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Abstract
In this paper we evaluate the performance of multilabel classification algorithms on the EUR-Lex database of legal documents of the
European Union. On the same set of underlying documents, we defined three different large-scale multilabel problems with up to 4000
classes. On these datasets, we compared three algorithms: (i) the well-known one-against-all approach (OAA); (ii) the multiclass mul-
tilabel perceptron algorithm (MMP), which modifies the OAA ensemble by respecting dependencies between the base classifiers in the
training protocol of the classifier ensemble; and (iii) the multilabel pairwise perceptron algorithm (MLPP), which unlike the previous
algorithms trains one base classifier for each pair of classes. All algorithms use the simple but very efficient perceptron algorithm as the
underlying classifier. This makes them very suitable for large-scale multilabel classification problems. While previous work has already
shown that the latter approach outperforms the other two approaches in terms of predictive accuracy, its key problem is that it has to
store one classifier for each pair of classes. The key contribution of this work is to demonstrate a novel technique that makes the pairwise
approach feasible for problems with large number of classes, such as those studied in this work. Our results on the EUR-Lex database
illustrate the effectiveness of the pairwise approach and the efficiency of the MMP algorithm. We also show that it is feasible to efficiently
and effectively handle very large multilabel problems.

1. Introduction
Recently, multilabel classification problems, where the task
is to associate an object with an unbounded set of classes
instead of exactly one, have received increased attention in
the literature. As a consequence, new algorithms have be-
en developed or adapted to automatically solve the task of
multilabel classification. But simultaneously an increased
number of new scenarios have been identified and higher
demands are continuously made to the existing algorithms.
This concerns not only challenges due to large scale instan-
ce spaces, large numbers of instances and numbers of fea-
tures, but particularly due to the number of possible classes.
In particular in text classification, these type of problems
are very common. The number of possible categories that
can typically be assigned to each document varies from a
few dozen to several hundred. In this paper, we study a
challenging new domain, namely assigning documents of
the EUR-Lex database to a few of ≈ 4, 000 possible labels.
The EUR-Lex database is a freely accessible document ma-
nagement system for legal documents of the European Uni-
on. We chose this database for several reasons:

• it contains multiple classifications of the same docu-
ments, making it possible to analyze the effects of dif-
ferent classification properties using the same under-
lying reference data without resorting to artificial or
manipulated classifications,

• the overwhelming number of produced documents
make the legal domain a very attractive field for em-
ploying supportive automated solutions and therefore
a machine learning scenario in step with actual practi-
ce,

• the documents are available in several European lan-
guages and are hence very interesting e.g. for the wide
field of multi- and cross-lingual text classification,

• and, finally, the data is freely accessible.

The simplest strategy to tackle the multilabel problem with
existing techniques is to use one-against-all binarization,
in the multilabel setting also referred to as the binary re-
levance method. It decomposes the original problem into
less complex, binary problems, by learning one classifier
for each class, using all objects of this class as positive ex-
amples and all other objects as negative examples. At query
time, each binary classifier predicts whether its class is rele-
vant for the query example or not, resulting in a set of rele-
vant labels. While this technique can potentially be used to
transform any binary classifier into a multilabel classifier
and it is often used in practical applications, the question
remains whether this general approach can fully adapt to
the particular needs of multilabel classification, because it
trains each class independently of all other classes.
A recently proposed alternative that tries to tackle this pro-
blem is the multilabel multiclass perceptron (MMP) algo-
rithm developed by Crammer and Singer (2003), which ad-
apts the one-against-all approach to the multilabel case. Ins-
tead of learning the relevance of each class individually and
independently, MMP incrementally trains the entire classi-
fier ensemble as a whole so that it predicts a real-valued
relevance value for each class. This is done by always eva-
luating the performance of the entire ensemble, and only
producing training examples for the individual classifiers
when their corresponding classes are misplaced in the ran-
king. It uses perceptrons as base classifiers, because they
are simple and efficient, and because for high-dimensional
problems such as text classification, linear discriminants are
sufficiently expressive.
An alternative training method for an effective ensemble of
perceptrons is the pairwise decomposition of the initial pro-
blem proposed by the multilabel pairwise perceptron (ML-
PP) algorithm (Loza Mencı́a and Fürnkranz, 2008). In this
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method, one perceptron is trained for each possible class
pair, using the examples belonging to the two classes as
positive or negative examples respectively. During predicti-
on, an overall ranking of the classes is determined by com-
bining the predictions of the individual base perceptrons,
e.g. by voting. The first main advantage of the pairwise ap-
proach is its effectiveness: decomposing the problem into
smaller subproblem will yield simpler, often linear decision
boundaries, and this usually leads to an increased predic-
tion performance (Knerr et al., 1992; Hsu and Lin, 2002;
Fürnkranz, 2002). However, the second advantage of in-
creased efficiency in training compared to one-against-all
ensembles (Fürnkranz, 2002) is counteracted by the qua-
dratic number of base classifiers required in proportion to
the number of classes. While the pairwise decomposition
in combination with perceptrons as base classifiers is well
applicable for a large feature space and a large amount of
training instances (Loza Mencı́a and Fürnkranz, 2008), the
large number of classes in the EUR-Lex database constitu-
tes an insurmountable obstacle: in the most complex setting
approximately 8,000,000 perceptrons would be needed to
represent a pairwise ensemble.

We will therefore introduce and analyze a novel variant that
addresses this problem by representing the perceptron in its
dual form, i.e. the perceptrons are formulated as a combi-
nation of the documents that were used during training in-
stead of explicitly as a linear hyperplane. This reduces the
dependence on the number of classes and therefore allows
the Dual MLPP algorithm to handle the tasks in the EUR-
Lex database.

The MMP algorithm has already been used on large scale
data sets such as the Reuters Corpus Volume 1 (Lewis et al.,
2004) with its over 800,000 examples and approx. 100 clas-
ses (Crammer and Singer, 2003). In the experiments the
MMP algorithm was able to substantially improve the per-
formance of the one-against-all method with perceptrons
as base classifiers. In a recent evaluation on the same data
the pairwise approach showed an even higher performan-
ce than the MMP algorithm (Loza Mencı́a and Fürnkranz,
2008), demonstrating the applicability of MLPP to large-
scale problems. In this paper we will analyze if these results
can be repeated with the EUR-Lex database in three diffe-
rent settings, one with approx. 200, another with 400 and
finally one with 4000 possible classes. Note that the latter
problem has more classes by an order of magnitude than
other known applications of these algorithms.

A shortcoming of MMP and the pairwise method is that the
resulting prediction is not any more a set of classes as ex-
pected for a multilabel task, but a ranking of class relevance
scores. However, it is possible to obtain the desired output
in an additional step that selects classes which exceed a de-
termined relevance value. Different methods exist for deter-
mining the threshold, a good overview can be found in Se-
bastiani (2002). Recently, Brinker et al. (2006) introduced
the idea of using an artificial label that encodes the bounda-
ry between relevant and irrelevant labels for each example.
In this paper, we will concentrate on the label ranking task,
which also enables a more detailed evaluation of the classi-
fication performance.

2. Preliminaries
We represent an instance or object as a vector x̄ =
(x1, . . . , xM ) in a feature space X ⊆ RN . Each instance
x̄i is assigned to a set of relevant labels Y i, a subset of the
K possible classes Y = {c1, . . . , cK}. For multilabel pro-
blems, the cardinality |Y i| of the label sets is not restricted,
whereas for binary problems |Y i| = 1. For the sake of sim-
plicity we use the following notation for the binary case:
we define Y = {1,−1} as the set of classes so that each
object x̄i is assigned to a yi ∈ {1,−1} , Y i = {yi}.

2.1. Ranking Loss Functions
In order to evaluate the predicted ranking we use different
ranking losses. The losses are computed comparing the ran-
king with the true set of relevant classes, each of them focu-
sing on different aspects. For a given instance x̄, a relevant
label set Y , a negative label set Y = Y\Y and a given pre-
dicted ranking r : Y → {1 . . .K}, with r(c) returning the
position of class c in the ranking, the different loss functi-
ons are computed as follows:

ISERR The is-error loss determines whether r(c) < r(c′)
for all relevant classes c ∈ Y and all irrelevant classes
c′ ∈ Y . It returns 0 for a completely correct, perfect
ranking, and 1 for an incorrect ranking, irrespective of
‘how wrong’ the ranking is.

ONEERR The one error loss is 1 if the top class in the
ranking is not a relevant class, otherwise 0 if the top
class is relevant, independently of the positions of the
remaining relevant classes.

RANKLOSS The ranking loss returns the number of pairs
of labels which are not correctly ordered normalized
by the total number of possible pairs. As ISERR, it is 0
for a perfect ranking, but it additionally differentiates
between different degrees of errors.

E
def= {(c, c′) | r(c) > r(c′)} ⊆ Y × Y (1)

δRANKLOSS
def=
|E|
|Y ||Y |

(2)

MARGIN The margin loss returns the number of positions
between the worst ranked positive and the best ranked
negative classes. This is directly related to the number
of wrongly ranked classes, i.e. the positive classes that
are ordered below a negative class, or vice versa. We
denote this set by F .

F
def={c ∈ Y | r(c) > r(c′), c′ ∈ Y}
∪{c′ ∈ Y | r(c) > r(c′), c ∈ Y}

(3)

δMARGIN
def= max(0,max{r(c) | c ∈ Y}
−min{r(c′) | c′ /∈ Y})

(4)

AVGP Average Precision is commonly used in Informati-
on Retrieval and computes for each relevant label the
percentage of relevant labels among all labels that are
ranked before it, and averages these percentages over
all relevant labels. In order to bring this loss in line



with the others so that an optimal ranking is 0, we re-
vert the measure.

δAVGP
def= 1− 1

Y

∑
c∈Y

|{c∗ ∈ Y | r(c∗) ≤ r(c)}|
r(c)

(5)

2.2. Perceptrons
We use the simple but fast perceptrons as base classifiers
(Rosenblatt, 1958). As Support Vector Machines (SVM),
their decision function describes a hyperplane that divides
the N -dimensional space into two halves corresponding to
positive and negative examples. We use a version that works
without learning rate and threshold:

o′(x̄) = sgn(x̄ · w̄) (6)

with the internal weight vector w̄ and sgn(t) = 1 for t ≥ 0
and −1 otherwise. Two sets of points are called linearly
separable if there exists a separating hyperplane between
them. If this is the case and the examples are seen itera-
tively, the following update rule provably finds a separating
hyperplane (cf., e.g., (Bishop, 1995)).

αi = (yi − o′(x̄i)) w̄i+1 = w̄i + αix̄i (7)

It is important to see that the final weight vector can also be
represented as linear combination of the training examples:

w̄ =
M∑
i=1

αix̄i o′(x̄) = sgn(
M∑
i=1

αi · x̄ix̄) (8)

assuming M as number of seen training examples and
αi ∈ {−1, 0, 1}. The perceptron can hence be coded im-
plicitly as a vector of instance weights α = (α1, . . . , αM )
instead of explicitly as a vector of feature weights. This re-
presentation is denominated the dual form and is crucial
for developing the memory efficient variant in section . The
main reason for choosing Perceptron as our base classifier
is because, contrary to SVMs, they can be trained efficient-
ly in an incremental setting, which makes them particularly
well-suited for large-scale classification problems such as
the RCV1 benchmark (Lewis et al., 2004), without forfei-
ting too much accuracy though SVMs find the maximum-
margin hyperplane (Freund and Schapire, 1999; Crammer
and Singer, 2003; Shalev-Shwartz and Singer, 2005).

2.3. Binary Relevance Ranking
In the binary relevance (BR) or one-against-all (OAA) me-
thod, a multilabel training set with K possible classes is
decomposed into K binary training sets of the same si-
ze that are then used to train K binary classifiers. So for
each pair (x̄i,Y i) in the original training set K different
pairs of instances and binary class assignments (x̄i, yij

)
with j = 1 . . .K are generated as follows:

yij =

{
1 cj ∈ Y i

−1 otherwise
(9)

Supposing we use perceptrons as base learners, K different
o′j classifier are trained in order to determine the relevance

Require: Training example pair (x̄, Y), perceptrons w̄1, . . . , w̄K
1: calculate x̄w̄1, . . . , x̄w̄K , loss δ
2: if δ > 0 then . only if ranking is not perfect
3: calculate error sets E, F
4: for each c ∈ F do τc ← 0 . initialize τ ’s
5: for each (c, c′) ∈ E do
6: p← PENALTY(x̄w̄1, . . . , x̄w̄K)
7: τc ← τc + p . push up pos. classes
8: τc′ ← τc′ − p . push down neg. classes
9: σ ← σ + p . for normalization

10: normalize τ ’s
11: for each c ∈ F do
12: w̄c ← w̄c + δ τc

σ
· x̄ . update perceptrons

13: return w̄1 . . . w̄K . return updated perceptrons

Figure 1: Pseudocode of the training method of the MMP
algorithm

of cj . In consequence, the combined prediction of the bi-
nary relevance classifier for an instance x̄ would be the set
{cj | o′j(x̄) = 1}. If, in contrast, we want to obtain a ran-
king of classes according to their relevance, we can simply
use the result of the internal computation of the perceptrons
as a measure of relevance. According to Equation 6 the de-
sired linear combination is the inner product oj(x̄) = x̄ · w̄j

(ignoring ω as mentioned above). So the result of the pre-
diction is a vector ō(x̄) = (x̄w̄1, . . . , x̄w̄K) where com-
ponent j corresponds to the relevance of class cj . Ties are
broken randomly to not favor any particular class.

2.4. Multiclass Multilabel Perceptrons
MMPs were proposed as an extension of the one-against-
all algorithm with perceptrons as base learners (Crammer
and Singer, 2003). Just as in binary relevance, one percep-
tron is trained for each class, and the prediction is calcula-
ted via the inner products. The difference lies in the update
method: while in the binary relevance method all percep-
trons are trained independently to return a value greater or
smaller than zero, depending on the relevance of the clas-
ses for a certain instance, MMPs are trained to produce a
good ranking so that the relevant classes are all ranked abo-
ve the irrelevant classes. The perceptrons therefore cannot
be trained independently, considering that the target value
for each perceptron depends strongly on the values returned
by the other perceptrons.
The pseudocode in Fig. 1 describes the MMP training algo-
rithm. When the MMP algorithm receives a training instan-
ce x̄, it calculates the inner products, the ranking and the
loss on this ranking in order to determine whether the cur-
rent model needs an update. For determining the ranking
loss, any of the methods of Sec. 2.1. is appropriate, since
they all return a low value on good rankings. If the ranking
is perfect, the algorithm is done, otherwise it calculates the
error set of wrongly ordered class pairs E. The wrongly
ranked classes are also represented in F . In the next step,
each class that is present in a pair of E receives a penalty
score. This is done according to a selectable penalty functi-
on, being the uniform update method, where each pair in E
receives the same score, the most successful one (Crammer
and Singer, 2003). In the next step, the update weights τ are
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Figure 2: MLPP training: training example x̄ belongs to
Y = {c1, c2}, Y = {c3, c4, c5} are the irrelevant classes,
the arrows represent the trained perceptrons.

Require: Training example pair (x̄, Y),
perceptrons {w̄u,v | u < v, cu, cv ∈ Y}

1: for each (cu, cv) ∈ Y × Y do
2: if u < v then
3: w̄u,v ← TRAINPERCEPTRON(w̄u,v, (x̄, 1))

. train as positive example
4: else
5: w̄v,u ← TRAINPERCEPTRON(w̄v,u, (x̄,−1))

. train as negative example
6: return {w̄u,v | u < v, cu, cv ∈ Y}

. updated perceptrons

Figure 3: Pseudocode of the training method of the MLPP
algorithm.

normalized and each perceptron whose class was wrongly
ordered is updated.

2.5. Multilabel Pairwise Perceptrons
In the pairwise binarization method, one classifier is trai-
ned for each pair of classes, i.e., a problem withK different
classes is decomposed into K(K−1)

2 smaller subproblems.
For each pair of classes (cu, cv), only examples belonging
to either cu or cv are used to train the corresponding classi-
fier o′u,v . All other examples are ignored. In the multilabel
case, an example is added to the training set for classifier
o′u,v if u is a relevant class and v is an irrelevant class, i.e.,
(u, v) ∈ Y × Y (cf. Figure 2). We will typically assume
u < v, and training examples of class u will receive a trai-
ning signal of +1, whereas training examples of class v will
be classified with−1. Figure 3 shows the training algorithm
in pseudocode. Of course MLPPs can also be trained incre-
mentally.
In order to return a class ranking we use a simple voting
strategy, known as max-wins. Given a test instance, each
perceptron delivers a prediction for one of its two classes.
This prediction is decoded into a vote for this particular
class. After the evaluation of all K(K−1)

2 perceptrons the
classes are ordered according to their sum of votes.1

Figure 4 shows a possible result of classifying the sample
instance of Figure 2. Perceptron o′1,5 predicts (correctly) the
first class, consequently c1 receives one vote and class c5

1Ties are broken randomly in our case.

o′1,2 = 1 o′2,1 = -1 o′3,1 = -1 o′4,1 = -1 o′5,1 = -1
o′1,3 = 1 o′2,3 = 1 o′3,2 = -1 o′4,2 = -1 o′5,2 = -1
o′1,4 = 1 o′2,4 = 1 o′3,4 = 1 o′4,3 = -1 o′5,3 = -1
o′1,5 = 1 o′2,5 = 1 o′3,5 = 1 o′4,5 = 1 o′5,4 = -1

v1 = 4 v2 = 3 v3 = 2 v4 = 1 v5 = 0

Figure 4: MLPP voting: an example x̄ is classified by all
10 base perceptrons o′u,v, u 6= v , cu, cv ∈ Y . Note the
redundancy given by o′u,v = −o′v,u. The last line counts the
positive outcomes for each class.

zero (denoted by o′1,5 = 1 in the first and o′5,1 = −1 in the
last row). All 10 perceptrons (the values in the upper right
corner can be deduced due to the symmetry property of the
perceptrons) are evaluated though only six are ‘qualified’
since they were trained with the original example.
This may be disturbing at first sight since many ‘unquali-
fied’ perceptrons are involved in the voting process: o′1,2 is
asked for instance though it cannot know anything relevant
in order to determine if x̄ belongs to c1 or c2 since it was
neither trained on this example nor on other examples be-
longing simultaneously to both classes (or to none of both).
In the worst case the noisy votes concentrate on a single ne-
gative classes, which would lead to misclassifications. But
note that any class can at most receiveK−1 votes, so that in
the extreme case when the qualified perceptrons all classify
correctly and the unqualified ones concentrate on a single
class, a positive class would still receive at least K − |Y |
and a negative at mostK−|Y |−1 votes. Class c3 in Figure
4 is an example for this: It receives all possible noisy votes
but still loses against the positive classes c1 and c2.
The pairwise binarization method is often regarded as su-
perior to binary relevance because it profits from simpler
decision boundaries in the subproblems (Fürnkranz, 2002;
Hsu and Lin, 2002). In the case of an equal class distributi-
on, the subproblems have 2

K times the original size where-
as binary relevance maintains the size. Typically, this goes
hand in hand with an increase of the space where a separa-
ting hyperplane can be found. Particularly in the case of text
classification the obtained benefit clearly exists. An evalua-
tion of the pairwise approach on the Reuters Corpus Volu-
me 1 (Lewis et al., 2004), which contains over 100 classes
and 800,000 documents, showed a significant and substan-
tial improvement over the MMP method (Loza Mencı́a and
Fürnkranz, 2008). This encourages us to apply the pairwi-
se decomposition to the EUR-Lex database, with the main
obstacle of the quadratic number of base classifier in rela-
tionship to the number of classes. Since this problem can
not be coped for the present classifications in EUR-Lex, we
propose to reformulate the MLPP algorithm in the way de-
scribed in the next section.

3. Dual Multilabel Pairwise Perceptrons
With an increasing number of classes the required memo-
ry by the MLPP algorithm grows quadratically and even
on modern computers with a huge amount of memory this
problem becomes unsolvable for a high number of clas-
ses. For the EUROVOC classification, the use of MLPP
would mean maintaining approximately 8,000,000 percep-
trons in memory. In order to circumvent this obstacle we



reformulate the MLPP ensemble of perceptrons in dual
form as we did with one single perceptron in Equation 8.
In contrast to MLPP, the training examples are thus requi-
red and have to be kept in memory in addition to the asso-
ciated weights, as a base perceptron is now represented as
w̄u,v =

∑M
i=1 α

t
u,vx̄i. This makes an additional loop over

the training examples inevitable every time a prediction is
demanded. But fortunately it is not necessary to recompute
all x̄ix̄ for each base perceptron since we can reuse them
by iterating over the training examples in the outer loop, as
can be seen in the following equations:

w̄1,2x̄ = α1
1,2x̄1x̄ + α2

1,2x̄2x̄ + . . .+ αM
1,2x̄M x̄

w̄1,3x̄ = α1
1,3x̄1x̄ + α2

1,3x̄2x̄ + . . .+ αM
1,3x̄M x̄

...

w̄1,K x̄ = α1
1,K x̄1x̄ + α2

1,K x̄2x̄ + . . .+ αM
1,K x̄M x̄

w̄2,3x̄ = α1
2,3x̄1x̄ + α2

2,3x̄2x̄ + . . .+ αM
2,3x̄M x̄

...

(10)

By advancing column by column it is not necessary to re-
peat the dot products computations, however it is necessary
to store the intermediate values, as can also be seen in the
pseudocode of the training and prediction phases in Figures
5 and 6. We denote this variant of training the pairwise per-
ceptrons the dual multilabel pairwise perceptrons algorithm
(DMLPP).
Despite the consequences for the memory requirements and
the run-time analyzed in detail in Section 4., the dual repre-
sentation allows for using the kernel trick, i.e. to replace the
dot product by a kernel function, in order to be able to solve
originally not linearly separable problems. However, this is
not necessary in our case since text problems are in general
linearly separable.
Note also that the pseudocode needs to be slightly adap-
ted when the DMLPP algorithm is trained in more than
one epoch, i.e. the training set is presented to the lear-
ning algorithm more than once. It is sufficient to modify
the assignment in line 8 in Figure 5 to an additive update
αt

u,v = αt
u,v + 1 for a revisited example x̄t. This setting is

particularly interesting for the dual variant since, when the
training set is not too big, memorizing the inner products
can boost the subsequent epochs in a substantial way, ma-
king the algorithm interesting even if the number of classes
is small.

4. Computational Complexity
The notation used in this section is the following: K deno-
tes the number of possible classes, L the average number of
relevant classes per instance in the training set, N the num-
ber of attributes and N ′ the average number of attributes
not zero (size of the sparse representation of an instance),
andM denotes the size of the training set. For each comple-
xity we will give an upper bound O in Landau notation. We
will indicate the runtime complexity in terms of real value
additions and multiplications ignoring operations that have
to be performed by all algorithms such as sorting or inter-
nal real value operations. Additionally, we will present the

Require: New training example pair (x̄M , Y),
training examples x̄1 . . . x̄M−1,
weights {αiu,v | cu, cv ∈ Y, 0 < i < M}

1: for each x̄i ∈ x̄1 . . . x̄M−1 do
2: pi ← x̄i · x̄M
3: for each (cu, cv) ∈ Y × Y do
4: if αiu,v 6= 0 then
5: su,v ← su,v + αiu,v · pt

. note that su,v = −sv,u
6: for each (cu, cv) ∈ Y × Y do
7: if su,v < 0 then
8: αMu,v ← 1 . note that αu,v = −αv,u
9: return {αMu,v | (cu, cv) ∈ Y × Y} . return new weights

Figure 5: Pseudocode of the training method of the DMLPP
algorithm.

Require: example x̄ for classification,
training examples x̄1 . . . x̄M−1,
weights {αiu,v | cu, cv ∈ Y, 0 < i < M}

1: for each x̄i ∈ x̄1 . . . x̄M do
2: p← x̄i · x̄
3: for each (cu, cv) ∈ Y i × Y t do
4: if αiu,v 6= 0 then
5: su,v ← su,v + αiu,v · p
6: for each (cu, cv) ∈ Y × Y do
7: if u 6= v ∨ su,v > 0 then
8: vu ← vu + 1

9: return voting v̄ = (v1, . . . , v|Y|) . return voting

Figure 6: Pseudocode of the prediction phase of the DML-
PP algorithm.

complexities per instance as all algorithms are incremen-
tally trainable. We will also concentrate on the comparison
between MLPP and the implicit representation DMLPP.
The MLPP algorithm has to keep K(K−1)

2 perceptrons,
each with N weights in memory, hence we need O(K2N)
memory. The DMLPP algorithms keeps the whole training
set in memory, and additionally requires for each training
example x̄ access to the weights of all class pairs Y×Y . Fur-
thermore, it has to intermediately store the resulting scores
for each base perceptron during prediction, hence the com-
plexity is O(MLK +MN ′ +K2) = O(M(LK +N ′) +
K2).2 We can see that MLPP is applicable especially if the
number of classes is low and the number of examples high,
whereas DMLPP is suitable when the number of classes is
high, however it does not handle huge training sets very
well.
For processing one training example, O(LK) dot products
have to be computed by MLPP, one for each associated per-
ceptron. Assuming that a dot product computation costs
O(N ′), we obtain a complexity of O(LKN ′) per trai-

2 Note that we do not estimate L as O(K) since both values
are not of the same order of magnitude in practice. For the sa-
me reason we distinguish between N and N ′ since particularly in
text classification both values are not linked: a text document often
turns out to employ around 100 different words whereas the size
of the vocabulary of a the whole corpus can easily reach 100,000
words (although this number is normally reduced by feature se-
lection).



training time testing time memory
requirement

MMP, BR O(KN ′) O(KN ′) O(KN)
MLPP O(LKN ′) O(K2N ′) O(K2N)
DMLPP O(M(LK +

N ′))
O(M(LK +
N ′))

O(M(LK +
N ′) +K2)

Table 1: Computational complexity given in expected num-
ber of addition and multiplication operations. K: #classes,
L: avg. #labels per instance, M : #training examples, N :
#attributes,N ′: #attributes6= 0, δ̂: avg. Loss, δ̂per, δ̂ISERR ≤
1, δ̂MARGIN < K.

ning example. Similarly, the DMLPP spendsM dot product
computations. In addition the summation of the scores costs
O(LK) per training instance, leading to O(M(LK +N ′))
operations. It is obvious that MLPP has a clear advantage
over DMLPP in terms of training time, unless K is of the
order of magnitude of M or the model is trained over se-
veral epochs, as already outlined in the previous Section 3.
During prediction the MLPP evaluates all perceptrons, lea-
ding to O(K2N ′) computations. The dual variant again
iterates over all training examples and associated weights,
hence the complexity is O(M(LK + N ′)). At this phase
DMLPP benefits from the linear dependence of the num-
ber of classes in contrast to the quadratic relationship of the
MLPP. Roughly speaking the breaking point when DML-
PP is faster in prediction is approximately when the square
of the number of classes is clearly greater than the number
of training documents. We can find a similar trade-off for
the memory requirements with the difference that the fac-
tor between sparse and total number of attributes becomes
more important, leading earlier to the breaking point when
the sparseness is high.
A compilation of the analysis can be found in Table 1, to-
gether with the complexities of MMP and BR. A more de-
tailed comparison between MMP and MLPP is available
from Loza Mencı́a and Fürnkranz (2008).
In summary, it can be stated that the dual form of the ML-
PP balances the relationship between training and predic-
tion time by increasing training and decreasing prediction
costs, and especially benefits from a decreased prediction
time and memory savings when the number of classes is
large, which was the main obstacle to applying the pairwi-
se approach to large scale problems in terms of classes.

5. EUR-Lex Repository
The EUR-Lex/CELEX (Communitatis Europeae LEX) Si-
te3 provides a freely accessible repository for European
Union law texts. The documents include the official Journal
of the European Union, treaties, international agreements,
legislation in force, legislation in preparation, case-law and
parliamentary questions. The documents are available in
most of the languages of the EU, and in the HTML and
PDF formats. We retrieved the HTML versions with biblio-
graphic notes recursively from all (non empty) documents
in the English version of the Directory of Community legis-
lation in force4, in total 19,596 documents. Only documents

3http://eur-lex.europa.eu
4http://eur-lex.europa.eu/en/legis/index.htm

related to secondary law (in contrast to primary law, the
constitutional treaties of the European Union) and interna-
tional agreements are included in this repository. The legal
form of the included acts are mostly decisions (8,917 docu-
ments), regulations (5,706), directives (1,898) and agree-
ments (1,597).
The bibliographic notes of the documents contain informa-
tion such as dates of effect and validity, authors, relation-
ships to other documents and classifications. The classifica-
tions include the assignment to several EUROVOC descrip-
tors, directory codes and subject matters, hence all classi-
fications are multilabel ones. EUROVOC is a multilingual
thesaurus providing a controlled vocabulary for European
Institutions5. Documents in the documentation systems of
the EU are indexed using this thesaurus.The directory co-
des are classes of the official classification hierarchy of the
Directory of Community legislation in force. It contains 20
chapter headings with up to four sub-division levels.
Figure 7 shows an excerpt of a sample document with all
information that has not been used removed. The full docu-
ment can be viewed at http://eur-lex.europa.eu/LexUriServ
/LexUriServ.do?uri=CELEX:31991L0250:EN:NOT.
The high number of 3,993 different EUROVOC descriptors
were identified in the retrieved documents, each document
is associated to 5.37 descriptors on average. In contrast the-
re are only 201 different subject matters appearing in the
dataset, with a mean of 2.23 labels per document, and 412
different directory codes, with a label set size of on ave-
rage 1.29. Note that for the directory codes we used only
the assignment to the leaf category as the parent nodes can
be deduced from the leaf node assignment. For the docu-
ment in Figure 7 this would mean a set of labels of {17.20}
instead of {17, 17.20}.

5.1. Data Preprocessing

The main text was extracted from the HTML documents,
excluding HTML tags, bibliographic notes or other additio-
nal information that could distort the results, and was then
finally tokenized. The tokens were transformed to lower ca-
se, stop words were excluded, and the Porter stemmer algo-
rithm was applied.6 In order to perform cross validation,
the instances were randomly distributed into ten folds. The
tokens were projected into the vector space model using
the common TF-IDF term weighting (Sebastiani, 2002). In
order to reduce the memory requirements, of the approx.
200,000 resulting features we selected the first 5,000 or-
dered by their document frequency. This feature selection
method is very simple and efficient and independent from
class assignments, although it performs comparably to mo-
re sophisticated methods using chi-square or information
gain computation (Yang and Pedersen, 1997). In order to
ensure that no information from the test set enters the trai-
ning phase, the TF-IDF transformation and the feature se-
lection were conducted only on the training sets of the ten
cross-validation splits.

5http://europa.eu/eurovoc/
6The implementation from the Apache Lucene Project (http:

//lucene.apache.org/java/docs/index.html) was used.

http://eur-lex.europa.eu
http://eur-lex.europa.eu/en/legis/index.htm
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31991L0250:EN:NOT
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31991L0250:EN:NOT
http://europa.eu/eurovoc/
http://lucene.apache.org/java/docs/index.html
http://lucene.apache.org/java/docs/index.html


Title and reference
Council Directive 91/250/EEC of 14 May 1991 on the legal protection of computer programs

Classifications
EUROVOC descriptor

• data-processing law

• computer piracy

• copyright

• software

• approximation of laws

Directory code

• 17.20.00.00 Law relating to undertakings / Intellectual property law

Subject matter

• Internal market

• Industrial and commercial property

Text
COUNCIL DIRECTIVE of 14 May 1991 on the legal protection of computer programs (91/250/EEC)

THE COUNCIL OF THE EUROPEAN COMMUNITIES,

Having regard to the Treaty establishing the European Economic Community and in particular Article 100a thereof,

Having regard to the proposal from the Commission (1),

In cooperation with the European Parliament (2),

Having regard to the opinion of the Economic and Social Committee (3),

Whereas computer programs are at present not clearly protected in all Member States by existing legislation and such
protection, where it exists, has different attributes; Whereas the development of computer programs requires the investment

of considerable human, technical and financial resources while computer programs can be copied at a fraction of the cost
needed to develop them independently;

. . .

Figure 7: Excerpt of a EUR-Lex sample document with the CELEX ID 31991L0250. The original document contains
more meta-information. We trained our classifiers to predict the EUROVOC descriptors, the directory code and the subject
matters based on the text of the document.

6. Evaluation
6.1. Algorithm Setup
For the MMP algorithm we used the ISERR loss function
and the uniform penalty function. This setting showed the
best results in (Crammer and Singer, 2003) on the RCV1
data set. The perceptrons of the BR and MMP ensembles
were initialized with random values. We performed also
tests with a multilabel variant of the multinomial Naive
Bayes (MLNB) algorithm in order to provide a baseline.
For the MLNB we counted the TF-IDF instead of the term
frequency values as we obtained improved results by using
this additional information about the overall relevance of
each term.

6.2. Ranking Performance
The results for the four algorithms and the three different
classifications of EUR-Lex are presented in Table 2. The
values for ISERR, ONEERR, RANKLOSS and AVGP are
shown ×100% for better readability, AVGP is also presen-

ted in the conventional way (with 100% as the optimal va-
lue) and not as a loss function. The number of epochs in-
dicates the number of times that the online-learning algo-
rithms were able to see the training instances. No results are
reported for the performance of DMLPP on EUROVOC for
more than one epoch.

The first appreciable characteristic is that DMLPP domina-
tes all other algorithms on all three views of the EUR-Lex
data, regardless of the number of epochs or losses. For the
directory code DMLPP achieve a result in epoch 2 that is
still beyond the reach of the other algorithms in epoch 10,
except for MMP’s ISERR. Especially on the losses that di-
rectly evaluate the ranking performance the improvement
is quite pronounced and the results are already unreacha-
ble after the first epoch. It is also interesting to note that
the improvement between epoch 5 and epoch 10 is rather
small compared to the previous steps. We can observe this
effect also for the MMP algorithm advancing from 10 to 20
epochs (e.g. 40.01 for ISERR and 9.73 % for RANKLOSS



subject matter 1 epoch 2 epochs 5 epochs 10 epochs
MLNB BR MMP DMLPP BR MMP DMLPP BR MMP DMLPP BR MMP DMLPP

ISERR×100 99.15 61.71 53.61 52.28 57.39 48.83 45.48 52.36 43.21 39.74 49.87 40.89 37.69
ONEERR×100 98.63 30.67 27.95 23.62 26.44 24.4 18.64 22.17 18.82 15.01 20.41 17.08 13.7
RANKLOSS 8.979 16.36 2.957 1.160 14.82 2.785 0.988 11.40 2.229 0.885 10.29 2.000 0.849
MARGIN 25.34 59.33 13.04 4.611 54.27 11.94 4.001 44.05 9.567 3.615 40.39 8.636 3.488
AVGP 12.26 62.9 74.71 77.98 66.61 78.05 82.05 71.28 81.71 84.76 73.06 83.19 85.79

directory code 1 epoch 2 epochs 5 epochs 10 epochs
MLNB BR MMP DMLPP BR MMP DMLPP BR MMP DMLPP BR MMP DMLPP

ISERR×100 99.25 52.46 46.08 37.58 45.89 40.78 33.31 40.97 34.27 30.41 37.67 32.52 29.58
ONEERR×100 99.28 44.61 39.42 29.41 37.46 34.27 25.60 32.09 27.62 23.04 28.86 25.83 22.40
RANKLOSS 7.785 19.30 2.749 1.109 15.12 2.294 0.999 12.10 2.199 0.961 10.17 1.783 0.953
MARGIN 35.89 96.16 15.47 6.271 77.31 13.30 5.690 62.98 12.30 5.478 53.82 10.20 5.436
AVGP 6.565 57.10 70.00 77.21 63.49 74.61 80.10 68.27 78.83 81.93 71.18 80.28 82.37

EUROVOC 1 epoch 2 epochs 5 epochs
MLNB BR MMP DMLPP BR MMP BR MMP

ISERR×100 99.58 98.57 98.84 97.92 98.19 97.47 97.23 95.96
ONEERR×100 99.99 48.69 75.89 35.50 41.50 54.41 37.30 40.15
RANKLOSS 22.88 40.35 3.906 2.779 35.46 4.350 30.96 4.701
MARGIN 1644.00 3230.68 597.59 433.89 3050.07 694.10 2842.63 761.24
AVGP 1.06 26.90 29.28 46.67 31.58 39.54 35.90 47.27

Table 2: Average losses for the three views on the data and for the different algorithms.

on subject matter for epoch 20, similar behavior for direc-
tory code). This partially confirms the results of Crammer
and Singer (2003). They observed that after reaching a cer-
tain amount of training examples the improvement stops
and after that point the performance can even become wor-
se. This point seems to be reached for MMP at the latest at
ten epochs on the subject matter and directory code data. It
is also interesting to note the behavior on the EUROVOC
data as the ranking losses RANKLOSS and MARGIN incre-
ases from the first epoch on whereas for the other losses it
still decreases.
In addition to the fact that the DMLPP outperforms the re-
maining algorithms, it is still interesting to compare the per-
formances of MMP and BR as they have still the advantage
of reduced computational costs and memory requirements
in comparison to the (dual) pairwise approach and could
therefore be more applicable for very complex data sets
such as EUROVOC, which is certainly hard to tackle for
DMLPP (cf. Section 6.3.).
For the subject matter and directory code, the results clearly
show that the MMP algorithm outperforms the simple one-
against-all approach. Especially on the losses that directly
evaluate the ranking performance the improvement is qui-
te pronounced. The smallest difference can be observed in
terms of ONEERR, which evaluates the top class accuracy.
The performance on the EUROVOC descriptor data
set confirms the previous results. The differences in
RANKLOSS and MARGIN are very pronounced. In con-
trast, in terms of ONEERR the MMP algorithm is worse
than one-against-all, even after five epochs. It seems that
with an increasing amount of classes, the MMP algorithm
has more difficulties to push the relevant classes to the top
such that the margin is big enough to leave all irrelevant
classes below, although the algorithm in general clearly gi-

ves the relevant classes a higher score than the one-against-
all approach. An explanation could be the dependence bet-
ween the perceptrons of the MMP. This leads to a natural
normalization of the scalar product, while there is no such
restriction when trained independently as done in the bina-
ry relevance algorithm. As a consequence there could be
some perceptrons that produce high maximum scores and
thereby often arrive at top positions at the overall ranking.
The price to pay for the BR algorithm is a decreased quality
of the produced rankings, as the results for RANKLOSS and
MARGIN are even beaten by Naive Bayes, which is by far
the worst algorithm for the other losses.
The fact that in only approximately 4% of the cases a per-
fect classification is achieved and in only approx. 60% the
top class is correctly predicted (MMP) should not lead to
an underestimation of the performance of these algorithms.
Considering that with almost 4000 possible classes and
only 5.3 classes per example the probability of randomly
choosing a correct class is less than one percent, namely
0.13%, the performance is indeed substantial.

6.3. Computational Costs

In order to allow a comparison independent from external
factors such as logging activities and the run-time environ-
ment, we ignored minor operations that have to be perfor-
med by all algorithms, such as sorting or internal opera-
tions. An overview over the amount of real value additi-
on and multiplication computations is given in Table 6.3.
(measured on the first cross validation split, trained for one
epoch), together with the CPU-times on an AMD Dual Co-
re Opteron 2000 MHz as additional reference information.
We can observe a clear advantage of the non-pairwise ap-
proaches on the subject matter data especially for the pre-
diction phase, however the training costs are in the same or-



der of magnitude. For the directory code the rate for MMP
and BR more than doubles in correspondence with the in-
crease in number of classes, while DMLPP profits from the
decrease in the average number of classes per instance. It
even causes less computations in the training phase than
MMP/BR. The reason for this is not only the reduced ma-
ximum amount of weights per instance (cf. Section 4.), but
particularly the decreased probability that a training exam-
ple is relevant for a new training example (and consequently
that dot products and scores have to be computed) since it
is less probable that both class assignments match, i.e. that
both examples have the same pair of positive and negative
classes. This becomes particularly clear if we observe the
number of non-zero weights and actually used weights du-
ring training for each new example. The classifier for sub-
ject matter has on average 21 weights set per instance out of
443 (= L(K−L)) in the worst case (a ratio of 4.47%), and
on average 5.1% of them are required when a new training
example arrives. For the directory code with a smaller frac-
tion L/K 35.5 weights are stored (3.96%), of which only
1.11% are used when updating. This also explains the re-
latively small number of operations for training on EURO-
VOC, since from the 1,802 weights per instance (8.41%),
only 0.55% are relevant to a new training instance. In this
context, regarding the disturbing ratio between real value
operations and CPU-time for training DMLPP on EURO-
VOC, we believe that this is caused by a suboptimal storage
structure and processing of the weights and we are therefore
confident that it is possible to reduce the distance to MMP
in terms of actual consumed CPU-time by improving the
program code.
Note that MMP and BR compute the same amount of dot
products, the computational costs only differ in the num-
ber of vector additions, i.e. perceptron updates. It is the-
refore interesting to observe the contrary behavior of both
algorithms when the number of classes increases: while
the one-against-all algorithm reduces the ratio of updated
perceptrons per training example from 1.33% to 0.34%
when going from 202 to 3993 classes, the MMP algorithm
doubles the rate from 8.53% to 22.22%. For the MMP this
behavior is natural: with more classes the error set size in-
creases and consequently the number of updated percep-
trons. In contrast BR receives less positive examples per
base classifier, the perceptrons quickly adopt the general-
ly good rule to always return a negative score, which leads
to only a few binary errors and consequently to little cor-
rective updates. A more extensive comparison of BR and
MMP can be found in a previous work (Loza Mencı́a and
Fürnkranz, 2007).

7. Conclusions
In this paper, we evaluated two known approaches for ef-
ficiently solving multilabel classification tasks on a large-
scale text classification problem taken from the legal do-
main: the EUR-Lex database. The experimental results con-
firm that the MMP algorithm, which improves the mo-
re commonly used one-against-all or binary relevance ap-
proach by employing a concerted training protocol for the
classifier ensemble, is very competitive and well applicable
in practice for solving large-scale multilabel problems.

subject
matter

training testing

BR 35.8 s 8.36 s
1,675 M op. 192 M op.

MMP 31.35 s 6.28 s
1,789 M op. 192 M op.

DMLPP 326.02 s 145.67 s
6,089 M op. 4,628 M op.

directory
code

training testing

BR 49.01 s 11.99 s
3,410 M op. 394 M op.

MMP 49.63 s 11.03 s
3,579 M op. 394 M op.

DMLPP 313.59 s 192.99 s
2,986 M op. 5,438 M op.

EUROVOC training testing
BR 405.42 s 56.71 s

32,975 M op. 3,817 M op.
MMP 503.04 s 53.69 s

40,510 M op. 3,817 M op.
DMLPP 11,479.81 s 7,631.86 s

17,719 M op. 127,912 M op.

Table 3: Computational costs in CPU-time and millions of
real value operations (M op.)

The average precision rate for the EUROVOC classifica-
tion task, a multilabel classification task with 4000 possi-
ble labels, approaches 50%. Roughly speaking, this means
that the (on average) five relevant labels of a document will
(again, on average) appear within the first 10 ranks in the
relevancy ranking of the 4,000 labels. This is a very encou-
raging result for a possible automated or semi-automated
real-world application for categorizing EU legal documents
into EUROVOC categories.
In addition we presented an algorithm that reformulates the
pairwise decomposition approach to a dual form so that it
is capable to handle very complex problems and therefo-
re to compete with the approaches which use one classifier
per class. It was demonstrated that decomposing the initi-
al problem into smaller problems for each pair of classes
achieves higher prediction accuracy on the EUR-Lex da-
ta, since DMLPP substantially outperformed all other algo-
rithms. This confirms previous results of the non-dual va-
riant on the large Reuters Corpus Volume 1 (Loza Mencı́a
and Fürnkranz, 2008). The dual form representation allows
for handling a much higher number of classes than the ex-
plicit representation, albeit with an increased dependence
on the training set size. We are currently investigating vari-
ants to further reduce the computational complexity. Despi-
te the improved ability to handle large problems, DMLPP
is still less efficient than MMP, especially for the EURO-
VOC data with 4000 classes. However, in our opinion the
results show that DMLPP is still competitive for solving
large-scale problems in practice, especially considering the
trade-off between runtime and prediction performance.
For future research, on the one hand we see space for im-
provement for the MMP and pairwise approach for instan-



ce by using a calibrated ranking approach (Brinker et al.,
2006). The basic idea of this algorithm is to introduce an
artificial label which, for each example, separates the rele-
vant from irrelevant labels in order to return a set of clas-
ses instead of only a ranking. On the other hand, we see
possible improvements by exploiting advancements in the
perceptron algorithm and in the pairwise binarization, e.g.
by using one of the several variants of the perceptron algo-
rithm that, similar to SVMs, try to maximize the margin of
the separating hyperplane in order to produce more accura-
te models (Crammer et al., 2006; Khardon and Wachman,
2007), or by employing a voting technique that takes the
prediction weights into account such as the weighted vo-
ting technique by Price et al. (1995).
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