and µi+1. Hence, we
obtain Mv = M ∪ V with the inner structure

µ1 ≺ v1 ≺ µ2 ≺ v2 ≺ µ3 ≺ . . . ≺ vm−1 ≺ µm
As a consequence, we obtain an extended set of labels L∪V.
Note that we use V to denote both, labels and grades, which
conveniently emphasizes the fixed mapping between grade and
label vi, i.e. it generally holds L(vi) = vi.

Furthermore, in order to cover the case that some training
instances may be ignored by certain pairwise classifiers, we
introduce the projection function [p]rp : x → {0, 1,∅}
which indicates to use a training example x either as positive
(1), negative (0) example or not at all (∅) for the given
decomposition rp. Let us further also assume that the pairwise
base classifiers are symmetric, i.e. [H]λu,λv

= 1− [H]λv,λu

1We break ties in the final counting in favor of the virtual label.

Generated preferences
λ1 ≺ v1 ≺ λ2, λ3, λ4
λ1, λ2 ≺ v2 ≺ λ3, λ4
λ1, λ2, λ3 ≺ v3 ≺ λ4

General case (i = 1 . . .m− 1)
i⋃

j=1
P ′j
x ≺ {vi} ≺

m⋃
j=i+1

P ′j
x

(a) Horizontal CLR

Generated preferences
λ1 ≺ v1 ≺ λ2 ≺ v2 ≺ λ3 ≺ v3 ≺ λ4

General case (i = 1 . . .m− 1)
P ′i
x ≺ {vi} ≺ P

′i+1
x

(b) Full CLR

Generated preferences
λ1 ≺ v1 ≺ λ2, λ3, λ4, v2, v3
v1, λ1, λ2 ≺ v2 ≺ λ3, λ4, v3
v1, v2, λ1, λ2, λ3 ≺ v3 ≺ λ4

General case (i = 1 . . .m− 1)

{v1 . . . vi−1} ∪
i⋃

j=1
P ′jx ≺ {vi}

{vi} ≺
m⋃

j=i+1
P ′jx ∪{vi+1 . . . vm−1}

(c) Joined CLR

Fig. 3. The three different approaches for a pairwise decomposition of a
graded multilabel problem, showing also exemplarily the generated prefer-
ences and the general case (i = 1 . . .m− 1).

C. Horizontal Calibrated Label Ranking

The first, simple approach to generalize calibrated label
ranking to the graded case is to use the horizontal decompo-
sition as described in Section III, and to solve each of the
resulting multilabel problems with CLR. Thus, in order to
learn each [H]i, we choose grade vi as our cutting point, i.e.
we only differentiate between grades greater or smaller than
vi. Translated to CLR, vi becomes the calibrating label and
∪vi≺µjP

′j
x and ∪µi≺vjP

′j
x our positive and negative set of

labels, respectively, as is illustrated in Figure 3(a).

More precisely, we train each [H]iλu,λv
, λu 6= λv ∈ L ∪

{vi} using training examples (x, [p]iλu,λv
(x)) given by

[p]iλu,λv
(x) =

 1 if [L]ix(λv) ≺ [L]ix(λu)
0 if [L]ix(λu) ≺ [L]ix(λv)
∅ if [L]ix(λu) = [L]ix(λv)

(1)

and

[L]i(λu) =

{
µi if λu ≺ vu
µi+1 if vu ≺ λu (2)

For making a prediction for a test instance x, the votes
hx(λu) =

∑
λu 6=λv

[H]iλu,λv
(x) are summed up for each

label u ∈ L ∪ {vi}, and λu is predicted as relevant if
hx(λu) > hx(λvi). The final graded prediction is obtained by
using the maximum predicted score for each label, as described
in Section III.



D. Full Calibrated Label Ranking

The idea of the full calibrated label ranking approach is
to consider the targets in a GMLC problem as a multipartite
ranking P ′1x ≺ P ′2x . . . ≺ P ′mx (cf. Figure 3(b)). Enriched by
the virtual labels we eventually obtain

P ′1x ≺ {v1} ≺ P ′2x . . . ≺ {vm−1} ≺ P ′mx
Obviously, for m = 2, this reduces to calibrated label ranking
with Px = P ′1x and Nx = P ′2x .

The projection function for base classifiers [H]λu,λv
, λu 6=

λv , λu, λv ∈ L∪V only slightly changes in comparison to (1),
namely into

[p]λu,λv (x) =

{
1 if L(λv) ≺ L(λu)
0 if L(λu) ≺ L(λv)
∅ if L(λu) = L(λv)

(3)

Note that in contrast to the horizontal decomposition in
Sec. IV-C we can sum up the votes across the grades, obtaining
one global ranking over all labels and grades. After querying
all (n+m−1)(n+m−2)/2 base classifiers, we then predict
ŷj = argmaxµi

hx(λj) > hx(λvi) for λj .

A possible disadvantage of this approach is that the al-
gorithm is prone to producing many ties in the ranking since
n+m−1 labels have to be ordered on a scale of 0 to n+m−2
obtainable votes. This can potentially be remedied using a
different voting function like weighted voting. However, we
observed that predicting accurate and comparable scores such
as confidences or probabilities is not a trivial task. Hence, 0-1
voting is more robust and makes the fewest assumptions on
the base classifiers, and we restrict ourselves to this approach
in this paper. Another, related problem is that preference
intensities are not considered, i.e., the difference between the
grades of two compared labels is ignored, for training as well
as during prediction. The Joined CLR approach, described in
the next section, provides a solution to this.

E. Joined Calibrated Label Ranking

On the one hand, Full CLR is not able to capture different
degrees of preference intensities since the preference between
two labels λu, λv is only obtained in a binary way. On the other
hand, we recall that in the horizontal approach we learn each
discriminating classifier [H]iλu,λv

exactly m − 1 times, once
for every grade transition. In fact, the number of classifiers
λu vs. λv which use a training instance x depends on the
difference between the grades of the labels, more precisely, it
is exactly |yux − yvx|. We can hence expect that the difference
in the number of votes between both labels correlates with
the difference in the true grades. A solution, which takes
such predictions with varying intensity into account, would
be to compute a common, joint ranking across degrees and
labels, i.e. to compute s(λu) =

∑
µi

∑
λv 6=λu

[H]iλu,λv
for all

λu, λv ∈ L∪V. Although this would possibly produce a good
ranking over the labels in L, it cannot be expected to provide
a good ranking over the virtual labels because each of the
virtual labels only appears in one horizontal sub-problem and
can therefore only obtain at most n votes. In contrast, each of
the real labels can obtain up to n(m− 1) votes.

Joined CLR solves this problem by generalizing the hor-
izontal decomposition introduced above, so that all virtual

labels are always used in all horizontal sub-problems. More
precisely, it decomposes the initial problem into m−1 bipartite
(three-partite if we count the virtual label) ranking problems
with one main calibrating label vi on each grade transition. In
this regard, joined CLR is equivalent to horizontal calibrated
label ranking and all pairwise base classifiers learned by
horizontal CLR are also learned in exactly the same manner
by joined CLR. On the other hand, as shown in Figure 3(c),
joined CLR also adds all remaining virtual labels vj 6= vi into
these bipartite ranking problems allowing them to accumulate
the necessary voting mass. The resulting problem remains
bipartite, since we map all grades to µi and µi + 1 as in
horizontal CLR. Using a simplified informal representation,
this basically means that in addition to the comparisons

µ1, . . . , µi ≺ vi ≺ µi+1, . . . , µm

each horizontal subproblems is enriched with the following
preferences:

µ1, . . . , µi ≺ vi+1, . . . , vm−1
v1, . . . , vi−1 ≺ µi+1, . . . , µm

v1, . . . , vi−1 ≺ vi ≺ vi+1, . . . , vm−1

More formally, we learn classifiers [H]iλu,λv
using [p] and

[L] from Eq. (1) and (2), but in this case for each λu 6= λv ,
λu, λv ∈ L ∪ V. Note that the training signal between two
virtual labels is always fixed. Hence, we can set [H]ivu,vv (x) =
0 if vu ≺ vv , 1 otherwise, for vu 6= vv, vu, vv ∈ V.
During prediction, the votes for each label are aggregated
across all grade transitions as proposed in the beginning of
this subsection.

Note that fixing the predictions between virtual labels can
introduce a bias since these predictions are always perfect,
whereas the remaining predictions depend on the classification
performance of a classifier trained on potentially noisy data.
This problem can be alleviated e.g. by allowing different fixed
values than 0 and 1 or by removing some comparisons. We are
currently developing such methods and leave the investigation
for further work.

V. EXPERIMENTS

In this section, we describe the data and setup of the
experiments, followed by the results.

A. Datasets

An overview over the used datasets is given in Table II.
The BELA-E benchmark was used in previous work, whereas
MOVIES and MEDICAL are two new real-world datasets.2

BeLa-E: The BELA-E dataset results from a questionnaire
in which 1930 students rated the importance of certain prop-
erties of their future jobs from ‘1’ to ‘5’. We replicated the
setup of Cheng et al. [2] by choosing a random subset of the n
questions as target labels and the remaining 50−n as instance
attributes. The selection was done for n = 5 and n = 10, and
in each case repeated 50 times, resulting in 50 different dataset
for each value of n.

2Datasets and details at www.ke.tu-darmstadt.de/resources/GMLC and [4].



TABLE II. OVERVIEW OF DATASETS USED IN THE EXPERIMENTS.
SHOWN ARE THE TOTAL NUMBER OF INSTANCES, ATTRIBUTES, UNIQUE

LABELS n, DIFFERENT GRADES m, THE AVERAGE GRADE INDEX AND THE
FREQUENCY OF THE SPECIFIC GRADES µi APPEARING IN THE

LABEL–INSTANCE MAPPINGS.

Avg. Distribution of grades µi, i =
Dataset Instances Attributes Labels Grades Grade 1 2 3 4 5

BELA-E n=5 1930 45 5 5 2.50 7.95 13.04 23.89 31.43 23.69
BELA-E n=10 1930 40 10 5 2.50 7.95 13.04 23.89 31.43 23.69

MOVIES 1967 27002 5 4 0.72 50.26 31.13 15.18 3.43 –
MEDICAL 1953 1602 204 4 0.02 99.08 0.31 0.24 0.37 –

Movies: We collected a dataset from the German TV
program guide www.TVSpielfilm.de which rates movies by
assigning grades from ‘0’ to ‘3’ to the categories ‘fun’, ‘ac-
tion’, ‘sex’, ‘suspense’ and ‘sophistication’ rather than giving
an overall rating. For characterizing the 1967 movies, we
extracted the titles, the associated summary texts and other
information from www.imdb.org and applied stemming, stop
word removal and TF-IDF weighting.

Medical: The MEDICAL dataset consists of 1953 free
text radiology reports. Three expert companies were asked
to annotate them with a set of ICD-9-CM diagnosis codes.
In contrast to the original multilabel dataset, we generated
a GMLC dataset by considering the level of agreement as
grade of assignment. Note that it lies in the nature of the
problem that labels are very likely to be absent. The texts
were processed as for MOVIES but we used the absolute term
frequency in contrast to TF-IDF.

B. Experimental setup

All proposed approaches were implemented as part of the
LPCforSOS framework,which is an extension of Weka,3 except
for IBLR-ML, which we obtained from the authors. IBLR-
ML, a combination of instance-based learning with logistic
regression taking into account label dependencies, is a state-
of-the-art multilabel learner proposed by Cheng et al. [2]
for solving the horizontal decomposition. We used J48/C4.5
of Weka as binary base classifier. The complete reduction
approach was implemented by using horizontal reduction with
binary relevance decomposition (BR). For ordinal classification
in the vertical decomposition (F&H), we used Weka’s imple-
mentation of the method of Frank and Hall [6]. All losses (see
below) are computed individually on the instances, averaged
first over all examples in a test fold, and then over all 10 test
folds. In addition, on the BELA-E datasets, we averaged the
results over the 50 versions of each dataset. For calculating
the rank losses for the complete reduction approaches (BR
and F&H), IBLR-ML and horizontal calibrated label ranking
(H-CLR), the predicted grade is used as the score.

C. Losses

For the GMLC problem, Cheng et al. [2] generalized
several common losses for multilabel classification, including
Hamming Loss (avg. deviation from correct grades), Vertical 0-
1 Loss (percentage of labels with incorrectly assigned grades)
and the ranking measure C-Index (pairwise ranking error). We
follow this setup, except for the following slight modification
of the One Error. In addition, we propose optimistic Hamming
loss as a new loss function.

3Cf. http://www.lpcforsos.sf.net and http://www.cs.waikato.ac.nz/ml/weka/.

One Error Rank Loss: This metric is the generalization of
the one error loss for rankings in multilabel classification. It
compares if the highest real grade corresponds to the highest
predicted grade. Contrary to [2], we use a version that can be
zero:

ONEERR
(
ŷix, y

i
x

)
=

1

m− 1
AE

(
max
1≤i≤n

ŷix, max
1≤j≤n

yjx

)
with AE : M×M→ N, AE (µi, µj) = |i− j|.

Optimistic Hamming Loss: Under some circumstances,
CLR tends to under- or overestimate the correct position of
the virtual label. In order to be independent of such an effect,
we follow the idea of [5] and propose to evaluate the ranking
performance by cheating on the correct positioning of the
virtual labels: we place the cutting points in hindsight so that
the distribution of grades corresponds to the real one. In a
way, this allows us to compute the regret of using a specific
cutting technique. More precisely, we find the partitioning
P̂ ′′1x , P̂ ′′2x , . . . over the predicted ranking such that |P̂ ′′ix | =
|P ′ix | and sx(λu) ≤ sx(λv) if λu ∈ P ′ix , λv ∈ P ′jx , µi ≺ µj .
Given the corresponing prediction ŷ′′, we obtain the optimistic
Hamming loss as OPTHAMMLOSS = HAMMLOSS (ŷ′′x,yx).

D. Results

The experimental results are summarized in Table III. The
first observation is that BR, i.e., the complete reduction using
horizontal and vertical cuts, is usually outperformed by the
pairwise approaches, even for Hamming loss. Moreover, BR
is always outperformed by F&H, even though both classifiers
are trained equally. The difference is due to the different ag-
gregation strategies of the predictions of the binary classifiers
(see Sec. III), and obviously, the more sophisticated approach
by Frank and Hall pays off for these datasets.

The next observation is that the approach using IBLR-ML
shows even worse results than BR. This is surprising, since
it does not correspond to the results reported by Cheng et al.
[2], where BR is beaten by IBLR-ML, although we used the
code provided by the authors. A reason might be that the 50
sub-datasets are obviously not exactly equal due to the random
initialization. Furthermore, we used a different base learner for
BR which explains the differences for this algorithm, but not
the ones for IBLR-ML, which was used exactly the same way
as in Cheng et al. [2].

Still, our results for C-Index and one error seem more
reasonable to us since IBLR-ML uses the same overestimating
aggregation as BR. H-CLR also uses this aggregation but
pairwise classification is an ensemble method and thereby is
more robust to noise predictions of single classifiers.

Interestingly, the approach using vertical reduction (F&H)
seems to perform quite competitive w.r.t. other approaches,
especially for Hamming and vertical 0-1 loss. This may show
that preserving and focusing on the information about the
grades (vertical) is more important for GMLC than considering
the relations between the labels at each grade (horizontal). On
the other hand, horizontal CLR outperforms F&H on exactly
these both losses (except for MEDICAL, where they perform
equally). On the BELA-E datasets, all approaches are pairwise
statistically significantly different with α = 0.01 (sign test).



TABLE III. RESULTS OF THE THREE PAIRWISE GRADED MULTILABEL ALGORITHMS IN COMPARISON TO IBLR-ML AND TWO BENCHMARKS. IN
ADDITION TO THE RESULTS OF THE FIVE DIFFERENT LOSS FUNCTIONS IN TERMS OF PERCENTAGE (×100), WE SHOW THE STANDARD DEVIATION FOR

BELA-E AND THE AVERAGE RANK OF EACH ALGORITHM ON THE PARTICULAR DATASET IN PARENTHESIS.

Dataset Evaluation Measure IBLR-ML BR F&H Full CLR Joined CLR Horizontal CLR
Hamming Loss 27.23 (4)± 4.51 28.07 (5)± 2.62 16.08 (2)± 1.65 33.97 (6)± 5.79 17.96 (3)± 1.31 15.77 (1)± 1.53
Optimistic Hamming Loss – – – 11.00 (2)± 1.70 9.62 (1)± 1.45 –

BELA-E n = 5 Vertical 0-1 Loss 69.39 (5)± 5.39 61.27 (3)± 4.19 51.97 (2)± 3.68 73.44 (6)± 7.58 61.82 (4)± 3.61 51.90 (1)± 3.52
C-Index 49.55 (6)± 8.44 32.63 (5)± 3.19 24.34 (4)± 4.25 20.38 (2)± 4.13 18.16 (1)± 3.68 23.88 (3)± 4.11
One Error Loss 27.80 (6)± 7.46 12.89 (5)± 3.20 11.35 (4)± 2.45 8.50 (2)± 2.25 7.19 (1)± 1.82 11.06 (3)± 2.31
Hamming Loss 27.27 (4)± 3.83 27.77 (5)± 1.83 16.04 (2)± 1.04 35.44 (6)± 3.70 17.92 (3)± 0.87 15.13 (1)± 0.95
Optimistic Hamming Loss – – – 12.70 (2)± 0.94 12.03 (1)± 0.91 –

BELA-E n = 10 Vertical 0-1 Loss 69.95 (5)± 4.16 61.17 (3)± 2.69 51.97 (2)± 2.23 75.11 (6)± 4.47 61.76 (4)± 0.87 50.45 (1)± 2.15
C-Index 50.37 (6)± 6.98 32.85 (5)± 3.45 24.14 (4)± 2.68 18.57 (2)± 2.27 17.58 (1)± 2.14 22.78 (3)± 2.53
One Error Loss 34.47 (6)± 9.23 17.03 (5)± 4.38 12.92 (4)± 2.53 8.19 (2)± 1.67 7.77 (1)± 1.28 11.56 (3)± 1.93
Hamming Loss 32.33 (5) 21.94 (3) 18.95 (2) 76.51 (6) 25.32 (4) 17.73 (1)
Optimistic Hamming Loss – – – 9.58 (2) 8.98 (1) –

MOVIES Vertical 0-1 Loss 67.34 (5) 50.85 (3) 47.86 (2) 96.50 (6) 67.16 (4) 44.70 (1)
C-Index 33.98 (6) 30.86 (5) 23.12 (4) 15.43 (2) 14.74 (1) 21.40 (3)
One Error Loss 15.43 (5) 18.43 (6) 14.24 (4) 9.30 (2) 7.75 (1) 12.21 (3)
Hamming Loss 1.30 (3) 0.31 (2) 0.26 (1) 3.00 (4) 10.34 (5) 0.26 (1)
Optimistic Hamming Loss – – – 0.23 (1) 0.31 (2) –

MEDICAL Vertical 0-1 Loss 2.07 (3) 0.62 (2) 0.60 (1) 3.81 (4) 21.87 (5) 0.60 (1)
C-Index 49.96 (6) 18.40 (5) 10.73 (3) 3.27 (1) 5.20 (2) 12.06 (4)
One Error Loss 90.89 (6) 20.93 (5) 11.76 (3) 10.44 (1) 10.65 (2) 12.71 (4)

The results of the different calibrated label ranking ap-
proaches show a high correspondence to their inner struc-
ture. Full CLR shows the highest Hamming and vertical 0-
1 loss among the approaches. When looking at its optimistic
Hamming loss and the quite good C-Index and one error, this
seems to be clearly just a problem of the correct positioning
of the virtual labels due to the narrowness and thus ties in the
rankings (see IV-D). Joined CLR shows a similar behavior. On
all but one dataset, it has the best results among the approach
for all three ranking losses. The somewhat worse results on
the medical dataset suggest that Joined CLR has problems on
datasets with many labels being assigned too extreme low or
high grades (see Tab. II).

As already mentioned, Horizontal CLR outperforms all
other approaches w.r.t. Hamming and vertical 0-1 loss. This
is very likely due to the easier positioning of the single
calibrating label, especially in comparison to full CLR but also
to Joined CLR. On the other hand, Horizontal CLR reveals its
disadvantages regarding the prediction of good rankings. It is
the worst approach compared to the other pairwise methods
w.r.t. C-Index and one error. It seems very obvious that the
aggregation strategy of selecting the highest seen grade for
each label, also used by BR and IBLR-ML and proposed by
Cheng et al., is not advantageous w.r.t. ranking quality.

In summary, the pairwise approaches generally outperform
all other approaches on the used ranking losses. Especially the
full and joined decompositions provide a clear advantage when
good label rankings are important. On the other hand, if we
desire good predictions for each label independently (hence
for each ordinal problem separately), then Horizontal CLR is
the most appropriate method among all evaluated techniques
in our experiments.

These two main results make us confident that learning by
pairwise comparisons has a natural access to the inner structure
of GMLC problems. Moreover, it was shown that pairwise
learning provides a flexible adaptation to different objectives
by adjusting decomposition and aggregation. The very low
optimistic Hamming losses of the CLR approaches additionally
promise an even better result through finding a better way of

positioning the virtual labels into the global ranking.

VI. CONCLUSIONS

In this work, we introduced pairwise comparisons for repre-
senting and learning graded multilabel classification (GMLC)
problems, which are a combination of ordinal and multilabel
classification problems, where each instance is associated with
several different grades of relevance to multiple categories.
To be able to solve such problems by learning from pairwise
comparisons we generalized Calibrated Label Ranking to the
case of multiple calibration labels in three different ways,
and experimentally compared these approaches to previous
work by Cheng et al. [2] on three different datasets. In these
experiments, our approaches achieved the best results in all
measured losses.

Nevertheless, we believe that we have not yet fully ex-
ploited the information that is inherent in GMLC problems.
In particular, we believe that pairwise comparisons have the
capacity to achieve even better results by improving the way
the predicted ranking is separated into grades. In future work,
we plan to investigate alternative aggregation strategies to the
horizontal reduction, the use of different voting strategies like
weighted voting, as well as novel approaches for introducing
the virtual labels into the label rankings.
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