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Abstract

With an increasing number of embedded sensing computer systems set up in production
plants, machines, cars, etc., there are new possibilities to monitor and log the data from
such systems. This development makes it possible to detect anomalies and predict the
failures that affect maintenance plans.
This thesis divides the field of failure type detection and predictive maintenance into
subsections that focus on its realization by a machine learning technique, where each
area of failure type detection and predictive maintenance explains and summarizes the
most relevant research results in recent years. Each technique introduced is considered
from a failure type detection and predictive maintenance perspective, highlighting its
assets and drawbacks. An overview in tabular form shows the direction of the current
research activities. It will be shown that many issues in the area of feature extraction,
feature selection, and data labeling have not been researched so far.

Zusammenfassung

Die zunehmende Anzahl eingebetteter Sensorsysteme, die in Produktionsanlagen,
Maschinen, Autos, usw. implementiert werden, eröffnet neue Möglichkeiten, um ein
solches System zu überwachen und Objektdaten zu erfassen. Diese Entwicklung er-
möglicht es, Anomalien zu detektieren und Fehler, die wiederum Auswirkungen auf
Wartungspläne haben, vor dem eigentlichen Auftreten zu erkennen.
Diese Arbeit teilt das Forschungsfeld der Fehlertypenkennung und prädiktiven Wartung
in Teilgruppen auf und fokussiert sich auf Umsetzungen mithilfe maschineller Lernver-
fahren. Jeder Teilbereich der Fehlertypenkennung und prädiktiven Wartung wird erk-
lärt und die Forschungsergebnisse der letzten Jahre in den einzelnen Bereichen zusam-
mengefasst. Jede vorgestellte Technik wird mit deren Vor- und Nachteile für die Fehler-
typenkennung und prädiktiven Wartung betrachtet. Ein tabellarischer Überblick zeigt
die aktuelle Forschungsrichtung der Teilbereiche. Weiter werden Problemstellungen in
den Bereichen Feature-Extraction, Feature-Selection und Data-Labeling aufgezeigt, die
bislang noch nicht untersucht worden sind.
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1 Introduction

As awareness increases of the Internet of Things, more possibilities open up to connect
physical objects with one another, making possible access to object-related data, such
as sensor data and reports. This represents a huge amount of data that can be used in
many ways. One possibility is predictive maintenance, where the data is used to detect
upcoming failures before they occur, and schedule maintenance actions. The task of
predictive maintenance is to determine when a machine must be maintained. Assessing
the failure that occurs is called ’failure type detection’ in this thesis. Failure type detec-
tion and predictive maintenance are related to each other. But there is also a difference
between them. For example, sometimes it is not possible to detect the type of failure but
an anomaly can be discerned. Thus, the task of predictive maintenance can be fulfilled,
as well as there is no failure type detection possible. On the other hand, failures that
occur could be detect and distinguished from one another. In this case, the failure type
detection works, but by the time the failure is detected, it is too late to schedule any
maintenance action.
A good technique in this area can lower the costs of damage, improve security and re-
duce the number of unnecessary maintenance actions. The process of such a technique
consists of several areas as self-research fields. The structure of this thesis is related to
this process. More types of models are briefly introduced in the following (see Chapter
3). Such a model can be very different from one implementation to another. Before
the data can be analyzed, it must be determined how the data can be acquired, what
kind of data is accessible, and which format it takes. This area is called data acquisition,
whereby the following techniques depend upon its results (see Chapter 4).
After the data is acquired, it has to be processed. The steps from the raw data to the fea-
tures are called feature engineering and involve signal processing, feature extraction,
and feature selection (see Chapter 5).
Before a data-driven approach can analyze the data from a real-world system, the ap-
proach has to learn the relation between a given input and expected output. This is
usually done by analyzing and labeling historical data. Data labeling techniques are
discussed in Chapter 6.
There is a very wide range of machine learning techniques that learn the relation be-
tween a given input and expected output. This thesis discusses the most commonly used
techniques in recent literature for failure type detection and predictive maintenance are
discussed. Chapter 7 describes the difference between parametric and non-parametric
approaches and every single approach with a focus on failure type detection and pre-
dictive maintenance.
To evaluate the different approaches, the common evaluation strategies used in recent
literature are not satisfactory. The most likely reasons and a completely new approach
are discussed in Chapter 8.
The conclusion discusses the results from the thesis, and then briefly introduces the
outlook on future works (see Chapter 9).
This thesis, a survey of more than sixty papers published during the last five years, fo-
cuses on approaches to solve problems related to failure type detection and predictive
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maintenance problems. Surprisingly, the approaches of feature selection, feature extrac-
tion, and data labeling are not well researched in the papers mentioned herein; these
steps are very important for choosing the right machine-learning approach from an an-
alytical point of view, and receive a good accuracy of a system. All papers reviewed
choose the machine learning technique by empirical experimentation. Dependent to
this there are two main parts. The first one is about signal processing, which is very
well researched in the recent literature. For building up ideas for feature selection,
feature extraction or data labeling techniques in the context of failure type detection
and predictive maintenance, the understanding of this signal processing is essential.
The second part is about machine learning, a key technology in a failure type detection
and predictive maintenance scenario. In this scenario there is a variety of techniques
used, which will be discussed with their pro and cons. One can derive other tendencies
from the usage of a given machine learning technique, but as mentioned above, there
is currently no analytical decision process available for choosing a machine learning
technique, which, therefore, makes a broad overview useful and appropriate.
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2 Related Work

In recent literature, surveys have focused on failure type detection and predictive main-
tenance techniques. [79] provides a short summary about the current literature. The
paper does not introduce the entire process, nor goes into detail about every research
area like the one covered in this thesis. Sheng Si et al. provides a review of statisti-
cal driven approaches in [84], focusing on parametric machine learning approaches.
In contrast, this thesis explains the whole process with a focus on non-parametric ap-
proaches, because such techniques have been much more commonly used in research
literature in recent years. Peng et al. [70] describe the process of a failure type de-
tection and predictive maintenance approach, focusing on data-driven methodologies,
whereby knowledge-based and physical model-based techniques are introduced. The
other process steps are not discussed in such detail as compared to the present thesis.
Jardine et al. reviewed machinery diagnostics and prognostics implementing condition-
based maintenance in [48], describing data acquisition, data processing, maintenance
decision support and multiple sensor data fusion. However, given that this paper is from
2006, this present thesis contains more recent information about trends and technology.
Moreover, it also does not discuss the feature extraction, data labeling and evaluation
strategies. Feature selection, and machine learning approaches are not discussed in
such detail as in this thesis.
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3 Prognosis and Analysis Models

In this thesis, a model describes the behavior of a real world system across its lifetime.
As in real world systems, a model typically displays dynamic behavior, which is impor-
tant for a prognosis of a future state, or to analyze the current state of a real world
system. Thus, a prognosis model realizes predictive maintenance tasks and an analysis
model is used for failure detection. As described above in Chapter 1, failure type detec-
tion and predictive maintenance are related to each other; therefore, a prognosis model
is related to an analysis model.
There are many possibilities to build such models. Every prognosis and analysis system
works in the same abstract manner (see Figure 3.1). The data of a real world system
has to be collected before the feature engineering is able to transform the data into a
representation that the model can process. Finally, after the model has processed the
data, the prognosis and analysis system outputs the results.
The following subsections describe the classes into which the model approaches can be
categorized.

Feature 

Construction

Feature 

Extraction
Model

Feature 

Selection

Figure 3.1: Workflow of prognosis and analysis System

3.1 Physical Model-Based Methodology

Physical models are usually realized on the basis of mathematical models. Differential
equations are used to specify physical processes that have an influence on the health of
related components. Such models are created by domain experts (see Figure 3.2). They
must have knowledge about the physical process of a given real world system, as well
as skills in modeling such systems. After modeling a system, the resulting model has
to be validated using a large set of data to verify the correct behavior. If the model is
implemented correctly, monitoring systems can be used to collect the input parameters
of the model. The model will produce the output value, and statistical techniques are
used to define the threshold for detecting the state of the real world system with the
given output.
Physical models are useful for very dynamic real world systems under many operation
conditions. Creating a physical model requires a very high understanding of the real
world system. Usually, the correctness of analysis and prognosis for given monitored
parameters increases with the complexity of the model.
Among the disadvantages of such models are their high costs and the component spe-
cialty, which means that they cannot be applied to other types of components [14].
Moreover, it is very difficult to build a physical model with a good accuracy, because
real world systems are influenced by a lot of environmental factors that are hard to
monitor. Physical models are usually researched by the same disciplines that research
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the real world system. For example, the physical model of electronic circuits are im-
plemented and examined in the area of electronic engineering, and the physical model
of mechanical components are implemented and examined in the area of mechanical
engineering. This thesis focuses on data-driven models because they are more generic
and can be implemented in different real world systems. For more information about
physical models, please consider references [68], [62] and [69].

Domain Expert

Model

cr
e
a
te

Historic Data

Current Data

va
lid

ate

analyze

compute

Resultcreate

cre
ate

Real World System

Figure 3.2: Workflow of a physical model

3.2 Knowledge-Based Models

Knowledge-based methodology, like physical model-based methodology, is created by
domain experts, although there is no mathematical model to cover its physical behavior.
The quality of a knowledge-based model depends on the experience of the domain
expert. Such systems try to formalize the knowledge of the domain expert. In the
fowling the expert models and fuzzy logic describe the most common technologies in
the research area of failure type detection and predictive maintenance.

3.2.1 Expert models

Expert models are suitable for problems which are usually solved by specialists. They
are defined by rules and describe states of a real world system. Rules are expressed
in the form: IF condition, THEN consequence, ELSE consequence. Such rules can be
combined with logic operators. Conditions describe a state of the real world system,
with the consequence of a result, or another rule.
It is difficult to obtain domain knowledge and convert it into a rule-based system [98].
An expert model cannot handle situations that are not covered in the rule-based system.
Furthermore, an expert model can run into a combinatorial explosion, which occurs

5



when the number of rules dramatically increases. Therefore, an expert model is not
suitable as standalone approach for failure type detection and predictive maintenance
in a real-world system. [121] define an expert model and refine them with a data-driven
approach, which will be introduced in Section 3.3. This solution achieves results better
than either, the data-driven model, or the expert model alone. Accordingly a simple
expert model can be used in combination with a data-driven approach to converge
faster and nearer to the optimal solution.
In [18] Butler proposed a framework, based on the expert model, for incipient failure
type detection and predictive maintenance. Biagetti and Sciubba created a prognostic
and intelligent monitoring expert system, which detects faults in real time and provides
forecasts for detected and likely faults. Furthermore, the system gives suggestions on
how to control the problem [11].

3.2.2 Fuzzy logic models

Fuzzy logic [114] is a simple way to describe a real-world system based on vague, im-
precise, noisy or missing inputs. It is a superset of the conventional Boolean logic. The
main difference between a conventional Boolean logic and fuzzy logic is the decision-
making process. With the conventional Boolean logic, an element is either a member of
a set or not. For a given element, the fuzzy logic returns the degree of membership to a
set. With a fuzzy logic model, states can be described in a continuous and overlapping
manner, like the state transitions in a real world system. Therefore, a description of a
real world system in fuzzy logic is more intuitive and less specific than a numerical or
mathematical description. A fuzzy logic model can create simpler, more intuitive and
better behaved models [70].
As described above, fuzzy logic states can be overlapping. Every input value belongs to
a fuzzy rule with a degree of membership. The range covering the degree of member-
ship starts from 0 (definitely not a member) to 1 (definitely a member). In contrast to
conventional Boolean logic, whether an input value matches a rule or not, a fuzzy logic
model can consider all degrees of membership. This means that all degrees of member-
ship can influence the result and the rule, which represents a state, whereby the highest
numerical result is not automatically the state of the calculated result .
In [36] Frelicot developed a prognostic adaptive system based upon fuzzy pattern recog-
nition principles. The fuzzy classification rule performs fault detection, including mem-
bership rejection (non-detection) and multiple detection. Choi et al. designed an alarm
filtering and diagnostic system based upon an online fuzzy expert model [22].

3.3 Data-Driven Models

Data-driven models are based upon statistical and learning techniques. In this thesis,
the learning techniques of machine learning involve developing software that optimizes
a performance criterion on the basis of historical data and/or experience. With the
growing number of sensors in a real-world system, the possibility to detect its behavior
and the current state increases. Therefore, most approaches in recent literature to fail-
ure type detection and predictive maintenance account for data-driven models. These
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models are more generic than physical and knowledge base models. Hence, this thesis
focuses on data-driven models for failure type detection and predictive maintenance.
Algorithms behind data-driven models are determined from the given data. There are
three different learning techniques, which are described in the following sections.

3.3.1 Supervised learning

In supervised learning, data collected in the past from a real-world system is used. This
data set is termed historic data in this thesis. As not all collected data records can be
used as learning examples, the data has to be filtered. Each record of training data is
labeled according to its expected result. The resulting data set is termed training data.
It is processed by a machine learning technique, which is discussed in Chapter 7. This
technique examines the relationship between a data record and the labeled output, and
then creates a data-driven model. For any new data, the data-driven model tries to give
the best result based upon the data learned. Figure 3.3 visualize the described work
flow of a supervised learning data-driven model.
In the area of failure type detection and predictive maintenance, the supervised learning
technique is the most commonly used learning technique, because the real world system
is monitored and the historic data is available. Moreover, the historic data can relate
to the real-world system state. This improves the accuracy prior to the system going
online.
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Data
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Figure 3.3: Supervised learning

3.3.2 Unsupervised learning

In other data-driven model problems, the historic data has no corresponding target val-
ues. The scope of such unsupervised learning issues is to find or discover groups of
similar examples within the historic data. This process is called clustering. Another
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aim of the unsupervised learning approach can be to determine the distribution of data
within an input space, in a process called density estimation. Figure 3.4 shows the work
flow of an unsupervised learning data-driven model.
For failure type detection and predictive maintenance problems, the unsupervised learn-
ing technique is an unusual learning technique, because the clustering and density
estimation of the historic data is not efficient for precise failure type detection and
predictive maintenance. In the recent literature of failure type detection and predictive
maintenance, there is no approach uses the unsupervised learning technique, so it is
mentioned in this thesis as a matter of completeness.
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Figure 3.4: Unsupervised learning

3.3.3 Reinforcement learning

The reinforcement learning technique of [88] has tried to find a suitable result for the
given input data. Unlike the other learning techniques, it has no learning phase for his-
toric data. Thus, the machine learning algorithm is based on a trial and error scheme.
At the beginning of the learning phase, a machine learning algorithm, in respect to some
aspects, defines a data-driven model. Consequently, the aspects of the machine-learning
algorithm that define the data-driven model must also be defined. This model creates a
result, depending on the current data in the real-world system. That result will be as-
sessed if it matches the expected result. The machine-learning algorithm received this
assessment as feedback about the quality of the result, from which the machine learning
algorithm propagates more successful strategies and rejects unsuccessful ones. Figure
3.5 visualize the reinforcement learning technique.
However, the supervised or unsupervised learning technique can be used in combina-
tion, whereby the machine learning approach first learns from historic data (labeled or
not). The reinforcement learning is widely used in data-driven models, where the re-
sult is an action. For example, by using the reinforcement learning technique, a machine
learning technique (see Section 7.2.4) can learn to play Backgammon in expert mode
[93]. There are two instances of the machine learning technique playing against each
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other. In this particular example, the current data is the board position. The result is the
outcome at the end of the game (win or lose). With this result, the machine learning
algorithm proliferates more strategies where it won a game and rejects strategies where
it loses.
In recent literature of failure type detection and predictive maintenance, there is no
approach in which the reinforcement learning technique is used, because the learning
process happen under runtime condition. This implies that a wrong estimate regarding
the state of a real-world system could have disastrous consequences. But as mentioned
above, the supervised learning technique in combination can refine a data-driven model
in runtime mode, which is impossible using supervised learning alone.
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Figure 3.5: Reinforcement learning

3.4 Combinations

As mentioned above, there are three different types of models. The physical model, the
knowledge-based model and the data-driven model are clearly distinct from one an-
other. Nonetheless, there are possibilities to gain advantage by combining the different
types of models.
There are some implementations that use combinations of a data-driven model with the
supervised learning technique and an expert model. These models try to use the domain
knowledge of an expert model with the collected real-world information of data-driven
models to achieve better results. Such a model will be discussed in Chapter 7.

3.5 Summary

This chapter provided an overview and classification of different types of failure type
detection and predictive maintenance models. The advantages and drawbacks of each
type of model were briefly introduced. As established in Chapter 1, this thesis focused
on the data-driven models. Therefore, the different learning strategies of data-driven
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models that are relevant to the area of failure type detection and predictive maintenance
are introduced. A decision tree can help in finding and selecting the right model for a
given failure type detection and predictive maintenance issue (see Figure 3.6).
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Figure 3.6: Decision tree to visualize the selection process of a prognosis and analysis
model for failure type detection and predictive maintenance.
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4 Data Acquisition

Every failure type detection and predictive maintenance approach begins with the data
acquisition part. Therefore, the decision of the data acquisition technique influences the
steps of the work flow displayed in Figure 3.1 as follows. In most cases, a failure type
detection and predictive maintenance approach is implemented along with an existing
data acquisition technique. The focus of an existing data acquisition technique does not
necessarily correspond to the major aim of a failure type detection and predictive main-
tenance approach. For example, the primary objective of the sensor data acquisition
task is to attain energy efficiency and reduce communication costs [2]. If such a system
exists, the failure type detection and predictive maintenance approach try to optimize
the outcome of the given data acquisition technique.
Data acquisition techniques collect information about a real-world system, using dif-
ferent sources. The most important data types of failure type detection and predictive
maintenance are described in the next subsections, followed by a subsection about dif-
ferent data acquisition techniques.

4.1 Types of Data

Data acquisition systems, as well as the signal processing described in Section 5.1, needs
to know the type of the data the are dealing with. The two most important types of data
for failure type detection and predictive maintenance are data gathered by sensors and
data gathered by logfiles:

4.1.1 Sensor data

In recent years, sensors have become smarter, smaller, easier to implement in existing
systems, as well as cheaper and more reliable [99]. A sensor converts physical values
into electrical values (voltage, current or resistance). Usually, one sensor measures
one mechanical value; for example, the mechanical values of acceleration, pressure,
flow, torque and force. With this mechanical value, one can interpret the vibration data,
acoustic data, temperature, humidity, weather, altitude, etc. Table 4.1 shows a summary
of the components and the mechanical values usually acquired. As described in [48],
this data falls into three categories:

• Value type:
Data collected at a specific time epoch for a condition, whereby monitoring vari-
ables are of a single value.

• Waveform type:
Data collected at a specific time epoch for a condition, whereby the monitoring
variables are of a time series, which is often called time waveform. For example,
vibration data and acoustic data are of the waveform type.

• Multidimension type:
Data collected at a specific time epoch for a condition, whereby the monitoring
variables are multidimensional. The most common multidimensional data is image
data, such as infrared thermographs, X-ray images, visual images, etc.
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A good description about sensor data in a data acquisition system can be found in [7].
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Pump X X X X X X X

Valve X X X

Motor / Fan X X X X X X X

Heat Exchangers X X X X

Steam Turbine X X X X X

Electrical & Electronic
Equipment

X X X X X

Cables and Connectors X X X X X

Pump Seal X X X X

Piping / Structures X X

Compressor X X X X

Table 4.1: Real world system components and their measurable mechanic value [39]

4.1.2 Logfiles

Events of a system can be recorded to a logfile. In this manner, the declaration of an
event is very broad. A changing value can be such an event, as it executes a maintenance
action. Logfiles can only contain fused sensor values. Descriptive log files can be written
by humans describing maintenance actions, or any failures or errors detected.

4.2 Data Acquisition Techniques

In failure type detection and predictive maintenance, there are two major data acquisi-
tion techniques, either push- or pull-based data acquisition techniques. In a pull-based
data acquisition system, the user defines a query and sends it to the system which will
then return the matched value. The frequency the query has to be executed can be
determined in the query itself, or by submitting the query in the desired frequency.
In push-based data acquisition systems, a former described state or a behavior will be
communicated by system autonomously whenever values recently changed. Figure 3.1
shows the push- and pull-based method.
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The following subsections discuss examples of the most commonly used push- (see Sec-
tion 4.2.3) and pull-based (see Section 4.2.1 and Section 4.2.2) methods for data ac-
quisition systems of failure type detection and predictive maintenance.

1. query

1. behavior

2. changed values 

2. valuesData 
Aquisition 

System

User of the 
Data 

Aquisition 
System

push-based

pull-based

Figure 4.1: Push- and pull-based data aquisition techique

4.2.1 Real time

The real-time data acquisition technique is pull-based. Essentially, there is no system
that can process data without any delay, although in terms of failure type detection and
predictive maintenance, real-time means that there is no perceivable delay. A paral-
lelization of the data acquisition is often possible solution when it has to be conducted
in real-time, and the data acquisition technique represents a bottleneck in the failure
type detection and predictive maintenance workflow. However, this decision of parallel
data acquisition can influence the remaining failure type detection and predictive main-
tenance workflow steps (see Figure 3.1).
The fastest way is usually the detection of state changes in a real world system with
real-time data acquisition systems, where significant data has to be transferred. As
discussed in Chapter 4, the costs of energy efficiency and communication are high in
real-time systems. Moreover, a real-time system may transfer a considerable amount of
useless information to a failure type detection and predictive maintenance system.

4.2.2 Interval

In some cases, it is not possible or necessary to use a real-time data acquisition tech-
nique. In contrast to a real-time data acquisition system, an interval data acquisition
system sends the acquired data in time intervals. An interval data acquisition system
represents a pull-based system. The time interval for transferring the data to the user
can be of different lengths, especially when the transfer is constrained by thresholds of
values.
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This type of system is used when communication costs are high. In some cases, it is
necessary to have synchronized clocks with the communication partner. They have to
determine a interface for how and what data has to be exchanged. Such interfaces
can differ, from being very abstract (i.e., all values will be transferred) to very special
(transfer a value only when a constraint is fulfilled). The more abstract the interface is
specified, the more users can use the interval data acquisition technique with different
requirements.

4.2.3 Event driven

The event driven data acquisition technique is push-based. Such systems are also called
pub/sub systems [34], because the user of such systems subscribes to a publisher of
events. In failure type detection and predictive maintenance, a subscription is a defi-
nition of behavior of the real-world system that the user wants to observe. The data
acquisition system publishes the value changes detected (called Event) and sends them
to all users registered to this value or the properties of the value change.
In terms of failure type detection and predictive maintenance, an event in an event-
driven data acquisition can have many interpretations. An event can represent a value
change in a critical way, or it can be a combination of value changes with or without any
special order. Usually, in failure type detection and predictive maintenance, an event
does not represent a state change of the real-world system, although it can lead to a
state change.
Event-driven data acquisition systems has had a growing significance in the recent years
[8]. In many distributed systems, it is a good opportunity to design the communication
among anonymous parties. In some cases, an event-driven data acquisition can increase
the memory consumption and processing time of the system, because a complex event
depending on several parameters may need to store values for a long time and may
have many rules to check [15].

4.3 Summary

This section presents the different approaches to acquire data and describes the most
common types of data in a real-world system. Usually, most of this systems use an ex-
isting data acquisition system with a failure type detection and predictive maintenance
approach.
An event-driven system is a specific system for a given failure type detection and predic-
tive maintenance task. A well-designed event-based system can reduce the volume of
data, and thus the computational costs. But the effort for designing and implementing
such a system is high. In addition, expert knowledge is required to determine when and
what kind of event will occur.
The simplest and most generic data acquisition system is the real-time approach. All
available data are transferred in real time, where the subsequent processes selects the
relevant data. Such a data acquisition technique increases the communication and com-
putational costs of the failure type detection and predictive maintenance technique.
Between the event-based data acquisition technique and the real-time data acquisition
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technique, which represent the two extremes when considering the costs and benefits,
the interval data acquisition system is a compromise. On the one hand, an interval data
acquisition system can be simply designed with a fix interval, where the computational
and the communication costs depend on the length of the interval. A long interval has
the drawback that critical issues may be detected too late, whereas a short interval in-
creases the computational and communication costs. A dynamic interval could solve
the described problem as such, but will then increase the implementation costs, as well
as requiring domain knowledge.
The next section discusses how a data-driven system preprocesses the acquired data and
learns from it.
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5 Feature Engineering

The observing of a property by machine learning is called a feature. Usually more than
one feature is observed at a time and the more independent these features are from one
another, the greater the effort for the machine learning approach. The set of features
for a machine learning approach is called the feature vector.
For most failure type detection and predictive maintenance applications, the values
obtained from the data acquisition system must typically be preprocessed before trans-
forming them into a new space of variables for better performance of the machine
learning algorithm [117]. These preprocessed values from the data acquisition system
are an example of a feature vector. In this paper, the preprocessing stage is called fea-
ture engineering. Feature engineering is not a formally defined term; rather, it is much
more a series of tasks related to designing feature sets for machine learning applications.
The most important processes of the feature engineering for failure type detection and
predictive maintenance are as follows:

• Signal Processing
The interpretation, generation and transformation of raw unprocessed data.

• Feature Selection
Selects a subset of the most representative features.

• Feature Extraction
Generate new information by combining features.

Figure 5.1 shows the work flow of feature engineering within these components. The
following sections describe the main components of the feature engineering process
from a failure type detection and predictive maintenance perspective.
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Figure 5.1: The feature engineering process
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5.1 Signal Processing

The interpretation, generation and transformation of raw unprocessed data is called
signal processing. As mentioned in Section 4.1.1, the data, especially the sensor data,
is versatile. Signal processing uses mathematical, statistical, computational, heuristic
and/or linguistic representations, formalisms, modeling techniques and algorithms for
generating, transforming, transmitting, and learning from analog or digital signals. It
consists of the theory, algorithms, architecture, implementation, and applications re-
lated to processing information, contained in a variety of different formats, broadly
designated as signals. Signal processing may involve filtering, recovery, enhancement,
translation, detection, and decomposition [101]. Moreover, [91] mentions many use-
ful techniques applied for signal analysis. This thesis will focus on waveform signal
processing because many failure type detection and predictive maintenance approaches
discussed in Chapter 7 are based upon waveform data. These techniques can be classi-
fied into three types: time domain, frequency domain and time-frequency domain.
In recent research of failure type detection and predictive maintenance, sensor signals
that have time and frequency components (i.e., vibration signal, acoustic signal) to an-
alyze are the most common type of signal for detecting the state of a real world system.
Therefore, the time-frequency analysis (see Section 5.1.3) is the most common tech-
nique. For a better understanding of the time-frequency analysis, the time-domain (see
Section 5.1.1) and the frequency domain analysis (see Section 5.1.2) with the popular
Fast Fourier Transformation is introduced. At the end of the signal processing section,
Table 5.1 provides an overview of the recent research literature of failure type detection
and predictive maintenance that mention the signal processing part.

5.1.1 Time domain analysis

Time domain analysis is an analysis of a waveform. From a mathematical perspective,
the waveform of a signal is a chronological sequence of the value of a random variable.
An example waveform (blue line) is visualized in Figure 5.2. A random variable has
expected value, variance, skewness and kurtosis. The value of these terms are typically
results of a time domain analysis for a given random variable, and can increase the
expressiveness of it.
Time series modeling is an extension of the time-domain analysis [23]. The main idea is
to fit the waveform data to a parametric time series model. The autoregressive model is
a common time series model, which specifies that the output variable depends linearly
on its own previous values [75]. Another time series model is the fractal time series
[59], which detects the dependency of two waveforms, for long-range dependence or
short-range dependence, and global or local self-similarity.
As mentioned in Section 5.1, vibration signals are very common among signals for fail-
ure type detection and predictive maintenance approaches. As with all sensor signals,
noise is a component of vibration signals. Such components can be environmental
conditions or the imprecision of the sensor itself. Noise can distort the result. A spe-
cial time-domain analysis technique for vibration data is the time synchronous average
technique [10] can be used, as it tries to denoise a vibration signal by analyzing exam-
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ples from the real world system. To denoise a given signal, it need to be filtered. This
technique has a large computational cost when filtering the signal in the time domain.
Such filtering operations are simple multiplications in the frequency domain, which will
be discussed below, and therefore the computational effort is lower than in the time
domain.

time

value

Figure 5.2: An example of a waveform (blue line) for a given random variable.

5.1.2 Frequency domain analysis

The frequency domain analyzes a given signal with respect to the frequency. It is not
relevant to know when a signal has a particular frequency; the fraction that a particular
frequency has in the signal is relevant. A signal in the time-domain can be transformed
into the frequency domain and back again. Such a transformation has two reasons.
It is important to know the distribution of the frequency share, and the signal needs
to be filtered. As mentioned in Section 5.1.1, sensor signal have noise components.
These noise components need to be filtered out of the sensor signal. Filtering is usually
performed in the frequency domain, because filtering causes convolution in the time
domain and multiplication in the frequency domain. Therefore, it is considerably more
efficient to transfer a signal from the time domain to the frequency domain, perform
the filtering (multiplication), and transform the filtered signal back to the time domain.
Signals from a data acquisition system are mostly available in the time domain. To
transfer such signals into the frequency domain, the techniques [35] most commonly
used are as follows

• Fourier Transformation

• Laplace Transformation

• Z Transformation
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The time and the frequency components are relevant in recent research on the failure
type detection and predictive maintenance approaches. Accordingly, the frequency do-
main analysis is almost irrelevant. Only the Fast Fourier Transformation is infrequently
used and will be discussed in the following section.

5.1.2.1 Fast Fourier transformation
The signals from a data acquisition system are time discrete and finite, and there-

fore, the Fourier transformation for such signals is called discrete Fourier transforma-
tion [104]. Fast Fourier Transformation (FFT) is an algorithm to efficiently compute
a discrete Fourier Transformation [32]. There are some different algorithms for the
Fast Fourier Transformation, and all of them work with interim results and reduce the
number of arithmetic operations. The complexity of a Fast Fourier Transformation is
represented by O (n log n). The Fast Fourier Transformation of a discrete, finite signal is
explained in [105]. From the results of a fast Fourier transformation some features can
be extracted; for example, the rate of a certain frequency or the most common frequen-
cies (peaks) of a signal. On the left of Figure 5.3 is shown a discrete, finite signal in the
time domain with two different frequencies and different amplitudes, on the right the
FFT of that signal.
The FFT is applied to all values of the signal. Therefore, the frequencies with a very
small percentage of the overall signal can be excluded. In many failure type detection
and predictive maintenance approaches, an upcoming failure is detected with a chang-
ing frequency, but as long as the percentage of the new frequency does not significantly
increase in relation to the overall signal, this could be also interpreted as noise. This is
main drawback of FFT in failure type detection and predictive maintenance.
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Figure 5.3: An example of a signal in time domain (left) and frequency domain after a
FFT (right).

5.1.3 Time frequency domain

A failure type detection and predictive maintenance approach analyzes a given signal
and tries to determine the state of the real world system. The detection of significant
signal changes is a time-based problem. In many cases, the most distinguished infor-
mation is hidden in the frequency content of signals, so signal processing techniques

19



in a time and frequency domain is widely used in literature. The following sections
describe the most common time-frequency domain techniques for failure type detection
and predictive maintenance.

5.1.3.1 Short-time Fourier transformation
The Short Time Fourier Transform (STFT) belongs to the Fourier-related transforma-

tion techniques introduced in Section 5.1.2.1. In contrast to the fast Fourier transfor-
mation, the STFT analyzes a signal for a defined time window only. The STFT solves
the drawback of the Fourier transformation as it evaluates the sinusoidal frequency and
phase content of local sections of a signal as it changes over time. The resolution of a
STFT window function is fixed, which implies that the width of the window is a trade
off between the time and the frequency resolution. A wide window has a good reso-
lution in the frequency domain, but a poor resolution in the time domain, whereas a
narrow window has a poor resolution in the frequency domain and a good resolution
in the time domain. The two different types of resolutions are depicted in Figure 5.4.
Usually, the complexity of the STFT is O (n log n), but there exists some modification of
the STFT algorithm that can achieve the complexity of O (n) [26].
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Figure 5.4: An example of the STFT the rectangle represents the window function,
which either has a good resolution in the time domain, as well as a poor
resolution in the frequency domain (left), or a good resolution in the fre-
quency domain and a poor resolution in the time domain (right).

5.1.3.2 Wavelet transformation
As described before, transforming signals into the time-frequency domain has its

weakness in the resolution. A fix resolution is always a tradeoff between good time
or good frequency resolution (see Section 5.1.3.1). The wavelet transformation (WT)
has a (time) shifted version of the original signal, and it also has a scaled version. This
implies that with the wavelet transformation, it is possible to get a poor frequency and
good time resolution at high frequencies and good frequency and poor time resolution
at low frequencies. This temporal resolution is a key advantage in using the Fourier
transformation. There are two categories of wavelet transformation:
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• Continuous Wavelet Transformation

• Discrete Wavelet Transformation

The continuous wavelet transformation can change the scale continuously in the win-
dow at every iteration, which implies that the resolution of frequency and the time can
change at every iteration to fit the signal as well as possible. The following equation
represents the continuous wavelet transformation:

CW T (a, b) =

α
∫

−α

x(t)ψ∗(a,b)(t)d t (1)

x(t) represents the time function (signal), whereψ∗(a,b)(t) is a continuous function with
complex conjugate in the time and frequency domain. ψ∗(a,b)(t) is called the mother
wavelet and can be expressed as:

ψ∗(a,b)(t) =
1
p

a
ψ
� t − a

b

�

where a, b ∈ R, a 6= 0 (2)

The mother wavelet function is used to generate daughter wavelets, which are a trans-
lated and scaled down version of the mother wavelet. In Equation (1), there are two
parameters, a and b, which adjust the frequency and the time location of the wavelet.
A small a produces a wavelet with a high frequency resolution and a low a produces
a wavelet with a low frequency resolution. b defines the length of the signal in the
current iteration.
For computation, it is more efficient to discretize the continuous wavelet transforma-
tion, which is called discrete wavelet transformation. The most common discretization
is the dyadic method:

DT (a, b) =

α
∫

−α

x(t)ψ∗( j,k)(t)d t (3)

ψ∗(a,b)(t) =
1
p

2 j
ψ

�

t − 2 jk
2 j

�

(4)

[29] and [63] replaced a and b with 2 j and 2 jk, which is the difference between equa-
tion Equation (2) and Equation (4). This implies that the signal x(t) passes through
two complementary filters.
It is possible to transform the same length of a signal more than once with a DWT. This
process is called wavelet packed transformation. The wavelet packet transformation
creates a wavelet tree (see Figure 5.5) of wavelet transformations. The process starts
with the original signal (displayed in Figure 5.5 as C0,0). On every hierarchy level, the
available filter banks in the upper level split the signal with a low-pass and high-pass
filter (displayed in Figure 5.5 as gLP and gHP). This implies that on every deeper hi-
erarchy level, the frequency band is divided by two (displayed in Figure 5.5 as ↓2). A
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Figure 5.5: A wavelet-packet-tree with binary distribution. C0,0 represents the original
signal (mother wavelet). The red elements represent a high-pass filter and
the blue elements represent the low-pass filter [55].
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transformed part of the root signal is the result, and is displayed in Figure 5.5 as c with
two indices. The first defines the hierarchy depth. The second index starts from the
lowest frequency, and ends at the highest transformed frequency. Therefore, a wavelet
packet tree implies that the deeper the level of the wavelet packet tree, the higher the
frequency resolution and the lower the time resolution. The binary distribution on the
frequency domain and the time domain is shown in Figure 5.6. This image illustrates
how the time domain and frequency domain changes from the hierarchy level to hier-
archy level for the same root signal (mother wavelet).
In failure type detection and predictive maintenance, a signal mostly needs a high time
domain resolution and low frequency resolution for high frequencies, and a low time do-
main resolution and high frequency resolution for low frequencies of the given signals,
because failures are often represented as a combination of short recurring frequency
components in a signal. To ascertain such properties, it is useful to create a wavelet
packet tree. Some combinations of wavelets with different resolutions can be signifi-
cant for a failure type detection and predictive maintenance. Figure 5.7 visualizes an
example for a combination of a wavelet packet tree with different transformation levels
and the related scaled window of the time domain and frequency domain.
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Figure 5.6: The change of the time domain resolution and frequency domain resolution
with the equations Equation (3) and Equation (4).

5.1.3.3 Hilbert Huang transformation
The Hilbert Huang transformation (HHT) is a recent approach in signal processing

and was proposed by Huang [45]. The approach analyzes non-linear and non-stationary
signals. Therefore, an implementation into a failure type detection and predictive main-
tenance approach is possible.
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Figure 5.7: Example for the distribution of a mother wavelet in the time domain and
frequency domain. The wavelets C1,1, C2,1, C4,0, C4,1, C4,2 and C4,3 are used to
analyze the mother wavelet C0,0

The first step of the Hilber Huang transformation is the decomposition of a non-linear
non-stationary signal into a finite number of intrinsic mode functions. In the Hilbert
Huang transformation, this process is named empirical mode decomposition and can
expressed as [109]:

x(t) =
m
∑

k=1

ck(t) + rm(t) (5)

x(t) is the original signal at time t and ck(t) is the k-th intrinsic mode function. rm(t) is
residue, which can be a constant (mostly in stationary signals) or the mean trend of the
signal. This implies the assumption that any signal can be interpreted as a composition
of intrinsic mode functions and a residue, and the original signal at time t can compute
by the frequency values of the intrinsic mode functions and the value of the residue
at time t. The intrinsic mode functions are mono-components of oscillation within a
certain frequency band, and fulfill the following conditions:

1. The number of extreme (minima and maxima) and the number of zero-crossing
must be equal to or differ by one in the whole dataset.

2. At any point, the mean value between the local minima and the local maxima is
zero.

In the empirical mode, decomposition can relate to undesirable problems, which are
mode mixing and the end-effect problem. In mode mixing, disparate frequencies ex-
ist in a single intrinsic mode function, which is mostly caused by signal intermittency.
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Orthogonality is a fundamental characteristic of intrinsic mode functions, although the
mode mixing functions phenomenon contradicts the important property. The end-effect
problem, which is the second problem of the empirical mode decomposition, describes
a drift in the length of the signal.
The ensemble empirical mode decomposition was proposed to resolve the problems dis-
cussed above. This method injects white noise, which is a random signal with a constant
power spectral density, into the original measured signal, which can be expressed as:

x j(t) = x(t) +w j(t) (6)

Now, the jth white noise is added to the original signal x(t). The result x j(t) has to be
decomposed in the same way as described in Equation (5), with the difference that the
intrinsic mode function and the residual, as a result of adding the white noise, gain a
new dimension :

x j(t) =
m
∑

k=1

g jk(t) + r jm(t) (7)

The steps Equation (6) and Equation (7) are repeated many times, and the final result
is computed by means of the corresponding intrinsic mode function and residual:

hk(t) =
1
Ne

Ne
∑

j=1

g jk(t) where k = 1,2, ..., m (8)

rm(t) =
1
Ne

Ne
∑

j=1

r jm(t) (9)

m is the number of intrinsic mode functions, and Ne is the ensemble number of the
empirical mode decomposition process ensemble.
To derive the minimal ensemble number, and a low signal-to-noise ratio that does not
significantly affect the final result of the intrinsic mode functions, a statistical rule was
established to inject the white noise:

Ne =
ε2

ε2
n

(10)

ε is the amplitude of the white noise, and εn is the standard deviation of the error,
which is defined as the difference between the sum of the intrinsic mode functions plus
the trend and original signal.
The result of the embedded empirical mode decomposition do not necessarily involve
intrinsic mode functions. Therefore, a postprocessing of the embedded empirical mode
decomposition is unavoidable. The steps of the postprocessing process are:

1. The first component of the embedded empirical mode decomposition h1(t) is
re-decomposed by the empirical mode decomposition in Equation (5): h1(t) →
c1(t) + q1(t). c1(t) dominates h1(t); therefore, c1(t) is used as the first intrinsic
mode function.
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2. For all hk(t) where k = 2, 3, ...m, the residual from the previous step is added to
get a new sequential signal Dk(t) = hk(t)+qk−1(t). This signal is processed by the
empirical mode decomposition in Equation (5): Dk(t)→ ck(t) + qk(t) and ck(t) is
the kth intrinsic mode function.

3. Finally, the residual is calculated with rm(t) = qm−1(t) + qm(t).

The second part of the Hilbert Huang transform is a Hilbert transform of the intrinsic
mode functions [81]. As discussed, the Hilbert Huang transform distributes the original
signal in components called intrinsic mode functions, which are orthogonal. This im-
plies that an intrinsic mode function represents a physical meaning, and thus practical
for failure type detection and predictive maintenance [109].
The evolution from the empirical mode decomposition to embedded empirical mode
decomposition is described in this thesis, because it is a common method in signal pro-
cessing to add some random white noise into a given signal to achieve a more stable
result, i.e. for detecting outliers.

5.1.3.4 Wigner Ville distribution
The Wigner Ville distribution (WVD) is one of the most studied methods in time-

frequency analysis. It was first mentioned in the area of quantum mechanics by Wigner
and later extended by Ville to signal processing [24]. In contrast to the short time
Fourier transformation or the wavelet transformation, the Wigner Ville distribution has
no window function. Therefore, it has no leak effects and the best spectral resolution of
all time frequency methods.
The Wigner Ville distribution is a quadratic integral transformation, meaning that it is
a two-dimensional Fourier transformation of the ambiguity function in relation to time
and frequency. The ambiguity function Ax x(τ,υ) is a time frequency autocorrelation
and has two properties:

• Time shift
A time shifted signal lead to a modulation of the ambiguity function regarding the
frequency shift υ.

• Frequency shift
A frequency shifted signal lead to a modulation of the ambiguity function regard-
ing the time shift τ.

This corresponds to a time and frequency energy density spectrum [52] and can be
expressed as:

W V Dx x(τ, f ) =

∞
∫

−∞

∞
∫

−∞

Ax x(τ,υ)e− j2πυt dυ e− j2π f τdτ (11)

The inner integral
∞
∫

−∞
Ax x(τ,υ)e− j2πυt defines the Fourier transformation of the ambi-

guity function in relation to the frequency. [55] shows that the inner integral can be
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expressed as: x(t + (τ/2))x∗(t − (τ/2)) where x(t + (τ/2)) is the original signal and
x∗(t − (τ/2)) is complex conjugate for it. Therefore, the Wigner-Ville Distribution can
be expressed as the Fourier transformed of the time shift τ:

W V Dx x(τ, f ) =

∞
∫

−∞

x(t + (τ/2))x∗(t − (τ/2))e− j2π f τdτ (12)

With the Wigner-Ville Distribution, it is possible to define a cross ambiguity function of
the two signals x(t) and y(t):

Ax y(τ,υ) =

∞
∫

−∞

x(t + (τ/2))y∗(t − (τ/2))e− j2πυt d t (13)

hence, the cross Wigner-Ville distribution is:

W V Dx y(τ, f ) =

∞
∫

−∞

x(t + (τ/2))y∗(t − (τ/2))e− j2π f τdτ (14)

If a signal z(t) is composed by the two signals x(t) and y(t), then the Wigner-Ville
distribution of z(t) is:

W V Dz(τ, f ) =W V Dx(τ, f ) +W V Dy(τ, f ) + 2Re{W V Dx y(τ, f )} (15)

This implies that the Wigner-Ville distribution of a composite signal is the combina-
tion of the W V D of every signal and the cross Wigner-Ville distribution of every two
components. Hence, the Wigner-Ville distribution of z(t) has n W V D and

�n
k

�

cross
Wigner-Ville distribution, so every pair of signals has its cross term.
A cross term W V Dx y in Equation (15) occurs at the mid-time, mid-frequency of the
terms W V Dx and W V Dy [50].
Cross terms can distort the result of a spectral analysis of the signals x(t) and y(t).
Many approaches have tried to reduce the cross-term interference while keeping the
high resolution of Wigner-Ville distribution. The cross terms can also be helpful because
they have significant information about the signals x(t) and y(t) and thus it could also
be helpful for failure type detection and predictive maintenance. For example, if the vi-
bration signals are different, the cross-term interferences are also different, which will
also be helpful to distinguish the signals x(t) and y(t) [102].

5.1.4 Summary

Signal processing is an important step in failure type detection and predictive mainte-
nance applications for real-world systems monitored by sensor data. For sensor data it
is important to know which information is relevant. If only change of the sensor value
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[65] X
[31] X
[119] X X
[116] X
[9] X
[60] X
[95] X
[102] X
[96] X
[107] X
[109] X
[108] X
[57] X
[40] X
Sum 1 2 1 4 4 3

Table 5.1: Usage of signal processing in recent literature

over time is involved, the time domain analysis can be used to extract more informa-
tion as a new value (see Section 5.1.1). If only the change in the frequency of sensor
value is relevant, the frequency domain analysis must be used (see Section 5.1.1). As
mentioned in Table 5.1, the most discussed signal processing technique in the research
area of failure type detection and predictive maintenance is the time frequency analysis.
Here, the value change over time and the frequency of value changes are relevant. The
Short Time Fourier Transform (STFT) is discussed as an introduction to the terms of
time frequency analysis (see Section 5.1.3.1). The STFT works with window functions
where the window slides over time, and processes the sensor data inside the window.
As discussed in Section 5.1.3.1, the drawback of the STFT is the fixed time and the fre-
quency resolution. A technique related to the STFT is the Wavelet Transformation (see
Section 5.1.3.2), which has wavelets instead of windows functions. These wavelets can
have different time resolutions for different frequencies. A drawback of Signal process-
ing techniques with windows functions, or wavelets, is that leakage effects can occur at
the beginning or the end of the time window / wavelet [55].
The Wigner Ville distribution (WVD) has the best spectral resolution of all time fre-
quency methods, and can analyze two signals at a time (see Section 5.1.3.4). Two
signals that are compared by the WVD give rise to cross terms. These cross terms are
generally not preferable, but they could be interesting in terms of failure type detection
and predictive maintenance.
Hilbert Huang transformation (HHT) consists of two steps, first, the decomposition into
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a finite number of intrinsic mode functions, and second, their transformation. It is possi-
ble to identify the physical meaning of the signal using this signal processing technique.
This is a very interesting feature for failure type detection and predictive maintenance,
but it is also expensive, and it is very special for a real-world system to define a HHT
which interprets the physical meaning.
A decision tree can help to choose the to find the right signal processing technique for
a given failure type detection and predictive maintenance problem (see Figure 5.8).

5.2 Feature Extraction

After the data acquisition and the signal processing, all features of the real-world system
are available, and that feature set that can be enormous. It is sometimes necessary to
reduce the number of features and increase the information content of the features to in-
crease accuracy, and to reduce the computational effort of a machine learning approach
for failure type detection and predictive maintenance. Feature extraction and/or feature
selection can help in performing this. Feature selection selects a subset of the most rep-
resentative features, whereas feature extraction transforms the original feature space
and receive new information by combining features. For example, the combination of
vibration sensors in a real world system, can give information about the environmental
conditions. Feature extraction can be a non-linear process, and thus the results are not
self-explanatory. An advantage of feature extraction over feature selection is that the
feature space can be reduced to a much greater extent [61].
The linear discriminant analysis is a machine learning approach that will be discussed
below (see Section 7.1.1). However, for the discriminant function that reduces the di-
mensionality of the feature, a vecture linear can be used for feature extraction.
Feature extraction is not often used in the area of failure type detection and predictive
maintenance. In some works, the decomposition in the Hilbert Huang transformation
(see Section 5.1.3.3) or the cross terms in the Wigner-Ville distribution (see Section
5.1.3.4) are called feature extraction. In [106], the features are normalized between 0
and 1, although there is no feature extraction process defined for failure type detection
and predictive maintenance. Therefore, the feature extraction can be an area of future
research, which will be discussed in Chapter 9.

5.3 Feature Selection

Feature selection is a common and useful technique to reduce computational cost and
increase accuracy. As described in Section 5.2, a feature selection selects a subset of fea-
tures that are defined on a representative basis. Of the different techniques that will be
discussed in the following, there is no technique that selects features, especially for fail-
ure type detection and predictive maintenance scenarios. Therefore, feature selection
can be an area of future research that will be discussed in Chapter 9.

5.3.1 Correlation analysis

The correlation analysis is one of the most common techniques to select features. This
approach evaluates a linear relationship between pair-wise inputs with a correlation

29



Start

Analyzing only the 

waveform?

Time-domain 

analysis

Yes

Analyzing only the 

frequency distribution?

No

Frequency-

domain analysis

Yes

Best spectral 

resolution or 

crossterms needed?

Wigner Ville 

distribution

Yes

Hilbert Huang 

Transform

No

No

Short Time 

Fourier 

Transformation

No

Time-

Frequency 

Domain

Physical meaning 

should be identify ?

Yes

Fast Fourier 

Transformation

Variable resolution of 

time and frequency 

needed?

Wavelet 

Transformation

Yes

No

Figure 5.8: Decision tree to visualize the selection process of a signal processing
technique.
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function [38], which can remove features with redundant behaviors. This technique,
however, fails with if the amount of sample data is low, or if the relationship between
features is non-linear.

5.3.2 Principal component analysis

A principal component analysis [12] is an orthogonal transformation technique that
converts a set of features into a set of linear uncorrelated features, called principal
components. The assumption of the principal component analysis is that features with
the largest variance have the largest informative content. The samples are centered
and rotated in accordance to most relevant features. The outcome of the principal
component analysis yields the features with the largest variance that are orthogonal to
one another (see Figure 5.9).

Figure 5.9: Visualization of the Principal Component Analysis. On the left, the original
sample space (red ellipse) with the two largest variances that are orthogonal
to each other (black arrows). On the right, the transformed sample space
accorded to the most significant features [6].

5.3.3 Entropy

The term entropy was introduced by Shannon [80] in 1948. He tried to make assertions
about the information content based upon statistical foundations. The requirements for
the information quality are:

• The more rarely an event occurs, the higher the information content.

• The information content of an event chain is the sum of all events that occurred.
I(x1, ..., xn) = I(x1) + ...+ I(xn) where x1 to xn are events.

• The information content of a definite event is 0

The logarithm fulfills the requirements, and thus information content is defined as:

I(x) = log2(
1

p(x)
) (16)
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where x is the event and p(x) is the probability that the event x occurs. The entropy H
of an event set is defined as:

H =
n
∑

i=1

p(x i)I(x i) (17)

n is the number of events. The highest entropy H exists when all events have the
same probability (H = log2(n)). This implies that the lower the entropy, the more the
information content concentrates on few events, and the higher the entropy H(x) for
a single event, the higher the information content for event x. This means, the less an
event x occurs, the higher the information content.
Entropy holds relevance for feature selection, because the lower the entropy H of a
feature, the higher its information content.
It could also be useful to measure the complexity of a feature. Accordingly, sample
entropy [74], or multiscale entropy [25] based on sample entropy can be used. In
sample entropy, the values in a time range of a feature are compared (i.e. with the
Euclidean distance [27]) with those of the same feature of another time range. Multi-
scale entropy uses the process of sample entropy, but with the time window scaled.

5.3.4 Other approaches

Machine learning approaches, such as generic algorithms and decision trees, which we
will discuss below in Chapter 7, can also been used for feature selection [89], [90].
The idea behind using machine learning approaches for feature selection is to train a
machine learning algorithm and analyze the structure learned. Generally, some features
are more relevant, and others less relevant to reaching a correlation between the input
value and a given output. The more commonly used features are the important ones. To
reach less computational cost and more accuracy, another machine learning approach
uses only the more frequently used features of the first machine learning approach [20].
After feature engineering, the learning process starts. The next section discusses oppor-
tunities of labeling historic data, which, like in feature engineering, also have influence
on the accuracy and computational costs.
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6 Data Labeling

As described in Section 3.3, a data-driven model is realized by a machine learning
approach based upon statistical and learning techniques. Supervised learning is the
most common learning technique for failure type detection and predictive maintenance
(see Section 3.3.1). For supervised learning, historical data is needed (see Figure 3.3),
which has to be labeled. Hence, the machine learning approach can create relationships
between the input feature vector and the expected result.
Previous sections showed that there was no difference between a failure type detection
and a predictive maintenance approach. However, this changes with data labeling, and
the reasons will be discussed below.
In the literature of failure type detection and predictive maintenance, two different
types of data labeling techniques exist:

• State-Driven Data Labeling

• Residual Useful Lifetime

Machine learning can distinguish between classification and regression. Classification
means that an output variable takes on defined class labels. Regression means that an
output variable takes on continuous values. The state-driven data labeling technique is
used for classification in failure type detection and predictive maintenance. The resid-
ual useful lifetime estimation is a regression problem for predictive maintenance.
The following two sections will examine the techniques and their implementation, fol-
lowed by a discussion of the prediction window, which is important to schedule main-
tenance actions.
Table 6.1 gives an overview of the data labeling technique used in the research area
of failure type detection and predictive maintenance. The table shows that most ap-
proaches use the state-driven data labeling technique. This result is expected because
failure type detection can only realize with a state-driven data labeling technique and
for a predictive maintenance scenario it is easier to archive a sufficient accuracy by
classification. The reason is the finite number of possible classes. It is more sophis-
ticate to archive a good accuracy for a regression problem for predictive maintenance
because the solution space is infinite and therefore the degradation process must be
better understood.

6.1 State Driven Data Labeling

The state-driven data labeling technique labels the historic data into different states.
There are two different types of states in failure type detection and predictive mainte-
nance:

• Failure type state

• Lifetime state

One component can have one or more failure types. A failure type can also depend on
a failure that occurred before (see Figure 6.1).
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failure 1

normal

failure 2

failure 3

Figure 6.1: An example of a state machine for failure type detection.

The lifetime state is usually equally distributed over the lifetime of a component. Figure
6.2 visualize a four-state equal distribution of the lifetime of a component. The states
of failure type and lifetime can be combined into a more complex model. Such a model
shows which failure can occur at which lifetime (see Figure 6.3), which could be helpful
in scheduling maintenance actions.
According to recent literature, the historic data with logged failure types is needed for

0%-25% 25%-50% 50%-75% 75%-100%

Figure 6.2: A state machine for a component with equal distributed states over the life-
time. Such state machines can be used in a predictive maintenance scenario.

detecting these different failure types. This implies that every failure type must occur
in the historic data, and the more often it occurs, the higher the possibility to eliminate
noise factors and achieve a better accuracy. The problem is that failures, especially in
most failure type and predictive maintenance scenarios, are often costly, and therefore
it is not always possible to direct the system into a failure situation. Accordingly, many
real-world systems are maintained with a preventive technique, where components are
replaced after a predefined time, before a failure can occur. It does not matter whether
the component is close to failing or not. Failure type detection, without the failure type
of historic data, is not easy and not mentioned in the literature. However, it might be
useful in analyzing failure types, because some these do not lead to a system crash,
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but can influence other components and their healthy state. The necessity of logged
failures and their influence on other components will be discussed in the future work
(see Chapter9).
In lifetime-state data labeling for predictive maintenance, it is necessary to categorize
the historic data into the lifetime states used. As mentioned above, these states are
generally equally distributed over the lifetime of a component. There are two minimum
number of states for predictive maintenance (<100% and 100%). In contrast to the
current failure type detection methods, for predictive maintenance reasons it is possible
to log only healthy data, and when an observed real-world system leaves the healthy
state, it must be failed [64]. In a predictive maintenance scenario, a failed state means
that a breakdown of the component and the lifetime is 100%. This means that failures of
the component that might occur before are not interesting for a predictive maintenance
scenario.
In recent literature on failure type detection and predictive maintenance with machine
learning techniques and state-driven data labeling, the accuracy of classification usually
changes, and becomes better at the end of the useful lifetime of a component. The
reason for this is that in the lifetime of a component, events often occur that correlate
with the degradation state, and such events occur especially at the end of the useful
lifetime.

0%-25% 25%-50% 50%-75% 75%-100%

failure 1
failure 2

failure 3

Figure 6.3: A combination of distributed states over the lifetime and failure types.

6.2 Residual Useful Lifetime

The residual useful lifetime prediction is a regression problem only relevant in predictive
maintenance scenarios, because it returns one continuous value, which represents the
rest of useful lifetime and not the type of failure. There are different ways to estimate
the residual useful lifetime. It is possible to calculate it on top of a state-driven data
labeling technique [60]. It is also possible to calculate it using statistical approaches
[83].
The accuracy of machine learning approaches with state-driven data labeling techniques
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are usually higher than in estimating the residual useful lifetime. The reasons are ob-
vious; namely, for a continuous estimation, it is easier to classify the residual lifetime
into a discrete number of states, usually not more than ten. Furthermore, the literature
shows that the closer the system is to failure, the higher the accuracy. This could be
relevant for the prediction window, which is discussed as follows.

6.3 Prediction Window

A prediction window defines the time prior to when the system fails and the failure type
detection and predictive maintenance approach can or has to know that the system is
failing. Therefore, there are two ways to define a prediction window:

• The prediction window is defined with respect to the time needed to schedule the
repair.

• The prediction window is defined with respect to the possibility of recognizing a
system failure.

Prediction Horizon (in weeks)

S
co

re

2 25 50 75 100

1
0

-1

-5

Figure 6.4: Score function for evaluating classification rules [67].

There are some ways to handle this requirement. [67] defines a score function that
not only rates the accuracy, but also the prediction horizon. The approach generate a
rule based system with two states (healthy, and faulty). To asses the generated rules in
terms of prediction horizon Figure 6.3 shows the score function. The preferred time for
issuing the warning is between 2 and 25 weeks before the fault occurs. Less than that
means that the replacement operation may not be possible to schedule. Longer means
that the costs are to high for predictive maintenance, because the component is still
functional. [65] defines a cost matrix for the time it makes sense to repair or change
a component. In this cost matrix misclassification for an unsafe condition to be a safe
condition is much more severe than misclassifying a safe condition to be in an unsafe
condition.
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6.4 Summary

This chapter discusses the two different labeling techniques and the properties of the
prediction window for failure type detection and predictive maintenance. It is shown
that the state-driven data labeling technique is used in a failure type detection scenario
(see Section 6.1). It is possible to use the state-driven data labeling technique also for
predicting future maintenance actions. Therefore, the lifetime state labeling technique
is used. Usually, these states are equally distributed over the lifetime of a component.
A more precise but less accurate way is to estimate the residual useful lifetime by re-
gression (see Section 6.2). It is shown that this technique is only used for predictive
maintenance problems.
The definition of prediction window shows that there are two possibilities to define such
a window (see Section 6.3).
The recent literature on failure type detection and predictive maintenance mentions
data labeling only marginally. This is an interesting fact, as an adequate data labeling
technique can improve the results of a data-driven model. Accordingly, there is a lot of
future work potential in the area of data labeling which will discussed in Chapter 9.
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[44] 4

[65] 2

[28] X

[51] X

[37] 2

[20] 4

[94] X
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[115] 2

[121] 2

[9] 3

[60] X

[95] X

[83] X

[54] 39

[82] 4

[58] 5

[67] 2

[102] 8

[106] 5

[107] 5

[109] 5

[117] 10

[108] 7

[57] 7

[56] 5

[40] 2

[30] X

Sum 17 12 7

Table 6.1: Usage of data labeling technique in recent literature of failure type detection
and predictive maintenance. The number in the Failure Type column is the
number of different failure types which the approach tries to separate. The
number in the State Driven column is the number of different states dividing
the lifetime that the approach tries to classify.
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7 Machine Learning Approaches

Machine learning involves programming a computer to assess data in respect of samples
given and/or the experience of domain experts. A machine learning approach tries to
identify the relation between an input vector and a result. The machine learning algo-
rithm has to optimize the parameter of its model.
In the recent years, machine learning has become increasingly important in computer
science because data could be collected and stored much more easily. The data collected
is usually so extensive that it is not practical to analyze the data manually. In such a
scenario, the machine learning technique plays a key role.
Another reason for the growing popularity of machine learning are decreasing compu-
tational costs. With the evolution of hardware in recent years, the usage of machine
learning approaches has become efficient in terms of both time and money, especially
for failure type detection and predictive maintenance.
As discussed in the previous chapter, the following are important for obtaining results
from the machine learning algorithm: deciding on the learning technique (see Sec-
tion 3.3), the quality of the input features (see Chapter 5), and in case of supervised
learning, the labeling technique (see Chapter 6). This section reviews the methods of
analysis based on machine learning techniques for predicting and analyzing failures in
a real-world system. The techniques considered have been used in the recent literature
of failure type detection and predictive maintenance. The techniques reviewed there
are separated into two categories:

• Parametric machine learning approaches

• Nonparametric machine learning approaches

7.1 Parametric

A statistic is an arbitrary computed value based on samples. In a statistical inference
process, decision are made based upon the information obtained from a sample. A para-
metric approach makes the assumption, that the samples are distributed in a known
model, for example in a Gaussian distribution. The advantage of such a parametric ap-
proach is that the model is based upon few parameters, like mean value or variance, the
so-called satisfactory statistics of distribution. The machine learning approach estimates
the parameters with respect to the given samples and makes the assumption, that this
distribution is valid for all data. The distribution forms the basis of the decisions made
by the machine learning approach.
A parametric approach computes a decision faster than a nonparametric approach, but
it needs exact assumptions for the distribution to achieve a good result. If the assump-
tion about the parameters is not exact, the result will seem to be interpreted arbitrarily.
In the following three parametric examples, linear discriminant analysis and Bayesian
networks and the Hidden semi-Markov model will be discussed. These are the only
three parametric approaches which are used in the considered literature.
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7.1.1 Linear discriminant analysis

Linear discriminant analysis is a method for dimensional reduction and classification.
The technique of linear dependent dimensional reduction with the discriminant func-
tion can also be used for feature extraction (see Section 5.2).
The simplest representation of a linear discriminant analysis is the linear function:

y(x) =wTx+w0 (18)

where x is the input vector wT is a weighted vector and w0 is a bias. For a binary
classifier with classes C1 and C2, a classification of input vector x will be C1 if y(x)≥ 0,
otherwise C2. The projection from x to wT is a dimensional reduction from d to 1. The
vector w is orthogonal to every vector lying within the decision surface. Similarly, if
y(x) = 0, this implies that x is a point on a decision surface, the normal distance from
the origin to the decision surface is expressed with

wTx
‖w‖

= −
wo

‖w‖
(19)

The illustration on the left in Figure 7.1 shows the geometry for a two dimensional
discriminant function in two dimensions. The decision surface, shown in red, is perpen-
dicular to w, and its displacement from the origin is controlled by the bias parameter
w0. Also, the signed orthogonal distance of a general point x from the decision surface
is given by y(x)

‖w‖ [12].
The best way to handle a classifier with more than two classes is to define k linear

C1

C2

y(x)>0

y(x)=0

y(x)<0

x

y(x)

w 

-w0

w 

w 

x2

x1

x2

x1

Figure 7.1: An illustration of a discriminant function in two dimensions (left) and a plot
on the right which samples two classes (red and blue) by using the Fisher
linear discriminant. [12]
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functions for k classes

yk(x) =wT
kx+wk0 (20)

a vector x will be assigned to a class Ck if

yk(x)> y j(x) ∀ j 6= k (21)

The Fisher’s linear discriminant can be used to define a weighted vector wT that maxi-
mizes the class separation. If a class C1 has N1 points and C2 has N2 points, the mean
vector of C1 and C2 can be expressed as

m1 =
1
N1

∑

n∈C1

xn, m2 =
1
N2

∑

n∈C2

xn (22)

The idea is to choose w to maximize

m1 −m2 =wT(m1 −m2) (23)

where

mk =wTmk (24)

As described in equation Equation (18), when a vector transforms x to a one-dimension
space y , the variance of the transformed data from class Ck can expressed as

s2
k =

∑

n∈Ck

(yn −mk)
2 (25)

where yn = wTxn. To separate the two classes from each other, the mean value after a
transformation should have a distance as large as possible by having a small variance.
Therefore, a high value for |m1 −m2| and a low value for s2

1 + s2
2 is desirable. Fisher’s

criterion maximizes w to fulfill the described definition with

J(w) =
(m1 −m2)2

s2
1 + s2

2

(26)

With Equation (18), Equation (24) and Equation (25) the Fisher criterion can be rewrit-
ten as

J(w) =
wT SBw
wT SWw

(27)

where SB is the between-class covariance matrix defined as

SB = (m2 −m1)(m2 −m1)
T (28)
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and SW is the within-class covariance matrix, expressed as

SW =
∑

n∈C1

(xn −m1)(xn −m1)
T +

∑

n∈C2

(xn −m2)(xn −m2)
T (29)

Differentiating Equation (27) with respect to w, J(w) is maximized when

(wT SBw)SWw= (wT SWw)SBw (30)

(wT SBw) and (wT SWw) are scalar factors; thus, these factors do not provide information
about the direction of w and can be dropped. Equation (30) can multiply both sides
with S−1

W , so the result of the Fisher linear discriminant can expressed as

w= S−1
W (m2 −m1) (31)

The right hand side of Equation (31) shows the variance of the mean value and the
Fisher linear discriminant of an example separation problem. The right plot in Figure
7.1 shows a two class example (depicted in red and blue), along with the histogram
resulting from a projection onto the line, joining the class means by using the Fisher
linear discriminant [12]. The linear discriminant analysis is an easy and useful classifi-
cation technique, when the classes can be linearly separated from each other. It is also
useful for feature extraction when transforming a set of features x to a one-dimensional
feature y(x). One of its drawbacks is the creation of a weighted vector, which is diffi-
cult, because they need a linear dependency on each other, and that is not automatically
given in real-world systems. But still it is possible to have such linear dependencies in
the data from a data acquisition system.

7.1.2 Bayesian networks

A Bayesian network is a diagrammatic representation of probability distributions. It has
several useful properties:

• Visualize the structure of a probabilistic model

• Conditional dependence properties can be obtained by inspection the model

• Complex computations can be expressed in terms of graphical manipulations

A Bayesian network can be represented as a directed acyclic graph, where every node
in the graph represents a variable. Figure 7.2 shows an example graph representing a
Bayesian network with six random variables. The probability distribution of the com-
bination of these random variables is called joint distribution. The joint distribution of
the example is given by:

p(x1)p(x2)p(x3|x1)p(x4|x3)p(x5|x1, x2, x3)p(x6|x2, x4) (32)

For a graph with k nodes, the joint distribution can generally be expressed as

p(x) =
K
∏

k=1

p(xk|pak) (33)

42



where pak are the parent nodes of xk. The probabilities p(xk|pab) of the possible com-
binations (see Equation (33)) can be listed in a conditional probability table.
There are two ways to learn about a Bayesian network. First, it exists as the structure
of a network and so it is not necessary to mention the conditional independencies. It is
only necessary to calculate the conditional probability on every node. The second way is
to create a network structure with conditional independencies and a conditional prob-
ability on every Node. For failure type detection and predictive maintenance, such an

x1

x3

x4 x5

x2

x6

Figure 7.2: An example of a Bayesian network

approach is useful for state detection with the supervised learning technique (see Sec-
tion 3.3.1) [109]. The labels of the historic data (see Section 6.1) contains the states
that are represented in a Bayesian network by variables and nodes. The state with the
highest probability for a given input vector is chosen. A residual lifetime estimation can
be established when the duration in every state is considered and evaluated [60].

7.1.3 Hidden semi-Markov model

A hidden semi-Markov model is an extension of hidden Markov models [17]. A hid-
den Markov model [72] assumes that the real-world system being modeled is a Markov
chain [33] with unobserved (hidden) states and transitions from one to another on a
state space.
A hidden semi-Markov model allows the underlying process to be a semi-Markov chain
with a duration for each state. A hidden semi-Markov model can use a parametric or
nonparametric distribution family for the state duration. The choice of distribution fam-
ily for the state duration is central to the use of the hidden semi-Markov model [113].
In failure type detection and predictive maintenance scenarios, the parametric hidden
semi-Markov model is preferred, because the computational effort of a nonparametric
hidden semi-Markov model is much higher than with the parametric approach [31].
In terms of failure type detection and predictive maintenance, a state represents a health
state (see Section 6.1) of the real-world system. A health state duration is measured
in time units, which can be represented as time of usage, working cycles, maintenance
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intervals, etc. A time unit depends on observations of the real-world system, which
represent a single state. A variable amount of single states are combined to a state in
the hidden semi-Markov model. The nature of these models is a state-driven approach,
an example is described in Figure 7.3.
A prognosis of the residual useful lifetime (see Section 6.2) is also possible with a hidden
semi-Markov model, and is described in [31].

h1 h2 h3 hN

Duration d1 d2 d3 dN

Time units

Observations

q11 q2q1+1

o1 oq1 oq1+1 oq2

q3q2+1

oq2+1 oq3

qNqN-1+1

oqN-1+1 oqN

Single-states s1 sq1 sq1+1 sq2 sq2+1 sq3 sqN-1+1 oqN

Figure 7.3: An example of a hidden semi-Markov model, where the blue cycles are states
of the model. The black arrows are the transitions between the states. Every
state has its own duration (d1,...,dn) of time units (1,...,qn). These time units
are observations of the real-world system (o1,...,oqN) and every observation
represent a single state (s1,...,sqN).

7.2 Nonparametric

The previous section discussed the parametric machine learning approaches which es-
timates the satisfactory statistics of a process. Such an approach computes a decision
faster, and if the estimated parameters are correct, the results of the parametric ap-
proach are good.
A process having no satisfying statistics estimated cannot be processed by a paramet-
ric machine learning technique with any good result. In this case, the nonparametric
machine learning techniques are used. Theses techniques are based on the assumption
that inputs that are close to one another must have the same results. The difference
between such techniques relates to the definition of "close to another".
Some of the nonparametric machine learning techniques used in recent literature con-
cerning failure type detection and predictive maintenance will be discussed in the fol-
lowing Sections.
A result of investigating recent literature indicates that nonparametric machine learning
techniques have more stable results than the parametric machine learning techniques. A
possible reason for this is discussed above, namely that the statistics satisfying a failure
type detection and predictive maintenance process are too difficult to estimate exactly
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because most real-world systems are non-linear and often associated with uncertainties,
due to noises, uncertain physical parameters, or incomplete knowledge ([1], [73] and
[46]).

7.2.1 Belief rule based

An extension of traditional IF-THEN-ELSE rule based systems are belief-rule-based
systems, which are capable of capturing complicated non-linear causal relationships
between antecedent attributes and consequents [21]. The belief-rule-based machine
learning technique can use the information from a domain expert and historic data (see
Section 3.4) to establish a non-linear relationship between attributes and an associated
consequence. Because of the combined learning technique, such a model converges fast
and the training time is short.
A belief rule based system in a predictive maintenance scenario captures one variable x
at time t and make an assumption about x at time t+1. A belief rule can be constructed
as follows:

Rk : If x(t) is Dk

Then x(t + 1) is {(D1,β1,k), ..., (DN ,βN ,k), (D,βD,k)} (34)

Rk denotes the kth belief rule of the belief rule based system. x(t) is the value of the
variable x at time t. x(t+1) is the value of the variable x at time t+1 which should be
predicted from the belief rule. Dn ∈ D and D = {D1, ..., DN} is the nth consequent in the
belief rule based system. β j,k j = (1, ..., N), k = (1, ..., N) is the belief degree assessed
to Dj and Dj ∈ D. The last element of the Then expression are remaining belief degrees
unassigned to any Dj, which reflects the uncertainty of assessment due to a limitation
or lack of prior knowledge.
A rule, as described in Equation (34) for a failure type detection or predictive mainte-
nance problem, can be created as follows:

1. Extracting belief rules from domain expert knowledge

2. Extracting belief rules by examining historical data

3. Using the previous belief-rule bases if available

4. Random rules without any prior knowledge

These options described above are mostly combined in a failure type detection and
predictive maintenance scenario. A domain expert defines the first version of belief
rules, which are refined by examining the historical data and the previous decisions.

7.2.2 Decision tree models

Decision tree models are highly related to the belief-rule-based system (see Section
7.2.1) as a decision tree can be viewed as a set of non-overlapping rules [3]. Figure 7.4
shows an example of a decision tree. There are three variables which are checked (X1,
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X2 and X3). One ellipse represent one rule of the example system. The result of the rule
described on the arrows, and the leaves depict the result of the decision tree.
A decision tree can be learned as a belief rule based system from a combination of
domain expert knowledge and historic data (see Section 3.4). But all decision-tree-
based machine learning algorithms mentioned for failure type detection and predictive
maintenance follow two steps in creating the decision tree:

• Building a decision tree by learning with the supervised learning technique (see
Section 3.3.1)

• Pruning the decision tree

In some algorithms, the both steps are done concurrently. The most popular decision-
tree-based learning algorithms are the C4.5 [71] and C5.0 [16]. C5.0 is an update of
C4.5, and offers the advantages of high purity, high computing speed and excellent effi-
ciency in memory usage. New features, such as boosting and variable misclassification
costs, are implemented in C5.0.
Decision-tree-based machine learning techniques are frequently used for failure type
detection and predictive maintenance, but only to classify the state of the real-world
system (see Section 6.1), and not for regressing the residual useful lifetime (see Section
6.2). The reason is that a decision tree can only have a finite number of leafs, which
represent the possible results. Because their number is finite it is not possible to esti-
mate continuous values.
No approach combines failure type detection and predictive maintenance in one deci-
sion tree in current research. [42] has implemented two decision trees: a decision tree
identifying the state of the system as well as any failure in the near future, and a tree
identifying the type of upcoming failures.
A decision tree can also be used for feature selection (see Section 5.3.4). [42] Uses the
resulting rules of one such a algorithm to identify the most used features, by which a
neural network is learned. The result shows a significantly better performance in terms
of accuracy and computational cost.

X1>25

X2>3.8 switch(X3)

0.8 0.6 0.5 0.10.3

yes

yes

no

no 10 23 else

Figure 7.4: An example of a decision tree.
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7.2.2.1 Random forest
A random forest is an ensemble method, which trains multiple learners and then uses

them in combinations. It aims at increasing the accuracy over that of a single learner
[120].
A random forest operates by constructing a set of decision trees in the learning phase,
and the output is the class chosen of most decision trees (classification), or the mean of
the result (regression). The idea of ensemble learning was first mentioned by Ho [43],
and that of the random forest by [13].
A decision tree of a random forest is created with a random subset of features and a
random set of training data, with respect to the features from the historical data.
The advantages of a random forest are:

• Training time is reduced, because a decision tree learns from a subset of features,
which implies less historic data to learn, and parallelization in learning the deci-
sion trees.

• The evaluation can be parallelizable with small trees. Thus, the evaluation time
can be shorter than in a single decision tree and can used for large data analysis.

According to recent literature on failure type detection and predictive maintenance, the
random forest machine learning approach is used due to its low computational cost with
large data and stable results.

7.2.3 Nearest neighbor

The nearest neighbor machine learning technique is a nonparametric method used to
estimate the probability density function [12]. It uses a distance metric like eukle-
dian distance [27], hamming distance [49], or Manhattan-metric [4], to identify the
neighborhood of a given input vector which consists of instances that have been input
previously.
For achieving a stable result, k-nearest neighbors are examined Figure 5(a). The near-
est neighborhood machine learning technique is a lazy learning system [118] where no
model learned at all [5].
For failure type detection and predictive maintenance, a very simple nearest neighbor
machine learning technique can be used. This technique has some drawbacks that need
to be mentioned with its use for failure type detection and predictive maintenance:

• As mentioned in Section 6.1, training sets are sometimes not equally distributed.
In this case correct classification can not be achieved. For example, see Figure
5(b), where few examples of a class (red points) lead to a misclassification.

• The distance metric has a significant influence on the result. To achieve a good re-
sult, the non-linear behavior of real-world system needs different distance metrics
for the lifetime.

Despite the drawbacks, the nearest neighbor is used for failure type detection and pre-
dictive maintenance, due to the lazy learning technique and simple usage.
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(a) Example of k-nearest neighbor
classification with different k (k=1 in-
ner ring and k=5 outer ring). The
black point is the instance to classify.
The red points and the blue point vi-
sualize two different classes.

(b) Example of misclassification at a
border between two classes, where
the black point is the one which
needs to be classified, the correct
classification is red, but with k=5 the
classification is blue

Figure 7.5: Example for nearest neighbor classification

7.2.4 Artificial neural networks

An artificial neural network is an abstraction of a network of nerve cells found in brains
or spinal marrow. In the area of machine learning, an artificial neural network tries to
adapt to the information flow of the biological neural network. The purpose is not to
replace it, this is a part of computational neuroscience [97].
An artificial neural network can be of differing complexity. For example, such a network
may contain multiple layers of neurons. There exists an input layer, a defined number
of hidden layers and an output layer. Figure 7.6 depicts an example of an artificial
neural network with two hidden layers and three output nodes at the output layer. The
simplest structure is a two-layer neural network with an input and an output layer,
where the number of input neurons equals the size of the input vector. The connections
between the neurons have weights. Every neuron has an activation function [12]. The
most common activation function is the sigmoid and radial base function [66]. The
usual way of designing an artificial neural network is as a feed-forward neural network,
which can be represented as a directed acyclic graph from the input to the output nodes.
Theoretically, an artificial neural network can learn by the following operations:

• Creation of new neurons with new connections, removal of existing neurons and
their connections

• Creation of new connections between existing neurons, removing existing connec-
tions between neurons
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• Changing of the weights between neurons

• Adjustment of the neurons thresholds

• Changing the properties of the activation function

The basic learning principle of an artificial neural network using the gradient or steep-
est descent method [12], which uses the error between output of the artificial neural
network and the labeled output. Afterwards, the weights of the neurons will adjust re-
peatedly. An artificial neural network with a radial basis function has the property that
each basis function depends on the radial distance (typically Euclidean) from a center
µ j where j is the number of neurons in the hidden layer. The center µ j can change to
have the best possible approximation of the original function. Accordingly, the learning
improvement is propagated iteratively from the output to the input nodes in a technique
called back propagation [12].

In the area of machine learning research, artificial neural networks have attracted
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Figure 7.6: On the left, an example of an artificial neural network with two hidden lay-
ers. The right graphic shows the weights between neurons and an activation
function.

enormous attention in recent years [53]. This extends to failure type detection and pre-
dictive maintenance data-driven systems, because artificial neural networks have useful
properties for failure type detection and predictive maintenance [54]:

• They can handle nonlinear and undetermined processes where no model is avail-
able, and learn the diagnosis from the information of the learning data.

• They are noise tolerant and work well with noisy measurements.

Despite the benefits of a back propagation neural network, it also has certain drawbacks
[108]:

• Existence of local minimum where the network is unable to achieve convergence
to the global minimum.
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• The need of many iterations to achieve a good learning rate.

In the following subsections, the most common artificial neural network types for recent
failure type detection and predictive maintenance research will be discussed, They try
to solve the drawbacks of implementing a standard back propagation neural network.

7.2.4.1 Probabilistic neural networks
A probabilistic neural network [86] has a similar structure as the artificial back prop-

agation neural network discussed above. The main difference is the replacement of the
sigmoid activation function with an index function. Results of probabilistics neural net-
works can approximate the nonlinear decision boundary of the Bayes optimal decision
surface. These networks do not need the iterative training procedure. They converge
fast, even with a low number of training samples [102]. Therefore, the training time
and classification time are also acceptable, even for high-dimension input vectors.
The probabilistic neural network is only a classifying machine learning technique. It is
suitable for a state-driven (see Section 6.1), but not for a residual useful lifetime (see
Section 6.2) estimation. A modified artificial neural network technique for such a con-
tinuous regression problem as the residual useful lifetime will be discussed in Section
7.2.4.2.
Improvements of the probabilistic neural network, over a standard back propagation
neural network, have made the probabilistic neural network suitable for a failure type
detection and predictive maintenance system, where a state-driven data labeling tech-
nique is used. Figure 7.7 shows the abstract structure of a probabilistic neural network
with the input layer, the pattern layer with the activation function, the summation layer,
and the output layer, which is the classification result.

7.2.4.2 Generalized regression neural network
In contrast to the artificial neural network discussed in Section 7.2.4, a generalized

regression neural network does not need an iterative training process nor weight calcu-
lations that can lead to a local minima problem [87].
As in standard regression techniques, the generalized regression neural network is used
for the estimation of continuous variables. It is related to the kernel function network,
and is based upon a standard statistical technique, called kernel regression. The re-
gression of a dependent variable y (output layer) on an independent x (input vector)
estimates the most probable value for y by a given x and a training data set. The gener-
alized regression neural network method will produce the estimated value of y, which
minimizes the mean-squared error, which is defined as:

MSE=
1
n

n
∑

i=1

( ŷi − yi)
2 (35)

Where n is the number of examples, ŷi is the i th estimated value and y1 is the i th real
value.
As described in Section 7.2, estimating the probability density function of many real-
world systems is either difficult or not feasible. The generalized regression neural net-
work is, a nonparametric method that estimates the joint probability density function
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of x and y, given only a training set with no preconceptions about its form. Figure 7.7
shows the abstract structure of a generalized regression neural network with the input
layer, the pattern layer (with the kernel regression function), the summation layer, and
the output layer as a continuous variable.
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Figure 7.7: Schematic diagram of a probabilistic neural networks and a generalized
regression neural network architecture. They have the same structure of
the network, but use different kernel functions to archive a classification
(probabilistic neural networks) or a regression (generalized regression neural
network).

7.2.4.3 Adaptive neuro-fuzzy inference system
The adaptive neuro-fuzzy inference system is a fuzzy Sugeno model of integration

[92]. As described in Section 3.2.2, fuzzy sets are sets whose elements have degrees of
membership. An adaptive neuro-fuzzy inference system optimizes a final fuzzy infer-
ence system, which uses fuzzy set theory [114] to map an input vector to an output,
with the artificial neural network training discussed in Section 7.2.4. It maps the input
vector by inputting membership functions and associated parameters, prior to mapping
the normalized results to outputs by using output membership functions. An adaptive
neuro-fuzzy inference system can be used for classification (see Section 6.1) and regres-
sion (see Section 6.2) problems.
The initial membership functions and rules for the fuzzy inference system can be de-
signed by domain experts with knowledge of the real-world system (see Section 3.2.2).
The adaptive neuro-fuzzy inference system refines the fuzzy IF-THEN-ELSE rules and
membership functions, according to labeled historical data. [47] showed that even if
domain expert knowledge is not available, it is possible to set up membership functions,
and then employ the artificial neural networks training process on labeled historical
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data, to generate a set of fuzzy IF-THEN ELSE rules. Two examples of fuzzy IF-THEN
ELSE rules, based upon a first-order Sugeno model, show the adaptive neuro-fuzzy
inference system architecture:

Rule 1: IF (x1 is A1) and (x2 is B1) THEN (y1 = p1x1 + q1x2 + r1),
Rule 2: IF (x1 is A2) and (x2 is B2) THEN (y2 = p2x1 + q2x2 + r2),

x1 and x2 represent the inputs feature vector and Ai and Bi are the fuzzy sets [114].
y1 and y2 are outputs, pi, qi and ri are the parameters defined by the training process.
The adaptive neuro-fuzzy inference system of these two rules is described in Figure 7.8,
where the cycles are nodes with a fixed function, and the rectangle are adaptive nodes.
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Figure 7.8: The adaptive neuro-fuzzy inference system for the given rules [57].

1. Input member function layer:
The node in this layer is adaptive, and the layer performs fuzzification. This implies
that the outputs of this layer represent the membership grade of the inputs.

2. Rule layer:
These nodes are simple multipliers. The outputs of this layer represent the fuzzy
strengths ωi.

3. Normalization layer:
Normalize the weights ωi. The normalization factor can be calculated as the sum
of all weight functions.

4. Output member function layer:
The outputs of this layer are given by ω̄i yi = pi x1 + qi x2 + ri, where pi, qi and ri
are the parameters of the output member function.

5. Output layer:
This node performs the summation of all incoming signals ω̄i yi.
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The adaptive neuro-fuzzy inference system can be useful for failure type detection and
predictive maintenance, especially in combination with the knowledge of a domain
expert. A good definition of the IF-THEN ELSE rules can significantly reduce the labeled
historical data needed. The simple structure also allows the fast computation of results.

7.2.5 Support vector machine

A support vector machine is a nonparametric machine learning technique that is useful
when the underlying process of the real-world system is not known, or the mathemati-
cal relation is too expensive to be obtained due to the increased influence by a number
of interdependent factors. A support vector machine can be used for classification (see
Section 6.1) and regression (see Section 6.2) problems.
Usually, the border between two classes is non-linear in the input vector space. In
this situation, the multidimensional hyperplane has to be non-linear. The creation of a
multidimensional and non-linear function which try to maximize the margin between
different classes is a very hard task. A support vector machine uses a kernel function
to map the input vector onto a higher dimensional space, where a linear hyperplane
between different classes is possible, with a maximal margin between different classes
to reduce misclassification. The location of the boundary is determined by a subset
of historical data points, known as support vectors. A two-dimensional visualization
is shown in Figure 7.9. In the same way as with classification, there is motivation to
seek and optimize the bounds in the higher dimensional space given for regression [85].

m
argin

border

Figure 7.9: Visualization of a two-class support vector machine. The location of the
boundary is determined by a subset of the data points, known as support
vectors, which are indicated by circles.

A support vector machine cannot lead to a local minimum, because obtaining a
support vector machine solution corresponds to dealing with a convex quadratic op-
timization problem [112]. Where the Karush-Kuhn-Tucker statements determine the
necessary and sufficient conditions for a global optimum, and every local minimum is
a global minimum [78], which can be an advantage when compared to approaches
like back propagation neural networks (see Section 7.2.4). This is another difference
to that of artificial neural networks, which are based on the empirical risk minimiza-
tion that only minimizes the training errors. Support vector machines make use of the
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structural risk minimization, seeking to minimize an upper bound on the error in the
higher-dimensional space. Structural risk minimization approaches usually appear to be
computationally less demanding, since the empirical risk minimization is accustomed
to dealing with large sample sizes [100]. The artificial neural network approach does
not look at the generalization performance leading to either underfitting or overfitting
problems. The support vector machine with the maximal margin hyperplane focuses
on a trade-off between model accuracy and model ability in predicting future values
[28]. This characteristic tends to improve the SVM effectiveness to forecast upcoming
outputs, which is a main requirement for a machine learning approach for failure type
detection and predictive maintenance.

7.3 Summary

This chapter discussed the machine learning techniques found in recent literature rele-
vant in the area of failure type detection and predictive maintenance. All the techniques
described are distinguished into parametric and non parametric. Parametric machine
learning algorithms make assumptions about the distribution of data. That is why para-
metric approaches are of low computational effort, and very fast. The accuracy of the
distribution defines the accuracy of the result. This is the main problem for failure
type detection and predictive maintenance scenarios, because these data are usually
non-linear in the lifetime of a real-world systems, and therefore, it is hard to make as-
sumptions about the distributions. Nonparametric approaches makes the assumption
that inputs close to one another must have the same result. The difference between
such techniques relates to the definition of "close to another".
Table 7.1 provides an overview of the approaches used in recent literature of failure
type detection and predictive maintenance. These approaches are introduced, briefly
discussing their advantage and the drawbacks.
Apart from other chapters, the summary does not contain a decision tree nor a guideline
for selecting the right technique. In recent literature, empirical experiments forms the
basis of decision making for a machine learning technique. Scenarios differ consider-
ably from each other in terms of computational resources, memory resources, available
data, and quality of data. As described in Chapter 5 the feature engineering, especially
the feature extraction (see Section 5.2), and the data labeling (see Chapter 6), are not
researched in terms of failure type detection and predictive maintenance scenarios. As
long as this is not change, it is not possible, from an analytic point of view, to make a
decision on a machine learning technique suitable for a given failure type detection and
predictive maintenance problem. The reason is that the accuracy in these areas is too
important and needs the correct analytic choice of a machine learning technique.
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[20] X X X

[119] X

[116] X

[54] X

[103] X

[107] X X

[117] X X

[108] X X

[57] X X

[94] X

[111] X X

[102] X

[106] X X

[28] X

[41] X

[19] X X

[58] X X

[109] X

[30] X

[110] X

[9] X

[82] X

[67] X X X X

[96] X

[40] X

[56] X

[31] X
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[60] X

[95] X

[64] X

[115] X X

[42] X

Sum 1 1 3 3 5 1 3 12 2 2 2 11

Table 7.1: Usage of machine learning techniques in recent literature
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8 Evaluation Strategies

An evaluation strategy is needed for analyzing a failure type detection and predictive
maintenance approach. There are many common ways to check the quality of a classi-
fication:

• True positive rate

• True negative rate

• False positive rate

• False negative rate

• Accuracy

• Precision

• Recall

• F-measure

• Mean square error

• Mean absolute percentage error

These evaluation techniques are about to true positives, false positives, true negatives
and false negatives. These parameters are the result of tests with the historical data and
the failure type detection and predictive maintenance approach. For example, accuracy
is defined as:

accurac y =

∑

t p+
∑

tn
∑

t p+
∑

f p+
∑

tn+
∑

f n
(36)

Where t p are the true positives, tn are the true negatives, f p are the false positives and
f n are the false negatives.
In recent literature, the most commonly used metrics in failure type detection and pre-
dictive maintenance are accuracy, precision, mean square error and mean absolute per-
centage error [77]. This assertion is also valid for failure type detection and predictive
maintenance applications.
In failure type detection and predictive maintenance scenarios, the requirements for
an evaluation metric are different from those of a common classification problem. The
main reasons are:

• Acausality:
Some failures in a real-world system are difficult to predict, because the knowledge
about the future operation modes of environmental conditions is not controllable.
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• Failure data from real applications:
Data on faults in a real-world system is very rare, because faults are generally
expensive and a safety risk. To avoid this, usually a maintenance operation has
already been conducted to avert any failure. Two other problems arise with main-
tenance operations, preventing the verification whether the prediction was correct.
After a maintenance action, the state of the influenced component is changed.

• Off-line performance evaluation:
For obtaining missing failure data, experiments are sometimes conducted in a con-
trolled run-to-failure scenario. However, these experiments may not have the same
conditions as the real execution, and therefore, the data may not be precise. Such
an experiment can be also very expensive, particularly when many failure types
are to be detected.

Another problem for all machine learning algorithms is the uncertainty in prognostics.
A good machine learning technique, and especially a failure type detection and predic-
tive maintenance system, should provide accurate and precise estimations. However, it
is also important to obtain information from such a system about the reliability of the
prediction.
Predictions are made early on, with less information about the dynamics of fault evo-
lution, and are required to foresee further into time, which makes the prediction task
more difficult, compared to assessing at a later stage. This characteristics usually not
a problem, although the performance of failure type detection and predictive mainte-
nance applications tends to be more critical as time passes by, and the system reaches
End of Life. Approaches which try to predict the state of the real-world system n-states
ahead (fixed horizon) have better performance of the metrics mentioned above than ap-
proaches with a residual useful life estimation (moving horizon) that say nothing about
the accuracy close to the end of its life, which is most important.
[76] introduces a new metrics of prognostic performance for estimating residual useful
lifetime. This metrics is more compliant to the requirements of a failure type detection
and predictive maintenance system. The metrics has a hierarchical design Figure 8.1
and will be discussed below.
With the presented metrics, it is possible to identify the weak spots of a model, which are
important for failure type detection and predictive maintenance approaches. Possible
weak spots that can be detected are:

• Inadequate real-world system models:
Real-world systems often exhibit inherent transient events in their life cycles.
The prognosis model may not have recognized such transient events, which may
change the behavior of the model.

• Operational transient:
Another reason for poor results of a metric might be a change in operational con-
ditions, which are not detected in historical data.
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• Uncertainties in prognostic environments:
In the historical learning data, usually not all conditions are detected, which can
lead to an inexact prognosis.

Prognostic 

Horizon

α-λ 

Performance

Relative 

Accuracy

Convergence

Figure 8.1: Hierarchical design of the prognostics metrics [76].

8.1 Prognostic Horizon

The prediction horizon is the difference between the time iαλ when the predictions first
meet a specified performance criteria, and the time index for the End of Life, EoL. The
prediction horizon (PH) can expressed as:

PH = tEoL − t iαλ (37)

Figure 8.2 depicts an example of two different prognostics and the prognostic horizon.
The black line shows the residual useful lifetime, which is degrading and linear with
increasing time. The gray lines represent the border of the performance criteria. The
red and the blue lines represent the results of the predictions of two different failure
type detection and predictive maintenance systems. The red and blue points represent
new predictions on grounds of new data available from the real-world system. The
prediction horizon is the time between the End of Life (EoL) and the time when the
prediction of the failure type detection and predictive maintenance system for the first
time fulfills the performance criteria (prediction is between the black and the grey line).
That implies, that PH2 is the prediction horizon of the blue failure type detection and
predictive maintenance system and PH1 is the prediction horizon of the red failure type
detection and predictive maintenance system.

8.2 α-λ Performance

The α-λ accuracy is defined as a binary metric, which evaluates the accuracy and con-
fidence at a time tλ:

α−λ accurac y =
§

1 if π [r (iλ)]
+α
−α ≥ β

0 otherwise
(38)
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EoL

PH1

PH2

R
U

L

Time

Figure 8.2: Example of prognostic horizon of two different failure type detection and
predictive maintenance systems (red and blue lines). The black line is the
component residual useful lifetime (marked on the axis as RUL). The gray
lines represent the performance criteria [76].

where β is a threshold and π [r (iλ)]
+α
−α is the probability mass of the prediction proba-

bility density function within the bounds from +α to −α. In this case, the probability
mass of the prediction probability density function (π [r (iλ)]) represents the confidence
of the prediction and the α bounds the error margins of the prediction. That means the
smaller the α bounds the higher accuracy is achieved. The prediction needs to have
greater or equal than β of probability mass within the α bounds.

8.3 Relative Accuracy

The α-λ performance provides information when predictions fall within an accuracy
level. The relative accuracy gives information about the accuracy at a given time, with-
out the accuracy level. It is needed because in a failure type detection and predictive
maintenance system, the accuracy of the prediction needs to increase with time to the
End of Life of a component. Therefore, it is helpful to distinguish between estimations
at the beginning or the ending of the lifetime of a component. The relative accuracy
can be expressed as:

relat iv e accurac y = 1−
|r∗(iλ)− 〈r(iλ)〉|

r∗(iλ)
(39)

where iλ is the time index, r∗(iλ) are the ground truth residual useful lifetime at iλ, and
〈r(iλ)〉 is the predicted residual useful lifetime at iλ.
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8.4 Convergence

The convergence defines the distance between the origin and the prediction result, and
can be expressed as

conv er gence =
r

�

xp − xo

�2
+
�

yp − yo

�2
(40)

Where
�

xp, yp

�

are the coordinates of the prediction and (xo, yo) are the origin coordi-
nates, where the x-axis is the lifetime and the y-axis is the residual useful lifetime. This
implies that at the End of Life, the origin residual useful lifetime is yo = 0.

8.5 Summary

The standard metrics for machine learning systems mentioned in Chapter 8 are not ef-
ficient enough to asses the performance of a machine learning systems for failure type
detection and predictive maintenance. Unfortunately, most failure type detection and
predictive maintenance systems mentioned in recent literature are measured in their
performance with the standard metrics. This leads to difficulties comparing that sys-
tems to each other.
Figure 8.1 shows four metrics that can be used in a hierarchical manner. The Prognos-
tic Horizon identifies when a failure type detection and predictive maintenance system
first enters the specified error margin around the actual end-of-life. This gives infor-
mation about how much time is allowed for any corrective action to be taken. The
second metric α-λ performance (see Section 8.2) continues to identify whether the al-
gorithm performs within desired error margins (specified by the parameter α) of the
actual residual useful lifetime for a given time instant (specified by the parameter λ).
The third step calculates the accuracy level relative to the actual residual useful lifetime
(see Section 8.3). This metric assumes that prognostic performance improves with a
decreasing residual useful lifetime, because more information becomes available with
time. A failure type detection and predictive maintenance model will satisfy these met-
rics criteria when it converges with the true residual useful lifetime. The fourth metric,
Convergence (see Section 8.4), quantifies how fast the failure type detection and predic-
tive maintenance system converges when it satisfied all previous metrics. By applying
these four metrics, an assumption of the quality of a failure type detection and predic-
tive maintenance system is much more descriptive than using a standard metric, and
a comparison between different failure type detection and predictive maintenance sys-
tems using the four introduced metrics becomes more sensible.
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9 Conclusion and Future Work

Different types and the elements of failure type detection and predictive maintenance
approach are discussed in this thesis. Different models are introduced, focusing on the
data driven models and their different learning techniques.
The integral parts of a data-driven model are presented in respect to recent research
results in all areas. This thesis shows that the data collected from the real-world system
by the data acquisition technique strongly influences further decisions of techniques to
use for feature engineering, data labeling and machine learning techniques (see Chap-
ter 4). One significant issue is that feature extraction and data labeling are currently
not researched for failure type detection and predictive maintenance, and therefore, it
is not possible to make assumptions about the quality of features and data labeling in
failure type detection and predictive maintenance.Considering that, it is impossible to
decide on an analytic process for choosing a machine learning technique. The same
applies to the conditions, as long as these topics are not adequately researched.
The data gathered by data acquisition systems usually has to be modified to obtain more
detailed information about the state of the real-world system; this area is called feature
engineering. It is shown that, especially for sensor data, signal processing techniques
are essential to convert information and, in some cases, extract more detailed informa-
tion (see Section 5.1.3.3 and Section 5.1.3.4). The decision about the signal processing
technique depends on the requirements of the information needed. Furthermore, the
differences between feature extraction and feature selection are discussed.
Before a failure type detection and predictive maintenance approach can analyze cur-
rent data, it is necessary to learn from historic data, which has to be labeled with the
expected output. To achieve this, two different approaches are discussed, the State
Driven Data Labeling (see Section 6.1) and the Residual Useful Lifetime labeling tech-
nique (see Section 6.2).
The decision regarding the selection of a data labeling technique is important for finding
a suitable machine learning technique. Independent from the data labeling technique,
Table 7.1 shows that in recent literature, nonparametric machine learning approaches
are used. In particular, artificial neural networks and support vector machines have been
used for approaches to recent failure type detection and predictive maintenance. All re-
lated papers choose a machine learning technique by empirical evaluation. Possible
reasons for using this techniques are: the research community using these techniques
has been active in recent years and the techniques that are propagated are very flexible
for different problems.
The evaluation metrics to rate machine learning techniques used in recent literature are
not suitable to quantify the performance of these techniques in the context of failure
type detection and predictive maintenance. This thesis shows evaluation techniques
that are better adapted to evaluate the results and indicate possible defects.
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Future Work

Some future work in different areas is preferable. Currently, there is no approach for
the feature extraction of physical properties with regard to failure type detection. Such
a technique must convert the data given into the physical properties of a component.
There is also no known feature selection technique designed for failure type detection
and predictive maintenance, in which the features, with the most physical relevance.
With respect to upcoming failures, are selected. Investigations into the requirements of
a feature selection technique, and how to implement them, could be another area of
future work.
Surprisingly, recent literature only mentions two labeling techniques. As labeling is es-
sential for supervised learning, it seems that there is a lot of potential for novel labeling
techniques. In the area of data labeling, possible future work could thus involve ex-
ploring a labeling system that correlates with the physical degradation of a component.
Such an approach could improve the prognostic performance, particularly in defining a
prognostic horizon for confidential failure type detection. Moreover, with such an ap-
proach, it could also be helpful to realize a multi-failure type detection system, in which
the failures are related to each other and distributed over multiple components. To-
gether with an investigation into the area of feature engineering, an assumption about
the quality of data and an analytic decision process for a machine learning technique is
possible.
Components of a real-world system can usually be distributed. Therefore, designing a
distributed machine learning approach could be interesting. Such an approach would
offer the advantage that large amounts of data could be analyzed in parallel, which
results a shorter time to reach a decision. Moreover, the influence of components upon
one another could show the correlation of classes.
As discussed in Chapter 8, data is usually rare for faults in real-world systems. In the
future, a learning algorithm can be combined with a supervised learning algorithm for
determining an acceptable state. When the transition from an acceptable state occurs, a
maintenance point has to be scheduled, whereby the type of failure should be detected
and learned by the system, comparable to what a reinforcement learning strategy does.
Accordingly, this could relieve the problem concerning the absence of historical failure
data.
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