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Abstract. Classifiers chains (CC) is an effective approach in order to exploit la-
bel dependencies in multi-label data. However, it has the disadvantages that the
chain is chosen at total random or relies on a pre-specified ordering of the labels
which is expensive to compute. Moreover, the same ordering is used for every
test instance, ignoring the fact that different orderings might be best suited for
different test instances. We propose a new approach based on random decision
trees (RDT) which can choose the label ordering for each prediction dynami-
cally depending on the respective test instance. RDT are not adapted to a specific
learning task, but in contrast allow to define a prediction objective on the fly
during test time, thus offering a perfect test bed for directly comparing different
prediction schemes. Indeed, we show that dynamically selecting the next label
improves over using a static ordering of the labels under an otherwise unchanged
RDT model and experimental environment.
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1 Introduction

Contrary to multi-class classification, where only one class label is expected to be asso-
ciated to an example, multi-label classification (MLC) is the task of assigning a subset
of all possible labels to an example. In this task, it is considered crucial to take the
dependencies between labels into account. Classifier chains (CC) [18] and their exten-
sions (cf. Section 2) have proven to be a simple but powerful method for exploiting label
dependencies in MLC. Similarly to the binary relevance decomposition method these
methods train a binary predictor for each of the labels. However, they are organized in a
chain so that successive classifiers can make use of the predictions of the previous ones.
This enables CC to capture dependencies between labels.

Nevertheless, this simple technique has several shortcomings, especially regarding
the chain. Firstly, the ordering in which the labels are predicted in the chain has to
be fixed beforehand. To find a sequence which best allows to consider dependencies
between labels is a non-trivial task [12] and methods which try to explore different
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orderings are usually computationally much more expensive than the often taken option
of just choosing a random ordering. Secondly, the assumption that there is one single
prediction ordering which works best always for every possible single test instance
might hold only in very restricted scenarios. Instead, our assumption in this work is that
the ordering in which labels should be predicted in order to obtain the best performance
highly depends on the specific context, namely the test instance at hand. The question of
how to dynamically choose an appropriate ordering for individual instances instead of
the entire datasets has been little researched so far. Silva et al. [20] made a first attempt
by letting a nearest neighbor classifier decide which ordering to use for a given instance.
However, the dynamic selection was restricted to a pre-determined set of static label
orderings. The approach of Nam et al. [15] predicts the positive labels at the beginning
of the chain, but the ordering in which these are predicted is pre-determined.

In this work, we propose to use random decision trees (RDT) for the purpose of
constructing dynamic chains, since these trees have a series of convenient and appealing
properties (Section 3).

Foremost, the construction of the model is independent of the specific leaning task.
This has the advantage that the objective can easily be changed during prediction with-
out the need for modifying the trees. Our dynamic classifier chains extension of RDT
is strongly relying on this property. Instead of choosing the next label to predict from
the pre-determined ordering, our proposed method predicts the label for which the RDT
is most confident given the current context (Section 4). Our experiments on a series of
datasets confirm that it is advantageous to predict the labels in such a dynamic way
w.r.t. predictive performance (Section 5).

Moreover, we propose to take advantage of the flexibility of RDT to build a con-
trolled experimental setup where not only the training hyper parameters can be fixed,
but also the respective models (Section 4.1). This allows us to directly measure the im-
pact of certain modifications, as well as to compare conceptually different approaches
on a fair basis. For instance, we use this possibility in our experimental evaluation to
analyze the specific utility of considering previous predictions, or to compare CC to our
dynamic CC using the same actual ensemble of trees.

2 Multi-label Classification and Classifier Chains

Multi-label classification is the task of learning a mapping from instances X ∈ X
to subsets Y ⊂ Y of a finite set of non-exclusive class labels Y = {y0, . . . , yn}. For
convenience, Y is often represented as binary vector Y = (y0, . . . , yn) where yi is 1 if
the label is relevant (positive), otherwise 0 for irrelevant (negative) labels. An extensive
overview over MLC is provided by Tsoumakas et al. [22].

The simplest method for solving MLC tasks is the binary relevance method (BR)
where each label is handled as a single classification task for which a classifier is trained.
Formally, we learn a function hi : X → {0, 1} for each yi. According to this, each
classification of a label is independent of the values of the other labels.

Another method is the label power-set method (LP) which reduces the problem of
MLC to a single multi-class classification task by representing each possible combi-
nation of labels as one separate and exclusive class. This approach naturally considers
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to predict labels in dependence of the remaining labels, hence focusing on predicting
correct label combinations. However, in addition to the obvious limitations due to the
exponential growth of label combinations, LP does not allow to predict label combina-
tions which have not been seen in the training data.

A more flexible approach of considering label dependencies was proposed by Read
et al. [18] by using classifier chains. CC enhances the idea of BR and executes the binary
classifiers in a chain which has the advantage that subsequent classifiers can use the
information of the already predicted labels. More formally, each hi : X × {0, 1}i−1 →
{0, 1} uses the real labels y1, . . . , yi−1 for training and the corresponding predictions
ŷ1, . . . , ŷi−1 produced by previous classifiers in the chain during testing.

Further analysis revealed that the ordering of the classifiers has an effect on the
predictive performance [18, 20]. Usually this ordering is chosen randomly or different
random orderings have to be evaluated to find a good chain order. A straight-forward
solution is to use ensembles of classifier chains. Nevertheless it turned out that these
ensembles are often unnecessarily large for which reason Li and Zhou [11] proposed
a method to composite the ensemble. By doing so a subset of CC is selected while
keeping or improving the predictive performance of the ensemble.

However, creating and maintaining an ensemble of CC is not always feasible [8].
Another way to handle the label ordering problem is to determine a good chain se-
quence in advance. For this purpose methods such as genetic algorithms [8], Bayesian
networks [21] or double Monte Carlo optimization technique [17] have been used. On
the other hand, the classification sequence can be determined during the classification
process by finding similar instances in the training set and using the label ordering
which works well on these instances [20]. However, this method is not appealing in
terms of time complexity since a new CC model has to be build on the fly.

A further improvement of CC could be achieved with probabilistic classifier chains
(PCC) [2]. While the training process of both methods is the same, PCC modifies the
classification procedure by considering the joint probability of each possible label as-
signment. According to this, Bayes optimal predictions can be created which makes
PCC superior to CC [10]. However, this process has a much higher time complexity
and is only feasible for datasets with not more than 15 labels [2]. To tackle this problem
beam search [10] or A* search [13] can be used to perform the inferences which speeds
up the process. In [14] an overview of inference methods for PCC is given. Neverthe-
less, PCC also relies on a predefined chain ordering for which reason ensembles of PCC
have been introduced [2].

The research on CC and PCC contributed to the understanding and formalization
of label dependencies in MLC. For instance, Dembczyński et al. [3] found that these
methods are able to exploit so called unconditional dependencies which exist globally
on the whole dataset, but also conditional dependencies which only appear locally in
the instance space. Moreover, they also discovered that certain multi-label evaluation
measures can be orthogonal to each other and optimizing them requires different ap-
proaches. For instance, methods such as LP and CC are tailored towards finding the
correct label combination, which corresponds to the mode of the joint label distribu-
tion, whereas for correctly predicting each label individually (measured by the Ham-
ming loss) it might be sufficient to use approaches such as BR.
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3 Random Decision Trees for Multi-label Classification

Introduced by Fan et al. [6], the approach of RDT is an ensemble of randomly created
decision trees. More precisely, the tests at the inner nodes are chosen completely at ran-
dom. This is the major difference compared to classical decision tree algorithms [26],
but also to the well known algorithm family of Random Forest [1], where only the sub-
set of features which each tree learner can use is randomly drawn. In contrast, RDT do
not optimize any objective function during training, yet they are able to achieve compet-
itive and robust performance [25]. Moreover, by increasing the number of trees in the
ensemble the estimation risk can be decreased [25] while we never tend to overfit [4].
Computational complexity is another major advantage because the random selection
takes no time compared to computing information gain or similar heuristics [26].

In addition to these guarantees, the characteristics of RDT offers a wide range of
possibilities since the random construction is independent of the learning task. For in-
stance, Zhang et al. [26] make use of this property for large scale MLC problems since
the computational costs do not depend on the number of labels in their formulation.
Zhang et al. [25] propose to abstract RDT with hash functions which is claimed to han-
dle MLC problems in an even more efficient way. RDT were also successfully applied
to multi-label stream data and for handling concept drifts with only small modifications
to the original algorithm [9]. Depending on the particular needs, RDT can flexibly be
constructed before the arrival of the training data [9, 26, 6] or by taking advantage of it
[7, 25].

In the following, we describe the general construction and prediction process of
RDT as well as the adaptations to be taken for the MLC setting. In particular, we pro-
pose an extension to the weighting of the trees in the ensemble based on their individual
confidences computed by the Gini-index (Section 3).

Training The construction of the trees for RDT is done recursively, as for most decision
tree learners, with the aforementioned difference that the features in the inner nodes
are chosen randomly. Hence, starting from the root node, inner nodes are constructed
recursively by distributing the training instances according to the test as long as the
stopping criterion of maximum depth or minimum number of instances is not fulfilled.
Discrete features are chosen without replacement in contrast to continuous features,
for which additionally a randomly picked instance determines the threshold [5]. In the
case that no further test can be created a leaf will be constructed in which information
about the assigned instances will be collected. In MLC, for instance, we might track the
number of instances Nθ

k in leaf k of tree θ in relation to the number of positive values
nθk(i) for label yi. However, any other information could be collected depending on the
learning task at hand.

Prediction During prediction, an instance is forwarded from the root to a leaf node
passing the respective tests in the inner nodes. In case of missing features, the function
U = q(θ,X) returns the set U = {k|k ∈ [1, T ] ⊂ N} of the leaves indices in tree
θ to which the instance has been assigned to. Following Fan et al. [5], the posterior
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probability that the specific label yi is true given an instance X and a tree θ, or an
ensemble of trees Θ, respectively, can be formalized as

P (yj = 1|X, θ) =
∑
k∈q(θ,X) n

θ
k(i)∑

k∈q(θ,X)N
θ
k

, P (yi = 1|X,Θ) =
1

|Θ|
∑
θ∈Θ

P (yi = 1|X, θ)(1)

An obvious option in order to obtain multi-label predictions from the estimations in
Eq. 1 is to use a threshold of 50% so that ŷi = I [P (yj = 1|X,Θ) ≥ 0.5] with I[x] = 1
if x is true and 0 otherwise, which we refer to as the probability threshold method (or
shortly probability method). However, as Quevedo et al. [16] observed, a threshold of
50% is not always ideal. Note that the tests in the tree are not specifically chosen to
obtain a high purity of the distributions in the leaves, and in fact many leaves might
contribute only with estimates close to the prior distribution, pulling down the average
estimates. Thus, Zhang et al. [26] proposed to estimate the average number of relevant
labels

r(X, θ) =

∑
k∈q(θ,X)

∑n
j=1 n

θ
k(j)∑

k∈q(θ,X)N
θ
k

, R(X,Θ) =
1

|Θ|
∑
θ∈Θ

r(X, θ) (2)

where R(X,Θ) is rounded in order to get an integer. This value is then used to cut the
ranking of labels induced by the distribution of the marginals P (yi|X,Θ). We refer to
this method as the label threshold method or label method.

Weighting the trees As aforementioned, the randomness make for a large variety of
distributions which are aggregated, many of them approaching the prior label distribu-
tion. Nevertheless, previous RDT approaches for MLC use equal weighting irrespec-
tively. We propose to distinguish between the quality of the collected statistics and to
reward trees with higher confidences in their estimates. The Gini index is often used for
determining the purity of a distribution, which we use in inverted form as follows

w(X, θ) = 1− 4

n

∑
yi∈Y

P (yi = 1|X, θ)(1− P (yi = 1|X, θ)) (3)

in order to weight the estimates of the individual trees, resulting in the overall prediction

P (yi = 1|X,Θ) =
1∑

θ∈Θ w(X, θ)

∑
θ∈Θ

P (yi = 1|X, θ)w(X, θ) (4)

Eq. 2 can be adapted accordingly.
We observed a better performance of using the inverted Gini index in preliminary

experiments, so that we adopted it as the default setting for our proposed algorithm.

4 Dynamic Predictions with Random Decision Trees

As already stated, a key disadvantage of classical CC is that their predictive perfor-
mance may be highly influenced by the pre-selected ordering of the labels. In this sec-
tion, we propose an extension of RDT referred to as Dynamic Classifier Chains (DCC)
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where the sequence in which the values for the labels are predicted is chosen dynam-
ically during the process of classification (Section 4.3). Moreover, RDT and their ran-
domized construction provides a very convenient controlled environment for experi-
mentation (Section 4.1).

4.1 Test Bed for Multi-label Classification

In Section 2 we reviewed some transformation methods for solving MLC tasks with dif-
ferent desirable properties, respectively. The description of RDT in Section 3 applies to
binary classification problems as well. For instance, we could use RDT as base learner
for a binary relevance decomposition, estimating P (yi|X,Θi) instead of P (yi|X,Θ).
However, both ensembles Θi and Θ are drawn from the same tree distribution which is
independently of any yi. Hence, both estimations approach the same expected value as
the number of constructed trees increases.

This key observation lead to the following advantages of RDT. Firstly, we can col-
lapse BR, and other MLC transformation or decomposition methods [22] such as CC
as we will see in the following, to a single RDT ensemble without loss in predictive
accuracy, therefore saving memory and computational costs. Secondly, and more im-
portantly, RDT can provide a controlled environment where we can compare alterna-
tive decomposition methods, prediction methods and other extensions isolated from any
side effects since the model can be fixed beforehand and be the same for every analyzed
approach.

4.2 Static Chain Ordering

Similarly to BR, we can collapse a classifier chain to a single RDT in the following way:
Instead of augmenting the input space X by only the previous labels, we add the whole
label matrix so that X ′ ∈ X ×Y . The prediction of base classifier hi for label yi (more
specifically, P (yi = 1|X, ŷ1, . . . , ŷi−1, Θi)) is obtained by setting ŷj to the previous
predictions of hj , j < i, as for CC, but leaving ŷj , j ≥ i as missing.1 Remind that when
encountering a missing value at inner nodes all branches are visited and aggregated (cf.
Section 3). As RDT are completely randomized, we can —similarly to Section 4.1—
expect on average the same predictions as for a RDT with one node less. In fact, we
control in our experiments the percentage of activated label tests with a parameter σ,
which allows us to analyze the effect of using previous predictions on an otherwise
unchanged model.

Figure 1 visualizes the prediction process for a label on a single tree: Let us assume
that the label to be predicted is yi, which comes before yj . In this case neither yi nor
yj are known, i.e. all three colored branches are followed and the respective leaves
are used in order to produce a prediction for yi. For label yj the previous label yi
would be known, so that we would skip either the left or right branch, obtaining a
label distribution at the leaves which is different and more refined than the previous
one. Indeed, we can observe that the number of leaves on which the prediction relies is
monotonically decreasing during the classification process. Therefore, the set of leaves

1 We assume, w.l.o.g., that y1, y2, . . . is the ordering of the predicted labels.
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yi

yj

Fig. 1: Example for the refinement of a prediction for a particular instance and decision
tree. yi and yj indicate tests on labels at the respective inner nodes.

to which the instance is assigned in the first iteration will always be a superset of the
leaves of the following iterations. This leads to a refinement of the prediction through
the iterations.

4.3 Dynamic Chain Ordering

In order to take advantage of the situation that predicting a label before or after another
one might be easier depending on the instance at hand, we propose to let the RDT
decide which label to predict next. Hence, instead of using the estimated distribution in
order to decide whether the i-th label is positive or negative, we use it in order to set
the label for which RDT is most confident in its prediction. Labels, which were already
predicted, are ignored.

Predicting the next label in the sequence For convenience, we introduce the follow-
ing definitions. Let C denote the label candidates which were not yet predicted, P+ the
set of labels which were predicted as relevant, and P− the irrelevant labels, respectively.
Accordingly, we start with P+ = P− = ∅, C = Y in the first iteration.

In each iteration, we first decide on the next label to be predicted. We select the
label for which the RDT is most confident in the following way and remove it from C:

yi = argmax
yj∈C

|0.5− P (yj = 1|X,P+, P−, Θ)| (5)

In preliminary experiments we found that this approach works consistently better than
always choosing the label with the lowest or the highest probability, respectively.

With yi chosen, we can use the probability method (cf. Section 3) to determine
whether to add it to P+ or P−. We note that we rely on a threshold of 50% to classify
a label as positive although this may be suboptimal regarding the skewed distribution
of the label sizes (as already pointed out in Section 3). However, preliminary experi-
ments with varying thresholds, e.g. by adapting them to the prior distribution, revealed
that choosing the optimal thresholds is non-trivial. One particular reason is that the
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Static Ordering (Classifier Chain)

Dynamic Ordering (Dynamic Classifier Chain)

sea

yes

car

no

cliff

yes

...

...

beach

yes

beach

no

stairs

yes

bridge

yes

...

...

city

yes

Fig. 2: Example for different classifications using the static and the dynamic ordering
for a picture associated to labels beach, sea, cliff, bridge, stairs. See text for explana-
tions.

thresholding of a specific label is required at different stages of the prediction chain, in
contrast to using a static ordering, introducing additional dependencies and dynamics
of the right threshold. We leave further investigations for future work.

The process of predicting the value with the label method also needs further adap-
tion due to the iterative prediction of the labels. The idea is to have predicted exactly
R(X,P+, P−, Θ) labels positive after the prediction sequence is completed. Since the
prediction changes during the classification process R(X,P+, P−, Θ) has to be re-
computed in every iteration. First of all, we can only predict a label positive if the
number of already predicted positive labels |P+| is smaller than R(X,P+, P−, Θ).
Moreover, we have to predict a label as positive if we know that all the remaining labels
in C need to be predicted positive to ensure that we obtain exactly R(X,P+, P−, Θ)
positive labels.

yi =


1, if P (yi = 1|X,P+, P−, Θ) ≥ 0.5 and |P+| < R(X,P+, P−, Θ)

1, if n− |P−| < R(X,P+, P−, Θ)

0, otherwise
(6)

Let us consider again the tree in Figure 1. The difference to the static chain approach
is that the aggregated blue, red and green leaves would be used in order to determine
whatever label yk is most likely given the found distribution, instead of a specific label,
in the previous example label yi. Hence, the RDT could decide to predict yj instead if
they are more confident about it, or any other label with the highest confidence. We be-
lieve that this potentially leads to more reliable predictions, both in terms of individual
labels as well as label combinations.

In particular Figure 2 displays an example how the quality of the predictions could
differ between a static ordering and a dynamic ordering. Let us assume we want to
identify objects in a scene. While the static ordering has to follow a pre-defined se-
quence for the classification, it has to classify the label beach first. Since the beach is
not clearly visible on the picture, the label receives a negative value which already in-
troduces an error for future predictions in the chain. Especially for our example, this
has the consequence that the scene is classified as a city because stairs and bridges are
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more correlated with cities than with the seaside. In contrast, the dynamic chain clas-
sifies the most obvious targets first for which reason the label sea receives a positive
classification in the first iteration. This increases the chance to classify the label cliff as
positive which provides even more evidence for predicting the difficult label beach as
positive. On other hand, we reduce the probability to incorrectly classify the scene as a
city, since we exclude objects which are clearly not identifiable in the picture, such as a
car, in early iterations.

Computational Costs The costs for building the trees and performing the dynamic
predictions is conceptually equal to using a static ordering. They mainly depend on
the size of the ensemble and the depth of the trees. However, the dynamic approach
potentially allows to shorten the prediction process, namely when enough positive (or
negative) labels have been already predicted, potentially removing the dependencies on
the label size.

5 Evaluation

A key aspect in our experimental evaluation was, of course, to demonstrate that using
dynamic, context-dependent predictions improves over using static orderings w.r.t. pre-
dictive performance (Section 5.3). A decisive role in this is played by the influence of
the previous predictions on the current prediction, which is analyzed in Section 5.2.

Another aspect, we were particularly interested in, was to verify our ideas on the
usage of RDT as controlled experimental environment for fair and specific comparisons.

Regarding our proposed dynamic approach, we will mainly distinguish between the
two variants using the probability and the label threshold method for determining the
value of the next label, respectively. We expected that other hyper parameters would
behave quite different with respect to different datasets, both regarding the shapes (and
densities) of the input and output spaces. In contrast to other hyper parameters like
number of trees or minimum leaf sizes, we decided to consider this aspect separately.

5.1 Setup

For our experiments we have used eight different multi-label datasets from the Mu-
lan repository [23]. An overview of these datasets is provided in Table 1. From the
text datasets we have only included Enron and Medical, which have a relatively small
vocabulary, since RDT are known to not perform well on sparse data without further
adaptations which we did not want to put in the focus for this work.

A large variety of evaluation measures exist for MLC. We focus in this work on two
of them, namely subset accuracy and micro-averaged F1 measure. Subset accuracy is
a very restrictive evaluation metric since it only measures the percentage of instances
for which all labels have been predicted correctly. Especially in the case of predict-
ing a large amount of labels this measure often approaches zero without being able to
distinguish. However, the objective of classifier chains is precisely to find exactly the
correct label combination (cf. Section 2). Hence, we expect the impact of our proposed
extensions to be best reflected in the subset accuracy.
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Table 1: Dataset statistics: Total number of instances, of nominal and numeric attributes,
of labels, average number of labels per instance and distinct label combinations.

name instances nominal numeric labels cardinality distinct

Flags 194 9 10 7 3.392 54
Emotions 593 0 72 6 1.869 27

Scene 2407 0 294 6 1.074 15
Yeast 2417 0 103 14 4.237 198
Birds 645 2 258 19 1.014 133

Medical 978 1449 0 45 1.245 94
Enron 1702 1001 0 53 3.378 753

CAL500 502 0 68 174 26.044 502

Micro-averaged F1 measure is less strict since it also considers partial matches and
is therefore often used for providing a general comparison of the predictive quality.
However, the measure is to a certain degree orthogonal to subset accuracy [3]. As Dem-
bczyński et al. [3] indicate, it is sufficient to obtain good estimates for the individual
labels in order to optimize univariate losses such as F-measure or Hamming loss. Never-
theless, our approach may still benefit from the dependencies captured by the chaining
approach with respect to these measure, which is why we include micro-averaged F1
measure (micro F1) in our comparisons.

Given N test instances, corresponding true labels Yj and predicted labels Ŷj , true
positives tpj = Yj ∩ Ŷj , false positives fpj = Ŷj \ Yj , false negatives fnj = Yj \ Ŷj for
the j-th test instance, we obtain the measures as follows:

subset accuracy =
1

N

N∑
j=1

I
[
Yj = Ŷj

]
micro F1 =

∑N
j=1 2 tpj∑N

j=1 2 tpj + fpj + fnj
(7)

Unless otherwise noted we have chosen to evaluate all combinations of parameter
settings of ensembles with 300 decision trees, a maximum depth of 30, a minimum
number of instances to create a test of {4, 6, 10} and a percentage of label tests of
{10%, 20%, 30%}. Preliminary experiments with RDT revealed reasonable and stable
performance for these parameter ranges also on other kind of problems. Furthermore,
we compare the results based on the averages of a ten-fold cross validation performed
on the whole dataset.

5.2 Independent Predictions vs. Exploiting Previous Predictions

In this experiment we evaluated how the prediction is influenced by the usage of the
label tests, i.e., by the usage of the previous predictions in the dynamic chain. At this
stage the flexibility of the RDT algorithm pays off since we can choose the ratio σ
of activated tests on the labels without the need for adaptations of the model (cf. Sec-
tion 4.2). Hence, σ = 0 corresponds to a binary relevance classifier using RDT (or the
collapsed version, respectively). Incrementing σ allows to directly observe utility and
the effectiveness of exploiting potential label dependencies.
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Fig. 3: Influence of label tests on DCC. The y-axis represents the value for the measure
and the x-axis represents the percentage σ of activated label tests. The color indicates
the prediction method and the style of the line represents the percentage of label tests
per tree.

Figure 3 show the benefit for some selected cases w.r.t. subset accuracy but also for
improving the univariate micro F1. For instance, we can observe on datasets Emotions
and Yeast a major influence of the label tests on the performance for both prediction
and evaluation methods. We can conclude that there is a strong dependency between
the labels in the datasets of which we can take advantage. Similar but less pronounced
effects can be seen for the remaining datasets except Enron and CAL500. Enron shows
that the usage of (possibly wrong) previous predictions can also have a negative impact
in some cases, or no impact as for CAL500. Moreover, both datasets are also an example
for the observation that the best label prediction method is highly dataset dependent.

In general it can be seen that the values for the evaluation measures get better the
more label tests are activated. Only on the dataset CAL500 the label tests seem not to
have any influence on the predictive performance. Moreover, on the dataset Enron it
can be seen that the activation of the label tests have a negative impact on the micro-
averaged F1 measure independently of the prediction method in the case that 30% of
label tests have been used in the trees. Furthermore, on the dataset Birds only the label
method benefits from the label tests whereas on the dataset Scene only the probability
method benefits from the label tests. The values for the corresponding other prediction
method stay the same along the activation of the tests.
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Table 2: Comparison between dynamic and static chain method for subset accuracy.
Bold entries indicate the best results.

Flags Emotions Scene Yeast Birds CAL500 Enron Medical

DCC LM 0.1959 0.2799 0.4271 0.2073 0.4930 0.0000 0.0447 0.1840
CC LM 0.1623 0.1098 0.1714 0.0215 0.3673 0.0000 0.0116 0.0034

DCC PM 0.1856 0.3339 0.3112 0.1854 0.4698 0.0000 0.0576 0.0000
CC PM 0.1835 0.1482 0.0914 0.0407 0.4583 0.0000 0.0286 0.0000

Table 3: Comparison between dynamic and static chain method for micro F1.
Flags Emotions Scene Yeast Birds CAL500 Enron Medical

DCC LM 0.7506 0.6535 0.4682 0.6459 0.4484 0.4681 0.4527 0.2696
CC LM 0.7301 0.4439 0.1935 0.4893 0.1288 0.2945 0.2669 0.0043

DCC PM 0.7448 0.6774 0.4344 0.6100 0.0708 0.3114 0.3410 0.0065
CC PM 0.7484 0.4490 0.1656 0.5204 0.0137 0.3093 0.3153 0.0000

5.3 Static vs. Dynamic Label Orderings

In this experiment we evaluated the advantage of the dynamic chain ordering in compar-
ison to using a static chain ordering. Taking advantage of our controlled environment,
we built for both approaches the same ensemble of trees, respectively, in this case with
20% of label tests. The only difference between the dynamic and the static setup is the
ordering of the labels during the prediction process. We compare our proposed dynamic
method to the averages over ten different randomly-drawn but fixed orderings used for
the static CC approach in Tables 2 and 3.

The first and foremost observation is that the dynamic chain ordering is clearly su-
perior to the static chain ordering on all datasets. Moreover, the dynamic chain ordering
improved the evaluation results of the label method (LM) on all datasets often to a
great extent whereas the probability method (PM) does not take major advantage of the
dynamic chain ordering on the datasets Birds, CAL500 and Medical.

The results suggest that the improvement of DCC over CC relies on high confidence
of the classifications in the first iterations. These classifications provide evidence to
improve the classification of the difficult labels. This effect is analyzed in more detail
in the following experiment.

5.4 Analysis of the Dynamic Sequences

Our approach dynamically produces a different prediction sequence on the labels for
each given test instance. We were interested in characterizing and analyzing these se-
quences, which were selected by the RDT as being most appropriate for producing
accurate predictions.

Figure 4 visualizes our results exemplarily for Yeast. The heat map on the left shows
the average accuracy (color) of predicting the i-th label in the dynamic sequence (y-
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Fig. 4: Heatmaps characterizing the predicted sequences on Yeast

axis) for the different configurations (x-axis), whereas the right map visualizes the
number of labels (color) which were predicted as positive until a certain iteration.

We can observe on Yeast as well as on the remaining datasets and independent of
the parameter configuration that the predictions of the first iterations are pretty accurate
in comparison to the error-prone predictions at the end. One reason is of course that our
label selection method chooses the labels where the RDT ensemble is most confident
first. On the other hand, this can be the result of the error propagation since erroneously
predicted labels influence the predictions of the following iterations. Furthermore, it
can be observed that errors are mostly made on positive labels after predicting almost
all the negative labels. This can be again explained by the confidences, which is higher
for negative labels due to the sparsity of the label assignments.

5.5 Comparison with other Classifiers

In order to put the performance of RDT and the different prediction methods in a larger
context we present in this section a comparison to a couple of other algorithms. We
have evaluated the BR, the LP and the CC method with the J48 WEKA implementation
of the C4.5 decision tree learner as the base classifier. This approach represents in our
comparison the family of classical decision tree learners which address a learning task
by choosing splits at the inner nodes which optimize a certain pre-determined criterion
such as the information gain. For the J48 algorithm we have used the default parameter
settings which are 0.25 for the confidence threshold for pruning and 2 for the minimum
number of instances per leaf. For the CC method we have evaluated ten different random
chain orderings and averaged the results. Moreover, we have evaluated the BR and the
LP method using RDT. For these methods we have chosen to build ensembles with 300
decision trees, with a maximum depth of 30 and a minimum of four instances to create
a test. The dynamic chain methods share the same settings and use 20% of label tests in
their ensembles. Hence, the dynamic chain methods use 20% less tests on the features
compared to the BR and the LP method because they are replaced by label tests. The
ten-fold cross validation results can be seen in Tables 4 and 5.
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Table 4: Results for the subset accuracy
Flags Emotions Scene Yeast Birds CAL500 Enron Medical

DCC LM 0.1959 0.2799 0.4271 0.2073 0.4930 0.0000 0.0447 0.1840
DCC PM 0.1856 0.3339 0.3112 0.1854 0.4698 0.0000 0.0576 0.0000

RDT LP 0.1959 0.3929 0.4612 0.2416 0.5008 0.0000 0.1363 0.2566
RDT BR 0.1701 0.2479 0.1379 0.0852 0.4698 0.0000 0.0129 0.0000

J48 BR 0.1443 0.1686 0.3515 0.0633 0.4930 0.0000 0.0593 0.6708
J48 CC 0.2211 0.2169 0.4548 0.1327 0.4998 0.0000 0.0977 0.6906
J48 LP 0.2474 0.1939 0.4902 0.1419 0.4729 0.0000 0.0823 0.6585

Table 5: Results for the micro-averaged F1 measure
Flags Emotions Scene Yeast Birds CAL500 Enron Medical

DCC LM 0.7506 0.6535 0.4682 0.6459 0.4484 0.4681 0.4527 0.2696
DCC PM 0.7448 0.6774 0.4344 0.6100 0.0708 0.3114 0.3410 0.0065

RDT LP 0.7310 0.7168 0.4953 0.6353 0.3390 0.3349 0.3652 0.3520
RDT BR 0.7545 0.5997 0.2433 0.5598 0.1063 0.3178 0.3842 0.0000

J48 BR 0.7416 0.5791 0.5563 0.5774 0.4675 0.3553 0.5096 0.8198
J48 CC 0.7248 0.5806 0.5420 0.5516 0.4576 0.3501 0.4996 0.8225
J48 LP 0.7045 0.5668 0.5374 0.5397 0.4259 0.3309 0.3818 0.7527

First of all, it can be seen that the label method outperforms the J48 methods on the
datasets CAL500, Emotions and Yeast in terms of subset accuracy and micro-averaged
F1 measure. On the other hand, the J48 methods were able to beat the dynamic chain
methods on the datasets Scene, Enron and Medical. Especially the results on the dataset
Medical are conspicuous, where RDT generally performs very poorly. As aforemen-
tioned, sparse input data is particularly challenging for RDT-like approaches.

Furthermore, it can be seen that the dynamic chain methods are superior to the
RDT-BR method on almost all datasets, as anticipated by the results in Section 5.2.

Of particular interest is the comparison to the RDT-LP method. In terms of sub-
set accuracy this method could outperform the dynamic chain methods on almost all
datasets. Especially the results on the datasets Emotions, Yeast and Enron are much
better than the results of the other methods. However, a closer examination reveals that
the results for the micro-averaged F1 measure of the RDT-LP method are not always
that good. The label method could achieve a much higher score for micro-averaged F1
measure on the datasets Birds, CAL500 and Enron. Senge et al. [19] observed that LP
can benefit from the restricted set of label combinations it can choose from, especially
when the number of distinct combinations is relatively low, as it is the case for the used
datasets. The other approaches, instead, have to make up valid combinations by con-
catenating single decisions. Whereas these single decisions might be better than for LP,
as seen in terms of micro-averaged F1 measure, the complete combination might still
be wrong especially if the cardinality is high.
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6 Conclusions and Future Work

In this paper we have proposed a new approach on multi-label classification based on
random decision trees and the idea of classifier chains. With our proposed algorithm
we have been able to overcome the major problem of the label ordering by dynamically
selecting the next label in the sequence depending on the context, namely the instance
at hand and the previously predicted labels for it. In comparison to other approaches
for CC, which try to pre-compute appropriate sequences, our approach comes at no
additional cost, since the framework of RDT allows to perform the necessary inferences
completely during prediction time.

In several experiments the dynamic label ordering has been analyzed in depth and
compared with other baseline methods. Even though we cannot achieve state-of-the-art
results with RDT in some cases and domains, they have appealing properties that al-
low a fundamental analysis of the advantages and disadvantages of certain approaches.
For instance, our experiments revealed the importance of the dynamic label ordering
on different datasets, as well as the impact of using the previous predictions. These ob-
servations could be made with the guarantee that they were independent of any other
factors like the usage of more sophisticated methods or more powerful models.

However, to improve the predictive capabilities of RDT still remains a goal for
future work. For instance, the proposed Gini index considers the skew of the counts, but
not the number of instances these counts are based on, which could be used as further
indicator for the confidence. Efficiency could also be improved if we consider that labels
are usually sparse in MLC problems. Therefore, it could be enough to focus on positive
labels only, which would considerably reduce the length of the prediction sequence. In
addition, as we have seen, RDT have still clear disadvantages on data which is sparse in
the feature values, such as text. New types of tests in the inner nodes, which for instance
consider disjunctions of several features, could solve this problem. Furthermore, we
plan to transfer our ideas on dynamic chains to other kinds of algorithms as well. A
first step will be to adapt predictive clustering trees [24]. The construction of these trees
does also not necessarily depend on a specific target. However, its clustering may allow
for more discriminative distributions at the leaves.
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