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Abstract
The task in multilabel classification is to predict for a given set of labels whether each individual
label should be attached to an instance or not. Graded multilabel classification generalizes this setting
by allowing to specify for each label a degree of membership on an ordinal scale. This setting can be
frequently found in practice, for example when movies or books are assessed on a one-to-five star rating
in multiple categories. In this paper, we propose to reformulate the problem in terms of preferences
between the labels and their scales, which then be tackled by learning from pairwise comparisons. We
present three different approaches which make use of this decomposition and show on three datasets
that we are able to outperform baseline approaches. In particular, we show that our solution, which
is able to model pairwise preferences across multiple scales, outperforms a straight-forward approach
which considers the problem as a set of independent ordinal regression tasks.
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1 Introduction
Multilabel Classification (MLC), the task of learning to assign multiple labels to a single data item, has
received a lot of attention in the recent machine learning literature (Tsoumakas et al., 2010) because
it has many real-world applications such as tagging of messages in blogs, annotating images, or assign-
ing keywords to scientific papers. However, often it does not suffice to only predict whether a label is
present or not, but instead we need to predict a degree or grade of membership to a particular category
or label. Cheng, Dembczyński, and Hüllermeier (2010) introduced this task as Graded Multilabel Classi-
fication (GMLC). For example, TV guides often rate a movie on a scale from one to five stars in several
different categories such as ‘fun’, ‘action’, ‘sex’, or ‘suspense’, as is shown in Table 1.1. The additional
information in the form of grades of memberships in contrast to simple binary assignments of genres
can be very useful and appreciable information for a user choosing her individual TV program. Another
application is the prediction of answers from questionnaires, where a common setting is to ask the
probands to answer a series of questions and to respond on a graded scale of agreement, frequency,
importance, quality or likelihood.

Although superficially similar, this task differs from a classical recommendation task (Jannach et al.,
2010). While in both cases one essentially needs to make ordinal predictions that correspond to ratings,
in recommender systems the training information is a sparsely populated rating matrix and the task is
to predict (some of) the missing values. In contrast, the training information for GLMC is a complete
matrix where each of the objects in the lines is characterized with a set of features (e.g., features
that characterize the respective movie), and the task is to predict the entries for a new line, given the
features that correspond to this new entry.

Similar to the binary relevance (BR) approach to MLC, a straight-forward solution to GMLC is to
transform the task into n separate ordinal classification problems, one for each category. In the example
of Table 1.1, we would get four tasks, one for predicting the ’fun’ rating, one for ’action’, and two
more for ’sex’ and ’suspense’. However, when separating these tasks into several independent ordinal
classification tasks, the inter-dependencies and correlations of the labels cannot be utilized, in much the
same way as label dependencies cannot be tackled with the BR approach to MLC (Dembczynski et al.,
2012). For this reason, Cheng, Dembczyński, and Hüllermeier (2010) proposed several techniques for
tackling this problem without losing the dependency between the categories, and showed that this
leads to better classification results.

In this technical report, we assume an inherent preference structure between the labels in combina-
tion with their grade of membership, and propose pairwise preference learning as a suitable technique
to exploit this structure. To this end, we generalize calibrated label ranking, a technique for tackling
multilabel classification in a pairwise fashion (Fürnkranz et al., 2008), to the case where we have mul-

Table 1.1: Example of ratings of some movies according to the German TV guide TVSpielfilm.de

Movie title ‘fun’ ‘action’ ‘sex’ ‘suspense’
The other guys ? ? ? ??
A few good men ? ? ? ?
Once upon a time in the west ? ? ? ? ? ? ?
Dirty dancing ? ?
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tipartite instead of bipartite preference information. In particular, we show how the use of a calibration
label, which indicates the separation between relevant and irrelevant labels in the predicted ranking,
can be generalized to multiple such labels. As a result, we investigate and experimentally compare
three different variations of this principled approach.

We start the technical report with a brief recapitulation of ordinal classification and multilabel classi-
fication (Section 2). In Section 3, we formally define graded multilabel classification, and recapitulate
previous approaches. Section 4 introduces our reformulation of this approach in a preference-based
setting, resulting in three different variants. We then experimentally compare our approaches with the
approaches presented by Cheng et al. (2010) (Section 5), and draw some conclusions in Section 6.
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2 Preliminaries
We represent an instance or object as a vector x in a feature space X. Each instance can be associated
with a point yx in the target space Y. A training set is a finite set of tuples (x, yx) ∈ X × Y drawn
independently from an unknown probability distribution on X × Y. The goal is to learn a classifier
H : X→ Y which correctly predicts the true yx for a given x. We will denote the prediction of H with
a circumflex, i.e. ŷ = H(x). Depending on the form of Y we face different problems and assumptions
and may consider different learning strategies. In the simplest case, binary classification, we have Y =
{0,1}. The two problems described below, ordinal classification and multilabel classification, generalize
this problem by extending the value space from binary to an ordinal scale and by adding several binary
value spaces. The combination of both generalizations will be introduced in in Section 3.

2.1 Ordinal Classification

Ordinal classification, or ordinal regression, denotes the problem of learning a mapping from an in-
stance space X to a discrete and ordered finite space Y = M = {µ1, . . . ,µm} with an inner structure
µ1 ≺ µ2 ≺ . . . ≺ µm, where ≺ denotes a relation inducing a total order. In contrast to a numeric
regression problem, we do not assume a linear or additive scale. Consider e.g. the ordinal structure
small ≺ medium ≺ large. A hidden characterization for the three grades in terms of absolute amount of
meters or intervals may exist, but cannot be generally assumed. The scale is, e.g., valid and plausible
for categories like shoes and furniture, but may greatly differ in absolute terms between both product
classes. Moreover, the difference between two values cannot be determined by subtracting their levels,
i.e., the difference between small and medium does not have to be equivalent to the difference between
medium and large.

One straight-forward solution to ordinal classification is to ignore the structure on M and solve the
problem as a standard multiclass problem, e.g. using one-against-all decomposition (see Sec. 3). A
more simple yet effective decomposition strategy was proposed by Frank and Hall (2001): the original
problem is decomposed into n−1 independent binary subproblems, each of which contains all instances
with a class value ≺ µi as positive examples and all others as negative examples. The probabilistic
estimations of the base classifiers are then combined into a distribution P(µi) = P(≺ µi+i)− P(≺ µi)
over the possible class grades.

2.2 Multilabel Classification

Multilabel classification (Tsoumakas et al., 2010; Zhang and Zhou, 2013) refers to the task of learning
a function H that maps instances x ∈ X to subsets Px ⊆ L , where L is a finite set of predefined
labels {λ1, . . . ,λn}. An alternative representation is to consider the label space as Y = {0,1}n and to
represent Px as a vector yx = (y1

x , . . . , yn
x ) where yi is 1 if λi ∈ Px and 0 otherwise. The labels in Px

are usually said to be relevant, present or positive, whereas L . Nx = L\Px is called the set of irrelevant,
absent or negative labels. Thus, in contrast to multi-class classification, alternatives are not assumed to
be mutually exclusive, such that multiple labels may be associated with a single instance.

The most straight-forward approach to solving multilabel problems is to decompose them into sev-
eral independent binary subproblems, one for each label. Thus, each of the base classifiers Hi : X →
{0,1} trained on training instances (x, y i

x) tries to predict the relevance of one label λi , which is why
it is frequently referred to as binary relevance decomposition (BR). The overall function H is obtained
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by simple combination: H(x) = (H1(x), . . . , Hn(x)). Its main drawback is, obviously, that dependencies
between labels are completely ignored although it is generally considered that exploiting these depen-
dencies is a crucial issue in multilabel classification. The pairwise decomposition approach, on which
we will focus in this work, tries to alleviate this problem by modeling the pairwise relation between
relevant and irrelevant labels as preferences. We will return to this in Section 4.
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3 Graded Multilabel Classification
In graded multilabel classification (Cheng et al., 2010), each label λ in the set of relevant labels Px of
instance x ∈ X is no longer only relevant or not (M = {0,1}), but has output values M = {µ1, . . . ,µm}
with an ordered scale µ1 ≺ µ2 ≺ . . . ≺ µm as in ordered classification. It is assumed that the same
ordinal scale is used for all labels, i.e. Y = {µ1, . . . ,µm}n. This is a strong restriction but is motivated
on real applications such as those sketched in the introduction. On the other hand, this assumption
induces a (limited) comparability between the grades of the different labels which cannot be assumed
in the more general setting of multi-target ordinal regression. Moreover, we assume that the grade µ1
describes the complete absence of a label and µm its full presence. Thus, in case of m = 2, this setting
reduces to multilabel classification.

Following (Cheng et al., 2010), we define the auxiliary membership function Lx : L→M as Lx(λi) =
y i

x which returns the grade of a specific label and instance. Moreover, let P ′ix = {λ | µi = Lx(λ)} be the
set of labels that have exactly grade µi , and P i

x = {λ | µi � Lx(λ)} be the set of labels that are at least
as relevant as grade µi . The latter set allows to model the assumption that if a label has a membership
degree of µi , it also has all grades µ j ≺ µi associated to it. Thus, since µ1 is the lowest possible grade,
it follows that P1

x = L.
Cheng et al. (2010) introduce three straight-forward reduction schemes in order to decompose the

original problem into a set of well-known and solvable subproblems. In the following, we briefly reca-
pitulate these approaches. Figure 3.1 illustrates these reductions on an example where we have four
possible labels L= {λ1,λ2,λ3,λ4}, each with a scale µ1 ≺ µ2 ≺ µ3 ≺ µ4. Shown is a case of an example
x for which the labels are increasingly relevant, i.e., where ∀i : Lx(λi) = µi , i = 1 . . . 4.

3.1 Vertical Reduction

In the vertical reduction, the original problem of learning H : X → Mn is reduced to n ordinal
classification problems of learning [H]λ1

, . . . , [H]λn
, [H]λi

: X → M, one for each label λ1, . . . ,λn
(cf. Figure 3.1 (left)). The aggregation of the individual predictions is trivially given by H(x) =
([H]λ1

(x), . . . , [H]λn
(x)). Obviously, the individual ordered classifiers are not able to model inter-

dependencies and correlations between the different labels, which is the main disadvantage of this
approach.

3.2 Horizontal Reduction

In contrast, the horizontal reduction transforms the original problem into m = |M| multilabel classifi-
cation problems. For each grade µi , i = 1 . . . m we learn a classifier [H]i : X→P (L ) using (x, P i

x) as
training information. Note that due to P1

x = L we can ignore grade µ1.

Also note that the classifiers [H]i are, in principle, not independent from each other, since if some
label is relevant to some grade µi , it is also relevant to all grades µ j ≺ µi . More specifically, it holds
that P j

x ⊆ P i
x for µ j ≺ µi . This obviously leads to an additional challenge during the aggregation of the

individual predictions, since although this dependency will be reflected in the training data, it cannot
be guaranteed that [H] j (x) = P̂ j

x ⊆ [H]i (x) = P̂ i
x, µ j ≺ µi holds.

Cheng et al. attempt to address this problem by weighting the evidence for a higher grade higher
than the evidence for a lower grade, and hence propose to resolve contradictions by taking for each
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Figure 3.1: Different decompositions of graded multilabel classification: vertical (left), horizontal (cen-
ter), and complete (right). The illustration shows the decompositions for a training instance for which
label λ1 has grade µ1, λ2 is with grade µ2, λ3 with µ3 and finally λ4 with µ4.

label λi the maximum predicted grade max≺{µ j ∈M | λi ∈ P̂ j
x}, where max is defined with respect to

the total order relation ≺.
In a way, this problem is orthogonal to the above-mentioned problem of the independent predic-

tions in the vertical reduction. On the other hand, unlike the vertical scheme, the horizontal reduction
scheme conserves dependencies between labels because each multilabel subproblem allows to model
the label dependencies at a certain degree of membership. This information can be taken into account
by algorithms like IBLR-ML used in Cheng et al. (2010).

3.3 Complete Reduction

The complete reduction learns one single classifier [H]λiµ j
: X → {0, 1} for each of the n ·m possible

label–grade combinations using training information (x, I(µ j � y i
x)) where I is the indicator function

(I(x) = 1 if x is true, and 0 otherwise).
This reduction can be seen as a combination of the previous two techniques: either we reduce the

problem horizontally and then consider each label separately as a an ordinal problem with two ordi-
nal classes, or we use vertical decomposition and solve each ordinal problem by learning to predict
each grade. Thus, it corresponds to using binary relevance learning for solving the multilabel problems
resulting from a horizontal decomposition or using the approach of Frank and Hall for the vertical
reduction. However, the aggregation is different than in the latter approach, since we use the max ag-
gregation already employed for the horizontal reduction. Note that in any case, dependencies between
labels and/or grades cannot be exploited at all by the complete reduction.

3.4 Horizontal reduction with IBLR-ML

For completeness, we also briefly sketch the approach that was actually proposed by Cheng et al.
(2010). Essentially, they propose to use a horizontal decomposition with a state-of-the-art multil-
abel classificaiton algorithm that combines instance-based learning with logistic regression (IBLR-ML),
which allows them to exploit the interdependencies between the labels in the horizontal reduction
setup (Cheng and Hüllermeier, 2009).

IBLR-ML counts the presence of each label in the vicinity of the k nearest neighbors of a test instance
x (w.r.t. some distance metric) and uses these counts as input to a logistic regression learner which can
then estimate the probabilities for each label. As the input to the learner is just the counts represented
as a vector in Z, we can view IBLR-ML as a stacking approach which uses the predictions of n k-NN
classifiers as substitution of the original features and learns a logistic regression on top in order to
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predict the correct labels. Other approaches that employ a similar stacking approach include Godbole
and Sarawagi; Tsoumakas et al. (2009); Montañés et al. (2014). Best known are probably classifier
chains, which only use a subset of predictions of the previous classifiers as additional features for
subsequent classifiers (Read et al., 2011).

For the sake of comparability with the only existing results on graded multilabel classification and
considering that the mentioned approaches are similar to each other, we only compare to IBLR-ML as
representative approach which explicitly takes label dependencies into account and leave additional
evaluations for further work.
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4 Graded Multilabel Classification by Pairwise
Comparison

Learning by pairwise decompositions is based on the idea of modeling preferences between labels
(Hüllermeier et al., 2008). These preferences are either derived from the label structure (e.g. a hierar-
chy) or given for the training instances at hand, e.g. in the form of a total or partial, often multi-partite
ranking. Moreover, pairwise decomposition implicitly takes label dependencies into account to some
extent, since it explicitly models the cases of pairwise exclusions. We hence believe that pairwise de-
composition is well suited to the setting of graded multilabel classification. In particular, we build upon
calibrated label ranking (CLR), a pairwise approach to solving multilabel problems, which we describe
in more detail in Section 4.1. Thereafter, we will introduce three different approaches for generalizing
CLR to the graded case, which are all based on the idea of working with multiple calibration labels
(Section 4.2).

4.1 Calibrated Label Ranking

The pairwise decomposition of multilabel problems interprets the training information given as bipar-
tite rankings Nx ≺ Px, i.e., we can deduce explicit preference statements λu ≺ λv for all λu ∈ Nx,λv ∈ Px.
These preferences are learned by training classifiers Huv : x → {0, 1} for each of the possible pairs of
labels, 1 ≤ u < v ≤ n. Hence, the problem is decomposed into n(n−1)

2
smaller binary sub-problems. For

each pair of labels (λu,λv ), only examples belonging to either λu or λv are used to train the corre-
sponding classifier Hu,v . All other examples are ignored. More precisely, assuming u< v , an example is
added to the training set for classifier Hu,v if λu is a relevant label and λv is an irrelevant label or vice
versa, i.e., if (λu,λv ) ∈ Px×Nx or (λu,λv ) ∈ Nx× Px. Thus, training examples belonging to label λu will
receive a training signal of 1, whereas training examples of label λv will be classified with 0.

During classification, the predictions of the n(n−1)
2

base classifiers Hu,v are interpreted as preference
statements that predict for a given example which of the two labels λu or λv is preferred. In order
to convert these binary preferences into a label ranking, we use simple voting which interprets each
binary preference as an (unweighted) full vote (0 or 1) for the preferred class. Labels are then ranked
according to the number of received votes after the evaluation of all base classifiers.

To convert the resulting ranking of labels into a multilabel prediction, we use the calibrated la-
bel ranking (CLR) approach (Fürnkranz et al., 2008). This technique avoids the need for learning a
threshold function for separating relevant from irrelevant labels, which is often performed as a post-
processing phase after computing a ranking of all possible classes. The key idea is to introduce an
artificial calibration label v = λ0, which represents the split-point between relevant and irrelevant la-
bels. Thus, it v assumed to be preferred over all irrelevant labels, but all relevant labels are preferred
over v (cf. Figure 4.1).

During prediction, the virtual label is naturally embedded in the label ranking and is treated like any
other label. The position of the virtual label in the predicted ranking then denotes a natural cutting
point for dividing the label ranking into two sets.1

The pairwise learning method is often regarded as superior to binary relevance (or one-against-all,
respectively) because it profits from simpler decision boundaries in the sub-problems (Fürnkranz, 2002;
Fürnkranz et al., 2008). The reason is that each of the pairwise classifiers contains fewer examples.

1 We break ties in the final counting in favor of the virtual label.
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Figure 4.1: Preferences in calibrated label ranking: on the left, we see all preferences between the
relevant labels Px = {λ1,λ2} and the irrelevant labels Nx = {λ3,λ4,λ5}, the center graph shows the
position of the virtual label v = λ0, and the right graph shows all generated preferences (the union of
the previous two graphs).

More precisely, each original training example occurs in all of the n BR classifiers, whereas it only occurs
in |Px|(n−|Px|) of the quadratic number of pairwise classifiers, with |Px| being usually rather small (< 5).
The fact that these examples are distributed over a larger number of different classifiers makes the
pairwise approach particularly attractive for expensive classifiers like SVMs, because a smaller problem
size (in terms of training examples) goes typically hand in hand with an increase of the space where
a separating hyperplane can be found. Thus it is very likely for a sub-problem to have a larger margin
than the full problem. Because of the same reason, it has also been shown that the complexity for
training an ensemble of pairwise classifiers is comparable to the complexity of training a BR ensemble.
In fact, the algorithm is practical for problems with several thousands of labels (Fürnkranz, 2002;
Loza Mencía and Fürnkranz, 2010). Although we have to evaluate a quadratic number of classifiers in
order to predict a full ranking, the prediction phase can also be considerably sped up in cases where
we only need a small number of relevant labels (Loza Mencía et al., 2010).

4.2 Multiple Calibration Labels

The key idea of the proposed pairwise approach to graded multilabel classification is to generalize
calibrated label ranking to the case of multiple calibration labels V = {v1, . . . , vm−1}, where each label
represents an intermediate grade v i between the original grades µi and µi+1. Hence, we obtain Mv =
M∪V with the inner structure

µ1 ≺ v1 ≺ µ2 ≺ v2 ≺ µ3 ≺ . . .≺ vm−1 ≺ µm

As a consequence, we obtain an extended set of labels L ∪ V. Note that we use V to denote both,
labels and grades, which conveniently emphasizes the fixed mapping between grade and label v i , i.e.
it generally holds L(v i) = v i .

Furthermore, in order to cover the case that some training instances may be ignored by certain
pairwise classifiers, we introduce the projection function [p]rp : x → {0,1,∅} which indicates to
use a training example x either as positive (1), negative (0) example or not at all (∅) for the given
decomposition rp. Let us further also assume that the pairwise base classifiers are symmetric, i.e.
[H]λu,λv

= 1− [H]λv ,λu
.
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λ1 ≺ v1 ≺ λ2,λ3,λ4
λ1,λ2 ≺ v2 ≺ λ3,λ4
λ1,λ2,λ3 ≺ v3 ≺ λ4

i
⋃

j=1
P ′ jx ≺ {v i} ≺

m
⋃

j=i+1
P ′ jx

(a) Horizontal CLR

Generated preferences

λ1 ≺ v1 ≺ λ2 ≺ v2 ≺ λ3 ≺ v3 ≺ λ4

General case (i = 1 . . . m− 1)

P ′ix ≺ {v i} ≺ P ′i+1
x

(b) Full CLR

λ1 ≺ v1 ≺ λ2,λ3,λ4, v2, v3
v1,λ1,λ2 ≺ v2 ≺ λ3,λ4, v3
v1, v2,λ1,λ2,λ3 ≺ v3 ≺ λ4

{v1 . . . v i−1} ∪
i
⋃

j=1
P ′ jx ≺ {v i}

{v i} ≺
m
⋃

j=i+1
P ′ jx ∪ {v i+1 . . . vm−1}

(c) Joined CLR

Figure 4.2: The three different approaches for a pairwise decomposition of a graded multilabel problem,
showing also exemplarily the generated preferences and the general case (i = 1 . . . m− 1).

4.3 Horizontal Calibrated Label Ranking

The first, simple approach to generalize calibrated label ranking to the graded case is to use the hori-
zontal decomposition as described in Section 3.2, and to solve each of the resulting multilabel problems
with CLR. Thus, in order to learn each [H]i , we choose grade v i as our cutting point, i.e. we only dif-
ferentiate between grades greater or smaller than v i . Translated to CLR, v i becomes the calibrating
label and ∪vi≺µ j

P ′ jx and ∪µi≺v j
P ′ jx our positive and negative set of labels, respectively, as is illustrated in

Figure 4.2(a).
More precisely, we train each [H]iλu,λv

, λu 6= λv , λu,λv ∈ L ∪ {v i} using training examples

(x, [p]iλu,λv
(x)) given by

[p]iλu,λv
(x) =







1 if [L]ix(λv )≺ [L]ix(λu)
0 if [L]ix(λu)≺ [L]ix(λv )
∅ if [L]ix(λu) = [L]ix(λv )

(4.1)

and

[L]i(λu) =
�

µi if λu ≺ vu
µi+1 if vu ≺ λu

(4.2)

For making a prediction for a test instance x, the votes hx(λu) =
∑

λu 6=λv
[H]iλu,λv

(x) are summed
up for each label λu ∈ L ∪ {v i}, and λu is predicted as relevant if hx(λu) > hx(λvi

). The final graded
prediction is obtained by using the maximum predicted score for each label, as described in Section 3.2.

12



4.4 Full Calibrated Label Ranking

The idea of the full calibrated label ranking approach is to consider the targets in a GMLC problem as
a multipartite ranking. We therefore transform y into the multipartite ranking P ′1x ≺ P ′2x . . . ≺ P ′mx (cf.
Figure 4.2(b)). Enriched by the virtual labels we eventually obtain

P ′1x ≺ {v1} ≺ P ′2x . . .≺ {vm−1} ≺ P ′mx

Obviously, for m= 2, this reduces to calibrated label ranking with Px = P ′1x and Nx = P ′2x .
The projection function for base classifiers [H]λu,λv

, λu 6= λv , λu,λv ∈ L∪V only slightly changes in
comparison to (4.1), namely into

[p]λu,λv
(x) =







1 if L(λv )≺ L(λu)
0 if L(λu)≺ L(λv )
∅ if L(λu) = L(λv )

(4.3)

Note that in contrast to the horizontal decomposition in Sec. 4.3 we can sum up the votes across the
grades, obtaining one global ranking over all labels and grades. After querying all (n+m−1)(n+m−
2)/2 base classifiers, we then predict ŷ j = argmaxµi

hx(λ j)> hx(λvi
) for λ j .

A possible disadvantage of this approach is that the algorithm is prone to producing many ties in
the ranking since n+ m− 1 labels have to be ordered on a scale of 0 to n+ m− 2 obtainable votes.
This can potentially be remedied using a different voting function like weighted voting. However, we
observed that predicting accurate and comparable scores such as confidences or probabilities is not a
trivial task. Hence, 0-1 voting is more robust and makes the fewest assumptions on the base classifiers.
We will restrict ourselves to this approach in this technical report. Another, related problem is that
preference intensities are not considered, i.e., the difference between the grades of two compared labels
is ignored, for training as well as during prediction. The joined CLR approach, described in the next
section, provides a solution to this.

4.5 Joined Calibrated Label Ranking

On the one hand, Full CLR is not able to capture different degrees of preference intensities since
the preference between two labels λu,λv is only obtained in a binary way. On the other hand, we
recall that in the horizontal approach we learn each discriminating classifier [H]iλu,λv

exactly m − 1
times, once for every grade transition. In fact, the number of classifiers λu vs. λv which use a training
instance x depends on the difference between the grades of the labels, more precisely, it is exactly
|yu

x− yv
x |. We can hence expect that the difference in the number of votes between both labels correlates

with the difference in the true grades. A solution, which would take such predictions with varying
intensity into account, is to compute a common, joint ranking across degrees and labels, i.e. to compute
s(λu) =

∑

µi

∑

λv 6=λu
[H]iλu,λv

for all λu,λv ∈ L∪V. Although this would possibly produce a good ranking
over the labels in L. Unfortunately, it cannot be expected to provide a good ranking over the virtual
labels, because each of the virtual labels only appears in one horizontal sub-problem and can therefore
only obtain at most n votes. In contrast, each of the real labels can obtain up to n(m− 1) votes.

Joined CLR solves this problem by generalizing the horizontal decomposition introduced above, so
that all virtual labels are always used in all horizontal sub-problems. More precisely it decomposes
the initial problem into m− 1 bi-partite (three-partite if we count the virtual label) ranking problems
with one main calibrating label v i on each grade transition. In this regard, Joined CLR is equivalent
to Horizontal Calibrated Label Ranking and all pairwise base classifiers learned by Horizontal CLR are
also learned in exactly the same manner by Joined CLR. On the other hand, as shown in Figure 4.2(c),
Joined CLR also adds all remaining virtual labels v j 6= v i into these bi-partite ranking problems allowing
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them to accumulate the necessary voting mass. The resulting problem remains bi-partite, since we map
all grades to µi and µi+1 as in Horizontal CLR. Using a simplified informal representation, this basically
means that in addition to the comparisons

µ1, . . . ,µi ≺ v i ≺ µi+1, . . . ,µm−1

each horizontal subproblems is enriched with the following preferences:

µ1, . . . ,µi ≺ v i+1, . . . , vm−1

v1, . . . , v i−1 ≺ µi+1, . . . ,µm

v1, . . . , v i−1 ≺ v i ≺ v i+1, . . . , vm−1

More formally, we learn classifiers [H]iλu,λv
using [p] and [L] from Eq. (4.1) and Eq. (4.2), but in

this case for each λu 6= λv , λu,λv ∈ L ∪V. Note that the training signal between two virtual labels is
always fixed. Hence, we can set [H]ivu,vv

(x) = 0 if vu ≺ vv , 1 otherwise, for vu 6= vv , vu, vv ∈ V.
During prediction, the votes for each label are aggregated across all grade transitions as proposed in

the beginning of this subsection.
Note that fixing the predictions between virtual labels can introduce a bias since these predictions

are always perfect, whereas the remaining predictions depend on the classification performance of
a classifier trained on potentially noisy data. This problem can be alleviated e.g. by allowing different
fixed values than 0 and 1 or by removing some comparisons. We are currently developing such methods
and leave the investigation for further work.
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5 Experiments
In this section, we describe the data and setup of the experiments, followed by the results.

5.1 Data & Experimental setup

An overview over the used datasets is given in Table 5.1. The BELA-E benchmark was used in previous
work, whereas MOVIES and MEDICAL are two new real-world datasets. 1

5.1.1 BeLa-E

Cheng et al. (2010) used a dataset obtained from a questionnaire (Abele-Brehm and Stief, 2004). This
dataset called BELA-E consists of 1930 instances each representing a graduate student. Each instance
has 50 attributes. Two attributes, age and sex, characterize the student, the remaining 48 attributes
represent the actual questions to the students, which were on the importance of certain properties of
their future jobs. Each of these answers has a grade from ‘1’ (completely unimportant) to ‘5’ (very
important), so they share a common inner structure onM. In view of the lack of a more comprehensive
and informative characterization of the students, Cheng et al. (2010) decided to use a subset of the
question answers as additional attributes for characterizing the students. Following the same setup, we
generated 50 datasets by choosing randomly a subset of n questions as target labels. The remaining
50− n attributes were used as features of the instances. We generated two kinds of datasets, for n = 5
and n= 10, respectively.

5.1.2 Movies

We collected a dataset from the German TV program guide www.TVSpielfilm.de which rates movies by
assigning grades to the categories ‘fun’, ‘action’, ‘sex’, ‘suspense’ and ‘sophistication’ rather than giving
an overall rating. Each category has grades from ‘0’ to ‘3’. We interpret the grades as a mixture of
degree of presence or relevance and degree of quality. The background is that a classic comedy film
could be rated as ‘not funny at all‘ by the editorial team. In total, we had data for 1967 movies. For
characterizing them, we extracted the associated summary texts from www.imdb.org. Furthermore, we
added the English title, the year, director’s name, actors’ names, characters’ names, writers’ names,
runtime, country of origin, and language as text to the summary. The text was tokenized, stemmed
with the Porter algorithm and common English stopwords were filtered. We computed then the TF-IDF
values of the tokens on the respective training data of the 10-fold cross validation.

5.1.3 Medical

The MEDICAL dataset consists of 1953 free text radiology reports. They were collected for the CMC’s
2007 Medical Natural Language Center (Pestian et al., 2007) and three expert companies were asked
to annotate them with a set of ICD-9-CM disease/diagnosis classification codes. In the original dataset
for the multilabel classification competition, a document was assigned to a code if there was a consensus
among at least two of the annotators on a specific code. In contrast, we generated a GMLC dataset by

1 The datasets are available at http://www.ke.tu-darmstadt.de/resources/GMLC
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Table 5.1: Overview of datasets used in the experiments. Shown are the total number of instances,
attributes, unique labels n, different grades m, the average grade index and the frequency of the specific
grades µi appearing in the label–instance mappings.

distribution of grades µi , i =
Dataset Instances Attributes Labels Grades Avg. Grade 1 2 3 4 5

BELA-E n=5 1930 45 5 5 2.50 7.95 13.04 23.89 31.43 23.69
BELA-E n=10 1930 40 10 5 2.50 7.95 13.04 23.89 31.43 23.69

MOVIES 1967 27002 5 4 0.72 50.26 31.13 15.18 3.43 –
MEDICAL 1953 1602 204 4 0.02 99.08 0.31 0.24 0.37 –

considering the level of agreement as grade of assignment. We expect a more distinguished and useful
automatic classification than by only using the merged mappings in the golds standard, however, this
was not evaluated. Note that it lies in the nature of the problem that the assignments are very sparse
in the sense that labels are very likely to be absent. The texts were processed as for MOVIES but we used
the absolute term frequency in contrast to TF-IDF.

5.1.4 Experimental setup

Al proposed approaches, except the IBLR-ML(which we obtained from the authors), were implemented
as part of the LPCforSOS framework, which is an extension of the Weka framework Hall et al. (2009)2.
The code of the IBLR-ML was provided by the authors of Cheng et al. (2010). We used the J48 classifier
of the Weka framework as binary base classifier, which is an implementation of the C4.5 decision
tree learner algorithm (Quinlan, 1993). The complete reduction approach was implemented by using
horizontal reduction with binary relevance decomposition (referred to as BR). We used the ordinal
classification method of Frank and Hall (cf. Sec. 2.1) in the implementation of the Weka framework
for the vertical reduction (F&H). On each of the datasets we obtained our results by averaging the
evaluation measures on the test folds of a 10-fold cross validation. In addition, on the BELA-E datasets,
we averaged the results on different datasets. Although this is commonly not good practice, in this case
the individual datasets are generated from the same original dataset and, as stated by Cheng et al.,
should be evenly distributed.

For calculating the rank losses for the complete reduction approaches (BR and F&H), the IBLR-ML
and the horizontal calibrated label ranking (H-CLR), the predicted grade is used as the score.

5.2 Losses

For the GMLC problem, Cheng et al. generalized several common losses for multilabel classification.
We will discuss the measures and their meaning in short. All losses are computed individually on the
instances and averaged first on the test set and afterwards on the 10 test folds.

2 See http://www.lpcforsos.sf.net and http://www.cs.waikato.ac.nz/ml/weka/
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5.2.1 Hamming Loss

In the GMLC the Hamming loss can be generalized by measuring the original loss on the sub-tasks of
either the horizontal or vertical reduction. Cheng et al. showed that both functions are equal to each
other. For simplification the hamming loss is used in the vertical version

HAMMLOSS
�

ŷx, yx
�

=

∑n
i=1 AE

�

ŷ i
x, y i

x

�

(m− 1) · n

with AE :M×M→ N, AE
�

µi ,µ j

�

= |i − j|. Thus, the hamming loss in graded multilabel classification
denotes the mean deviation of the predicted label grades to the real ones. Even though the use of
grade distances for the evaluation of ordinal predictions is questionable from a theoretical point of
view (cf. Section 2.1), it is nevertheless a useful indicator of classification performance in such settings.

5.2.2 Vertical 0-1 Loss

The vertical 0-1 loss measures the percentage of labels with incorrectly assigned grades. Contrary to
Hamming loss, this metric does not consider the size of the grade differences.

VERT01
�

ŷx, yx
�

=
1

n

n
∑

i=1

I
�

ŷ i
x 6= y i

x

�

5.2.3 C-Index

The C-index (Gönen and Heller, 2005) is a generalization of the rank loss. To fit the graded case, it
measures the pairwise ranking error between a pair of labels out of two different sets P ′ix , P ′ jx , i < j.
Essentially, the C-index counts the number of incorrectly ordered pairs of labels with different grade in
the ranking.

C-INDEX
�

hx, P ′1x , . . . , P ′mx

�

=

∑

µi<µ j

∑

(λ,λ′)∈P′ix ×P′ jx

S
�

hx (λ) , hx
�

λ′
��

∑

µi<µ j

�

�

�P ′ix × P ′ jx

�

�

�

with S (u, v ) = I (u> v ) + 1
2
I (u= v ). For Full CLR and Joined CLR, we can take the number of votes

for each label as ordering criterion. For the remaining ones we just use the predicted grade. Basically,
this corresponds to the comparisons considered by the Full CLR approach.

5.2.4 One Error Rank Loss

This metric is the generalization of the one error loss for rankings in multilabel classification. In Cheng
et al. (2010) this loss is generalized to measure if the highest ranked label has the highest possible
grade µm. The drawback of this version is that if an instance out of the test set has no label with a
relevance of the highest possible grade, the one error cannot be zero, even if the classification of the
instance is completely correct. To solve this problem we propose a changed version of the one error
comparing the real grade of the highest ranked label with the highest grade of all labels of an instance.

ONEERR
�

ŷ i
x, y i

x

�

=
1

m− 1
AE
�

max
1≤i≤n

ŷ i
x, max

1≤ j≤n
y j

x

�
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5.2.5 Optimistic Hamming Loss

Under some circumstances, CLR tends to under- or overestimate the correct position of the virtual label.
In order to be independent of such an effect, we follow the idea of Fürnkranz et al. (2008) and propose
to evaluate the ranking performance by cheating on the positioning of the virtual label: we place the
cutting points in hindsight so that the distribution of grades corresponds to the real one. In a way
this allows us to compute bi-partitioning metrics even when the underlying algorithm can only predict
rankings. Furthermore, it allows us to compute the regret of using a specific cutting technique.

We generalize this method to the GMLC and the multi-partite ranking case, respectively. Therefore,
we define the cheated partitioning P̂ ′′1x , P̂ ′′2x , . . . over a ranking such that |P̂ ′′ix |= |P

′i
x | and sx(λu)≤ sx(λv )

if λu ∈ P ′ix ,λv ∈ P ′ jx ,µi ≺ µ j . Given the corresponding prediction (in the form of ŷ′′), we thus obtain
the optimistic Hamming loss as

OPTHAMMLOSS = HAMMLOSS
�

ŷ′′x ,yx

�

5.3 Results

The experimental results are summarized in Table 5.2. The first observation is that BR, i.e., the com-
plete reduction using horizontal and vertical cuts, is usually outperformed by the pairwise approaches,
even for Hamming loss. Moreover, BR is always outperformed by F&H, even though both classifiers are
trained equally. The difference is due to the different aggregation strategies of the predictions of the
binary classifiers (see Sec. 3.1 and 3.2), and obviously, the more sophisticated approach by Frank and
Hall pays off for these datasets.

The next observation is that the approach using IBLR-ML shows even worse results than BR. This
is surprising, since it does not correspond to the results reported by Cheng et al. (2010), where BR is
beaten by IBLR-ML, although we used the code provided by the authors. A reason might be that the
50 sub-datasets are obviously not exactly equal due to the random initialization. Furthermore, we used
a different base learner for BR which explains the differences for this algorithm, but not the ones for
IBLR-ML, which was used exactly the same way as in Cheng et al. (2010).

Still, our results for C-Index and one error seem more reasonable to us since IBLR-ML uses the same
overestimating aggregation as BR. Horinzontal CLR also uses this aggregation but pairwise classification
is an ensemble method and thereby is more robust to noise predictions of single classifiers. So the IBLR-
ML approach is probably more prone to error propagation.

Interestingly, the approach using vertical reduction (F&H) seems to perform quite competitive w.r.t.
other approaches, especially for Hamming and vertical 0-1 loss. This may show that preserving and
focusing on the information about the grades (vertical) is more important for GMLC than considering
the relations between the labels at each grade (horizontal). On the other hand, Horizontal CLR outper-
forms F&H specifically on exactly these both losses (except for MEDICAL, where they perform equally).
On the BELA-E datasets, all approaches are pairwise statistically significantly different with α = 0.01
(sign test).

So the graded multilabel classification seems not to have so much gain towards solving several
independent ordinal classification problems towards these losses. This maybe is grounded in the used
datasets but is visible in all of them. Looking at the ranking of the labels and thereby the C-Index
and the one error the approach cannot compete with the calibrated label ranking approaches. So the
interdependencies of the labels seems to have its main impact to these measures.

The results of the different calibrated label ranking approaches show a high correspondence to their
inner structure. The Full CLR shows the highest Hamming and vertical 0-1 loss among the approaches.
When looking at its Optimistic Hamming loss and the quite good C-Index and one error, this seems to
be clearly just a problem of the correct positioning of the virtual labels due to the narrowness and thus
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ties in the rankings (see 4.4). The Joined CLR shows a similar behavior. In particular, we can observe
that Joined CLR has the best results among the approach for all three ranking losses, except on the
MEDICAL dataset. The somewhat worse results on the medical dataset suggest that the Joined CLR has
problems on datasets with many labels being assigned too extreme low or high grades (see Tab. 5.1).

As already mentioned, Horizontal CLR outperforms all other approaches w.r.t. Hamming and verti-
cal 0-1 loss. This is very likely due to the easier positioning of the single calibrating label, especially
in comparison to Full CLR but also to Joined CLR. On the other hand, Horizontal CLR reveals its dis-
advantages regarding the prediction of good rankings. It is the worst approach compared to the other
pairwise methods w.r.t. C-Index and one error. It seems very obvious that the aggregation strategy of
selecting the highest seen grade for each label, also used by BR and IBLR-ML and proposed by Cheng
et al., is not advantageous w.r.t. ranking quality.

In summary, the pairwise approaches generally outperform all other approaches on the used ranking
losses. Especially the full and joined decomposition provide a clear advantage when good rankings of
labels are important. On the other hand, if we desire good predictions for each label independently
(hence for each ordinal problem separately), then Horizontal CLR is the most appropriate method
among all evaluated techniques in our experiments.

These two main results make us confident that learning by pairwise comparisons has a natural access
to the inner structure of GMLC problems. Moreover, it was shown that pairwise learning provides a
flexible adaptation to different objectives by adjusting decomposition and aggregation. The very low
optimistic Hamming losses of the CLR approaches additionally promise an even better result of the CLR
algorithms through finding a better way of positioning the virtual labels into the global ranking.
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6 Conclusions
In this work, we introduced pairwise comparisons for representing and learning graded multilabel clas-
sification (GMLC) problems, which are a combination of ordinal and multilabel classification problems,
where each instance is associated with several different grades of relevance to multiple categories at
the same time. To be able to solve such problems by learning from pairwise comparisons we general-
ized Calibrated Label Ranking to the case of multiple calibration labels. We presented three different
generalizations of CLR to graded multi-label classification, and experimentally compared them to pre-
vious work by Cheng et al. (2010) on three different datasets. In these experiments, our approaches
achieved the best results in all measured losses during the experiments.

Nevertheless, we believe that we have not yet fully exploited the information that is inherent in
GMLC problems. In particular, we believe that pairwise comparisons have the capacity to achieve even
better results by improving the way the predicted ranking is separated into grades. In future work, we
plan to investigate alternative aggregation strategies to the horizontal reduction, the use of different
voting strategies like weighted voting, as well as novel approaches for introducing the virtual labels
into the label rankings.
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