
Iterative Optimization
of Rule Sets
Iterative Optimierung von Regel-Mengen
Master’s Thesis von Jiawei Du
November 2010

Fachbereich Informatik
Knowledge Engineering Group

Iterative Optimization of Rule Sets
Iterative Optimierung von Regel-Mengen

vorgelegte Master’s Thesis von Jiawei Du

Gutachten: Prof. Dr. Johannes Fürnkranz
Betreuer: Frederik Janssen

Tag der Einreichung:

Erklärung zur Master’s Thesis

Hiermit versichere ich die vorliegende Master’s Thesis ohne Hilfe Dritter nur mit den
angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die aus Quellen
entnommen wurden, sind als solche kenntlich gemacht. Diese Arbeit hat in gleicher oder
ähnlicher Form noch keiner Prüfungsbehörde vorgelegen.

Darmstadt, den 16. November 2010

(Jiawei Du)

I

II

Danksagung
Ich möchte mich bei Herrn Prof. Dr. Johannes Fürnkranz für die Vergabe dieser interessanten Mastetarbeit
sowie für seine Vorschläge bedanken, und mein Dank gilt Herrn Dipl.-Inf. Frederik Janssen der mir bei
Fragen und Probleme geholfen haben. Ein besonderer Dank gilt meinen Eltern die mir durch ihr Vertrauen
und ihre finanzielle Unterstützung mein Studium erst ermöglicht haben. Ich danke weiterhin meiner Frau
Gujie Zou für ihre Liebe, ihre Geduld und ihre seelische Unterstüzung während meines Studiums und der
Masterarbeit.

III

Abstract
Rule learning is one of the subfields in machine learning that is specialized in the generation of rules from
the data. A rule set, which consists of a series of rules, can be seen as the "experience" that enables
the system to do the same task more efficiently. Normally, the process of learning rule sets is called the
building phase. It is suggested that a single rule in the building phase is optimized in most rule learning
algorithms, while the improvement can also be gained for the entire rule set in a postprocessing phase.
As a well-known algorithm, including the postprocessing phase, RIPPER is suitable for the benchmark.
Moreover, two variations are also derived from the original RIPPER algorithm for comparison. The first
one introduces a new pruning method and the second does a simplified selection criterion. At the end, all
the algorithms mentioned in this thesis are implemented and validated in the simulation platform SeCo.
In different parameter settings, some conclusions are made to optimize the rule set based on the simulation
results.

Zusammenfassung
Regel-Lernen ist ein wesentlicher Bereich des Maschinellen Lernens. Unter dem Regel-Lernen versteht man
die Extraktion der relevanten Regeln aus gegebenen Datenmengen. Mit der Regelmenge, die aus einer Reihe
von Regeln besteht, können Maschinen die gleiche Aufgabe effizienter erledigen. Allgemein bezeichnet man
den Lernprozess der Regelmengen als die Lernphase. Um eine gute Regelmenge zu erhalten, optimieren die
meisten Algorithmen jede einzelne Regel in der Lernphase, während einige Algorithmen eine Optimierung
der gesamten Regelmenge in einer Nacharbeitungsphase durchführen. In dieser Masterarbeit stellen wir eine
Analyse für dem bekannten Algorithmus RIPPER (enthält beide Phasen) vor. Darüber hinaus wurden
zwei Varianten basierend auf dem RIPPER Algorithmus entwickelt. Die erste führt eine neue Pruning-
Methode ein und die zweite vereinfacht das originale Auswahlkriterium. Anschließend wurden der RIPPER
Algorithmus und seine Varianten in der Simulationsplattform SeCo implementiert. Durch einen Vergleich
der Algorithmen mit verschiedenen Parametern wurden eventuelle Vorteile und Nachteile untersucht.

IV

Contents
1. Introduction 1

1.1. Motivation . 1
1.2. Outline of Thesis . 2

2. Background 3
2.1. Learning Sets of Rules . 3

2.1.1. Decision Tree Learning . 6
2.1.2. Separate-and-Conquer . 7

2.2. Preprocessing . 10
2.3. Postprocessing . 11

3. SeCo Platform and the RIPPER Algorithm 14
3.1. Introduction to SeCo . 14

3.1.1. Framework of SeCo . 14
3.1.2. Rules for One Class . 15
3.1.3. Interfaces in SeCo . 15
3.1.4. Default Components . 16
3.1.5. XML Parser . 17
3.1.6. Data Set Format . 18

3.2. Algorithms . 18
3.2.1. REP-based Algorithms . 18
3.2.2. RIPPER Algorithm . 22
3.2.3. Variant Abridgment . 25
3.2.4. Simplified Selection Criterion . 27

4. Implementation in SeCo 28
4.1. XML File . 28
4.2. Generate an Initial Rule Set . 30

4.2.1. Stratified Data . 31
4.2.2. Growing Set and Pruning Set . 33
4.2.3. Growing a Rule . 33
4.2.4. Pruning a Rule . 36
4.2.5. Condition Stop Criterion and Rule Stop Criterion 38

4.3. Iterative Optimization . 39
4.3.1. Variants . 41
4.3.2. Selection Criteria for Variants . 44
4.3.3. Rule Reduction . 45

4.4. Differences from JRIP . 46
4.4.1. Order of Classes . 46
4.4.2. Selection of Refinements . 47
4.4.3. Minimal Number of Covered Examples . 47

5. Evaluation 48
5.1. Data Sets . 48

V

5.2. Evaluation Methods . 48
5.3. Evaluation Dimensions . 50

5.3.1. Correctness . 50
5.3.2. Size of Rule Sets . 50
5.3.3. Number of Conditions in One Rule . 50

5.4. Performance Evaluation . 51
5.4.1. Results of SeCoRIP . 51
5.4.2. Comparison with JRIP . 53
5.4.3. Results of Variant Abridgment . 54
5.4.4. Results of Simplified Selection Criterion . 56
5.4.5. Convergence Properties of SeCoRIP . 58

6. Summary and Conclusions 62

Bibliography 64

A. Table 66

VI

List of Figures
2.1. Confusion Matrix . 4
2.2. Learning Sets of Rules . 5
2.3. Decision Tree . 6
2.4. Decision Tree Learning versus Separate-and-Conquer . 8
2.5. Preprocessing and Postprocessing . 11

3.1. Package Hierarchy in SeCo . 14
3.2. Rules for One Class . 16
3.3. Structure of REP, I-REP and RIPPERk . 22
3.4. RIPPER / RIPPERk . 23
3.5. Pruning Methods . 26

5.1. SeCoRIP of 20 UCI Data Sets . 51
5.2. Comparison with JRIP . 53
5.3. Comparison of Average Correctness . 56
5.4. Comparison of Average Correctness 2 . 57
5.5. A Picture of the Definition of Convergence [10] . 58
5.6. Group A . 59
5.7. Group B . 60
5.8. Group C . 60
5.9. Group D . 61

VII

List of Tables
2.1. A Simple Data Set . 3
2.2. Examples with Missing Attribute Values . 10
2.3. Intervals and Frequencies . 11
2.4. Covered Examples . 13
2.5. Discretization of Numeric Attributes . 13

3.1. Elements in SeCo XML Description [30] . 17
3.2. Structure of an ARFF File . 18
3.3. List of REP-based Algorithms . 19
3.4. Variants and Old Rule . 24

4.1. Original Training Set . 32
4.2. Randomized Bags . 32
4.3. Stratified Training Set . 33
4.4. weather.arff . 35
4.5. Searching for Critical Point of Numeric Attribute . 35
4.6. Variant Abridgment (1st Iteration) . 43
4.7. Variant Abridgment (2nd Iteration) . 43
4.8. Variant Abridgment (3rd Iteration) . 43

5.1. Legend of Properties in Data Sets . 48
5.2. 20 UCI Data Sets . 49
5.3. Win-Tie-Loss . 52
5.4. Profit . 52
5.5. The Average Number of Rules and Conditions (SeCoRIP) 53
5.6. 9 Data Sets Marked in Gray . 55
5.7. Win-Tie-Loss 2 . 56
5.8. Win-Tie-Loss (Comparison of SeCoRIP and SeCoRIP’) . 57
5.9. The Average Number of Rules and Conditions (SeCoRIP’) 58

A.1. SeCoRIP on 20 UCI Data Sets . 66
A.2. JRIP on 20 UCI Data Sets . 67
A.3. The Number of Rules and Conditions (SeCoRIP) . 68
A.4. Results of 1. Variant (Abridgment) . 69
A.5. Results of 2. Variant (Accuracy) . 70
A.6. The Number of Rules and Conditions (SeCoRIP’) . 71
A.7. SeCoRIP on 20 UCI Data Sets (Part 2) . 72

VIII

List of Algorithms
2.1. A Generic Separate-and-Conquer Rule Learning Algorithm 9

4.1. XML for SeCoRIP2 . 28
4.3. FindBestRule . 34
4.4. PruneRule . 38
4.5. PostProcessTheory . 40
4.6. PruneOldRule . 42
4.7. ReduceDL . 46
4.8. Header Information of monk1.arff . 46

IX

1 Introduction

1.1 Motivation

With the development of computer science, the ability to collect and store data has greatly improved the
accumulating of mass of data in the field of scientific research and daily life. It is necessary to analyze this
data and turn it into valuable information and knowledge. These complicated tasks can be accomplished
by machines. Machine learning is an important scientific discipline that is concerned with the design
and development of the techniques for analyzing and inducing empirical knowledge from data. Empirical
knowledge is what is collected through observation or experiments. By using that, machines are able to pro-
cess the new data themselves. Due to their learning ability, these machines can be considered as "intelligent".

In machine learning, rule learning is a popular and well-researched method for extracting rules from
the data. The extracted rules form a rule set, which is a kind of empirical knowledge that is suitable
for the machines. It is to be mentioned that the data in rule learning systems is usually composed of
a series of examples, which contain some attributes with values. The rule set can be used to determine
which groups the examples belong to. This process is called "classification". A classifier builds a model
that may be described by rules. This rule set is able to classify new, previously unseen examples. There
are many different heuristics to evaluate the quality of rules. As a common heuristic, "accuracy" means
how many examples in the data are correctly classified. In general, the more the examples are classified
correctly, the better the rule is. In order to get a good rule set, most of the rule learning algorithms
focus on how to extract a single rule from the data more effectively. In other words, they guarantee the
quality of the rule set by adding a series of high-accurate rules. However, the learned rule set in the pre-
vious steps can be further processed as well [5]. In rule learning systems, the process of learning a rule set
is called the building phase while the optimization of the learned rule set is called the postprocessing phase.

In addition, the real-world data that has to be processed are sometimes noisy and often inconsistent
[2]. The term "noisy" means that the values of attributes in some examples are incorrect or even miss-
ing, and "inconsistent" means that some examples may belong to different groups, although they have
the same values in their attributes. Due to the defective data, it is difficult to ensure that the learned
rules are always of high accuracy. Thus, the quality of the rule set will be affected. In order to solve this
problem, many different approaches are presented, such as pre-pruning and post-pruning of the learned
rules, filtering the attributes, deleting the examples, etc. These approaches are usually applied in the
building phase. With the help of them, the quality of the rule set will not suffer too much. How-
ever, optimization of the entire rule set can further solve this problem. In the postprocessing phase,
the initial rule set was learned. Based on the existing rule set, it is easier and more effective to optimize
the rules. Moreover, there is a chance that the rules derived from the noisy data can be found and corrected.

In this thesis, the methods for optimizing the rule sets are researched and analyzed. RIPPER [8] is a
rule learning algorithm that includes a postprocessing phase. It was presented by William W. Cohen in
1995. The earliest prototype of RIPPER can be traced back to REP (Reduced Error Pruning). REP
is a rule learning algorithm that takes a simplex approach (post-pruning) to optimize the rule set [26].
Normally, the rules in the rule set are so redundant that much time is needed to optimize them. Thus,
the efficiency of REP is not satisfactory. The I-REP (Incremental Reduced Error Pruning) algorithm was
developed by Johannes Fürnkranz and Gerhard Widmer in 1994. This algorithm changes the structure of

1

REP so that it can generate rules and form a rule set more easily and quickly. Moreover, the quality of
rule sets generated by I-REP is better than REP [16]. It is to be mentioned that the I-REP algorithm does
not employ a postprocessing phase. RIPPER was developed based on I-REP. It introduces the concept
of postprocessing again to improve the rule set. In addition, this algorithm has a variant which is called
RIPPERk. In the postprocessing phase in RIPPERk, the rule set learned in the building phase can be
optimized iteratively. This means that the optimized rule set can be further processed. The parameter k
refers to the number of optimization iterations. For example, RIPPER2 means the rule set will be opti-
mized twice. It is confirmed in [8] that the RIPPER algorithm is very competitive with other rule learning
algorithms. Up to the present time, no method to improve RIPPER has been successfully developed. For
this reason, RIPPER is set as a benchmark system in this thesis. Based on this system, the comparison of
the methods for the optimizing of rule sets will be made.

1.2 Outline of Thesis

The thesis is structured as follows: Chapter 2 introduces the concept of rule learning and presents two
common approaches for getting rules. The first approach, "decision tree learning", is an indirect method
that cannot extract rules from the data directly. The rules are converted from a decision tree, which was
constructed on the data in advance [26]. The second approach, "separate-and-conquer [22]", is a method
that can directly extract rules from the data.

In Chapter 3, the framework of SeCo is introduced. SeCo is a simulation platform on which different
rule learning algorithms can be simulated and evaluated. It is important to note that these algorithms
should be implemented according to the separate-and-conquer approach. Secondly, the REP-based algo-
rithms are introduced and the differences among them are compared. REP-based algorithms indicate the
rule learning algorithms that are developed based on the original REP algorithm. Finally, two variants
are presented based on the RIPPER algorithm. The first one introduces a new pruning method and the
second does a simplified selection criterion.

Both the RIPPER algorithm and the variants mentioned above are implemented in SeCo. The imple-
mentation of the original RIPPER is called SeCoRIP and is explained in Chapter 4. In addition, as
another implementation of the RIPPER algorithm in Weka [33], JRIP is compared with SeCoRIP.

In Chapter 5, the methods for evaluating SeCoRIP and the variants are explained. In addition, the
whole evaluation process can be divided into three parts: Firstly, a conclusion is made by comparing the
results of SeCoRIP with JRIP. Secondly, conclusions are made by comparing the results of the two vari-
ants with SeCoRIP. Finally, the convergence properties of SeCoRIP for the increasing of the number of
optimization iterations is investigated.

In Chapter 6, the thesis is concluded with a summary of our findings.

2

2 Background

2.1 Learning Sets of Rules

The definition of learning is described in [21]: A computer program is said to learn from experience E with
respect to some class of tasks T and performance measure P, if its performance at tasks in T, as measured
by P, improves with experience E. In practice, it can be considered as a process of extracting regularities
from the given data to improve the performance.

However, the real-world data are often so difficult to process directly that they are usually converted
into the machine-readable data in advance. In rule learning, the data are described as data sets, which
contain a series of examples (also called instances). They are composed of attributes with values. A train-
ing set is part of the data set and is used to learn the rules. It should be noted that the classes of the
examples (i.e. class values) in the training set are known. The term class indicates here which group the
examples belong to. A simple training set including 9 examples is given in the following table:

Nr. Outlook Temperature Humidity Windy Play Golf
1. sunny 85 85 false no
2. rainy 85 85 true no
3. sunny 80 90 true no
4. overcast 83 86 false yes
5. rainy 70 96 false yes
6. rainy 68 80 false yes
7. overcast 64 65 true yes
8. sunny 72 95 false no
9. sunny 69 70 false yes

Table 2.1.: A Simple Data Set

In table 2.1, {Outlook, Temperature, Humidity, Windy} are four attributes. It is noticeable that there
are two kinds of attributes in this table; {Outlook, Windy} are nominal attributes and {Temperature,
Humidity} are numeric attributes.

• Nominal: The values of nominal attributes are composed of several certain states, e.g. Outlook =
{sunny, rainy, overcast}, Windy = {true, false}. The characteristics of them are discrete and not
comparable. Moreover, the nominal values are case sensitive (i.e. sunny ̸= Sunny).

• Numeric: The values of numeric attributes are expressed by numbers. The characteristics of them
are continuous and comparable. The numeric attributes are usually used to describe the magnitude
of certain items such as Temperature, Humidity, etc.

Each attribute in the examples has its individual value, so that the examples can be distinguished from
each other. In addition, {Play Golf } is the class name and it has two class values, "yes" and "no". The
class value of each example is dependent on the change in four attributes. This means, in this case, the
process of rule learning can be interpreted as follows: "In which case the person would play golf". In rule
learning, rules can be extracted from the data. Normally, a rule consists of two parts: the rule header,
which encodes the target class (i.e. certain class name), and the rule body, which consists of attribute-value

3

pairs or conditions (i.e. attributes with possible values). According to table 2.1, an example of a concrete
rule is given in the following equation:

IF < − − conditions − − > THEN < target class >

IF < Outlook = rainy & Temperature ≤ 80 > THEN < yes > (2.1)

Moreover, it is possible to construct an empty rule that has no condition in its rule body. With the ex-
tracted rules, it is much easier to understand the training set. Furthermore, these rules will be used to
further classify the new data, in which the class values of examples are unknown. For example, according
to equation 2.1, all the examples that meet the conditions [Outlook = rainy & Temperature ≤ 70] will be
classified as "yes".

The heuristic is an important component that helps in rule discovering, extracting and evaluating. In
rule learning, there are two kinds of heuristics available, i.e. evaluation heuristic and search heuristic. An
evaluation heuristic is a heuristic that is usually used to evaluate candidate rules. The term candidate rules
indicate the rules that have a chance to be further processed. Furthermore, a search heuristic is a heuristic
that is to guide the search algorithms in the right regions of the search space [15]. The search algorithms
will be described in section 2.1.2. For this purpose, the essential information about the rules based on the
training set is gathered. This information can be described in a confusion matrix. Such a matrix contains
statistics of a single rule or statistics of a complete evaluation of a rule learning algorithm.

Figure 2.1.: Confusion Matrix

• TP (true positive) means the number of correct predictions with an example being positive.

• FP (false positive) means the number of incorrect predictions with an example being positive.

• TN (true negative) means the number of correct predictions with an example being negative.

• FN (false negative) means the number of incorrect predictions with an example being negative.

Note that the confusion matrix is only suitable for a two-class problem. For a multi-class problem (i.e.
the number of classes is more than 2), it is possible to use the one-against-all method [12] to reduce the
multi-class to binary one. According to the one-against-all method, all classes that are not the target
class form a new class named the non-target class. In figure 2.1, P means the total number of positive
examples in the data set (P=TP+FN), whereas N means the total number of negative ones (N=FP+TN).
Furthermore, Covered means the covered examples by the rule (Covered = TP+FP), while Not Covered

4

means the rest of the examples in the data set (Not Covered = FN + TN). In general, heuristic methods
are constructed based on this information. Here are some commonly used examples:

Accuracy = TP + TN

P+N
(2.2)

Precision = TP

Cov ered
(2.3)

Laplace = TP + 1
Cov ered + 2

(2.4)

m − Estimate =
TP + m P

P+N
TP + FP + m

(2.5)

Entropy = − TP

TP + FP
log TP

TP + FP
− FP

TP + FP
log FP

TP + FP
(2.6)

In different rule learning algorithms, the heuristic methods used will be vary. It is also possible that several
heuristic methods are combined into one scheme. Correspondingly, the global structure of the learning
process can be summarized in figure 2.2. In the next section, two representative approaches for generating
rules are introduced. The first approach, "separate-and-conquer", is a direct method that extracts rules
from data. With the second one, "decision tree learning", the rules cannot be extracted directly but can
be converted from a decision tree indirectly.

Figure 2.2.: Learning Sets of Rules

5

2.1.1 Decision Tree Learning

In Wikipedia, decision tree learning is defined as follows: Using a decision tree as a predictive model which
maps observations about an item to conclusions about the item’s target value [34]. The earliest development
of decision trees can be traced back to the research with concept learning systems [13] (CLS) by Hunt,
Marin and Stone in 1966. As an essential method for classification and prediction, it is nowadays widely
used in machine learning. Based on the decision tree, the learning systems can effectively deal with large
data sets affected by noise and incompleteness [3, 25]. Moreover, it is possible to convert the decision tree
to a series of rules which are more understandable for people. This means that the structure of the decision
tree is especially important to ensure the quality of the extracted rules. Here, the process of getting a rule
set is simply summarized into the following three steps:

1. Constructing a decision tree

2. Transforming it into a rule set

3. Simplifying the rules in the rule set

As mentioned before, each example in the data set contains a series of attributes. In order to construct a
decision tree, some tests should be performed on these attributes. The whole process can be interpreted as
successively "splitting" (divide-and-conquer strategy) the data set into subsets based on these tests. The
distribution of the relevant data set is determined after each test. The original data set is inhomogeneous
because the examples in it belong to different classes. The ideal subset should be homogeneous, which
means the examples have the same class. In general, this "splitting" process can be stopped if all subsets
are homogeneous. Figure 2.3 shows the corresponding decision tree with respect to the data set in table
2.1.

Figure 2.3.: Decision Tree

• Internal Node meaning a test on an attribute

• Leaf Node meaning the class or class distribution

• Branch meaning the outcome of the test

The data set at the root node {Outlook} contains the complete examples defined in table 2.1 and the
subset at the internal node {Humidity} only has the examples that meet the condition [Outlook = sunny].

6

Because the subset with the condition [Outlook = overcast] is homogeneous, it is not necessary to split it
any more.

In general, the most useful attribute for classifying examples should be selected at each internal node.
The definition of "useful" depends on the heuristics used in the decision tree. Entropy and information
gain calculation are two essential estimation criteria which can evaluate the quality of attributes in the
decision tree. The entropy calculates the impurity of each subset related to the tested attributes. The
basic rule is that the higher the entropy value is, the worse the purity of the subset is. The formula of the
entropy can be found in equation 2.6 in section 2.1. Defined in the equation below, the information gain
calculates the expected reduction in entropy caused by splitting the data set according to this attribute.
Finally, the one with the highest information gain should be selected as the most useful attribute in this
internal node.

Information Gain = Entropy(data set) − factor ∗
∑

Entropy(subset) (2.7)

The decision tree is able to classify an unknown example by traversing the tree from the root node to a
leaf one that holds the result of the classification. However, large decision trees are difficult to understand,
because the outcome of each node is determined by a series of relevant antecedent nodes. In order to
understand the decision tree easily, we can convert it into a series of rules. The transformation is quite
simple: In the decision tree, each path from the root node to the leaf node can be seen as an individual
rule. For example, there are a total of five rules extractable according to the decision tree in figure 2.3. An
example is given as follows:

R1 : IF < Outlook = sunny & Humidity ≥ 80 > THEN < Play = no >

R3 : IF < Outlook = ov ercast > THEN < Play = yes >

One advantage of these rules is that the order of the tested attributes in the rule is not important any more.
However, extracted from the decision tree, the rules are merely the initial ones that may be subject to
problems such as redundancy and repetition. Simplifying the initial rules as an essential idea is realized in
most such learning systems. The basic concept applied here is to eliminate unnecessary rule antecedents in
order to improve the performance of the rules. Related to the postprocessing, this process will be discussed
in section 2.3.

2.1.2 Separate-and-Conquer

The concept of separate-and-conquer was presented by Ryszard S. Michalski in 1969 under the name cov-
ering strategy [20]. Different from decision tree learning, the separate-and-conquer strategy [22] is used
instead of the divide-and-conquer strategy to process the data set (see figure 2.4). The advantage of this
strategy is that rules can be extracted from the separated subsets (marked in red) of the data set directly.
This means that there is no need to construct the complex decision tree.

In the separate-and-conquer strategy, the term conquer means the examples that are covered by the
rules found previously should be removed from the data set. And the term conquer means the rules will
continue to be searched in the rest of the examples. Algorithm 2.1 shows a generic separate-and-conquer
rule learning algorithm that was presented in [15]. The given parameter Data means a data set which
contains a series of examples. The learning process starts with an empty rule set. Normally, rules will be
added to the rule set continuously until all the positive examples are covered. The procedure FindBestRule
is responsible for learning a rule on the given data set. In the procedure FindBestRule, there can be many
different methods for searching a rule. The search strategy and the search algorithm are two important
components that can determine the method of getting a rule.

7

Figure 2.4.: Decision Tree Learning versus Separate-and-Conquer

• Search Strategy
In the procedure FindBestRule, we can learn a rule in the direction of general-to-specific or specific-
to-general. The terms general and specific are two basic concepts, which are usually used to describe
the relations between rules. For example, if a rule R1 covers more examples than a rule R2 and all
the examples that are covered by the rule R2 are covered by the rule R1 as well, we can say that
the rule R1 is more general than the rule R2. Conversely, once can also say that the rule R2 is
more specific than the rule R1. Top-down and bottom-up are two standard search strategies that are
constructed on the above-mentioned relationship.

– Top-down is a general-to-specific search. The specification starts with the most general rule
(usually an empty rule) and specializes it successively until it only covers the positive examples.

– Bottom-up is a specific-to-general search. The generalization starts with the most specific rule
(randomly choosing a positive example from the data set) and generalizes it successively until
it covers the negative examples.

In general, the specification is processed by adding new conditions and the generalization is processed
by deleting existing conditions respectively. This means that the number of conditions of a specialized
rule must be larger than that of the original one. Moreover, for each original rule it is possible to
generate several specialized or generalized rules. These rules are usually called the refinements of the
original rule. For example, based on a given rule R, examples of the specialized rules Si(R) and the
generalized rules Gi(R) are given as follows:

R : IF < Outlook = sunny & Windy = true > THEN < Play = no >

S1(R) : IF < Outlook = sunny & Windy = true & Humidity ≥ 70 > THEN < Play = no >

S2(R) : IF < Outlook = sunny & Windy = true & Humidity < 50 > THEN < Play = no >

G1(R) : IF < Outlook = sunny > THEN < Play = no >

G2(R) : IF < Windy = true > THEN < Play = no >

8

procedure SeparateAndConquer(Data)
{

Theory = ∅
while (Positive(Data) ̸= ∅)
{

Rule = FindBestRule(Data)
Covered = Cover(Rule, Data)

if RuleStopCriterion(Theory, Rule, Data)
exit while

Data = Data \ Covered
Theory = Theory ∪ Rule

}
return (Theory)

}

Algorithm 2.1: A Generic Separate-and-Conquer Rule Learning Algorithm

• Search Algorithm
The search algorithm can determine how to search for a rule. For example, in a top-down search
strategy, we will start to learn a rule by successively specializing the most general rule. It is possible
to generate several refinements if we separately add different conditions to the rule. The search
algorithm has the right to decide which refinements could be a candidate for further specification.
In rule learning systems, there are various search algorithms available, such as hill-climbing, beam
search and best-first search.

– Hill-climbing is the most commonly used search algorithm that tries to learn a rule with an
optimal evaluation by continuously choosing the best refinement to be further processed and
halting when no further improvement is possible [15]. This means that hill-climbing only keeps
a single refinement at each step. However, it is difficult to guarantee that the chosen refinement
is always really the best one.

– Beam search is a search algorithm that could keep track of a fixed number (i.e. so-called
beam size b) of refinements. It tries to learn a rule with an optimal evaluation by continuously
choosing b best refinements to be further processed. Compared with hill-climbing, beam search
can sometimes get better results, because it explores a larger search space of possible rules.

– Best-first search is a search algorithm that tries to keep track of all refinements and may be seen
as a beam search with an infinite beam size b = ∞. In the best-first search, a list is required
to maintain the refinements constructed previously. Normally, best-first search continuously
chooses the best refinement of the list and inserts all its refinements into the list. It is guaranteed
that this search algorithm can find an optimal solution because the search space of possible rules
is completely exhausted.

After learning a new rule, the examples covered by the rule will be removed from the original data set, if
the rule passes the examination of the rule stop criterion. Otherwise the learned rule will be dropped and
the while-loop will be stopped. In other words, the learning process is finished only when all the positive
examples are covered or the rule stop criterion is met. The rule set that contains a series of rules will be
returned as a result. The learned rule set is able to classify an unknown example by traversing those rules.
As mentioned before, a rule is composed of two parts; the rule header encodes a target class and the rule
body contains a series of conditions. In general, we can say that an example is covered by a rule if it meets
all the conditions of the rule. This example will be then classified as the target class of the relevant rule.

9

2.2 Preprocessing

According to the two approaches mentioned above, we can get a series of rules from a training set. A
training set is a part of the data set that is derived from the real world. However, a collected training set
is not directly suitable for generating rules; it usually suffers from problems such as noise, missing values,
inconsistent data, and so on. Therefore, it is necessary to preprocess the training set to minimize the
influence of these problems.

Nr. Outlook Temperature Humidity Windy Play Golf
1. sunny 85 85 false no
2. rainy ? 85 true no
3. sunny 80 90 ? no
4. overcast 83 86 false yes
5. rainy 70 96 false yes
6. rainy 68 80 false yes
7. overcast 64 65 true yes
8. sunny 72 95 false no
9. sunny 69 70 false yes

Table 2.2.: Examples with Missing Attribute Values

Table 2.2 shows a training set that contains some examples with missing attribute values. The missing
value is usually described with the question mark "?". Because we don’t know the values of those attributes
exactly, it is difficult to use such a training set directly. In [4], some strategies are presented for resolving
this problem.

• Routine Ignore: Ignore Missing Values
The strategy used in this routine is quite simple; the examples with at least one missing attribute
value are deleted from the training set before learning. For example, due to the missing values, the
second and the third examples in the training set should be deleted. However, this routine would
cause a shortage of examples when most of them contain missing values.

• Routine Missing: Missing Value as a Regular One
The second strategy is only suitable for the nominal attribute. In this routine, a missing value is
considered as an additional attribute value and the question mark "?" represents the missing value.
In other words, the number of attribute values is increased by one for each nominal attribute that
contains missing values. For example, in table 2.2, the attribute Windy should have three attribute
values, namely true, false and "?".

• Routine Common: The Most Common Value
In contrast to the two routines mentioned above, this one consults the raw data of the training set.
For the nominal attribute, the frequencies of each attribute value are computed. A missing value of
the nominal attribute is then substituted by the value with the maximal frequency. For example,
in the attribute Windy, the attribute value true appears twice and the attribute false appears six
times. Thus, the missing value in the third example is replaced by the attribute value true. For
the numeric attribute, the entire numerical range is partitioned into a pre-specified number of equal-
length intervals and their frequencies are computed. A missing value of the numerical attribute is
then substituted by the mean value of the interval with the maximum frequency. For example, in the
attribute Temperature, we divide the entire numerical range into five intervals and their frequencies

10

are listed in table 2.3. Because the second interval has the maximum frequency, the missing value in
the second example is replaced by 68,4+72,8

2 = 70, 2.

Interval Frequency
64,0 ∼ 68,4 2
68,4 ∼ 72,8 3
72,8 ∼ 77,2 0
77,2 ∼ 81,6 1
81,6 ∼ 85,0 2

Table 2.3.: Intervals and Frequencies

In addition, the data of a training set are sometimes inconsistent; two or more examples belong to different
classes, although they have the same attribute values. There are two general approaches to handling
inconsistency in the data. The first approach is to randomly keep one of the examples and delete the
others from the training set. This approach is quite simple, but it is possible that the deleted examples
are more informative. Conversely, another approach is extremely costly, because the learning process will
be executed more times for different training sets, in which one of the inconsistent examples remains each
time.

2.3 Postprocessing

In general, the rule learning algorithm learns a rule set which tries to cover all of the positive and none
of the negative examples. The learned rule set therefore works perfectly on the training set and makes no
errors. However, such a rule set cannot be expected to have an absolutely high predictive accuracy on clas-
sifying unseen examples, because the learned rule set is sometimes more specific than the actual searched
one. In other words, some conditions of rules or even some rules of the learned rule set are redundant.
This problem is known as overfitting.

Moreover, in the previous section we mentioned that the training set used in the learning process is
sometimes noisy. Noisy data is a problem for many rule learning algorithms, because it is difficult to
distinguish between errorless and erroneous examples. Due to the noisy data, it is possible that the rule set
attempts to add rules in order to cover negative examples that have erroneously been classified as positive
and add conditions to rules in order to exclude positive examples that have a negative classification [15].
Thus, some rule learning algorithms employ a postprocessing procedure in which the entire rule set can be
further processed after it was learned. In rule learning systems, the process of learning rule sets is called
the learning phase (also called the building phase) and the process of optimizing learned rule sets is called
the postprocessing phase. A simple sequence chart of the preprocessing and the postprocessing phases is
presented in the following figure.

Figure 2.5.: Preprocessing and Postprocessing

11

As an optional component of rule learning algorithms, the postprocessing procedure consists of many
various strategies and methods that can be categorized into the following groups.

• Rule Evaluation
After a rule learning algorithm learns a rule set from the training set, the quality of the rule set
is evaluated first. There are several widely used criteria for this purpose, such as the classification
accuracy on unseen examples, the complexity of a rule set and its rules, the comprehensibility of a
rule set, and so on. Based on these evaluation criteria, the optimized rule set in the postprocessing
procedure will always be compared with the original one.

• Rule Pruning & Filtering
The strategy used in this group aims at pruning redundant conditions from a rule and filtering un-
necessary rules from the rule set. Its basic idea is to test whether the removal of a single condition
or even an entire rule would lead to a decrease in the quality of the rule set.

In rule learning algorithms, the used pruning methods usually employ various pruning heuristics.
Based on the pruning heuristic, the learned rules can be pruned one by one. Each time, a newly
constructed rule set that replaces the original rule with the pruned rule, is compared to the original
rule set. If the quality of the new rule set is no worse than the original one, the relevant condition
will be removed. In addition, if the pruned rule contains no conditions or covers no more positive
examples, it is considered as an unnecessary rule and will be removed from the rule set.

On the other hand, it is assumed that each rule will be removed from the rule set once. The
newly constructed rule set is then compared with the original one. If the quality of the new rule set
is no worse than the original one, the relevant rule is also considered as an unnecessary rule and will
be removed. Thus, unnecessary rules can be filtered out.

• Rule Generation & Replacement
In this group, methods are constructed to generate several new rules and substitute them for the
rules of the learned rule set. Note that the search algorithms and search heuristics used here are
usually different from that in the building phase. The basic idea is to test whether the replacement
of a new rule could lead to an increase in the quality of the rule set. Normally, the generation of new
rules can be summarized in two methods; the first one is to generate a completely new rule from the
given training set while the second one is to construct a similar rule based on the original rule (e.g.
change some conditions of the original rule).

• Rule Integration
The size of a rule set is increased when more rules are added into it. Sometimes we will generate
some rules that cover fewer examples so that all positive examples of a training set can be covered.
Actually, these rules with a lower coverage are not suitable for a rule set, because they are usually
more specific. Moreover, the size of the rule set will be huge if it contains too many these rules. This
could cause the overfitting problem. Compared to the second group, the strategy used here does not
filter rules but tries to integrate them with other rules. Its basic goal is to increase the coverage of
rules and decrease the size of the entire rule set. In order to integrate two or more rules effectively,
the attribute values of the covered examples should be analyzed first.

For example, according to the decision tree in figure 2.3, there are a total of three rules with the

12

Nr. Outlook Temperature Humidity Windy Play Golf
1. sunny 85 85 false no
2. rainy 85 85 true no
3. sunny 80 90 true no
4. overcast 83 86 false yes
5. rainy 70 96 false yes
6. rainy 68 80 false yes
7. overcast 64 65 true yes
8. sunny 72 95 false no
9. sunny 69 70 false yes

Table 2.4.: Covered Examples

Interval Temperature Block
64 ∼ 67 T1
68 ∼ 71 T2
72 ∼ 75 T3
76 ∼ 79 T4
80 ∼ 83 T5
84 ∼ 87 T6

Table 2.5.: Discretization of Numeric Attributes

target class "yes" available. These rules are converted from the decision tree which is constructed on
the training set in table 2.4.

R1 : IF < Outlook = sunny & Humidity < 80 > THEN < Play = yes >

R2 : IF < Outlook = rainy & Windy = false > THEN < Play = yes >

R3 : IF < Outlook = ov ercast > THEN < Play = yes >

The rule set that contains these three rules covers all positive and no negative examples of the train-
ing set. The coverage of each rule is described as follows: The first rule covers one positive example
and the other two cover two positive examples each.

Because the first rule has a lower coverage, we try to integrate this rule with the second one. In
table 2.3, the covered examples of these two rules are marked in gray. By analyzing their attribute
values we find that the values of the attribute Temperature among three examples are very close. In
this case, we can use a method called "discretization of numeric attributes" to discrete the numeric
attribute Temperature. Discretization is performed by dividing the values of a numeric attribute
into a small number of intervals, where each interval is mapped to a discrete nominal symbol [18].
This method is usually used in the preprocessing phase when rule learning algorithms do not allow
processing of numeric attributes. According to the result of the discretization described in table 2.5,
the first two rules can be integrated into one rule R∗ that covers all three examples and the size of
the original rule set is reduced.

R∗ : IF < Temperature = T2 > THEN < Play = yes >

R3 : IF < Outlook = ov ercast > THEN < Play = yes >

13

3 SeCo Platform and the RIPPER Algorithm

3.1 Introduction to SeCo

SeCo is an implementation in the programming language Java that provides a platform for the simulating
and testing of rule learning algorithms. Besides the simulation of an existing algorithm, it is also possible
to develop a new learning algorithm within the platform. However, it needs to be mentioned that the
relevant algorithm must correspond to the separate-and-conquer strategy. The characteristics of such a
strategy are described in the previous chapter. The framework of the SeCo platform, in which the RIPPER
algorithm is to be realized later, is the focus of this section.

3.1.1 Framework of SeCo

The outline of the framework in SeCo is oriented by [15], describing the global structure of a SeCo algorithm.
Figure 3.1 shows the framework of SeCo according to the package hierarchy in Java. The package heuristics
contains the prevalent evaluation criteria that are usually used in the rule learning algorithms, such as
accuracy or correlation. The package models includes the essential models of rules and examples (e.g.
comparator =, >, ≥ or the definition of rule body, rule head or example format). The package evaluations
is in charge of the evaluation of the tested rule learning algorithms and its output format. The package
learners is a larger component that consists of three parts, namely components, core and factory.

Figure 3.1.: Package Hierarchy in SeCo

Based on the separate-and-conquer strategy, the methods for learning single rules in the rule learning
algorithms can be different (e.g. search heuristic, method of refining rules, rule stop criterion, etc.).
Therefore, SeCo provides a series of interfaces that relate to these varieties so as to get its compatibility.
These interfaces are defined in the package core and will be described in section 3.1.3. Moreover, SeCo
provides some components that are implemented based on the predefined interfaces. These components can
be found in the package components. On the one hand, different learning algorithms can be constructed by
combining the appropriate components in an easy manner. On the other hand, one can also implement these
interfaces to construct a new learning algorithm. In other words, the SeCo platform is not only configurable
but also extendable. The construction of an integrated algorithm is achieved by the class SeCoFactory in
the package factory. By parsing an XML configuration file (see section 3.1.5), the necessary information
about the constructed algorithm is gathered to initialize the relevant components. Furthermore, in SeCo,
the data set used in the learning algorithms is derived from an ARFF file [32], which is used in Weka

14

[33] as well. After initializing the learning algorithm and getting a data set, as the start point, the class
AbstractSeCo in the package core is able to learn rules from the data set.

3.1.2 Rules for One Class

For a two-class problem (the examples in the training set have only two classes), we will usually define one
of the classes as the target class and the other one as the non-target class. Then we need to learn a rule
set for the target class. All the examples that are covered by the rule set will be classified as the target
class and all the others as non-target class.

For a multi-class problem (the examples in the training set have many different classes), we must re-
duce the multi-class to binary one. Firstly, we will count the number of examples for each class and sort
these classes in increasing order. In addition, the class that has the most examples is defined as the default
class. Secondly, according to the sorted order of classes, we will learn a series of rule sets one by one. This
means that we will start with the class that has the least examples. This class will be defined as the target
class and all the other classes as the non-target class. Thirdly, a rule set for the target class will be learned
and the covered examples will be removed from the training set. Then the learning process will continue
with the next class in the sorted order likewise. It will be stopped if the rule sets for all the classes (except
the default class) are learned. Finally, the examples that are not covered by any rule sets will be classified
as the default class.

In SeCo, the learning of a rule set for one class is achieved by using the separate-and-conquer strat-
egy. Figure 3.2 shows a global overview of SeCo’s separate-and-conquer algorithm. The whole process
can be divided into two phases: The building phase is responsible for learning an initial rule set and the
learned rule set can be further optimized in the postprocessing phase. As mentioned before, a rule set is
composed of rules. In the building phase, it is possible to generate a series of rules one by one. Each rule
will be generated after two steps. Firstly, in the growing phase, a rule is usually grown from an empty rule
(i.e. the rule has no condition in the rule body) and secondly, it should be pruned in the pruning phase.
In addition, all the examples that are covered by the pruned rule should be removed from the training set.
Then we can start to learn a new rule from the rest of the examples in the training set. This learning pro-
cess will continue until the rule stop criterion (i.e. the implementation of the interface IRuleStopCriterion)
is fulfilled and an initial rule set is constructed as a result. In the postprocessing phase, the learned rule
set will be processed again to improve the performance of the rule set. Moreover, some procedures used
in the building phase might be reused here. However, the concrete implementations of the interfaces that
are relevant for these procedures would be different (e.g. take a different search heuristic or change the
requirement for the rule stop criterion).

3.1.3 Interfaces in SeCo

In SeCo, the interfaces are used to satisfy various requirements for the separate-and-conquer-based algo-
rithms. Figure 3.2 shows the layout, and the responsibility of each interface is explained as follows:

• IRuleInitializer defines the method for generating the initial rule at the beginning of the growing
phase.

• ICandidateselector defines the method for selecting part of the candidate rules for the further pro-
cessing.

• IRuleEvaluator evaluates the learned rule according to certain evaluation heuristics.

• IRuleRefine defines the method for optimizing and improving a rule.

15

Figure 3.2.: Rules for One Class

• IStopCriterion defines the stop criterion for stopping the process of refining a single rule.

• IRuleStopCriterion defines the stop criterion for stopping the process of generating more rules.

• IRuleFilter defines the method for filtering the rules which are not to be further processed.

• IPostProcessor performs postprocessing on the learned rule set.

3.1.4 Default Components

In SeCo, if there are no extra relevant components explicitly declared in the XML file, several default
components will be initialized automatically. In this section, their essential functions will be described.

• TopDownRuleInitializer -> IRuleInitializer
This default rule initializer is able to select an empty rule as the initial rule; an empty rule only
has the target class name in the rule header and has no condition in the rule body and covers all
examples.

• SelectAllCandidatesSelector -> ICandidateselector
The default candidate rule selector is able to take all the candidate rules from the rule list for further
processing.

16

• RuleEvaluator -> IRuleEvaluator
The default rule evaluator is able to evaluate a candidate rule on the given data set. Before calculating
the evaluation value, the essential information will be gathered according to two classes (see the
confusion matrix in figure 2.1).

• NoNegativesCoveredStop -> IStopCriterion
The default condition stop criterion will stop adding conditions to a rule if the rule covers no more
negative examples.

• CoverageRuleStop -> IRuleStopCriterion
If a newly generated rule covers more negative than positive examples, there is no need to generate
more rules, because it is impossible to construct a better one. The default rule stop criterion will
stop generating more rules if the above-mentioned condition is met.

• BeamWidthFilter -> IRuleFilter
The default filter is able to remove all the rules outside the "beam width". In other words, the rule
set can keep a maximum number of "beam width" rules. The value of the beam width is determined
by the parameter "BeamWidth". This parameter is changeable and "1" is set as its default value.

3.1.5 XML Parser

Implemented in SeCo, the components are used to realize various features of separate-and-conquer-based
rule learning algorithms. By combining the relevant components, it is easy to rebuild the original learning
algorithm again. In SeCo, the selection of the components is written in an XML (Extensible Markup
Language) file. Table 3.1 describes the essential elements and attributes that might appear in this file.
More details about the properties of this file can be found in [30] Chapter 4. The SeCoFactory class in
the package factory is able to parse the XML file to get the essential information about the components
as well as their setter methods and properties. In this way, all the involved components and undeclared
default ones will be initialized in advance so as to construct the integrated learning algorithm.

Element Attribute Description
seco the root element, which contains the configuration of a SeCo classifier
secomp a SeCo component

interface
the interface regarding class AbstractSeco, possible values are ruleinitializer,
candidateselector, ruleevaluator, rulerefine, stopcriterion, rulestopcriterion,
rulefilter and postprocessor

class name name of Java class that implements the component

package (optional) the Java package, which indicates the given Java class,
seco.learners.components is accepted as a default value

jobject an arbitrary Java object
class name see secomp
package see secomp

setter the name of the setter method without the prefix ’set’, e.g. for the java method
setHeuristic, the setter name must be ’heuristic’

property define a specific property of an object
name the name of property
value the value of property

Table 3.1.: Elements in SeCo XML Description [30]

17

3.1.6 Data Set Format

Used in the learning algorithms implemented in SeCo, the data set is derived from the ARFF (Attribute-
Relation File Format [32]) file. This is an ASCII text file which is used to describe a list of examples
sharing a set of attributes. Table 3.2 shows the global structure of an ARFF file, which consists of two
sections. The first one is the header information, which describes the name of the data set and a set of
attributes that are used for describing the examples. Besides the name of each attribute, the corresponding
type is declared as well. If the type of attribute is numeric, <attribute type> is easily written as "real" or
"integer" ("real" means that the value of the numeric attribute should be real numbers and "integer" means
integer numbers). However, if the type of attribute is nominal, then <attribute type> must declare its
possible value in a set, e.g. {sunny, overcast, rainy}. Note that the values in the last attribute are taken
as the class names. The second is the body part that lists all the examples one by one. The question mark
in the example means that the value for the relevant attribute is missing. More details about the ARFF
file are described in [32]. In SeCo, the class Instances in the package mode is responsible for parsing such a
file. The indispensable information such as attributes and examples will be deposited in the relevant array
lists.

Section Element Attribute
head @relation <data set name>

@attribute <attribute name> <attribute type>

body @data

<data set>
e.g. sunny,85,85,FALSE,no

rainy,70,?,TRUE,yes
overcast,72,90,?,yes

Table 3.2.: Structure of an ARFF File

3.2 Algorithms

This section consists of three parts. Firstly, the history of REP-based algorithms is discussed, and their
respective advantages described. Secondly, the methods used in the postprocessing phase in RIPPER,
which is a popular rule learning algorithm that successfully optimizes the learned rule set, are analyzed.
Finally, two variants are presented based on the RIPPER algorithm. These variants change the original
methods used in the postprocessing phase.

3.2.1 REP-based Algorithms

As a method for simplifying decision trees, a prototype of Reduced Error Pruning was proposed by J.
Ross Quinlan in [27]. Its basic purpose is to search for the smallest decision tree from the initial tree
with the highest accuracy on a separate test set (i.e. pruning set). Such a test set is used to examine the
misclassification of the dummy tree. The dummy tree is constructed by replacing the internal node in the
initial tree with the best possible leaf node related to the internal one. If it gets an equal number of errors
or fewer on the test set, then the internal node is replaced by the leaf node. By repeatedly executing the
same process on each internal node in the tree, the error rate as well as the size of the decision tree is
continually decreased until no replacement is possible. The similar application of the REP method can
be found in [22] as well. However, in this paper, a restricted type of decision tree named decision list is
used to describe the concepts extracted from the data. Moreover, a top-down greedy approach (i.e. the
prototype of separate-and-conquer strategy) is presented to form a decision list.

18

Year Algorithm Author
1987 REP Decision Tree J. Ross Quinlan
1990 REP Decision Lists Giulia Pagallo and David Haussler
1994 I-REP/ I-REP2 Johannes Fürnkranz and Gerhard Widmer
1995 I-REP∗/ RIPPER William W. Cohen

Table 3.3.: List of REP-based Algorithms

In [6] it is mentioned that the application of REP could be adopted from propositional decision tree learning
to relational concept learning. It generalizes the characteristics of REP algorithm in this way: Firstly, the
training set is divided into two independent sets. The first one, the growing set, is used to learn a rule set
(i.e. the growing phase) while the other one, the pruning set, is used to prune the learned rule set (i.e.
the pruning phase). Secondly, in the growing phase, the generated rule set must fulfil the requirements as
follows:

• Completeness: Each positive example in the growing set should be covered at least once

• Consistency: None of the negative examples should be covered

Thirdly, there are two operators available for pruning a rule set:

• Delete-condition: Deleting a condition from a rule

• Delete-rule: Deleting a rule from a rule set

In general, the process of pruning will continue until the further deletion might decrease the accuracy of
the rule set. During the pruning phase, not only the size of the rule set but also the number of conditions of
each rule will be reduced. Another advantage of REP is that the pruning phase is completely independent
of the growing phase. REP is thus called a post-pruning algorithm. However, the disadvantage of such
an algorithm is obvious. For a smaller data set, the division of the training set might directly lead to a
shortage of examples for learning the initial rules. Moreover, in the growing phase, there is no stop criterion
to restrict the improvement of rules, so the grown rules are sometimes more specific than the searched one.
Hence, in the pruning phase, more resources are needed to prune these superfluous conditions and rules
[7, 14]. Due to the limitations and insufficiencies of REP, there are many different approaches to extend
and improve it. Table 3.3 gives a list of the REP-based algorithms that are sorted by the year of the
development of the algorithm.

I-REP/ I-REP2

In [16] some problems that exist in the original REP algorithm are pointed out and thereafter an improved
algorithm, Incremental Reduced Error Pruning, is proposed as a solution. These problems cover four
fields: efficiency, split of training set, separate-and-conquer strategy and bottom-up hill-climbing. Firstly,
in REP, a rule set will only be pruned after it was learned. The total cost of REP is about Ω(n4) (n is the
number of examples). But the cost of the pruning is outweighing that of the learning by a huge margin.
Secondly, due to the division of the training set, the distribution of examples in the growing and pruning
set is predetermined and cannot be modified. In the case of non-uniform distribution of examples related
to different classes, the behavior of both the learning and pruning algorithm will be influenced directly.
Thirdly, in the separate-and-conquer strategy, the pruning of conditions of a rule will affect all subsequent
rules. The rule is generalized if its conditions are pruned. Thus, this rule will cover more positive and neg-
ative examples. Those additional examples should be removed so that they cannot influence the learning
of subsequent rules. Finally, REP applies a greedy bottom-up hill-climbing strategy for pruning the rule
set. However, in noisy domains it can be excepted that the generated rule set is much too specific, because
it should fulfil the requirements of completeness and consistency. Thus, REP has to do a lot of pruning

19

and this specific-to-general search can be expected to be slow and imprecise for noisy data.

Solving the above-mentioned problems is the goal of the I-REP algorithm. In contrast to REP, the pruning
method used in I-REP does not aim at the entire rule set but at the individual rule. The main charac-
teristic of this algorithm is the integration of the pre-pruning and post-pruning in the learning system.
Post-pruning means that each rule will be pruned right after it was learned while pre-pruning will be
realized by defining a rule stop criterion. The basic idea of the rule stop criterion is to stop the generation
of rules even though some positive examples may still not be covered. The global process of I-REP can be
summarized as follows:

1. Splitting the training set into growing set and pruning set

2. Learning a rule on the growing set

3. Pruning the learned rule on the pruning set

4. Testing the rule according to the rule stop criterion
• True: Adding the rule to the rule set and update the training set by removing the positive and

negative examples that are covered by the rule
• False: It is not necessary to generate more rules, the process will be stopped

5. Repeat steps 1-4 until all positive examples in the growing set are covered by the current rule set

The pruning process in the 3rd step above is the same as the delete-condition operator defined in REP.
It will continue until the further deletion would decrease the accuracy of the current rule. The search
heuristic accuracy is defined in equation 3.1. In the 4th step, the accuracy of an empty rule is set as a
threshold and is calculated as N

P+N . If the accuracy of the pruned rule is less than that of the empty rule,
the pruned rule cannot be added to the rule set. Therefore, the delete-rule operator in REP is not needed
in I-REP any more because the rule stop criterion prevents those low accuracy rules in advance. I-REP has
a variation named I-REP2 which keeps the same structure. However, I-REP2 takes the precision/purity
(see equation 3.3) as the search heuristic in the pruning process. The default threshold defined in I-REP2

is a purity value of 0.5, which means that the number of positive examples covered by the rule must be
more than that of negative examples.

Accuracy = tp + N − fp

P+N
(3.1)

∼= tp + N − fp
∼= tp − fp (3.2)

Precision/Purity = tp

tp + fp
(3.3)

According to [16], the predicted total cost (running time) of I-REP is about O(n log2 n) (n is the number of
examples), which is obviously decreased in comparison to REP. Due to the removal of covered examples by
the qualified pruned rule, the problem of generating redundant rules can be avoided as well. Furthermore,
instead of deleting the conditions and rules from the complicated rule set in REP, I-REP is a top-down
hill-climbing algorithm that recursively learns and adds new rules to the rule set. Therefore, the pruning
of each individual rule is much simpler. For the problem of "split of training set" I-REP does not resolve it
completely, but reduces its scope from learning and pruning of the entire rule set to each individual rule.

I-REP∗

The efficiency of the rule learning algorithm I-REP is investigated well in [8]. It indicates that the runtime
of I-REP is indeed fast, so it can deal with large data sets more efficiently. However, an existing problem

20

of the learned rule set is discovered by comparing it with another rule learning algorithm C4.5 [28]. In
contrast to I-REP, C4.5 always needs much more time to generate a rule set, but the error rate of the
learned rule set is often lower. Therefore, the construction of a new rule learning algorithm that combines
the advantages of lower error rate and efficient running time is an interesting topic in [8]. Based on the
original I-REP algorithm, three different modifications are presented. The first two modifications only
improve the generalization performance while the third one reconstructs I-REP. In this section, we will
only focus on the I-REP∗ algorithm (using the first two modifications) and the RIPPER algorithm (using
all the modifications) will be described in section 3.2.2 in detail.

• A new pruning heuristic for guiding the pruning phase

• A new rule stop criterion

• The technique to optimize the learned rule set

Used in I-REP, accuracy is the original search heuristic in the pruning phase. It calculates the percentage
of correctly classified examples. Equation 3.1 shows that the denominator in this heuristic is the sum of
positive and negative examples. This value is equivalent to the number of examples in the pruning set and
it is a constant. Therefore, the formula of this heuristic can be simplified just like in equation 3.2. Although
the calculation of this formula is quite simple, there are some deficiencies. For example, it is assumed that
a rule R1 covers 100 positive examples and 1 negative example and the pruned rule R2 based on R1 covers
200 positive examples and 100 negative examples. Which one is better? According to equation 3.2, the
pruned rule R2 is preferred. Actually, the original rule R1 is much more precise as well as meaningful.
Therefore, an appropriate denominator is needed in the formula to avoid it. The new pruning heuristic
is defined in equation 3.4 and integrates the two heuristics accuracy and precision. The goal of this new
heuristic is not to calculate the percentage of correctly classified examples of the entire examples but to
calculate the percentage of correctly classified examples of the covered examples.

new heuristic = tp − fp

tp + fp
(3.4)

However, in [11], it is argued that the functionality of this new heuristic is similar to the default pruning
heuristic precision used in I-REP2. It offers proof described in formula 3.5. Moreover, the experiment
described in [8] has already confirmed that the pruning heuristic accuracy in I-REP performs better than
the heuristic precision in I-REP2. In order to further verify the efficiency of these heuristics, they will be
tested in our implementations in SeCo later.

tp − fp

tp + fp
= 2tp − tp − fp

tp + fp
= 2 ∗ (tp

tp + fp
) − 1 ∝ tp

tp + fp
(3.5)

The original rule stop criterion in I-REP is relatively simple. For each pruned rule, if the accuracy of this
rule is greater than that of its relevant empty rule, it will be added to the rule set. However, this criterion
depends completely on the class distribution in the pruning set. If the number of examples related to the
target class is less than that of examples related to other classes, this criterion has no significance. Another
rule stop criterion used in I-REP2 is much better. However, it often stops too soon given moderate-sized
training sets, which is especially true when learning a rule set that contains many low-coverage rules [8].
Therefore, William W. Cohen proposes a new rule stop criterion which includes two aspects to solve this
problem:

• The total description length of the rule set and the examples is d bits larger than the smallest
description length of the previous rule set

• No more positive examples

21

In I-REP∗, the new generated rule (after the growing and pruning phase) will be added into the rule set
directly. Then the total description length of the new rule set and the examples will be computed. The
term description length means the number of bits needed to encode both the rule set and the examples
from which it was learned [23]. I-REP∗ will stop adding rules when this description length is more than
d bits larger than the smallest description length obtained previously. Moreover, due to the increasing of
the description length, the last added rule will be deleted from the rule set as well. Conversely, if this
description length is smaller, I-REP∗ will continue to learn more rules and the old smallest description
length will be replaced with the new one. Secondly, the learning process will also be stopped if there are
no more remaining positive examples in the training set.

3.2.2 RIPPER Algorithm

RIPPER is a standard rule learning algorithm that contains both the building and postprocessing phase. In
the building phase, an initial rule set for one class is learned and iteratively optimized in the postprocessing
phase. It is notable that the postprocessing phase in RIPPER is only suitable for the two-class problem
(target class or non-target class). In other words, for the multi-class training set, RIPPER will always start
a new postprocessing process right after a rule set for one class is constructed. As mentioned before, as
the initial prototype of REP-based algorithms, REP is only a post-pruning learning algorithm that always
starts the pruning phase after the entire rule set has been learned. What is the relation between them
and what is the advantage of the postprocessing phase in RIPPER? In this section, the structures of these
REP-based algorithms will be analyzed, and then the methods used in the postprocessing in RIPPER will
be presented and discussed.

Figure 3.3.: Structure of REP, I-REP and RIPPERk

In figure 3.3, the global structures of the rule learning algorithms REP, I-REP and RIPPER are described.
I-REP2 and I-REP∗, two variations based on I-REP, have the same structure, so they are placed in one
group. The process of learning a rule set by REP can be easily summarized in three steps: The first step
is to split the training set into the growing set and the pruning set, then an initial rule set is learned from
the growing set in the second step and will be pruned on the pruning set at the last step. I-REP changes

22

the original structure where each rule is pruned right after it is learned. The learning process in I-REP is
executed recursively until all of the positive examples in the growing set are covered or the predefined rule
stop criterion is met. In this way, the complicated task of pruning the entire rule set is dispersed. I-REP*
only redefines the pruning heuristic and rule stop criterion in I-REP to get a rule set that has a lower error
rate. As a new rule learning algorithm, RIPPER is developed based on the original rule set constructed by
I-REP∗. It introduces the concept of postprocessing that optimizes the learned rule set again. However, the
adopted optimization technique in RIPPER does not attempt to optimize each rule in its rule set directly,
but to search for some possible variants based on the original rule, and selects a variant among them as
the optimized rule. In the RIPPERk algorithm, this postprocessing phase can be executed iteratively to
optimize the rule set for k times. The initial purpose of this is to further improve the quality of the rule
set. It does achieve this goal, as confirmed in [8]. But is it always possible to get a better rule set, if the
rule set is optimized more times? With the help of our implementations , the convergence properties of
the RIPPER algorithm for the increasing of the number of optimization iterations will be analyzed and
discussed later.

Figure 3.4.: RIPPER / RIPPERk

Figure 3.4 points out some relationships between the building and postprocessing phase in the RIPPER
algorithm with the red lines. The structure of the learning phase is the same as that in the I-REP
algorithm described in the last section. The postprocessing phase can be seen as an integrated component
that consists of the following steps:

1. Getting an old rule from the learned rule set

2. Generating variants based on the old rule

3. Choosing a rule among the variants and the old rule according to the selection criterion

4. Repeating steps 1-3 until all of the rules in the rule set are optimized

5. Learning more rules to cover the remaining positive examples

6. Deleting some rules to reduce total description length of the entire rule set

For the first step, it is simple to take each rule from the rule set for optimization. The optimization of rules
usually depends on the order they were learned. Assuming that there is a rule set RS = {R1, R2,...Rk},
the first rule R1 should be taken at first and two variants R

′
1 (R1_Replacement or R1_Rev ision) will be

constructed in the second step. Figure 3.4 shows that the process of generating variants is achieved by

23

executing similar steps defined in the building phase. However, the methods used for growing and pruning
a variant is a bit different. Moreover, the learned variant will not be checked by the rule stop criterion.
These differences are listed in table 3.4.

Art Name Growing Phase Pruning Phase

Initial Rule Old Rule Ri
growing a new rule
from an empty rule

the pruning heuristic is guided
to minimize the error of the single rule

Variant Replacement
Ri_Replacement

see Old Rule the pruning heuristic is guided
to minimize the error of the entire rule set

Variant Revision
Ri_Rev ision

further growing
the given old Rule Ri

see Replacement

Table 3.4.: Variants and Old Rule

For the third step, the variant Ri_Replacement, Ri_Rev ision and the old rule Ri are three candidate rules
and one of them will be selected as the optimized rule. If the old rule outperforms the other two vari-
ants, it will be selected and the original rule set will remain unchanged. However, if one of the other two
variants is better, it will be selected and replace the original old rule in the rule set. Due to the different
coverage of the selected variant compared to the original rule, the residual examples that are available for
the generating of rules will be changed. Thus, the old coverage of the rules in the original rule set may
not be completely correct. As a candidate of the optimized rule, the variant Replacement grown from an
empty rule is able to generate a completely new rule. This is a way to find a new best rule. In contrast to
Replacement, Revision is grown by greedily adding conditions to the original old rule. In this way, in the
growing phase, Revision should usually be more specific than the original rule. By pruning the Revision
with a new pruning heuristic, there is also a chance of finding a better rule.

The initial rule set was learned in the building phase. The utilization of the known information about
the rule set is an obvious advantage for RIPPER. In the postprocessing phase, the pruning heuristic de-
fined is guided to minimize the error rate of the entire rule set. The rule set means that the old rule in the
original rule set is replaced with the pruned variant, such as {R

′
1, R2,...Rk}. The evaluation of this rule

set will be calculated according to equation 3.6 and be used as a reference value for the variant. Here tpi

means the number of positive examples that are covered by each rule in the rule set, and tn is the total
number of negative examples that are not covered by this rule set. During the pruning phase, the existing
conditions will be deleted successively from the variant to maximizes the evaluation value.

v (RuleSet) =
∑k

i=1{tpi} + tn

P + N
(3.6)

In RIPPER, the selection of the best rule is achieved by means of the heuristic minimum description
length (MDL) among the variants Replacement, Revision and the old rule. As an important concept of
information theory and learning theory, MDL was introduced in [29, 31]. Equation 3.7 shows a standard
formula, where I(H) is the amount of information needed to transmit the hypothesis H, and I(E|H)
means the amount of information needed to transmit a set of examples E from which this hypothesis H
was derived. In other words, in an MDL calculation, each possible rule set derived from a training set
can be characterized by its description length (i.e. the number of bits needed to encode both the rule set
and the training set where it was learned). However, in fact, the former part is usually used to estimate
the complexity of a rule set, but the latter one is able to measure the degree to which the rule set fails
to account for the training set [23]. Therefore, the meaning of the MDL heuristic can be summarized in
finding a tradeoff between the complexity and the accuracy of the rule set.

MDL(H) = I(H) + I(E|H) (3.7)

24

In an MDL calculation, the rule sets used are some temporal rule sets, where the original rule is replaced
with the variants (Replacement, Revision) respectively. By getting the MDL value on these temporal rule
sets, the rule which constructs the temporal rule set with the smallest MDL will be considered the best
one and be selected as the final optimized rule. Then the loop will return to the first step to optimize the
second rule R2 likewise. This process will continue until all of the rules {R1, R2,...Rk} in the rule set RS
have been optimized once. In this way, a new rule set named RS′ is constructed.

After optimizing all the rules in the rule set RS, some positive examples may not be covered by the
new rule set RS′ any more. Therefore, it is necessary to generate some new rules to cover them. In
RIPPER, the methods for generating rules in the algorithm I-REP* will be used again. These new learned
rules will be added to the rule set RS′ successively. In this way, the size of the rule set RS′ is increased.
In RIPPER, another technique is used to limit the size of the learned rule set. For each rule Ri in the rule
set RS′, if the rule set without the rule Ri has a smaller description length than the original one, the rule
Ri will be deleted. In other words, the RIPPER algorithm uses this approach to ensure that the final rule
set always has the minimal total description length. Thus, there can be some positive examples that are
not covered by the final rule set any more.

3.2.3 Variant Abridgment

In RIPPER, two variants Replacement and Revision are constructed to be compared with the original old
rule. In this section, another variant named Abridgment is presented. This variant is generated by pruning
the original old rule with a new pruning method.

R : Class = A : C_1, C_2, C_3, C_4

As mentioned before, a rule is composed of a series of conditions. In the postprocessing phase in RIPPER,
a rule is always pruned by deleting the existing conditions according to their order in the rule. Normally,
the pruning phase will be stopped if a further deletion will decrease the quality of the rule. For example,
it is assumed that there is a rule R available. This rule has four conditions (i.e. C_1, C_2, C_3, C_4) in
the rule body.

Replacement / Rev ision

R1 : Class = A : C_1, C_2, C_3 (after 1. Iteration)
R2 : Class = A : C_1, C_2 (after 2. Iteration)
R3 : Class = A : C_1 (after 3. Iteration)

In the first iteration, C_4 will be deleted from the original rule R and the quality of the newly constructed
rule R1 will be evaluated based on the predefined pruning heuristic. If the rule R1 outperforms the original
one, the pruning method will continue to prune the other conditions likewise. However, by using this
pruning method, some other candidate rules cannot be constructed. For example, it is impossible to get
a rule R∗ just like [Class = A : C_1, C_2, C_4]. It is possible that the rule R∗ outperforms the other
rules. In order to enlarge the search space in the pruning phase, a new pruning method is presented in this
thesis. The basic idea of this pruning method is to prune the conditions of a rule regardless of their order
in the rule. In other words, we can delete any conditions we want.

The rule learning algorithm RIPPER has two phases, namely the building phase and the postprocess-
ing phase. In the building phase, an initial rule set was learned and will be optimized in the postprocessing
phase. This new pruning method will be firstly used to prune the rules of the initial rule set, where each

25

pruned rule is called an "Abridgment". The process of the pruning method can be summarized as follows:

Assume that the first rule we take from the initial rule set is the rule R. Firstly, we will check the
number of conditions that this rule has. Secondly, we can delete one of them in turn to construct some
temporal rules. Because the rule R has four conditions, we can generate four temporal rules after the first
iteration:

Abridgment

R1′ : Class = A : C_2, C_3, C_4
R2′ : Class = A : C_1, C_3, C_4
R3′ : Class = A : C_1, C_2, C_4
R4′ : Class = A : C_1, C_2, C_3 (after 1. Iteration)

Then we evaluate these temporal rules based on the measure "Error Rate" defined in the equation below:

Error Rate = fp + fn

total
(3.8)

where fp means the number of negative examples covered by the rule and fn is the number of positive
examples that are not covered by the rule. total means the total number of examples in the training set.
We compare the error rate of these temporal rules with that of the original rule. If a certain temporal rule
has an error rate not higher than the original one and it is also the lowest value among these temporal
rules, we take this temporal rule as the new candidate rule and try to delete the other conditions from it
in the same way. Even if the temporal rule has the same error rate as that of the original one, we prefer
to take the smaller one. And if there is no temporal rule meeting the above-mentioned conditions, we just
stop the search. This action could be seen as a straightforward greedy search, but there is no guarantee
that minimizing the error rate at each step can lead to a global minimum. Recalling the rule R, we simply
name its conditions {1, 2, 3, 4}. Based on two different pruning methods, figure 3.5 shows the search
spaces of possible candidate rules separately.

Figure 3.5.: Pruning Methods

The search space of the new pruning method is a tree structure that is obviously larger than that of the
old pruning method. However, in the new pruning method, only the candidate rule with the lowest error
rate will be selected to be further processed at each iteration. This means that some subtrees will not be
routed (marked in gray). In order to try all the candidate rules in the tree, we can complete an exhaustive
search when the number of conditions of the original rule is small.

26

3.2.4 Simplified Selection Criterion

In RIPPER, after we generate the variants based on the original rule, we always select one of them that
can minimize the description length of the entire rule set and the examples. The MDL used here is a
heuristic that is aimed at finding a trade-off between the complexity and the accuracy of a hypothesis [17].
In [8] it is confirmed that the RIPPER algorithm (with postprocessing phase) outperforms the I-REP*
algorithm (no postprocessing phase). In other words, the optimized rules in the postprocessing phase in
RIPPER should play a positive role. However, the calculation of the MDL is complicated so it increases the
computational complexity of the whole program. Is it possible to use a simpler heuristic to get a similar
result? In our implementation, we decide to try other heuristics instead of the predefined MDL in the
selection criterion. In contrast to MDL, accuracy is a popular heuristic that is used in many rule learning
algorithms. Moreover, it can often lead to a good result, even though it is easy to calculate. Therefore,
besides the MDL heuristic, we will evaluate the variants according to the accuracy heuristic defined in the
selection criterion as well as selecting the one that has the maximal value.

27

4 Implementation in SeCo

4.1 XML File

Both the RIPPERk algorithm and the two variants mentioned in the previous chapter are implemented
in the SeCo platform. Note that the implementation of the original RIPPER in SeCo is simply called
SeCoRIP. As described in section 3.1.5, the SeCo platform is configurable through an XML file, which
contains all the essential information. By changing the class name and correlative properties in the file,
many different rule learning algorithms can be constructed. In this section, we will explain the XML file
that constructs our implementation SeCoRIPk. For example, the following figure shows the XML file of
the learning algorithm SeCoRIP2.

<seco>
<property name="growingSetSize" value="3"/>
<property name="minNo" value="2"/>
<property name="seed" value="1"/>

<secomp interface="ruleevaluator" classname="RuleEvaluator" package="seco.learners.
components">
<jobject package="seco.heuristics" classname="FoilGain" setter="heuristic"/>

</secomp>

<secomp interface="rulerefiner" classname="TopDownRefiner" package="seco.learners.
topdown">
<property name="nominal.cmpmode" value="equal"/>

</secomp>

<secomp interface="rulestopcriterion" classname="MDLStoppingCriterion"/>

<secomp interface="rulefilter" classname="BeamWidthFilter">
<property name="beamwidth" value="1"/>

</secomp>

<secomp interface="postprocessor" classname="PostProcessorRipper">
<property name="optimizations" value="2"/>
<property name="abrigment" value="0"/>
<property name="selection" value="MDL"/>

</secomp>
</seco>

Algorithm 4.1: XML for SeCoRIP2

Interface

• RuleEvaluator -> IRuleEvaluator
The class RuleEvaluator is a default component that is provided by SeCo. However, in the growing

28

phase, the RIPPER algorithm uses the heuristic foil’s information gain to grow a new rule. Thus,
we replace the default heuristic m-estimate with the new one. The heuristic foil’s information gain
is implemented in class seco.heuerstic.FoliGain.

• TopDownRefiner -> IRuleRefiner
In class TopDownRefiner, the implementation of the interface IRuleRefiner is rewritten. Before we
refine the given rule we prepare all the possible conditions that could appear in this rule. We then
construct the refinements by adding each possible condition one by one.

• MDLStoppingCriterion -> IRuleStopCriterion
The class MDLStoppingCriterion defines a new rule stop criterion in which we will continue learning
rules for the target class until the rule stop criterion prevents it. In this class, the description
length of the newly constructed rule set will be compared to the smallest description length obtained
previously. The detail of the implementation of this class can be found in section 4.2.5.

• PostProcessorRipper -> IPostProcessor
The class PostProcessorRipper is implemented according to the postprocessing phase in RIPPER.
Normally, we prepare three variants (Replacement, Revision and Abridgment) for each of the rules
in the initial rule set. Then we select one of them (including the old rule) based on different selection
criteria.

Configurable Properties

• GrowingSetSize g ∈ N+. This parameter has two effects:

1. g = 1: Generate a new rule without the pruning phase, i.e. grow a new rule by using the whole
training set

2. g ̸= 1: g means the number of subsets splitting the training set into a growing and a pruning
set, then a new rule is grown on the growing set and is pruned on the pruning set

For simulating the RIPPERk algorithm, the pruning phase is needed, so "g=3" is set as the default
value in the XML file. The distribution rate of the training set is defined in subsection 4.2.2

• MinNo minNo ∈ N+.
The minimum number of examples a rule has to cover, default value is 2.

• Seed seed ∈ Z.
The seed to perform randomization for stratifying the training set, default value is 1.

• Optimizations optimizations ∈ N.
The number of optimization iterations in the postprocessing phase, default value is 2. If the value of
optimizations is 0, the learned rule set constructed in the building phase will not be optimized.

• Abridgment abridgment ∈ {0, 1}.
In the postprocessing phase, besides Replacement and Revision a new variant Abridgment will be
constructed, if the value of abridgment is 1. Default value is 0.

• Selection selection ∈ {Heurstics}.
Based on a selection criterion, one of the variants will be selected in the postprocessing phase. The
evaluation heuristic defined in the selection criterion is used to evaluate these variants. The parameter
selection indicates which heuristic is used. In SeCo, each heuristic is separately implemented in the
package seco.heuristics. The possible values of selection refer to the class names of these heuristics
(e.g. Accuracy, Precision, Laplace and so on).

29

4.2 Generate an Initial Rule Set

The separate-and-conquer strategy is well described in [15] as follows: Learn a rule that covers a part of
the given training examples, remove the covered examples from the the training set (the separate part) and
recursively learn another rule that covers some of the remaining examples (the conquer part) until no (pos-
itive) examples remain. Algorithm 4.2 shows the pseudocode of the procedure SeparateAndConquer, which
is implemented based on the above-mentioned separate-and-conquer strategy in the class AbstractSeCo.
This procedure can generate a rule set for a given target class. For a multi-class problem (i.e. with many
different classes), it is necessary to determine the order of processing classes first. In general, we will start
with the class with the least number of examples to the class with the most.

procedure SeparateAndConquer(Data) {
Theory = ∅
newData = Data

the building phase
while (Positive(newData) ̸= ∅)
{

if (GrowingSetSize ̸= 1)
{

newData = Stratify(newData, GrowingSetSize, Seed)
SplitData(GrowingSetSize, newData, GrowData, PruneData)
Rule = FindBestRule(GrowData)
Rule = PruneRule(PruneData, Rule)

}
else

Rule = FindBestRule(newData)
if CheckForRuleStop(Theory, Rule, newData)

exit while
newData = newData \ Covered(Rule, newData)
Theory = Theory ∪ Rule

}

the postprocessing phase
Theory = PostProcessTheory(Theory, Data)

remove the covered examples
Data = Data \ Covered(Theory, Data)

return the rule set for one class
return (Theory)

}

Algorithm 4.2: SeparateAndConquer

In the procedure SeparateAndConquer, the parameter Data means the given training set. The whole pro-
cedure can be divided into two phases, namely the building and the postprocessing phase. Because it
is necessary to use the original training set in the postprocessing phase again, we set a new parameter
newData that has the same examples as Data. Starting with an empty rule set (i.e. Theory in algorithm
4.2), new rules are generated and added to the rule set until all the positive examples are covered. In our
implementation, a parameter GrowingSetSize is used to decide if a rule will be pruned after it is grown. If
not, in the procedure FindBestRule, the whole training set can be used to grow a new rule directly. Oth-

30

erwise, the training set should be divided into two subsets in advance. The growing set (i.e. GrowData) is
used to grow a rule and the pruning set (i.e. PruneData) is used to prune the learned rule. Moreover, in
the procedure Stratify, the training set should be stratified before it is divided. The reason and methods
for stratifying a training set will be explained in section 4.2.1. The pruning of a rule is achieved by running
the procedure PruneRule. After a new rule is generated, it will be examined in the procedure CheckFor-
RuleStop. Based on a predefined rule stop criterion, this procedure is used to determine whether it is useful
to generate more rules or not. If the return value of CheckForRuleStop is true, the new learned rule will
be dropped and the learning process will be stopped. If the return value of CheckForRuleStop is false, the
new learned rule will be added to the rule set and the procedure will continue to generate more rules from
the remaining examples. The implementation of the procedure CheckForRuleStop is defined in section 4.2.5.

If all the positive examples are covered or the rule stop criterion is met, the building phase is then finished
and the initial rule set will be passed to the postprocessing phase. In the procedure PostProcessTheory,
the learned rule set will be further optimized. The implementation of the procedure PostProcessTheory is
described in section 4.3. After optimizing the rule set in the postprocessing phase, all the examples covered
by the rule set should be removed. Finally, the generation of a rule set for one class is then finished and
the current rule set will be returned.

4.2.1 Stratified Data

As mentioned in section 3.1.6, a training set will be collected by parsing an ARFF [32] file. In the training
set, the order of the examples is kept the same as that in the original file. Moreover, in RIPPER, a rule
will be generated in two phases, namely the growing and pruning phases. Thus, it is necessary to divide
the training set into two subsets in advance. But if we divide the training set directly, it is possible that
the distribution of classes in each subset is not reasonable, for example the growing set containing all the
examples for class X and the pruning set only the examples for class Y. It is meaningless to prune rules
on such a pruning set, because no examples in the pruning set will be covered. In order to avoid such
a distribution, it is recommended that the training set is preprocessed. In the RIPPER algorithm, the
training set will be stratified before the division. This process can be achieved by running the procedure
Stratify implemented in class RuleStats.

Data = Stratify(Data, GrowingSetSize, Seed)

The entire process is summarized in the following four steps:

1. Generating k bags {bag0, bag1, ...bagk}, each bag only contains the examples with regard to a certain
class (k means the total number of classes in the training set), and sorting these bags in increasing
order of the number of examples

2. Randomizing the examples in each bag (Seed is a parameter for the random function)

3. Generating g subsets {subset0, subset1, ...subsetg} successively by taking a reasonable number of
examples from each bag (the order of the bags is sorted previously and GrowingSetSize g means the
number of subsets to split the training set)

4. Constructing the new training set by combining these subsets

In order to generate a reasonable subset and to avoid taking the same example for different subsets, we
set up an initial offset for each subset (offset(subseti) = i) in the 3rd step above. Starting with taking
examples from the bag0, which has the fewest examples, we only take the example whose sequence number
in the bag is equal to the value of (offset+1), and update the offset by (offset = offset + g). Then we try to
take the next example in this bag and handle the offset in the same way until the value of the offset is not

31

less than the number of examples in the bag (offset ≥ the number of examples in bag). In this case, we just
stop taking examples from bag0 and update the offset by (offset = offset - the number of examples in bag0).
After that, we try to get examples from the next bag (bag1). After all the bags are explored, the generation
of the first subset is done. Then next subsets are generated in the same way.

age spectacle-prescrip astigmatism tear-prod-rate contact-lenses
young myope no reduced none
young myope no normal soft
young hypermetrope yes reduced none
young hypermetrope yes normal hard

pre-presbyopic myope no normal soft
pre-presbyopic myope yes reduced none
pre-presbyopic myope yes normal hard
pre-presbyopic hypermetrope no reduced none
pre-presbyopic hypermetrope no normal soft

presbyopic myope yes normal hard
presbyopic hypermetrope no reduced none
presbyopic hypermetrope no normal soft

Table 4.1.: Original Training Set

age spectacle-prescrip astigmatism tear-prod-rate contact-lenses
presbyopic myope yes normal hard

young hypermetrope yes normal hard
pre-presbyopic myope yes normal hard

age spectacle-prescrip astigmatism tear-prod-rate contact-lenses
young myope no normal soft

pre-presbyopic myope no normal soft
pre-presbyopic hypermetrope no normal soft

presbyopic hypermetrope no normal soft
age spectacle-prescrip astigmatism tear-prod-rate contact-lenses

pre-presbyopic hypermetrope no reduced none
young hypermetrope yes reduced none

pre-presbyopic myope yes reduced none
presbyopic hypermetrope no reduced none

young myope no reduced none

Table 4.2.: Randomized Bags

An example is given and the original training set is defined in Table 4.1. It contains 12 examples that share
3 different class values. According to the 1st and 2nd step described above, we generate three bags and
randomize each of them. Table 4.2 shows the results of three randomized bags, namely class(bag0)=hard,
class(bag1)=soft and class(bag2)=none. Assuming that the value of "g" is 3, the training set should be
divided into three subsets. Here, we start with the subset0 and the initial offset is 0. We take the example
at the first position from bag0 and update the value of the offset to 0+3=3. We find that the current
offset is greater than the number of examples in bag0 so we update the offset to 3-3=0 and start to get
the examples from bag1. Similarly we take the example at the first position from bag1 and now the offset
is 3 again, but the number of examples in bag1 is 4, so we can take the example at the fourth position
in this bag again and now the offset is updated to 3+3=6. Again, we stop the bag1 and aim at the bag2

32

by updating the offset to 6-4=2. This time we take the example at the third position in bag2 and update
the offset to 2+3=5, which is greater than the number of examples in bag2, so the generation of subset0
is done and it has 4 examples. We use the same method to get the subset1 and subset2 and to combine
them to construct a new training set described in Table 4.3.

age spectacle-prescrip astigmatism tear-prod-rate contact-lenses
presbyopic myope yes normal hard

young myope no normal soft
presbyopic hypermetrope no normal soft

pre-presbyopic myope yes reduced none
age spectacle-prescrip astigmatism tear-prod-rate contact-lenses

young hypermetrope yes normal hard
pre-presbyopic myope no normal soft
pre-presbyopic hypermetrope no reduced none

presbyopic hypermetrope no reduced none
age spectacle-prescrip astigmatism tear-prod-rate contact-lenses

pre-presbyopic myope yes normal hard
pre-presbyopic hypermetrope no normal soft

young hypermetrope yes reduced none
young myope no reduced none

Table 4.3.: Stratified Training Set

4.2.2 Growing Set and Pruning Set

In class SplittedInstances, we implemented the procedure SplitInstances, which is used to split the stratified
training set into a growing set and a pruning set.

SplitData(GrowingSetSize, newData, GrowData, PruneData)

In this procedure, a parameter growingSetSize "g" is needed to calculate the distribution rate growPercent
for the growing set:

growPercent = g − 1
g

g ≥ 2

According to the formula above, g−1
g percent of the whole training set is used for the growing set and the

rest 1
g percent of the training set is used for the pruning set. For example, if the value of "g" is 3, we will

divide the stratified training set in table 4.3 as follows: The first 8 examples represent the growing set and
the pruning set takes the remaining 4 examples.

4.2.3 Growing a Rule

The original procedure FindBestRule supported by SeCo is implemented in class AbstractSeCo. The es-
sential task is to grow a new rule by greedily adding conditions to an empty rule. However, the variant
Revision in RIPPER is grown by adding conditions to the original rule directly. Therefore, the framework
of the original procedure is extended by adding an IF-ELSE statement (see Algorithm 4.3). In the case of
the given parameter Rule not being empty, this rule is set as the initial rule. Otherwise, the initial rule (only
an empty rule with its class name) is generated by executing the procedure InitializeRule implemented in

33

class TopDownRuleInitializer.

In RIPPER, the foil’s information gain (the heuristic is firstly used by the rule learning algorithm FOIL
[24]) is defined as an evaluation heuristic to evaluate the quality of rules that are learned in the growing
phase. This heuristic is used to calculate how much profit can be gained, if a rule is refined. In our
implementation, this heuristic is implemented in class FoilGain. By executing the procedure EvaluateRule,
this heuristic will be firstly used to evaluate the initial rule. Then the initial rule is set to the current
BestRule and is added to the RuleList. In this procedure, the task of the RuleList is to keep those candi-
date rules that will be further processed. Moreover, all the rules are always sorted in decreasing order of
evaluation value. Unless the RuleList is empty, we will successively take part of candidate rules from it and

procedure FindBestRule(Data, Rule) {
if Rule = ∅

InitRule = InitializeRule(Data)
else

InitRule = Rule
InitVal = EvaluateRule(InitRule)
BestRule = <InitRule, InitVal>
RuleList = {BestRule}
while RuleList ̸= ∅
{

Candidates = SelectCandidates(RuleList, Data)
RuleList = RuleList \ Candidates
for Candidate ∈ Candidates
{

Refinements = RefineRule(Candidate, Data)
for Refinement ∈ Refinements
{

CurrVal = EvaluateRule(Refinement, Data)
unless CheckForStop(Refinement, CurrVal, Data)
{

RuleList = RuleList ∪ Refinement
}
if Refinement > BestRule

BestRule = Refinement
}

}
RuleList = FilterRules(RuleList, Data)

}
return (BestRule)

}

Algorithm 4.3: FindBestRule

then refine each of them by executing the procedure RefineRule implemented in class TopDownRefiner. In
each refining iteration, only one condition will be added to the original candidate rule. The search for an
appropriate condition can be summarized as follows: First, all the attributes that do not appear in this
candidate rule will be searched. Note that the nominal attribute can be used once only (e.g. the rule in
(1) is not allowed, because the nominal attribute X appears twice), while the numeric attributes Y with
different values are allowed to join in the same rule, such as the rule in (2).

• Class = A : X = Sunny, X = Overcast X is a nominal attribute (1)

• Class = A : Y > 0, Y < 90 Y is a numeric attribute (2)

34

If the unused attribute is nominal, a new condition can be easily constructed by adding a possible nominal
value to this nominal attribute. Then, this condition will be added to the candidate rule for constructing
a new refinement. For the numeric attribute, it is more complicated to construct a new condition. Firstly,
all the examples should be sorted in increasing order of the value of certain numeric attribute to generate
a temporary example list. Secondly, the examples in this example list will be checked one by one. In two
adjacent examples, if the class of one example is the target class and the other is not, a critical point will
be set between them. It is calculated by averaging the values of the relevant numeric attribute. According
to this critical point, two numeric conditions can be generated at the same time.

Assume that we have a candidate rule in equation 4.1 and we want to generate its possible refinements.
The examples in table 4.4 are taken from the data set weather.arff.

play = yes : Outlook = rainy (4.1)

Nr. Outlook Temperature Humidity Play
1. rainy 70 96 yes
2. rainy 68 80 yes
3. rainy 65 70 no
4. rainy 75 80 yes
5. rainy 71 91 no

Table 4.4.: weather.arff

Nr. Outlook Temperature Humidity Play
1. rainy 65 70 no
2. rainy 68 80 yes
3. rainy 70 96 yes
4. rainy 71 91 no
5. rainy 75 80 yes

Table 4.5.: Searching for Critical Point of Numeric Attribute

Based on the given candidate rule, the class value "yes" should be the target class and the other one "no" is
the non-target class. Because the nominal attribute Outlook already exists in the candidate rule, only the
other two numeric attributes, Temperature and Humidity, will be considered. Table 4.5 shows a temporary
example list which is sorted by the numeric attribute Temperature. According to this table, we can get
three critical points in total. Firstly, the class of the first example is "no" and the second one is "yes".
Hence, the first critical point can be set to (65+68

2 = 66.5) and two new refinements are generated as
follows (the new added conditions are written in red):

• play = yes : Outlook = rainy, Temperature ≥ 66.5

• play = yes : Outlook = rainy, Temperature < 66.5

Secondly, a critical point to (70+71
2 = 70.5) is set between the third and fourth example in the list and the

corresponding refinements are:

• play = yes : Outlook = rainy, Temperature ≥ 70.5

• play = yes : Outlook = rainy, Temperature < 70.5

35

Finally, a critical point to (71+75
2 = 73) is set between the fourth and fifth example in the list and the

corresponding refinements are:

• play = yes : Outlook = rainy, Temperature ≥ 73

• play = yes : Outlook = rainy, Temperature < 73

For the attribute Humidity, we can generate 6 refinements, so we get 12 refinements in total. After getting
all of the possible refinements, we need to evaluate each of them by using the heuristic foil’s information
gain. This heuristic is used to calculate, how much profit can be gained, if the candidate rule is refined.
The formula is defined as:

Gain(R0, R1) = tp ∗ (log2(tp1

tp1 + fp1
) − log2(tp0

tp0 + fp0
))

where R0 is the original candidate rule and R1 is one of the refinements based on R0. tpi and fpi respec-
tively mean the number of positive and negative examples covered by Ri. In addition, tp is the number of
positive examples that are covered by both the R0 and R1. However, because R1 is a refinement based on
R0, it is always more specific than R0. Thus, the examples covered by R1 must be covered by R0 as well.
This means that the value of tp should equal to that of tp1. The profit can be calculated with this formula
and its value is set as an evaluation value for the refinement.

The procedure CheckForStop will always examine the refinement after it is evaluated. This procedure
is used to determine whether it is useful to further process the refinement or not. A refinement can only be
added to the RuleList if it passes the examination. Otherwise, it will be dropped directly. The implemen-
tation of the procedure CheckForStop is described in section 4.2.5 in detail. In addition, if the evaluation
value of a certain Refinement is better than that of the BestRule found previously, this Refinement will be
set to BestRule immediately.

In order to control the number of candidate rules in the RuleList, a filter is used to delete some rules. The
filter will be generated by executing the procedure FilterRules, which is implemented in class BeamWidth-
Filter. This class is a default component, in which a parameter "BeamWidth" is used (see section 3.1.4).
In the XML file of SeCoRIP, the essential parameter "BeamWidth" is not declared expressly. This means
that the value of BeamWidth should be the default value "1". In other words, RuleList can only keep one
rule if it is filtered. Because the RuleList is always sorted in decreasing order of the foil’s information gain,
the rule with the maximal value will be left.

Normally, the candidate rules in the RuleList are refined recursively. In the case of an empty RuleList, this
means that no more refinement is possible. Thus, the rule in the BestRule which is the best rule found so
far will be returned.

4.2.4 Pruning a Rule

Based on the pruning method defined in [8], the procedure PruneRule is implemented in class Abstract-
SeCo. By using this method, some conditions will be deleted from the grown rule. Algorithm 4.4 shows
the pseudocode of the procedure PruneRule. Because the pruning heuristics used in the building and
postprocessing phase in RIPPER are different, the parameter useWhole is used to differentiate them in the
procedure. Moreover, the parameter Data means the pruning set, and Rule means the given rule, which
was grown in the growing phase.

DefaultMaxV alue = defAccu + 1
total + 2

(4.2)

36

All the existing conditions in the given rule should be stored in the parameter Conditions in advance. In
addition, the parameter InitRule is set as an empty rule that only has the rule header of the given rule.
Assuming that the pruning set is classified by the empty InitRule, an evaluation value is calculated in the
procedure DefaultMaxValue. The calculation of this value is based on equation 4.2, where "defAccu" means
the number of examples that are covered by the empty rule and "total" means the total number of examples
in the pruning set. This evaluation value is set to MaxVal and is used as a benchmark. Similarly, InitRule
is set to FinalRule.

After that, the conditions stored in Conditions will be returned to InitRule successively. For each it-
eration, an IF-ELSE statement is used to determine which pruning heuristic will be used to evaluate the
newly constructed InitRule. The pruning heuristic defined in the procedure EvaluateRule is usually used
to evaluate the rule that was grown in the building phase. As mentioned in section 3.2.1, in the RIPPER
algorithm a new pruning heuristic is used. It calculates the percentage of correctly classified examples in
the covered examples. But this pruning heuristic can be converted to the common heuristic "precision"
(see equation 4.3) [11]. Thus, in our implementation, the pruning heuristic used in the building phase is
described as the formula in equation 4.4:

v (Rule, PrunePos, PruneNeg) = tp − fp

tp + fp
= 2tp − tp − fp

tp + fp
= (2 ∗ tp

tp + fp
− 1) ∝ tp

tp + fp
(4.3)

Ev aluateRule(Rule, Data) = tp + 1
tp + fp + 2

(4.4)

where tp and fp mean the number of covered positive (negative) examples respectively, and the value of
tp + fp is the total number of covered examples. According to this heuristic, if a rule covers no examples,
the denominator in the heuristic will not be zero. As mentioned in section 3.2.2, the pruning heuristic
defined in the postprocessing phase in RIPPER is guided to minimize the error of the entire rule set. This
means that each constructed InitRule will be added to the rule set (replacing the original Rule), and then
the error of this rule set will be calculated. However, it costs too much time to calculate this value for
each iteration. Thus, in our implementation, this value is calculated in a different way. Note that the
replacement (i.e. replacing Rule with InitRule) will only affect the quality of the subsequent rules in the
rule set. To be more exact, the coverage of the subsequent rules will be changed. Therefore, the examples
covered by the subsequent rules will be removed from the pruning set in advance. In other words, in the
postprocessing phase, the parameter Data contains the examples that are only covered by Rule. Then the
procedure PruneRule will be used to prune Rule based on such a pruning heuristic, which only considers
the error rate of the current pruned rule (i.e. InitRule). The pruning heuristic is described in equation 4.5,
where tn means the number of negative examples that are not covered.

Ev aluateRule∗(Rule, Data) = tp + tn

P + N
(4.5)

After calculating the evaluation value of each InitRule, this value will be compared with MaxVal found
previously. If InitRule has a better evaluation value, the old MaxVal will be updated and the current
InitRule will be set to the new FinalRule. The while-loop in the procedure will continue until all the
conditions in Conditions are returned to InitRule. This means that the final InitRule should be the same
as the original Rule. In this way, the pruning phase is done and FinalRule returns the rule, which has the
best evaluation value.

37

procedure PruneRule(Data, Rule, useWhole) {
Conditions = getBody(Rule)
InitRule = getHead(Rule)
FinalRule = InitRule
MaxVal = DefaultMaxValue(Data)
position = 0
while (position < getSize(Rule))
{

Condition = getCondition(Conditions, position)
InitRule = InitRule + Condition
if (!useWhole)

CurrVal = EvaluateRule(InitRule, Data)
else

CurrVal = EvaluateRule∗(InitRule, Data)
if (CurrVal > maxValue)
{

MaxVal = CurrVal
FinalRule = InitRule

}
position++

}
return (FinalRule)

}

Algorithm 4.4: PruneRule

4.2.5 Condition Stop Criterion and Rule Stop Criterion

Condition Stop Criterion
In the growing phase, the essential task of the condition stop criterion is to examine a newly constructed
Refinement, and then to decide whether it is useful to refine it further or not. This criterion is implemented
in the procedure CheckForStop in class NoNegativesCoveredStop and can be summarized in two points:

CheckForStop(Refinement, Val, Data)

1. None of the negative examples should be covered

2. More than minNo (default value is 2) positive examples must be covered

In pursuit of getting a rule with 100% accuracy, the refinements that cover negative examples will not
be considered. Moreover, in order to ensure the coverage of each rule, a parameter minNo is set in our
implementation. In this way, only the refinements with qualified coverage have the chance to be further
refined. In addition, this parameter is changeable in the XML file.

Rule Stop Criterion
The essential task of the rule stop criterion is to examine a newly generated Rule, and then to decide
whether it is useful to add it to the rule set or not. In addition, if the new Rule is not allowed to be added
to the rule set, the process of searching rules is just stopped at the same time (see procedure Separate-
AndConquer), because it is impossible to get a better rule from the remaining examples. The rule stop
criterion is implemented in the procedure CheckForRuleStop in class MDLStoppingCriterion and can be
summarized in three points:

CheckForRuleStop(Theory, Rule, Data)

38

• DL > minDL + 64

• tp ≤ 0

• fp
cov ered ≥ 0.5

The first point is implemented as described in section 3.2.1: After each Rule is generated, assuming that
Rule is added to Theory, the total description length of the current rule set is calculated. This value is set
as DL and minDL means the smallest total description length obtained so far. The value of DL will always
be compared with that of minDL. If the value of DL is smaller, minDL will be updated. Conversely, if
the value of DL is more than 64 bits [8] larger than that of minDL, the generated Rule cannot be added
into Theory and the process of searching will be stopped as a result. The relevant calculation methods and
formulas are described in section 4.3.2 in detail. According to the second and third points, if the generated
Rule covers no positive examples or its error rate exceeds 50%, it will be considered as "unqualified" as
well. The "unqualified" rule cannot be added to the rule set.

4.3 Iterative Optimization

Based on the prototype of RIPPERk, the procedure postProcessTheory is implemented in class PostPro-
cessorRipper. This class is an implementation of the interface IPostProcessor predefined in SeCo. As
mentioned before, k means that the rule set can be iteratively optimized for k times in the postprocessing
phase. In our implementation, a parameter named Optimizations is used to represent k. The value of
Optimizations is derived from the XML file, so it is easy to change it. Algorithm 4.5 shows the pseudocode
of the procedure PostProcessTheory, where Theory means the initial rule set that was generated in the
building phase and Data is the entire training set. As mentioned in section 3.2.2, in the postprocessing
phase, each optimization iteration can be summarized in three parts:

1. Optimizing each original rule in the initial rule set

2. Generating new rules for the remaining training set

3. Deleting some rules from the rule set

In the postprocessing phase, the training set should be stratified and divided as well. The relevant proce-
dures Stratify and SplitData were introduced in the previous section. Each rule in the initial rule set will
be optimized in the order they were learned. At the beginning of each optimization iteration, the value of
position is set to zero. The parameter position means which rule in the rule set is currently being handled.
If its value is smaller than the size of Theory, the rule at this position will be removed from Theory and
be set to OldRule. Because it is not necessary to optimize a rule that covers no example, the coverage of
OldRule will be checked at first. If the coverage of OldRule is zero, it will be skipped directly. Then, the
optimization will restart with the next rule in the rule set. (see * marked in Algorithm 4.5). By using
different methods, some variants based on OldRule will be generated. According to the predefined selection
criterion, a variant among the variants and OldRule will be selected as the final optimized rule and be set
to FinalRule. In our implementation, there are three variants (i.e. Replacement, Revision, Abridgment)
and two selection criteria (i.e. MDL, Accuracy) available. The generation of variants and the selection
criteria will be described in sections 4.3.1 and 4.3.2. In addition, FinalRule will be added to Theory and
all the examples covered by it should be removed from Data. At the same time, position will point to the
next rule in the rule set. This means that the optimization of the current OldRule is finished.

Once each rule in the initial rule set is optimized likewise, a new rule set is generated. However, it is
possible that some positive examples are not covered by the new rule set yet. Therefore, some new rules
will be generated to cover them. If the value of position is not less than the size of Theory, some new rules

39

will be generated on the remaining training set successively. The process of generating new rules is the
same as that in the building phase. The details of the involved procedures can be found in the previous
section. The process of adding new rules will be stopped if there is no positive example remaining or the
procedure CheckForRuleStop prevents the searching of more rules. Due to the above-mentioned process,
the size of the rule set will usually get bigger.

procedure PostProcessTheory(Theory, Data) {
for i < Optimizations
{

position = 0
newData = Data
while (Positive(newData) ̸= ∅) (*)
{

newData = Stratify(Data, GrowingSetSize, Seed)
SplitData(GrowingSetSize, Data, GrowData, PruneData)
if position < getSize(Theory)
{

OldRule = Theory(position)
Theory = Theory \ OldRule
if (!Cover(OldRule))
{

position++
goto (*)

}

generate some variants
Replacement = getReplacement()
Revision = getRevision()
Abridgement = getAbridgement()

select one of them as the final rule
FinalRule = getFinalRule(OldRule, Replacement, Revision, Abridgment)

newData = newData \ Covered(FinalRule, newData)
Theory = Theory ∪ FinalRule
position++

}
else
{

newRule = FindBestRule(GrowData)
newRule = PruneRule(PruneData, newRule)
if CheckForRuleStop(Theory, newRule, newData)

exit while
newData = newData \ Covered(newRule, newData)
Theory = Theory ∪ newRule

}
Theroy = ReduceDL(Theory)

}
i++

}
return (Theory)

}

Algorithm 4.5: PostProcessTheory

40

After adding some new rules to the initial rule set, another procedure ReduceDL is used to delete some rules
from the current rule set. The reason for this action is to ensure the quality of the final rule set. Normally,
the rules that increase the total description length of the rule set will be deleted. The implementation of
this procedure will be described in section 4.3.3 later. After that, an optimization iteration is then finished.
The rule set stored in Theory can be further optimized in a new optimization iteration. In addition, the
procedure PostProcessTheory will be stopped if the rule set is optimized for k times. Finally, the algorithm
returns Theory as a result of the postprocessing phase.

4.3.1 Variants

In our implementation, based on each rule in the initial rule set, three variants will be generated. The
first two variants Replacement and Revision are implemented according to the definition in the RIPPER
algorithm (see section 3.2.2), and the variant Abridgment is generated by using a new pruning method
(see section 3.2.3). This pruning method is guided to prune the conditions regardless of their order in the
rule. In this section, the implementation of these variants will be described in pseudocode. In addition,
the differences between them will be explained.

1. Variant Replacement

Replacement = FindBestRule(GrowData, null)
PruneData = rmCoveredBySuccessives(PruneData, Theory, position)
Replacement = PruneRule(PruneData, Replacement, useWhole)

According to the pseudocode described above, the process of generating the variant Replacement can
be summarized in the following three steps:

a) Growing a new rule on the given growing set
b) Updating the pruning set
c) Pruning the grown rule on the newly constructed pruning set

In the growing phase, the procedure FindBestRule will be used to grow the variant Replacement. The
parameter null means that this variant should be grown from an empty rule directly. As mentioned
in section 4.2.4, in the pruning phase, the pruning heuristic is guided to minimize the error of the
entire rule set. However, it costs too much time to calculate this value directly. In order to get the
value proportional to the error of the entire rule set, the given pruning set will be processed first. The
parameter position means which rule in the rule set (i.e. Theory) is handled currently. According to
the procedure rmCoveredBySuccessives, all the examples which are covered by the subsequent rules
based on position should be removed from the pruning set. Finally, the grown Replacement will be
pruned on the rest of the examples.

2. Variant Revision

GrowData = CoveredByRule(GrowData, OldRule)
Revision = FindBestRule(GrowData, OldRule)
PruneData = rmCoveredBySuccessives(PruneData, Theory, position)
Revision = PruneRule(PruneData, Revision, useWhole)

According to the pseudocode described above, the process of generating the variant Revision can be
summarized in the following four steps:

a) Updating the growing set
b) Growing a rule on the newly constructed growing set

41

c) Updating the pruning set
d) Pruning the grown rule on the newly constructed pruning set

In contrast to Replacement, the variant Revision is grown by greedily adding more conditions to the
given old rule. Therefore, in the procedure FindBestRule, the parameter OldRule, which represents
the old rule, is given. Moreover, in the growing phase, the grown rule should be more specific than
the original one. In other words, the examples that are not covered by OldRule are redundant. Thus,
according to the procedure CoveredByRule, they will be removed from the growing set in advance.
The pruning phase of the variant Revision is the same as that of the variant Replacement.

3. Variant Abridgment

In section 3.2.3, the design and development of a new pruning method was introduced. The ba-
sic idea of this pruning method is to prune the conditions of a rule regardless of their order in the
rule. By using this method, a new variant Abridgment can be generated on each rule of the initial
rule set. In addition, because the generation of Abridgment does not contain the growing phase,
it is not necessary to divide the training set. This means that the whole training set can be used
as the pruning set. The pruning method is implemented in the procedure PruneOldRule in class
DefaultPostProcessor. Algorithm 4.6 shows the pseudocode of this procedure. The parameter Data
means the complete training set and Rule means the current old rule that should be pruned.

Abridgment = PruneOldRule(Data, Rule)

procedure PruneOldRule(Data, Rule) {
minER = EvaluateRule(Rule, Data)
while (getSize(Rule) > 1)
{

Conditions = getBody(Rule)
cPosition = -1
for Condition ∈ Conditions
{

position = getPosition(Condition)
tempRule = deleteCondition(Rule, position)
currER = EvaluateRule(tempRule, Data)
if (currER ≤ minER)
{

cPosition = position
minER = currER

}
}
if (cPosition ≥ 0)

Rule = deleteCondition(Rule, cPosition)
else

exit while
}
return (Rule)

}

Algorithm 4.6: PruneOldRule

In the pruning phase, the procedure EvaluateRule is used to evaluate the rule. The pruning heuristic
is guided to minimize the error rate of the pruned rule. The formula of this pruning heuristic was
defined in section 3.2.3. The given rule (i.e. Rule) will be evaluated first, and its evaluation value

42

will be set to minER as a default value. In general, the while-loop will be stopped if there is only one
condition left in Rule. In a pruning iteration, each of the conditions in Rule are deleted separately,
and a series of tempRule are generated. For example, k tempRule can be generated if Rule contains
k conditions. Similarly, each tempRule should be evaluated in the procedure EvaluateRule and its
evaluation value set to currER. This value will always be compared with minER. If the value of
currER is equal or less than that of minER, minER will be updated. In addition, if no tempRule
can improve the default error rate, the while-loop will be stopped as well. Otherwise, Rule will be
replaced with a tempRule, which has the minimal error rate. This newly constructed Rule will be
pruned in the next pruning iteration in the same way.

To illustrate what is going on, a simple example is given. Assuming that the training set (i.e.
Data) contains 697 examples, the given Rule covers 647 examples correctly and 50 examples incor-
rectly. Thus, the error rate of Rule is (50

697 ≈ 7.17%). This value will be set to minER.

Rule : [Class = c : surface_quality = −, carbon < 0, shape = SHEET, thick ≥ 1.201]

In the first pruning iteration, there are four conditions available. Each of them will be deleted to
construct a tempRule respectively. The error rate of each tempRule is calculated and listed in the
table below.

Condition Deleted FP+FN TP+TN Error Rate
surface_quality = - 109 588 15.64%

carbon < 0 53 644 7.60%
shape = SHEET 46 651 6.60%

thick ≥ 1.201 25 672 3.59%

Table 4.6.: Variant Abridgment (1st Iteration)

If the condition [thick ≥ 1.201] is deleted, the error rate will decrease to 3.59%. This value is the
minimal error rate in this iteration. Moreover, it is smaller than the value in minER. Thus, this
condition is deleted and a new Rule Class = c : surface_quality = −, carbon < 0, shape = SHEET
is constructed.

Condition Deleted FP+FN TP+TN Error Rate
surface_quality = - 319 378 45.77%

carbon < 0 20 677 2.87%
shape = SHEET 35 662 5.02%

Table 4.7.: Variant Abridgment (2nd Iteration)

In the second pruning iteration, the error rate can be improved further if the condition [carbon < 0] is
deleted (see Table 4.7). The newly constructed Rule Class = c : surface_quality = −, shape = SHEET
is passed to the next iteration. The value in minER will be updated to 2.87%.

Condition Deleted FP+FN TP+TN Error Rate
surface_quality = - 541 156 77.62%

shape = SHEET 80 617 11.48%

Table 4.8.: Variant Abridgment (3rd Iteration)

According to table 4.8, no improvement is possible in the third pruning iteration. The error rate

43

with regard to each tempRule is larger than that in minER. Thus, the procedure PruneOldRule will
be stopped and Rule Class = c : surface_quality = −, shape = SHEET will be returned as a result.

4.3.2 Selection Criteria for Variants

After generating the variants, one of them will be selected as the optimized rule (i.e. FinalRule in the
procedure PostProcessTheory). In our implementation, there are two selection criteria available; the first
one prefers to select the variant which can generate a new rule set with the smallest minimum description
length (MDL), while the second one simply selects the rule which has the maximal accuracy. The calculation
of MDL and accuracy is implemented in the relevant procedures in class RuleStats.

1. MDL Calculation

oldDL = calcMDL(Theory)
for Ri ∈ Variants R

Theory∗ = replaceRule(Theory, Ri, position)
RiDL = calcMDL(Theory∗)

FinalRule = min(oldDL, {RiDL})

The parameter Theory means the rule set which contains the original OldRule. The variants R are
generated based on OldRule and the parameter Ri points to one of them. In addition, the parameter
position means the position of OldRule in Theory. The procedure replaceRule is used to replace
OldRule with the variant Ri and a newly constructed rule set is set to Theory∗. In the procedure
calcMDL, each possible rule set (including the original Theory) will be evaluated based on the MDL.
Finally, the rule whose generated rule set has the smallest MDL, will be considered as the best rule
and be set to FinalRule. The essential formulas defined in the procedure calcMDL can be summarized
as follows:

Potential(Theory, Ri) = DL(Theory) − DL(Theory \ Ri) + DL(Ri) (4.6)

Potentials(Theory) =
∑

Potential(Theory, Ri) Ri ∈ Theory (4.7)

MDL(Theory) = DL(Theory) − Potentials(Theory) (4.8)

Normally, the minimum description length (MDL) of a certain rule set should be calculated in this
way: Firstly, all the rules that increase the total description length (DL) will be removed from this
rule set in advance, and the original rule set will be updated. Secondly, based on the result rule set
the DL will be calculated again and this value is considered the so-called MDL. However, which rules
will lead to an increase of the DL?

In our implementation, this problem will be solved by getting the parameter Potential. In equa-
tion 4.6, Potential calculates the potential of decreasing the DL of Theory if the rule Ri is deleted.
The equation is composed of two parts. The first part means the change of DL with regard to two
rule sets, where the first one contains the rule Ri and the second one does not. The second part
means the description length (DL) of the rule set (Theory) for a given rule (Ri). In equation 4.7,
Potential will be summed up and be set to Potentials. In other words, each rule in Theory will be
deleted once to check if the DL of Theory can be decreased. In this way, according to equation 4.8,
the MDL of Theory can be calculated as well.

44

The formulas that are used to calculate the DL of a rule set (i.e. DL(Theory)) and the DL of a
rule set for a given rule (i.e. DL(Ri)), are derived from [23].

DL(Theory) = log2(cov er + uncov er + 1) (4.9)
+ S(cov er, fp∗, FP/cov er)
+ S(cov er, fn∗, FN/cov er)

S(n, k, p) = k ∗ log2(1
p

) + (n − k) log2(1
1 − p

) (4.10)

Before calculating DL(Theory), some essential information about the rule set Theory should be
gathered. In equation 4.9, the parameter cover means the total number of examples covered by
Theory, and uncov er means the rest of them. In addition, fp∗ and fn∗ are two important parameters
which are calculated by successively adding the number of false positive and false negative examples
with regard to each rule in Theory. Function S(n, k, p) is used to calculate the subset encoding
length of k elements of a known set of n elements. In this function, p is an expected proportion
which is calculated by expected number of elements in the subset

n . For example, in equation 4.9, FP and
FN are two expected values. FP means the number of false positive examples, when all the positive
examples are not covered by Theory. Similarly, FN means the number of false negative examples,
when all negative examples are covered by Theory.

DL(Ri) = ||k|| + 0.5 ∗ S(t, k, k/t) (4.11)
||k|| ≈ log2(log2(k)) (4.12)

According to equation 4.11, the description length of a rule set for a given rule (DL(Ri)) is calculated.
In this equation, k means the number of conditions in the rule and ||k|| means the number of bits
needed to send the integer k. According to equation 4.12, ||k|| is only calculated as an approximation.
Moreover, t means the total possible conditions that could appear in the rule. The factor 0.5 is used
to adjust the possible redundancy in the attributes [28].

2. Accuracy Calculation

oldAcc = calcAcc(OldRule)
for Ri ∈ Variants R

RiAcc = calcAcc(Ri)
FinalRule = max(oldDL, {RiAcc})

The basic process of accuracy calculation is the same as that in the MDL calculation. But the formula
defined in the procedure calcAcc is much simpler (see equation 4.13).

Acc(Ri) = tp + tn

P + N
(4.13)

After evaluating the variants R and the old rule OldRule, the one of them, which has the maximal
accuracy, will be considered as the best rule and be set to FinalRule.

4.3.3 Rule Reduction

As mentioned in section 3.2.2, after we optimized the rules in the initial rule set and added some new
rules to cover the rest of positive examples, we will examine the new rule set again. Note that the MDL
calculated in the last section is only an assuming value that a rule set can get when the "unqualified" rules

45

are removed. In other words, these rules haven’t been removed from the rule set yet. In class RuleStats,
a procedure ReduceDL is used to finish this task (see algorithm 4.7). In the MDL calculation, for each
rule Ri, the parameter Potential means the potential that DL can be decreased if Ri is deleted. In the
procedure ReduceDL, this value will be used as a benchmark. If the value of Potential is not less than 0,
the relevant rule Ri will be deleted directly. In this way, all the rules that increase DL will be filtered.
Finally, the filtered rule set will return as the result of an optimization iteration.

procedure ReduceDL(Theory) {
for Ri ∈ Theory
{

potential = potential(Theory, Ri)
if (potential ≥ 0)

Theory = Theory \ Ri

}
return (Theory)

}

Algorithm 4.7: ReduceDL

4.4 Differences from JRIP

The implementation of the RIPPER algorithm in the SeCo platform is called SeCoRIP. In the machine
learning software Weka [33], JRIP is another version of RIPPER that was implemented by Xin Xu and
Eibe Frank. In order to validate our implementation, JRIP is used to compare with SeCoRIP. In this
section, some significant differences are listed.

4.4.1 Order of Classes

As mentioned in section 4.2, the procedure SeparateAndConquer is used to generate rules for one class.
Therefore, the order of processing classes should be determined in advance. Normally, the procedure begins
with the class with the least examples to the class with the most. However, the order in SeCoRIP and
JRIP will be sometimes different, if several classes have the same number of examples.

@RELATION monk1
@ATTRIBUTE ...
@ATTRIBUTE class {0, 1}

Algorithm 4.8: Header Information of monk1.arff

Similar to SeCoRIP, the training set used in JRIP is derived from the ARFF file. Algorithm 4.8 shows the
header information of an ARFF file monk1. In this file, there are two classes available. Moreover, class 0
contains the same number of examples as class 1. In this situation, the order of these classes in SeCoRIP
will always remain the same as in the ARFF file. This means that the rules for class 0 will be generated
first. However, in JRIP it is possible that the order of processing classes is {1,0}, because a random
function is used to determine the order of those classes that have the same number of examples. Due to
the different order of processing classes, the generated rule sets in SeCoRIP might be a little different from
that in JRIP.

46

4.4.2 Selection of Refinements

In section 4.2.3, the growing phase implemented in SeCoRIP was described. Based on a candidate rule,
it is possible to generate a series of refinements. These refinements are added to RuleList. In SeCoRIP,
the refinements in RuleList are always sorted in decreasing order of the foil’s information gain. In other
words, the refinement at the first position in RuleList should be the best one that has the maximal foil’s
information gain. Normally, this refinement will be selected for the next refining iteration. But if several
refinements have the same maximal value, which one should be selected?

Normally, SeCoRIP and JRIP will select the first generated refinement that has the maximal value.
However, it is difficult to guarantee that the order of refinements in SeCoRIP is the same as that in
JRIP. Thus, this is the second reason that the rules in SeCoRIP are sometimes different from that in JRIP.

4.4.3 Minimal Number of Covered Examples

The parameter minNo is used to ensure the coverage of the generated rule. However, in SeCoRIP and
JRIP, the method of using this parameter is different.

In the growing phase in SeCoRIP, the coverage of each possible refinement will be checked in the pro-
cedure CheckForStop (see section 4.2.5). Normally, the refinements with unqualified coverage will not be
added to RuleList (see algorithm 4.3). As mentioned before, in RuleList a refinement will be selected for
the next refining iteration. This refinement should not only have the maximal foil’s information gain, but
also a qualified coverage.

In JRIP, the coverage of each possible refinement will not be checked in advance. Normally, the re-
finement that has the maximal foil’s information gain will be determined first. Secondly, the coverage of
this refinement will be checked. Thirdly, this refinement will be refined further, if its coverage is qualified.
Otherwise, it will be dropped and the searching process will be stopped directly (i.e no more rules for this
class will be generated).

Based on the difference mentioned above, JRIP stops too soon if the coverage of the selected refine-
ment is unqualified. This is the reason that SeCoRIP usually generates more rules than JRIP.

47

5 Evaluation

5.1 Data Sets

A series of data sets are used to validate SeCoRIP and its variants. These data sets are derived from the
UCI Machine Learning Repository. UCI is a collection of databases, domain theories and data generators
that are used by the machine learning community for the empirical analysis of machine learning algorithms
[1]. Table 5.2 shows a global overview of these UCI data sets and the relevant elements are described in
table 5.1. The reason we sort the data sets according to the types of attributes is to test whether RIPPER
is good at handling numeric attributes as well as nominal ones. Moreover, not all the data sets we selected
are complete. Some of them are affected by missing values.

Element Description
Name @relation (data set name) in the ARFF file
Examples total number of examples in the data set
Attributes total number of existing attributes
Nominal number of nominal attributes
Numeric number of numeric attributes
Classes number of possible classes
Missing Value? whether some values of the attributes are missing or not
Type type of data set
Categorical involved data sets have only nominal attributes
Numerical involved data sets only have numeric attributes
Mixed involved data sets have both nominal and numeric attributes

Table 5.1.: Legend of Properties in Data Sets

5.2 Evaluation Methods

Cross-Validation is a common evaluation method to evaluate the rule learning algorithms. In this section,
the different types of cross-validation will be introduced.

• K-fold cross-validation
In this method, the original data set, which contains n examples, will be divided into k subsets. Each
subset is termed as a fold and the number of examples in each fold is almost the same. Then the
rule learning algorithm will be executed k times. Each time, one of the k folds is used as the test set
and the other k-1 folds form the training set. During the execution, the rule set is learned from the
training set and validated on the testing set. The result of the validation, i.e. the accuracy of the
learned rule set, is calculated. By averaging the k results, a value of average accuracy is computed.
This value can be seen as the single estimation for the algorithm with regard to the data set.

• K-fold stratified cross-validation
According to k-fold cross-validation, the examples are distributed in k folds randomly. However,
this method would cause an unreasonable distribution of classes. For example, there are two classes

48

Name Examples Attributes Nominal Numeric Classes Missing Value? Type
kr-vs-kp 3196 36 36 - 2 no

C
ategorical

tic-tac-toe 958 9 9 - 2 no
titanic 2201 3 3 - 2 no

breast-cancer-
data 286 9 9 - 2 yes

congress-voting-
1984-1 435 15 15 - 2 yes

congress-voting-
1984 435 16 16 - 2 yes

mushroom 8124 22 22 - 2 yes
soybean 683 35 35 - 19 yes

audiology 226 69 69 - 24 yes
glass2-

database 163 9 - 9 2 no N
um

erical

iris 150 4 - 4 3 no
wine 178 13 - 13 3 no
glass-

database 214 9 - 7 7 no

hepatitis 155 19 13 6 2 yes

M
ixed

horse-colic-
data 368 22 15 7 2 yes

hypothyroid 3163 25 18 7 2 yes
sick-euthyroid 3163 25 18 7 2 yes
lymphography-

data 148 18 15 3 4 no

anneal 798 38 6 32 6 no
cleveland-14-
heart-disease 303 13 7 6 5 yes

Table 5.2.: 20 UCI Data Sets

{A, B} available. All the examples with class A are distributed in the first k-1 folds, which form a
training set. The remaining examples with class B are in the last fold, which is used as a testing
set. Because the testing set has no examples with class A, it is impossible to validate the learned
rule set effectively. Thus, the estimation for the algorithm will be affected. In k-fold stratified
cross-validation, the data set should be stratified before it is divided. This means that the examples
with different classes will be distributed in the folds equally. In this way, the problem of the class
distribution is resolved and the variance of the estimation can be decreased.

• Leave-one-out cross-validation
This method is a variant of k-fold cross-validation where the parameter k is replaced with n (n
indicates the number of examples in the data set). This means that each example can be considered
as a fold. The rule set is learned from (n-1) examples. The last example is responsible for the
validation of the rule set. Because the testing set has only one example, it is useless to stratify the
data set. Therefore, the problem of the class distribution may exist and the results of validations may
be incorrect. Moreover, due to the multi-division, the computational cost of this method is always
very high and the computing time is much longer.

49

As mentioned in section 3.1.1, the package evaluations contains some evaluation methods for evaluating
the rule learning algorithms implemented in SeCo. The evaluation method cross-validation is included.
Based on the comparison mentioned above, k-fold stratified cross-validation is a more reasonable evaluation
method. Furthermore, in [19] it is confirmed that "k=10" is an optimal value for cross-validation. Thus,
10-fold stratified cross-validation is used to evaluate our implementations.

5.3 Evaluation Dimensions

In SeCo, we implemented SeCoRIP and its two variants. In order to compare them with each other, they
will be used to learn rules from a series of data sets. With the help of the cross-validation method, there
are sufficient testing sets available to evaluate the learned rules. In this section, the evaluation dimensions
with regard to the learned rules will be explained.

5.3.1 Correctness

Similar to the training set, in the testing set the class of each example is known. The correctness means
what percentage of the examples in the testing set are classified correctly. As mentioned in section 5.2,
in the evaluation method cross-validation, the value of average accuracy will be calculated. This value
can be a single estimation of the correctness for a rule learning algorithm. Because we employ the 10-fold
stratified cross-validation, the formula can be summarized in the following equation:

Correctness =
∑10

k=1 Av eragek

10
(5.1)

5.3.2 Size of Rule Sets

The second evaluation dimension is the size of the constructed rule sets. This means the number of rules
are needed to cover all the examples of the training set. According to the separate-and-conquer strategy,
it is guaranteed that each example should be covered by at least one rule of a rule set. However, it is
possible that a certain example will be covered by several rules if the rule set contains too many rules.
Normally, we prefer to construct a rule set which uses fewer rules to cover the same number of examples
correctly. Moreover, if the size of the rule set is smaller, it is easier to understand it. Note that some data
sets could contain more than two classes. This means that several rule sets will be constructed for covering
the examples with the relevant classes. Thus, the formula used in this evaluation dimension is defined as
follows:

Size of Rule Sets = the sum of all rules in the constrcuted rule sets (5.2)

5.3.3 Number of Conditions in One Rule

Improving a rule until it works perfectly on the training set and makes no errors would cause an overfitting
problem. Normally, this rule would be more specific than the actual searched one. This means that the
complicated rule could have a low coverage. In rule learning algorithms, many different methods are used
to avoid the overfitting problem. Usually, we prefer to take a shorter rule which covers the same number of
examples as the longer one. The number of conditions in a rule is defined as the third evaluation dimension.
This value will be calculated according to the following equation:

Number of Conditions in One Rule = the sum of all conditions

the size of the rule sets
(5.3)

50

5.4 Performance Evaluation

5.4.1 Results of SeCoRIP

As mentioned in section 4.3, SeCoRIP employs a postprocessing procedure for optimizing a rule set right
after it was learned. In this section, we show the differences of SeCoRIP with and without the postprocess-
ing on 20 UCI data sets (see table 5.2). The complete learning algorithm will be executed six times in total.
Each time, the rule set learned in the building phase will be iteratively optimized in the postprocessing
phase. The relevant number of optimization iterations is dependent on an external parameter optimiza-
tions. Here we call the algorithm SeCoRIP0 if no optimization is processed in the postprocessing phase
(i.e. optimizations = 0). Correspondingly, SeCoRIPi means that the learned rule set will be iteratively
optimized i times (i.e. optimizations = i ∈ {1, 2, 3, 4, 5}). The other parameters used for this experiment
are described as follows: growingSetSize = 3, minNo = 2, seed = 1, abridgment = 0 and selection = MDL.
The definition of these parameters and their values can be found in section 4.1.2. In this experiment, it is
expected that SeCoRIPi could always construct better rule sets than SeCoRIP0.

According to the experimental results in table A.1, a simple line chart is given for all data sets. In
figure 5.1, the x-axis represents the number of optimization iterations (i.e. the parameter optimizations)
and the y-axis represents the correctness of the relevant rule sets. From the figure we can see that most of
the lines present an upward trend. This means that the rule sets are really optimized in the postprocessing
phase. In order to show the results more clearly, we construct a win-tie-loss list where those optimized
rule sets (i.e. optimizations ∈ {1, 2, 3, 4, 5}) are separately compared to the rule sets with the parameter
optimizations = 0.

Figure 5.1.: SeCoRIP of 20 UCI Data Sets

For example, the second row in table 5.3 means that rule sets iteratively optimized twice in the postpro-
cessing phase can get an increased correctness in 15 data sets, a worse correctness in four data sets and
the correctness will not be changed in one data set.

51

Generally speaking from the entire table, the postprocessing procedure in SeCoRIP is able to increase
the correctness of the learned rule sets in 16 data sets and the decrease of the correctness is mainly focused
on the following three data sets: breast-cancer-data, congress-voting-1984-1 and titanic. On the one hand,
the type of these three data sets is Categorical (i.e. contain only nominal attributes). It can therefore be
assumed that the postprocessing procedure is better at handling numeric attributes than nominal ones.
On the other hand, in these data sets the rule sets constructed by SeCoRIP0 always keep the best value of
the correctness. Accordingly, we can give a conclusion here: If the correctness of the rule sets constructed
by SeCoRIP1 is worse than that of rule sets constructed by SeCoRIP0, the postprocessing procedure is
more likely to be useless for the entire rule learning algorithm. Moreover, in the data set mushroom, the
correctness of the rule sets constructed by SeCoRIP0 is already perfect, so there is no substantial room for
improvement. Thus, it is also not necessary to employ a postprocessing procedure in such a condition.

SeCoRIP0
SeCoRIP1 16-2-2
SeCoRIP2 15-1-4
SeCoRIP3 14-2-4
SeCoRIP4 15-2-3
SeCoRIP5 14-2-4

Table 5.3.: Win-Tie-Loss

Secondly, we try to check the profit of the correctness that the postprocessing procedure gained. In table
5.4, the third column shows the mean value of the correction on the 20 data sets and the fourth column
gives the profit according to the following equation:

Profit(i+1) =
Av gc(i+1) − Av gci

Av gci
i ∈ {0, 1, 2, 3, 4} (5.4)

This equation calculates the profit that the postprocessing procedure gained when it optimizes the learned
rule sets more times. In this table, SeCoRIP1 gets the best improvement and its Profit is 1.59%. This
means that the correctness of the learned rule sets can be much improved even if they have been optimized
in the postprocessing phase only once. However, it’s interesting that not all the values of Profit are positive
numbers. For example, the relevant Profit in the fourth and sixth rows is -0.08% and -0.21% respectively.
Moreover, the maximum mean value of the correctness appears in the fifth rows and the corresponding
Profit is 0.12%. According to the above, it can be assumed that the postprocessing procedure with a
higher number of optimization iterations could further improve the correctness of the relevant rule sets,
but it cannot be guarantied that the correctness would be increased monotonically. In order to verify this
assumption, we will investigate the convergence properties of the SeCoRIP algorithm in section 5.4.5.

Algorithm Opt. AvgCorr. Profit
SeCoRIP0 0 86.19 -
SeCoRIP1 1 87.56 1.59%
SeCoRIP2 2 87.61 0.06%
SeCoRIP3 3 87.53 -0.08%
SeCoRIP4 4 87.64 0.12%
SeCoRIP5 5 87.45 -0.21%

Table 5.4.: Profit

Finally, we compare the number of rules and conditions between the original and the optimized rule sets.
The relevant results are given in table A.3. In order to show these results more clearly, the average number

52

of rules and the average number of conditions in one rule are calculated based on the 20 data sets. In table
5.5, it is shown that SeCoRIP0 constructs about 9 rules for covering all the examples of the training set,
while SeCoRIP1 only need about 7 rules. Moreover, the number of conditions in one rule is also decreased
by 0.29. However, no obvious changes of these values could be found with the increasing of the number of
optimization iterations. According to the results in this table, it can be confirmed that the number of rules
and conditions can be decreased when the SeCoRIP algorithm employs the postprocessing procedure.

Algorithm Opt. AvgRules. AvgCond.
in one Rule

SeCoRIP0 0 8.75 1.94
SeCoRIP1 1 7.35 1.65
SeCoRIP2 2 7.25 1.69
SeCoRIP3 3 7.40 1.73
SeCoRIP4 4 7.55 1.73
SeCoRIP5 5 7.50 1.73

Table 5.5.: The Average Number of Rules and Conditions (SeCoRIP)

5.4.2 Comparison with JRIP

JRIP is another version of the RIPPER algorithm that is implemented in the Weka software [33]. In order
to validate the correctness of our implementation, we try to compare our results with JRIP. Similarly, we
execute JRIP in Weka six times and the used parameters are the same as in SeCoRIP.

Figure 5.2.: Comparison with JRIP

Table A.2 gives the relevant experimental results of JRIP and the right line chart in figure 5.2 is constructed
based on it. Because there are some implementation differences between JRIP and SeCoRIP (see section
4.4), the concrete trend of lines in two line charts could not be exactly the same. However, we find that the
lines constructed by JRIP seem to be more smooth than the ones constructed by SeCoRIP. For example,
the variation of the correctness in the data sets horse-colic-data (the dark blue one) and glass-database
(the purple one) is more significant in the left line chart.

By comparing two line charts, we find that JRIP and SeCoRIP have three similarities: Firstly, most
of the rule sets can be optimized well in the postprocessing phase and there exists an observable increase

53

of the correctness at the x-axis optimizations ∈ {1, 2}. Secondly, both JRIP and SeCoRIP cannot work
well with the data sets: breast-cancer-data, congress-voting-1984-1 and titanic. According to their concrete
experimental results in table A.2, we can confirm our conclusion mentioned in the previous section: The
postprocessing procedure is more likely to be useless for the entire rule learning algorithm if the correctness
of the rule sets constructed by SeCoRIP1 is worse than that of rule sets constructed by SeCoRIP0. Thirdly,
based on the number of optimization iterations, the correctness of the optimized rule sets is not increased
monotonically. For example, the line of the data set wine (the dark yellow one) has a lower point at the
x-axis optimizations = 3. Moreover, the line of the data set lymphography-data (the straw yellow one) is
even similar to a wave curve.

In addition, we focus on the experimental results of the following seven data sets: cleveland-14-heart-disease,
hepatitis-domain, horse-colic-data, hypothyroid, lymphography-data, tic-tac-toe and congress-voting-1984.
In JRIP, the rule sets learned from these data sets can get a maximum value of the correctness, so long as
they have been optimized at most two times (i.e. optimizations = 1 or 2). In other words, the correctness
of these rule sets cannot be further increased, though they could be processed in the postprocessing phase
more times. Similarly, this situation occurs in the five of the above-mentioned data sets in SeCoRIP. How-
ever, the rule sets learned from the data sets lymphography-data and cleveland-14-heart-disease get their
maximum values at the third and fourth optimization iteration respectively. Referring to table 5.2, we find
that five of the seven date sets has the type Mixed (i.e. contain both nominal and numeric attributes)
and the type of the remaining two is Categorical (i.e. contain only nominal attributes). Furthermore,
the number of nominal attributes is obviously more than that of numeric attributes in these Mixed data
sets. In the previous section we assumed that the postprocessing procedure could be better at handling
numeric attributes than nominal ones, because the decrease of the correctness only occurs in the data sets
whose type are Categorical. Here this assumption can be further confirmed according to the distribution
of nominal and numeric attributes.

5.4.3 Results of Variant Abridgment

In this section we show the results of our first variant. In this variant a new pruning method (see section
3.2.3) is introduced to generate a rule called abridgment in the postprocessing phase. In this pruning
method, the conditions of a rule can be pruned regardless of their order in the rule. According to the
feature mentioned above, this pruning method should have more effect on the rules which contain more
conditions. This is because such rules have more possibilities to be pruned.

Compared to the default parameter setting in SeCoRIP, the different parameter used here is
abridgment = 1 . In this experiment, we also execute the learning algorithm on the 20 UCI data sets
six times and the relevant experimental results are given in table A.4. Based on this table, we can see that
the values of the correctness are only changed in nine of the given data sets. In the following table, these
data sets are marked in gray.

In table 5.6, the fifth and sixth columns respectively present the total number of rules and conditions of
the rule sets that are constructed in the original algorithm SeCoRIP0. According to these two columns, the
last column in the table calculates the number of conditions in one rule. Note that the calculated value is
a mean value; the number of conditions in a concrete single rule can therefore be fewer or more. The data
sets in this table are sorted in increasing order of the values in the last column. This table shows that the
data sets marked in gray usually have a relatively high value. As mentioned in section 4.3.1, the variant
abridgment is constructed by pruning each old rule that was learned in the building phase. On the one
hand, it is difficult to prune an old rule if it contains too few conditions. The result of the pruned rule is
more likely just the original one. Thus, the new pruning method will take no effect in such a case. On the
other hand, in the postprocessing phase the variant revision is grown from the old rule and then pruned by

54

Name Examples Attributes Rules
(SeCoRIP0)

Conditions
(SeCoRIP0)

Number of
Conditions
in One Rule

horse-colic-data 368 22 2 2 1.00
iris 150 4 3 3 1.00

wine 178 13 3 3 1.00
breast-cancer-data 286 9 4 5 1.25

mushroom 8124 22 9 12 1.33
anneal 798 38 9 13 1.44

glass2-database 163 9 6 9 1.50
titanic 2201 3 4 6 1.50

hepatitis 155 19 3 5 1.66
lymphography-data 148 18 9 15 1.67
congress-voting-1984 435 16 4 7 1.75

soybean 683 35 29 54 1.86
audiology 226 69 21 40 1.90

hypothyroid 3163 25 4 8 2.00
glass-database 214 9 16 39 2.44

cleveland-14-heart-disease 303 13 8 21 2.63
tic-tac-toe 958 9 10 28 2.80
kr-vs-kp 3196 36 17 56 3.29

congress-voting-1984-1 435 15 6 20 3.33
sick-euthyroid 3163 25 8 28 3.50

Table 5.6.: 9 Data Sets Marked in Gray

using the old pruning method. It is also possible that the constructed abridgment is the same as revision.
In this case, the experimental results will not be changed, though the new pruning method is used.
Secondly, we compare the experimental results of the first variant with that of the original SeCoRIP algo-
rithm. In figure 5.3, the x-axis represents the number of optimization iterations and the y-axis represents
the average correctness, which is the mean value of the correctness of the nine data sets. Based on this
figure, we can see that the first variation cannot work as well as the original SeCoRIP, because its relevant
values are obviously worse. For example, at the x-axis optimizations = 1, the value for the original SeC-
oRIP is 85.95, while the first variant gets only 85.48. This means that there is a correctness difference of
about 0.47. Moreover, the largest correctness difference between these two algorithms is even 0.65 at the
x-axis optimizations = 3.

Referring to table A.4 and table 5.6, we find that the one and only highlight of this variation is fo-
cused on the two data sets kr-vs-kp and sick-euthyroid. The correctness of the optimized rule sets learned
from them has noticeably increased. Note that the number of conditions in one rule corresponding to these
two data sets is extremely high; the first one reaches 3.29 and the second gets even the largest number
3.50. This means that each rule of rule sets should have at least three or four conditions. This provides
substantial search space for the new pruning method. Based on the results mentioned above, it can be
assumed that the new pruning method could have a positive impact on rule sets whose rules normally
contain more than three conditions. However, the correctness in the data congress-voting-1984-1, which
has the second largest value of 3.33, is not increased yet. We find that the higher value here is only a
special case, because it will be reduced substantially, if we disrupt the order of examples in the relevant
data set randomly. In other words, this value should not be so high in normal cases.

55

Figure 5.3.: Comparison of Average Correctness

5.4.4 Results of Simplified Selection Criterion

In this section we show the results of our second variant. In this variant the heuristic accuracy is used
instead of MDL in the selection criterion. This means that in the postprocessing phase the variant (i.e.
among replacement, revision and the original old rule) with the maximal accuracy will be selected as the
best optimized rule at the end. Because the calculation of MDL is relatively complex, the goal of this
experiment is to check whether the second variant with a simplified selection criterion can get similar
results compared with the original SeCoRIP. In this experiment, the second variant will be executed six
times on the 20 UCI data sets and the different parameter declared in the XML file is selection = Accuracy.

Here we simply call SeCoRIP’i the second variant with optimizations = i. Moreover, SeCoRIP’0 is
the same as SeCoRIP0, because both of them contain no postprocessing phase. The concrete experi-
mental results of SeCoRIP’ are presented in table A.5. Based on this table, we construct a win-tie-loss list
where those optimized rule sets (i.e. optimizations ∈ {1, 2, 3, 4, 5}) are separately compared to the rule
sets with the parameter optimizations = 0.

SeCoRIP’0
SeCoRIP’1 12-1-7
SeCoRIP’2 12-3-5
SeCoRIP’3 14-2-4
SeCoRIP’4 12-2-6
SeCoRIP’5 13-3-4

Table 5.7.: Win-Tie-Loss 2

In table 5.7 we can see that the postprocessing procedure of SeCoRIP’, which takes the simplified selection
criterion, can regularly improve the correctness of rule sets in about 13 data sets. Compared to the results
of SeCoRIP in table 5.3, this modified postprocessing procedure is not satisfactory. The original SeCoRIP
can get the improvement of the correctness in about 16 data sets and the correctness deterioration is mainly
focused on the data sets breast-cancer-data, congress-voting-1984-1 and titanic. However, in SeCoRIP’, the
rule sets learned from the data sets anneal and lymphography-data can no longer be improved. Moreover,
the correctness of the rule sets learned from the data set kr-vs-kp decreases noticeably.

56

According to the experimental results in table A.1 and A.5, we construct another win-tie-loss list which
shows an intuitive comparison of these two algorithms. Note that SeCoRIP’ will only be compared to
SeCoRIP with the same number of optimization iterations. For example, the first row in the following
table means that SeCoRIP’1 outperforms SeCoRIP1 in four data sets, gets a worse result in 12 data sets
and has a tie in four data sets.

Variant Win-Tie-Loss Original
SeCoRIP’1 4-4-12 SeCoRIP1
SeCoRIP’2 7-3-10 SeCoRIP2
SeCoRIP’3 11-2-7 SeCoRIP3
SeCoRIP’4 10-1-9 SeCoRIP4
SeCoRIP’5 8-3-9 SeCoRIP5

Table 5.8.: Win-Tie-Loss (Comparison of SeCoRIP and SeCoRIP’)

In table 5.8 we can see that most of the rule sets constructed by SeCoRIP’ are worse than those constructed
by SeCoRIP in the case of the postprocessing procedure with a low number of optimization iterations. This
situation will be changed when the number of optimization iterations is increased. The third and the fourth
rows in the table show that SeCoRIP’ can extract better rule sets from at least 10 data sets. This change
is also observable in figure 5.4. In this figure, the x-axis represents the number of optimization iterations
and the y-axis represents the average correctness, which is the mean value of the correctness on the 20
given data sets. At the x-axis optimizations = 1, the accuracy correctness for the original SeCoRIP is 87.56
while the second variant SeCoRIP’ gets only 87.00. The correctness difference between them is about 0.56.
With the increasing of the number of optimization iterations, this difference is reduced gradually. The
correctness difference is 0.48 at the x-axis optimizations = 2. Furthermore, at the x-axis optimizations =
3, SeCoRIP’ gets its best accuracy correctness 87.45 and the correctness difference at this point is only
0.09. This is a very good result for SeCoRIP’. However, the results of SeCoRIP’ are not consistent, because
the correctness difference is extended at the x-axis optimizations = 4 once again.

Figure 5.4.: Comparison of Average Correctness 2

On the other hand, the number of rules and conditions is also decreased when the relevant rule sets have
been optimized in the postprocessing phase of the SeCoRIP’ algorithm. The relevant experimental results
are given in table A.6. Based on this table, the average number of rules and the average number of condi-

57

tions in one rule are calculated. In table 5.9, it is shown that those optimized rule sets usually take 2 rules
less than the original rule sets. Moreover, the number of conditions in one rule is decreased by about 0.2.
These results are similar to that of the original SeCoRIP algorithm.

Algorithm Opt. AvgRules. AvgCond.
in one Rule

SeCoRIP’0 0 8.75 1.94
SeCoRIP’1 1 7,05 1.70
SeCoRIP’2 2 7.00 1.72
SeCoRIP’3 3 7.25 1.74
SeCoRIP’4 4 7.05 1.74
SeCoRIP’5 5 7.25 1.77

Table 5.9.: The Average Number of Rules and Conditions (SeCoRIP’)

Based on the comparison results mentioned above, the following conclusions can be made for the second
variant: Firstly, the postprocessing procedure with a simplified selection criterion still has the ability to
improve the correctness of the given rule sets. Moreover, the optimized rule sets usually contain fewer rules
and the number of conditions in each rule will be decreased as well. Secondly, not all the data sets that can
be processed well in SeCoRIP are also suitable for SeCoRIP’ (e.g. the data sets anneal, lymphography-data
and kr-vs-kp). Thirdly, SeCoRIP’ can not work as well as SeCoRIP, because the rule sets constructed by
SeCoRIP’ are often worse than those constructed by SeCoRIP. However, this difference can be reduced
with the increasing of the number of optimization iterations.

5.4.5 Convergence Properties of SeCoRIP

In this section, we discuss the convergence properties of the SeCoRIP algorithm for the increasing of the
number of optimization iterations. In order to collect more information, we execute SeCoRIPi on the 20
UCI data sets an extra five times (i.e. optimizations = i ∈ {6, 7, 8, 9, 10}) and the relevant experimental
results are presented in table A.7.

In Wikipedia, the definition of convergence is described as follows: "Convergence is the approach to-
ward a definite value, a definite point, a common view or opinion, or toward a fixed or equilibrium state"
[9]. In order to get a better understanding, we give a picture that shows a simple explanation of the
definition of convergence. In this figure, it is observed that those red points converge to a constant point
in the positive direction of the x-axis.

Figure 5.5.: A Picture of the Definition of Convergence [10]

58

According to the experimental results in table A.1 and A.7, we find that the changing trend of the cor-
rectness for the 20 UCI data sets are diverse. In order to make it easy for analyzing, the given data sets
are divided into several subgroups, in which the relevant data sets have a similar changing trend of the
correctness.

• Group A

Figure 5.6.: Group A

The first group contains the following data sets: breast-cancer-data, titanic and congress-voting-1984-
1. The feature of these data sets is that they only contain nominal attributes and the number of
nominal attributes is relatively small. It is interesting that the rule sets learned from these data
sets can never be improved in this experiment. Moreover, with the increasing of the number of opti-
mization iterations, the correctness of the relevant rule sets is gradually decreased and approaches a
constant value at the end. Actually, we can say that the postprocessing procedure of SeCoRIP has
a negative effect in such a case.

Figure 5.6 shows a representative sample of two interpolated lines that are constructed based on
the relevant data sets. In this figure, the maximal value of the line always appears at the start point
of the x-axis (i.e. optimizations = 0). On the other hand, it is shown that the points of the red
line converge to a constant point with the value 78.01 and the points of the blue line converge to a
constant point with the value 69.58. Note that the value of the constant point is actually not the
minimal value.

• Group B

The second group contains the following data sets: tic-tac-toe, cleveland-14-heart-disease, horse-colic-
data, hypothyroid, hepatitis-domain and congress-voting-1984. In this group, the relevant data sets
usually contain more nominal attributes than numeric ones. With the help of the postprocessing
procedure, it is confirmed that the rule sets learned from these data sets can be much improved. The
changing trend of the correctness in this group can be concluded as follows: With the increasing of
the number of optimization iterations, the correctness of the relevant rule sets is strongly increased
and then gradually decreased until it approaches a constant value. In such a case, it is suggested
that the number of optimization iterations should be limited to a smaller value.

Figure 5.7 shows a representative sample of two interpolated lines that are constructed based on

59

Figure 5.7.: Group B

the relevant data sets. In this figure, the maximal value of the line mainly appears at the x-axis
optimizations ∈ {1, 2}. On the other hand, it is shown that the points of the red line converge to a
constant point with the value 84.51 and the points of the blue line converge to a constant point with
the value 77.42.

• Group C

Figure 5.8.: Group C

The third group contains the following data sets: audiology, kr-vs-kp and sick-euthyroid. In this
group, the growth of the correctness is relatively stable and regular, which means that the rule sets
can be further improved when they have been optimized in the postprocessing procedure more times.
The changing trend of the correctness can be concluded as follows: With the increasing of the num-
ber of optimization iterations, the correctness of the relevant rule sets is gradually increased and
approaches a constant value at the end. In such a case, it is worthwhile increasing the number of
optimization iterations to get a better result.

Figure 5.8 shows a representative sample of two interpolated lines that are constructed based on
the relevant data sets. In this figure, the maximal value of the line mainly appears at the x-axis

60

optimizations ∈ {5, 6, 7}. On the other hand, it is shown that the points of the red line converge
to a constant point with the value 97.66 and the points of the blue line converge to a constant point
with the value 99.34.

• Group D

Figure 5.9.: Group D

The last group contains the remaining data sets: anneal, glass2-database, iris, wine and soybean.
The relevant data sets mentioned above usually contain more numeric attributes than nominal ones.
Moreover, the data sets that contain only numeric attributes are included as well. In this group, the
rule sets learned from these data sets can also be further improved when they have been optimized
in the postprocessing procedure more times. However, compared to the third group, the correctness
of the relevant rule sets is gradually increased without approaching a constant value. This means
that there is no signal of convergence to be found in such a case. Figure 5.9 shows a representative
sample of two interpolated lines that are constructed based on the relevant data sets. In this figure,
we cannot give the interval in which the maximal value mainly appears, because these two lines show
a upward trend in the interval [8, 10] on the axis.

61

6 Summary and Conclusions
In rule learning, rule sets learned from the data are used to classify the previously unseen examples of the
new data. In order to get a good rule set, most of the rule learning algorithms focus on how to learn a
rule from the data more effectively, while some other algorithms attempt to optimize the rule set after it
was learned. RIPPER is a popular algorithm which employs a special postprocessing procedure. The main
feature of this postprocessing procedure is that it enables the iterative optimization of rule sets. In this
thesis, we implemented this algorithm for analyzing the efficiency of the postprocessing procedure.

Based on our experimental results, it was confirmed that the postprocessing procedure of the RIPPER
algorithm can effectively improve the given rule set in most cases. Compared to the original rule set, the
optimized one can classify the examples of the testing set more accurately. The features of the optimized
rule set can be concluded as follows: Firstly, the size of the optimized rule set is always smaller than that
of the original one. Secondly, the number of conditions in each rule of the optimized rule set is decreased.
Accordingly, the coverage of the relevant rule is increased. Thirdly, for the entire optimized rule set, the
increment of the covered positive examples is usually more than the negative ones. According to the first
two points it is shown that the overfitting problem can be resolved well in the postprocessing procedure of
the RIPPER algorithm. However, the RIPPER algorithm also has a weakness. In our experiments it was
shown that the rule set learned from the data set containing only the nominal attributes cannot always be
processed well in the postprocessing procedure. Sometimes it is also possible that the optimized rule set
has a lower accuracy than the original one.

Secondly, two variants based on the original RIPPER algorithm are presented in this thesis. In the
first variant a new pruning method is used to construct a rule called abridgment in the postprocessing
procedure. In this pruning method, the conditions of a rule can be pruned regardless of their order
in the rule. Compared to the original pruning method, this new one enlarges the search space of the
given rule. However, it was confirmed that this method has no significant effect on the rule, which
contains too few conditions. Conversely, the postprocessing procedure with the new pruning method
can often get a better result than the original one, if the rules of the given rule set contain sufficient con-
ditions. In other words, the optimized rule set of the first variant can achieve higher accuracy in such a case.

In the second variant, the postprocessing procedure employs a simplified selection criterion in which
the original heuristic minimum description length is replaced with the heuristic accuracy. By compar-
ing the experimental results of these two algorithms, we find that the second variant can not work as well
as the original algorithm, especially when the postprocessing procedure takes a low number of optimization
iterations. The rule set constructed by this variant usually has lower accuracy. However, this difference
can be slightly reduced when the number of optimization iterations is increased. The another problem is
that not all the data sets that can be processed well in the original algorithm are also suitable for this
variant. Based on these comparison results, we confirmed that the heuristic minimum description length
is not easily replaceable, although its computing formula is relatively complex.

The last important result in this thesis is the convergence properties of the RIPPER algorithm. On
the one hand, with the increasing of the number of optimization iterations, the accuracy of the optimized
rule sets often converge to a definite value when the relevant rule sets are learned from the data sets
that contain more nominal attributes than numeric ones. Note that the definite value here is usually not
the maximum value obtained so far. On the other hand, the signal of convergence cannot obviously be

62

detected when the relevant rule sets are learned from the data sets that contain more numeric attributes
than nominal ones.

63

Bibliography
[1] D.J. Newman A. Asuncion. UCI machine learning repository, 2007.

[2] P. B. Brazdil, K. Konolige, Boston Kluwer, Pavel Brazdil Peter, and Peter Clark. Learning from
imperfect data. In in Machine Learning, Meta-Reasoning and Logics, P. Brazdil and K.Konolige (eds,
pages 207–232. Kluwer Academic Publishers, 1990.

[3] L. Breiman, J. Friedman, R. Olshen, and C. Stone. Classification and Regression Trees. Wadsworth
and Brooks, Monterey, CA, 1984.

[4] I. Bruha and F. Franek. Comparison of various routines for unknown attribute value processing:
Covering paradigm. Journal of Artificial Intelligence Research, 10:939–955, 1996.

[5] Ivan Bruha and A. Famili. Postprocessing in machine learning and data mining. SIGKDD Explor.
Newsl., 2(2):110–114, 2000.

[6] Clifford Brunk and Michael J. Pazzani. An investigation of noise-tolerant relational concept learning
algorithms. In ML, pages 389–393, 1991.

[7] William W. Cohen. Efficient pruning methods for separate-and-conquer rule. In In Proceedings of
the 13th International Joint Conference on Artificial Intelligence, pages 988–994. Morgan Kaufmann,
1993.

[8] William W. Cohen. Fast effective rule induction. In In Proceedings of the Twelfth International
Conference on Machine Learning, pages 115–123. Morgan Kaufmann, 1995.

[9] Convergence. Definition of convergence. http://en.wikipedia.org/wiki/Convergence. [Online;
accessed 1-October-2010].

[10] Convergence. A picture of the definition of convergence. http://www.maths.abdn.ac.uk/~igc/tch/
ma2001/notes/node18.html. [Online; accessed 1-October-2010].

[11] Oliver Dain, Robert Cunningham, and Stephen Boyer. Irep++, a faster rule learning algorithm.
In Michael W. Berry, Umeshwar Dayal, Chandrika Kamath, and David B. Skillicorn, editors, SDM.
SIAM, 2004.

[12] Thomas G. Dietterich and Ghulum Bakiri. Solving multiclass learning problems via error-correcting
output codes. Journal of Artificial Intelligence Research, 2:263–286, 1995.

[13] Philip J. Stone Earl B. Hunt, Janet Marin. Experiments in induction. Academic Press, New York,
1966.

[14] Johannes Fürnkranz. A tight integration of pruning and learning (extended abstract). In ECML ’95:
Proceedings of the 8th European Conference on Machine Learning, pages 291–294, London, UK, 1995.
Springer-Verlag.

[15] Johannes Fürnkranz. Separate-and-conquer rule learning. Artificial Intelligence Review, 13:3–54, 1999.

[16] Johannes Fürnkranz and Gerhard Widmer. Incremental reduced error pruning. In ICML, pages 70–77,
1994.

64

[17] Michael P. Georgeff and Chris S. Wallace. A general selection criterion for inductive inference. In
ECAI, pages 219–228, 1984.

[18] Randy Kerber. Chimerge: Discretization of numeric attributes. In AAAI, pages 123–128, 1992.

[19] Ron Kohavi. A study of cross-validation and bootstrap for accuracy estimation and model selection.
In IJCAI, pages 1137–1145, 1995.

[20] Ryszard S. Michalski. On the quasi-minimal solution of the general covering problem. 1969.

[21] Tom M. Mitchell. Machine Learning. McGraw-Hill, New York, 1997.

[22] Giulia Pagallo and David Haussler. Boolean feature discovery in empirical learning. Mach. Learn.,
5(1):71–99, 1990.

[23] J. R. Quinlan. Mdl and categorical theories (continued). In In Machine Learning: Proceedings of the
Twelfth International Conference, Lake Taho, pages 464–470. Morgan Kaufmann, 1995.

[24] J. R. Quinlan and Jack Mostow. Learning logical definitions from relations. In Machine Learning,
pages 239–266, 1990.

[25] J. Ross Quinlan. Induction of decision trees. Machine Learning, 1(1):81–106, 1986.

[26] J. Ross Quinlan. Generating production rules from decision trees. In IJCAI’87: Proceedings of the
10th international joint conference on Artificial intelligence, pages 304–307, San Francisco, CA, USA,
1987. Morgan Kaufmann Publishers Inc.

[27] J. Ross Quinlan. Simplifying decision trees. Int. J. Man-Mach. Stud., 27(3):221–234, 1987.

[28] J. Ross Quinlan. C4.5: Programs for Machine Learning (Morgan Kaufmann Series in Machine Learn-
ing). Morgan Kaufmann, 1 edition, January 1993.

[29] J. Rissanen. Modeling by shortest data description. Automatica, 14(5):465 – 471, 1978.

[30] Matthias Thiel. Separate and conquer framework und disjunktive regeln. Master’s thesis, TU Darm-
stadt, May 2005. Diplom.

[31] C. S. Wallace and D. M. Boulton. An information measure for classification. The Computer Journal,
11(2):185–194, 1968.

[32] Weka. Attribute-relation file format. http://weka.wikispaces.com/ARFF+%28book+version%29.
[Online; accessed 18-Mai-2010].

[33] Weka. Weka: Data mining software in java. http://www.cs.waikato.ac.nz/ml/weka/. [Online;
accessed 17-Juni-2010].

[34] Wikipedia. Decision tree learning. http://en.wikipedia.org/wiki/Decision_tree_learning. [On-
line; accessed 18-Mai-2010].

65

A Table

Name
Optimization Iterations

0 1 2 3 4 5

anneal 97.62 97.74 97.24 97.37 97.99 97.87

audiology 69.91 72.57 73.89 73.45 75.22 75.66

breast-cancer-data 73.08 73.08 72.38 71.68 70.98 69.58

cleveland-14-heart-disease 78.88 80.86 80.86 80.53 81.19 80.86

glass-database 64.95 67.29 68.69 69.16 70.56 67.29

glass2-database 74.85 79.14 79.75 79.14 79.75 80.37

hepatitis-domain 78.06 80 81.94 78.06 78.06 77.42

horse-colic-data 82.34 86.41 84.51 84.24 84.51 84.51

hypothyroid 99.05 99.18 99.21 99.18 99.18 99.18

iris 94.67 95.33 96 95.33 96 96

kr-vs-kp 98.84 98.84 99.06 99.19 99.25 99.31

lymphography-data 75.68 78.38 77.03 81.76 78.38 79.73

mushroom 100 100 100 100 100 100

sick-euthyroid 97.5 97.6 97.6 97.66 97.69 97.66

soybean 89.6 92.53 92.39 93.12 92.68 91.8

tic-tac-toe 96.97 97.39 97.39 97.29 97.39 96.97

titanic 78.33 78.19 78.19 78.19 78.19 77.87

congress-voting-1984-1 90.34 89.66 88.2 88.97 89.43 89.43

congress-voting-1984 94.94 95.4 95.4 95.4 95.4 95.4

wine 88.2 91.57 91.57 91.01 91.01 92.13

Table A.1.: SeCoRIP on 20 UCI Data Sets

66

Name
Optimization Iterations

0 1 2 3 4 5

anneal 97.55 97.7 97.67 97.72 97.95 97.92

audiology 70.1 71.47 73.62 73.92 73.93 73.56

breast-cancer-data 72.18 72.13 71.45 71.04 70.86 70.89

cleveland-14-heart-disease 78.41 79.27 79.26 79 79.1 78.97

glass-database 64.25 65.57 66.29 66.72 68.18 67.24

glass2-database 76.88 78.5 79.35 80.55 81.09 81.04

hepatitis-domain 77.55 78.77 78.71 78.29 78.65 78.12

horse-colic-data 84.02 85.73 85.32 85.26 85.26 85.21

hypothyroid 99.08 99.17 99.15 99.14 99.11 99.1

iris 92.4 93.47 93.93 93.73 94.07 94.27

kr-vs-kp 98.9 99.11 99.21 99.28 99.31 99.31

lymphography-data 75.75 77.64 76.17 77.19 75.63 76.4

mushroom 99.99 100 100 100 100 100

sick-euthyroid 97.4 97.59 97.6 97.64 97.65 97.65

soybean 90.31 91.43 91.77 92.02 91.81 92.04

tic-tac-toe 97.23 97.66 97.55 97.46 97.33 97.29

titanic 78.33 78.06 78.01 78.02 78.04 78.01

congress-voting-1984-1 89.61 89.47 89.47 89.58 89.42 89.54

congress-voting-1984 95.54 95.72 95.75 95.75 95.75 95.75

wine 91.46 92.44 93.14 92.75 93.1 93.42

Table A.2.: JRIP on 20 UCI Data Sets

67

N
am

e
O

pt
im

iz
at

io
n

It
er

at
io

ns
0

1
2

3
4

5
R

ul
es

C
on

d.
R

ul
es

C
on

d.
R

ul
es

C
on

d.
R

ul
es

C
on

d.
R

ul
es

C
on

d.
R

ul
es

C
on

d.

an
ne

al
9

13
9

14
10

16
9

14
7

9
7

8
au

di
ol

og
y

21
40

17
25

18
32

18
27

20
33

21
38

br
ea

st
-c

an
ce

r-
da

ta
4

5
2

1
3

4
3

4
3

4
3

4
cl

ev
el

an
d-

14
-h

ea
rt

-d
ise

as
e

8
21

3
5

3
4

3
4

3
4

3
4

gl
as

s-
da

ta
ba

se
16

39
10

23
8

17
8

15
8

17
8

16
gl

as
s2

-d
at

ab
as

e
6

9
4

5
4

5
4

5
4

5
4

5
he

pa
tit

is-
do

m
ai

n
3

5
2

2
2

2
2

2
2

2
2

2
ho

rs
e-

co
lic

-d
at

a
2

2
3

4
3

4
3

4
3

4
4

6
hy

po
th

yr
oi

d
4

8
2

2
2

2
3

6
3

6
3

6
iri

s
3

3
3

3
3

2
3

3
3

3
3

3
kr

-v
s-

kp
17

56
17

51
17

51
18

53
18

54
18

54
ly

m
ph

og
ra

ph
y-

da
ta

9
15

8
11

7
12

7
10

8
12

6
9

m
us

hr
oo

m
9

12
9

12
9

12
9

12
9

12
9

12
sic

k-
eu

th
yr

oi
d

8
28

7
21

5
14

6
19

6
18

6
17

so
yb

ea
n

29
54

26
47

26
48

27
55

29
55

28
54

tic
-t

ac
-t

oe
10

28
10

28
9

24
9

24
9

24
9

24
tit

an
ic

4
6

4
6

4
6

4
6

4
6

4
6

co
ng

re
ss

-v
ot

in
g-

19
84

-1
6

20
4

9
5

13
5

13
5

13
5

13
co

ng
re

ss
-v

ot
in

g-
19

84
4

7
4

6
4

6
4

6
4

6
4

6
w

in
e

3
3

3
4

3
4

3
4

3
4

3
4

Ta
bl

e
A.

3.
:T

he
Nu

m
be

ro
fR

ul
es

an
d

Co
nd

iti
on

s
(S

eC
oR

IP
)

68

Name
Optimization Iterations

0 1 2 3 4 5

anneal 97.62 97.74 97.24 97.37 97.99 97.87

audiology 69.91 72.57 74.34 73.45 73.89 75.66

breast-cancer-data 73.08 73.08 72.38 71.68 70.98 69.58

cleveland-14-heart-disease 78.88 79.21 79.87 79.54 80.53 80.2

glass-database 64.95 67.29 68.69 69.16 70.56 67.29

glass2-database 74.85 79.14 79.75 79.14 79.75 80.37

hepatitis-domain 78.06 80 80 76.77 78.06 77.42

horse-colic-data 82.34 86.41 84.51 84.24 84.51 84.51

hypothyroid 99.05 99.18 99.21 99.18 99.18 99.18

iris 94.67 95.33 96 95.33 96 96

kr-vs-kp 98.84 99.06 99.19 99.31 99.37 99.41

lymphography-data 75.68 77.03 77.03 79.05 77.7 79.05

mushroom 100 100 100 100 100 100

sick-euthyroid 97.5 97.69 97.69 97.69 97.72 97.57

soybean 89.6 92.53 92.39 93.12 92.68 91.8

tic-tac-toe 96.97 97.18 97.08 96.87 96.97 96.66

titanic 78.33 77.87 77.87 77.87 77.87 77.87

congress-voting-1984-1 90.34 88.74 88.74 88.74 88.74 88.74

congress-voting-1984 94.94 95.4 95.4 95.4 95.4 95.4

wine 88.2 91.57 91.57 91.01 91.01 92.13

Table A.4.: Results of 1. Variant (Abridgment)

69

Name
Optimization Iterations

0 1 2 3 4 5

anneal 97.62 97.24 97.49 97.49 97.12 97.74

audiology 69.91 70.35 72.57 72.57 71.24 74.34

breast-cancer-data 73.08 74.48 73.08 73.08 73.08 72.38

cleveland-14-heart-disease 78.88 79.54 79.21 79.21 78.22 78.22

glass-database 64.95 64.02 70.56 67.29 69.16 67.29

glass2-database 74.85 79.14 79.75 82.21 80.37 80.98

hepatitis-domain 78.06 80 78.06 78.71 78.71 78.06

horse-colic-data 82.34 85.05 84.24 84.51 83.97 83.7

hypothyroid 99.05 99.11 99.18 99.21 99.21 99.21

iris 94.67 95.33 96 95.33 96.67 95.33

kr-vs-kp 98.84 98.81 98.62 98.44 98.12 98.19

lymphography-data 75.68 75 71.62 77.03 75 75.68

mushroom 100 100 100 100 100 100

sick-euthyroid 97.5 97.41 97.66 97.72 97.72 97.66

soybean 89.6 91.95 91.8 92.53 92.09 91.65

tic-tac-toe 96.97 97.91 97.49 97.49 97.6 97.49

titanic 78.33 78.06 77.56 77.56 77.6 77.28

congress-voting-1984-1 90.34 89.89 88.28 89.66 89.66 90.11

congress-voting-1984 94.94 95.63 95.63 95.63 95.63 95.63

wine 88.2 91.01 93.82 93.26 93.82 93.82

Table A.5.: Results of 2. Variant (Accuracy)

70

N
am

e
O

pt
im

iz
at

io
n

It
er

at
io

ns
0

1
2

3
4

5
R

ul
es

C
on

d.
R

ul
es

C
on

d.
R

ul
es

C
on

d.
R

ul
es

C
on

d.
R

ul
es

C
on

d.
R

ul
es

C
on

d.

an
ne

al
9

13
7

8
9

14
8

12
7

9
8

11
au

di
ol

og
y

21
40

17
25

20
37

20
36

21
39

20
38

br
ea

st
-c

an
ce

r-
da

ta
4

5
3

6
2

2
4

6
3

4
3

4
cl

ev
el

an
d-

14
-h

ea
rt

-d
ise

as
8

21
3

5
4

8
4

8
4

8
4

8
gl

as
s-

da
ta

ba
se

16
39

9
21

9
26

9
22

7
14

9
21

gl
as

s2
-d

at
ab

as
e

6
9

4
5

4
6

4
6

4
6

4
6

he
pa

tit
is-

do
m

ai
n

3
5

3
5

3
5

3
6

3
6

3
6

ho
rs

e-
co

lic
-d

at
a

2
2

3
4

3
4

3
4

3
4

4
6

hy
po

th
yr

oi
d

4
8

2
2

2
2

3
6

3
6

3
6

iri
s

3
3

3
3

3
3

3
3

3
3

3
3

kr
-v

s-
kp

17
56

15
41

14
38

14
39

14
38

14
37

ly
m

ph
og

ra
ph

y-
da

ta
9

15
7

10
6

10
8

14
7

12
7

12
m

us
hr

oo
m

9
12

9
12

9
12

9
12

9
12

9
12

sic
k-

eu
th

yr
oi

d
8

28
7

25
5

15
4

10
4

11
4

11
so

yb
ea

n
29

54
26

48
25

48
29

62
27

52
29

61
tic

-t
ac

-t
oe

10
28

10
28

9
24

9
24

9
24

9
24

tit
an

ic
4

6
4

6
4

5
2

1
3

3
3

3
co

ng
re

ss
-v

ot
in

g-
19

84
-1

6
20

3
5

4
9

4
9

5
13

4
10

co
ng

re
ss

-v
ot

in
g-

19
84

4
7

3
3

2
1

2
1

2
1

2
1

w
in

e
3

3
3

4
3

4
3

4
3

4
3

4

Ta
bl

e
A.

6.
:T

he
Nu

m
be

ro
fR

ul
es

an
d

Co
nd

iti
on

s
(S

eC
oR

IP
’)

71

Name
Optimization Iterations

6 7 8 9 10

anneal 97.87 97.49 97.37 97.62 97.87

audiology 76.99 74.78 75.22 73.89 74.78

breast-cancer-data 69.58 69.58 69.58 69.58 69.58

cleveland-14-heart-disease 79.87 80.2 80.2 80.2 80.2

glass-database 64.95 66.82 63.55 67.76 69.16

glass2-database 79.14 79.14 79.14 80.98 80.98

hepatitis-domain 76.77 77.42 77.42 77.42 77.42

horse-colic-data 84.51 84.51 84.24 84.51 84.51

hypothyroid 99.18 99.18 99.18 99.18 99.15

iris 96 96.67 96.67 97.33 96.67

kr-vs-kp 99.34 99.31 99.34 99.34 99.28

lymphography-data 75.68 73.65 75.68 80.41 79.73

mushroom 100 100 100 100 100

sick-euthyroid 97.72 97.69 97.66 97.66 97.62

soybean 92.68 92.97 93.12 93.41 92.68

tic-tac-toe 96.76 96.76 96.97 96.97 97.18

titanic 77.87 78.01 78.01 78.01 78.01

congress-voting-1984-1 88.74 88.74 88.74 88.74 88.74

congress-voting-1984 95.4 95.4 94.71 95.4 95.4

wine 92.13 92.7 93.82 94.38 93.82

Table A.7.: SeCoRIP on 20 UCI Data Sets (Part 2)

72

