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Abstract

The primary goal of the research reported in this paper is to identify what crite-
ria are responsible for the good performance of a heuristic rule evaluation function
in a greedy top-down covering algorithm. We first argue that search heuristics
for inductive rule learning algorithms typically trade off consistency and cover-
age, and we investigate this trade-off by determining optimal parameter settings
for five different parametrized heuristics. In order to avoid biasing our study by
known functional families, we also investigate the potential of using metalearning
for obtaining alternative rule learning heuristics. The key results of this experi-
mental study are not only practical default values for commonly used heuristics
and a broad comparative evaluation of known and novel rule learning heuristics,
but we also gain theoretical insights into factors that are responsible for a good
performance. For example, we observe that consistency should be weighted more
heavily than coverage, presumably because a lack of coverage can later be cor-
rected by learning additional rules.

1 Introduction
The long-term goal of our research is to understand the properties of rule learning
heuristics, that will allow them to perform well in a wide variety of datasets. Although
different classification rule learning algorithms use different heuristics, there has not
been much work on trying to characterize their behavior. Notable exceptions include
(Lavrač et al., 1999), which proposed weighted relative accuracy as a novel heuristic,
and (Fürnkranz and Flach, 2005), in which a wide variety of rule evaluation metrics
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were analyzed and compared by visualizing their behavior in ROC space. There are
also some works on comparing properties of association rule evaluation measures (e.g.,
Tan, Kumar, and Srivastava 2002) but these have different requirements than classifi-
cation rules (e.g., completeness is not an issue there).

In this paper, we will try to approach this problem empirically. We will first empir-
ically compare and analyze a number of known rule learning heuristics. Rule learning
heuristics, in one way or another, trade off consistency and coverage. On the one hand,
rules should be as consistent as possible by only covering a small percentage of nega-
tive examples. On the other hand, rules with a high coverage tend to be more reliable,
even though they might be less precise on the training examples than alternative rules
with lower coverage. An increase in coverage of a rule typically goes hand-in-hand
with a decrease in consistency, and vice versa. In fact, the conventional top-down
hill-climbing search for single rules follows exactly this principle: starting with the
empty rule, conditions are greedily added, thereby decreasing coverage but increasing
consistency.

In this work, we will show that five well-known rule evaluation metrics (a cost
trade-off, a relative cost trade-off, the m-estimate, the F -measure, and the Klösgen
measures) provide parameters that allow to control this trade-off. In an extensive ex-
perimental study – to our knowledge the largest empirical comparison of rule learning
heuristics to date – we aimed at determining optimal values for each of their respective
parameters. We will compare these settings to standard heuristics and show that the
new settings outperform the fixed consistency/coverage trade-offs that are commonly
used as rule learning heuristics. By testing the performance of the optimized heuristics
on an additional selection of datasets not used for optimization, we will ensure that this
performance gain is not due to overfitting the training datasets.

However, optimizing parameters constrains the candidate heuristics to known func-
tional shapes. Consequently, we will then try to leave these constraints behind and try
to discover entirely new heuristics. The key idea is to meta-learn such a heuristic
from experience, without a bias towards existing measures. Consequently, we created
a large meta dataset (containing information from which we assume that the “true”
performance of a rule can be learned) and use various regression methods to learn to
predict this performance. On this dataset, we learn an evaluation function and use it as
a search heuristic inside our implementation of a simple rule learner. We report on the
results of our experiments with various options for generating the meta datasets, with
different feature sets and different metalearning algorithms. In particular, we try to
evaluate the importance of rule length as an additional feature and consider a delayed-
reward scenario where the learner tries to predict the performance of the completed
rule from its incomplete current state in the search space.

The paper is organized as follows: we start with a brief recapitulation of separate-
and-conquer learning and describe our simple ruler learner, which is used for generat-
ing the meta data and for evaluating the learned heuristics (Section 2). Section 3 then
provides a survey of the heuristics that are experimentally compared in this paper. In
this section, we also briefly recapitulate the use of coverage space isometrics for vi-
sualizing the preference structure of rule learning heuristics. After a brief description
of the experimental setup that will be used throughout the paper (Section 4), the main
part of the paper describes our experimental work in optimizing known heuristics (Sec-
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tion 5) and metalearning new heuristics (Section 6). We put the results in perspective
by discussing which problems need to be addressed via rule learning heuristics, and
which of them are addressed in this work (Section 7). The paper is wrapped up with
a brief discussion of related work (Section 8) and a summary of the most important
conclusions drawn from this study (Section 9).

Parts of this paper have previously appeared in (Janssen and Fürnkranz, 2008) and
(Janssen and Fürnkranz, 2007).

2 Separate-and-Conquer Rule Learning
The goal of an inductive rule learning algorithm is to automatically learn a ruleset from
a given dataset that allows to map unseen examples on their correct classes. Algorithms
differ in the way they learn individual rules, but most of them employ a separate-and-
conquer or covering strategy for combining rules into a rule set (Fürnkranz, 1999). The
origin of this strategy is the AQ-Algorithm (Michalski, 1969) but it is still used in many
algorithms, most notably in Ripper (Cohen, 1995), arguably one of the most accurate
rule learning algorithms today.

2.1 The Basic Algorithm
Separate-and-conquer rule learning can be divided into two main steps: First, a single
rule is learned from the data (the conquer step). Then all examples which are covered
by the learned rule are removed from the training set (the separate step), and the re-
maining examples are “conquered”. The two steps are iterated until no more positive
examples are left. In the simplest version, this ensures that every positive example is
covered at least by one rule (completeness) and no negative example is included (con-
sistency). More complex versions of the algorithm will allow certain degrees of in-
completeness (leaving some examples uncovered) and inconsistencies (covering some
negative examples). In the remainder of the paper, we will use the terms completeness
and consistency to denote these gradual concepts.

For the purpose of this empirical study, we implemented a simple separate-and-
conquer or covering rule learning algorithm within the SeCo-Framework, a modu-
lar architecture for rule learning, which is currently under development at our group
(Fürnkranz, 1999; Thiel, 2005). Both the covering algorithm and the top-down refine-
ment inside the covering loop are fairly standard. However, covering algorithms often
differ in details, so we believe it is worth-while to specify exactly how we proceeded.

Algorithm 1 shows the basic covering loop. It repeatedly learns one rule by calling
GREEDYTOPDOWN, removes all examples covered by this rule from the training set,
and adds the rule to the final theory. This is repeated until no more positive examples
are left or until adding the best learned rule would not increase the accuracy of the
rule set on the training set (which is the case when the rule covers more negative than
positive examples).

Algorithm 2 shows the basic algorithm for learning a single rule with greedy top-
down search. The algorithm starts with an initially empty rule (a rule that covers all
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Algorithm 1 SEPARATEANDCONQUER(Examples)
# loop until all positive examples are covered
Theory← ∅
while POSITIVE(Examples) 6= ∅

# find the best rule
Rule← GREEDYTOPDOWN(Examples)

# stop if it doesn’t cover more positives than negatives
if |COVERED(Rule, POSITIVE(Examples))|
≤ |COVERED(Rule, NEGATIVE(Examples))|
break

# remember rule and remove covered examples
Theory← Theory ∪ Rule
Examples← Examples \ COVERED(Rule,Examples)

return Theory

examples). The rule is successively refined by adding conditions to its body. Condi-
tions are either tests for equality with a specific value of a discrete attribute, or, in the
case of a continuous attribute, a comparison (< or ≥) with a threshold value (half-way
between two adjacent values of the training data). All candidate refinements are evalu-
ated with a heuristic EVALUATERULE, and the best refinement is stored in MaxRule. It
is then checked whether MaxRule is better than the current best rule, and the procedure
recursively continues with the refinements of MaxRule. If no further refinements are
possible, the search stops and the best rule encountered during the search is returned.

Our implementation of the algorithm made use of a few optimizations that are not
shown in Algorithm 2. Among them are stopping the refinement process when no
more negative examples are covered, random tie breaking for rules with equal heuristic
evaluations, and filtering out candidate rules that do not cover any positive examples
(this may make a huge difference in the number of rules generated for the accuracy
heuristic). To speed up the implementation, we also stop searching the refinements of
a rule if its best possible refinement – the virtual rule that covers all remaining positive
examples and none of the remaining negative examples – has a lower evaluation than
the current best rule.

The algorithm shown here only works for concept learning problems with positive
and negative training examples. Multi-class problems are tackled using the ordered
class binarization that has been suggested for the Ripper rule learner (Cohen, 1995):
First, the classes are sorted according to ascending frequency of occurrence in the
training data. Then the algorithm successively learns rules for the i-th class, using the
examples of this class as the positive examples and the examples of all classes j > i as
the negative examples. Covered examples are removed from the training set. No rules
are learned for the final, the largest class, but instead a default rule is added that always
predicts this class when no other rule fires. At classification time, the learned rules are
interpreted as a decision list, i.e., the class of the first rule that fires is predicted.
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Algorithm 2 GREEDYTOPDOWN(Examples)
# remember the rule with the best evaluation
BestRule← MaxRule← null
BestEval← EVALUATERULE(BestRule,Examples)

do
# compute refinements of the best previous rule
Refinements← REFINEMENTS(MaxRule)

# find the best refinement
MaxEval← −∞
for Rule ∈ Refinements

Eval← EVALUATERULE(Rule,Examples)
if Eval > MaxEval

MaxRule← Rule
MaxEval← Eval

# store the rule if we have a new best
if MaxEval ≥ BestEval

BestRule← MaxRule
BestEval← MaxEval

# break loop when no more refinements
until Refinements = ∅
return BestRule

2.2 Discussion of the Algorithm
We want to stress that our algorithm is quite typical for commonly used covering al-
gorithms. In particular, it is more or less identical to the second version of the popular
CN2 (Clark and Boswell, 1991) algorithm. The main difference lies in the class bina-
rization. CN2 can be used in two different modes: an unordered mode, which learns
rules for each class, always using all other classes as the negative examples, and a
decision-list mode, which is able to learn rule lists with arbitrary class assignments.
For example the first rule may predict the first class, the second one the second class
and the third one again the first class. While the ordered class binarization used in our
implementation also learns decision lists, they are less flexible in that the order of the
classes in the list is fixed and rules of different classes may not alternate. Other dif-
ferences include that CN2 is not able to handle missing class values, and that it uses
a beam search with beam width 5 by default (our implementation uses Hill-Climbing
search, i.e., the beam is set to 1). CN2 also employs rule filtering, which removes
redundant rules and is not used in our algorithm.

Because we wanted to gain a principled understanding of what constitutes a good
evaluation metric for inductive rule learning, we did not employ explicit stopping cri-
teria or pruning techniques for overfitting avoidance, but solely relied on the evaluation
of the rules by the used rule learning heuristic. Note, however, that this does not nec-
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essarily mean that we learn an overfitting theory that is complete and consistent on the
training data (i.e., a theory that covers all positive and no negative examples), because
many heuristics will prefer impure rules with a high coverage over pure rules with a
lower coverage. This was already noted by the authors of CN2, who observed that the
importance of its rule significance test greatly diminished when Laplace is used as a
search heuristic because, compared to entropy, it tends to favor general rules anyways
(Clark and Boswell, 1991). In fact, in the README file to the implementation of the
algorithm, one can read that the Laplace heuristic of the second version directly tries
to estimate what the combination of entropy and significance test indirectly estimated,
namely the expected performance of a rule on new test data, and that thus the Laplace
heuristic is intended to replace both, the original entropy heuristic and the significance
test. In our version of the algorithm, the choice of the learning heuristic is an additional
parameter, and in the following, we will try to understand what would constitute a good
choice for it.

Our algorithm is also quite similar to the Foil (Quinlan, 1990) algorithm, which
forms the basis of many rule learning algorithms, most notably Ripper (Cohen, 1995).
The key difference here is that Foil-based algorithms do not evaluate refinements on
an absolute scale, but relative to their respective predecessors, i.e., they focus on the
gain that a rule obtains in comparison to its predecessor. While this is a reasonable ap-
proach, gain-based algorithms can not directly compare the evaluation of two rules with
different predecessors, and are therefore not able to identify the best rule encountered
during the search. Instead, they always return the last rule searched. Thus, their perfor-
mance crucially depends on the availability of a pruning heuristic or a stopping crite-
rion, which determines when the refinement process should stop. Foil uses a heuristic
based on minimal description length for this purpose (Quinlan, 1990; Fürnkranz and
Flach, 2004), whereas Ripper employs the incremental reduced error pruning tech-
nique, which prunes each rule after it has been learned (Fürnkranz and Widmer, 1994;
Fürnkranz, 1997). On the other hand, algorithms of the type shown in Algorithm 2
do not necessarily return the last rule searched, but the rule with the highest evalua-
tion encountered during the search. In this case, a stopping heuristic assumes the role
of a filtering criterion, which filters out unpromising candidates, but does not directly
influence the choice of the best rule (Clark and Boswell, 1991). Because of this de-
pendency on stopping criteria, we do not further consider gain-based heuristics in this
paper. However, we note that an empirical study comparing gain-based to absolute
heuristics is an open research question.

3 Rule Learning Heuristics
The goal of a rule learning algorithm is to find a simple set of rules that explains the
training data and generalizes well to unseen data. This means that individual rules have
to optimize two criteria simultaneously:

Coverage: the number of positive examples that are covered by the rule should be
maximized and
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Consistency: the number of negative examples that are covered by the rule should be
minimized.

Thus, each rule can be characterized by

• p and n ≡ the positive/negative examples covered by the rule

• P and N ≡ the total number of positive/negative examples in the training set

Consequently, most rule learning heuristics depend on p, n, P , andN , but combine
these values in different ways.

A few heuristics also include other parameters, such as

• l ≡ the length of the rule and

• p′ and n′ ≡ the number of positive and negative examples that are covered by
the rule’s predecessor.

Later on in this paper, we will evaluate the utility of taking the rule’s length into
account (cf. Section 6.2.2). However, as our goal is to evaluate a rule irrespective of
how it has been learned, we will not consider the parameters p′ and n′. Heuristics like
Foil’s information gain (Quinlan, 1996), which include p′ and n′, may yield different
evaluations for the same rule, depending on the order in which its conditions have
been added to the rule body. Moreover, as discussed above (Section 2.2), rules with
different predecessors are not comparable, and thus it is not possible to return the best
rule encountered in a search. We will not further consider heuristics of this type in this
paper.

As P andN are constant for a given dataset, heuristics differ effectively only in the
way they trade off completeness (maximizing p) and consistency (minimizing n). Thus
they may be viewed as functions h(p, n). We will denote rule evaluation heuristics by
the letter h with a subscript to differentiate between them. As all heuristics depend
only on the number of covered positive and negative examples, they are unable to dis-
criminate between rules that cover the same number of positive and negative examples.
So it follows from the first observation that h (Ri) ≡ h (ni, pi) holds for all rules Ri.
Resulting from the second observation it is obvious thatR1 6= R2 9 h (R1) 6= h (R2).

In the following, we will survey the heuristics that will be investigated in this paper.
Most (but not all) of these heuristics have already been discussed by Fürnkranz and
Flach (2005), so we will keep the discussion short. We discriminate between basic
heuristics (Section 3.2), which primarily focus on one aspect, composite heuristics
(Section 3.3), which provide a fixed trade-off between consistency and coverage, and
parametrized heuristics (Section 3.4), which provide a parameter that allows to tune
this trade-off. However, first we will briefly recapitulate coverage spaces, which will
be our primary means of visualizing the behavior of the investigated heuristics.

3.1 Visualization with Coverage Space Isometrics
Fürnkranz and Flach (2005) suggested to visualize the behavior of rule learning heuris-
tics by plotting their isometrics in coverage space, an un-normalized version of ROC-
space. Unlike ROC-spaces, the coverage space plots p (the absolute number of covered
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Figure 1: Isometrics in 2-d and 3-d coverage space

positive examples) on the y-axis and n (the absolute number of covered negatives) on
the x-axis. For example the point (0, 0) represents the empty theory where no example
is covered at all. A good algorithm should navigate the learning process in the direc-
tion of the point (0, P ), which represents the optimal theory that covers all positive
examples and no negatives. The point (N, 0) represents the opposite theory, and the
universal theory, covering all P positive andN negative examples, is located at (N,P ).

We can also represent individual rules Ri by a point (ni, pi) where ni ∈ N are the
covered negative examples and pi ∈ P are the covered positives. Isometrics connect
rulesR1, ..., Rm which have an identical heuristic value but cover different numbers of
examples. The preference bias of different heuristics may then be visualized by plot-
ting the respective heuristic values of the rules on top of their locations in coverage
space, resulting in a 3-dimensional (3-d) plot (p, n, h(p, n)) (right picture of Figure 1).
A good way to view this graph in two dimensions is to plot the isometrics of the learn-
ing heuristics, i.e., to show contour lines that connect rules with identical heuristic
evaluation values. Figure 1 shows examples of a 2-d and 3-d coverage space that both
contain isometrics of accuracy (p − n). The left one shows the respective values as-
signed by the heuristic as numbers attached to the contour lines whereas the right one
shows them as a 3-d surface. The rules R1 (covering 15 negatives and 25 positives)
and R2 (n = 25, p = 35) both have an accuracy of 10 and therefore lie on the same
isometric. For visualization, one is primarily interested in the shape of the isometrics.
Thus, we will typically omit the evaluation value from the graph and prefer the 2-d
plots.

3.2 Basic Heuristics
These heuristics are rather simple and do either optimize consistency or coverage on
its own.

• true positive rate (recall) htpr = hrec =
p
P

computes the coverage on the positive examples only. It is – on its own – equivalent to
simply using p (because P is constant). Due to its independence of covered negative
examples, its isometrics are parallel horizontal lines.
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• false positive rate hfpr =
n
N

computes the coverage on the negative examples only. Its isometrics are parallel verti-
cal lines.

• full coverage hcov =
p+n
P+N

computes the fraction of all covered examples. The maximum heuristic value is reached
by the universal theory, which covers all examples (the point (N,P ) of the coverage
space). The isometrics are parallel lines with a slope of −1 (similar to those of the
lower right graph in Figure 3).

3.3 Composite Heuristics
The heuristics shown in the previous section only optimize one of the two criteria,
consistency or coverage. In this section, we will discuss a few standard heuristics that
provide a fixed trade-off between consistency and coverage.

• precision hprec =
p

p+n

computes the fraction of correctly classified examples (p) among all covered examples
(p+n). Its isometrics are rotating around the origin. Precision is known to learn overly
complex rules, as will also become obvious from the results shown in the Tables 2
and 3). More precisely, for rules with high consistency, coverage becomes less and
less important. All rules with maximum consistency (hprec = 1.0) are considered to
be equal, irrespective of their coverage. This can be seen nicely from the isometric
structure, where the slopes of the isometrics become steeper and steeper when they
approach the P -axis, which by itself forms the isometric for the maximum consistency
case. The inverse behavior (preferring coverage over consistency for regions with high
coverage) can also be observed near the N -axis, but this region is not interesting for
practical rule learning systems.

• Laplace hLap = p+1
p+n+2

is an attempt to alleviate the overfitting behavior of hprec by initializing the counts for
p and n with 1, thereby effectively moving the rotation point of precision to (−1,−1)
in the coverage space. It is used in the CN2-algorithm (Clark and Niblett, 1989). How-
ever, it is known that the Laplace heuristic will still lead to serious overfitting if used
without appropriate pruning heuristics. Thus, it also places too strong emphasis on
consistency over coverage.

• accuracy hacc = p− n

computes the percentage (p+(N−n))/(P+N) of correctly classified examples among all
training examples. As P and N are typically constant for the evaluation of a set of
candidate rules, this is equivalent to the simpler p−n. Its isometrics in coverage space
are parallel lines with a slope of 1 (45 degrees) as depicted in Figure 1. Accuracy has
been used as a pruning criterion in I-REP (Fürnkranz and Widmer, 1994), and (with
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a penalty on rule length) as a selection criterion in Progol (Muggleton, 1995). We
will see later in this paper that this measure over-generalizes, i.e., it places too strong
emphasis on coverage.

• weighted relative accuracy (WRA) hWRA = htpr − hfpr

computes the difference between the true positive rate and the false positive rate. The
basic idea of weighted relative accuracy (Lavrač et al., 1999) is to compute accuracy
on a normalized distribution of positive and negative examples. As a result, the lines of
the isometrics are now parallel to the diagonal of the coverage space instead of those
of hacc which have a slope of 1 (cf. upper right graph of Figure 3). The measure
has been successfully used in subgroup discovery (Lavrač et al., 2004). However, for
inductive rule learning, the experimental evidence of (Todorovski et al., 2000), which
is consistent with our own experience presented later in this paper, suggests that this
measure has a tendency to overgeneralize.

• correlation hcorr =
pN−nP√

P ·N ·(p+n)·(P−p+N−n)

computes the correlation coefficient between the predicted and the target labels. Like
hWRA, its isometrics are symmetrical around the diagonal, but their ends are bended
towards the (0, 0) and (N,P ) points. The measure has exhibited a very good perfor-
mance in the inductive rule learning algorithm Fossil (Fürnkranz, 1994) (where it was
formulated as a Foil-type gain heuristic, i.e., p′ and n′ were used instead of P and N ),
and has been frequently used in association rule and subgroup discovery (Brin et al.,
1997; Xiong et al., 2004).

3.4 Parametrized Heuristics
Although the measures discussed in the previous section aim at trading off consistency
and coverage, they implement a fixed trade-off, which, as experience shows, is not
optimal, e.g., it often unduly prefersconsistency or coverage. In this section, we will
discuss five heuristics that allow to tune this trade-off with a parameter. We will start
with two cost measures, which directly trade off absolute or relative positive and neg-
ative coverage. Thereafter, we will see three measures that use hprec for optimizing
consistency, but use different measures (hrec, hWRA, hcov) for optimizing coverage.

• cost measure hc = c · p− (1− c) · n

allows to directly trade off consistency and coverage with a parameter c. c = 0 only
considers consistency, c = 1 only coverage. If c = 1/2, the resulting heuristic is
equivalent to hacc. The isometrics of this heuristics are parallel lines, with a slope of
(1− c)/c.

• relative cost measure hcr = cr · htpr − (1− cr) · hfpr

trades off the true positive rate and the false positive rate. This heuristic is quite similar
to hc. In fact, for any particular dataset, the cost measure and the relative cost measure
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Figure 2: General behavior of the F -Measure

are equivalent if cr = P
P+N · c. However, the performance of fixed values of c and

cr over a wide variety of datasets with different class distributions will differ. Clearly,
setting cr = 1/2 implements hWRA.

• F -measure hF =
(β2+1)·hprec·hrec

β2·hprec+hrec

The F -measure (Salton and McGill, 1986) has its origin in Information Retrieval and
trades off the basic heuristics hprec and hrec. Its isometrics are illustrated in Figure 2.
Basically, the isometrics are identical to those of precision, with the exception that
the rotation point does not originate in (0, 0) but in a point (−g, 0), where g depends
on the choice of β. If β → 0, the origin moves towards (0, 0), and the isometrics
correspond to those of hprec. The more the parameter is increased the more the origin
of the isometrics is shifted in the direction of the negativeN -axis. The observable effect
is that the lines in the isometrics becomes flatter and flatter. Conversely if β →∞ the
resulting isometrics approach those of hrec which are horizontal parallel lines.

• m-estimate hm =
p+m· P

P+N

p+n+m

The idea of this parametrized heuristic (Cestnik, 1990) is to presume that a rule cov-
ers m training examples a priori, maintaining the distribution of the examples in the
training set (m · P/(P+N) examples are positive). For m = 2 and assuming an equal
example distribution (P = N ), we get hLap as a special case.

If we inspect the isometrics in relation to the different parameter settings, we ob-
serve a similar behavior as discussed above for the F -measure, except that now the
origin of the turning point does not move on the N -axis, but it is shifted in the direc-
tion of the negative diagonal of the coverage space (cf. Fürnkranz and Flach 2005,
for an illustration). m = 0 corresponds to precision, and for m → ∞ the isometrics
become increasingly parallel to the diagonal of the coverage space, i.e., they approach
the isometrics of hWRA. Thus, the m-estimate trades off hprec and hWRA.

• Klösgen hω = (hcov)
ω ·
(
hprec − P

P+N

)
trades off Precision Gain (the increase in precision compared to the default distribution
P/(P+N)) and Coverage. The isometrics of Precision Gain on their own behave like
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Figure 3: Klösgen-Measure for different settings of ω

the isometrics of precision, except that their labels differ (the diagonal now always
corresponds to a value of 0).

Setting ω = 1 results in WRA, and ω = 0 yields Precision Gain. Thus, the Klösgen
measure starts with the isometrics of hprec and first evolves into those of hWRA, just like
the m-estimate. However, the transformation takes a different route, with non-linear
isometrics. The first two graphs of Figure 3 shows the result for the parameter settings
ω = 0.5 and ω = 1 (WRA), which were suggested by Klösgen.

With a further increase of the parameter, the isometrics converge to hcov. The mid-
dle left graph shows the parameter setting ω = 2, which was suggested by (Wrobel,
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1997). Contrary to the previous settings, the isometrics now avoid regions of low cov-
erage, because the influence of the (negative) coverage is increased. A further increase
of the parameter results in sharper bends of the isometrics. The influence of WRA
(the part parallel to the diagonal) vanishes except for very narrow regions around the
diagonal, and the isometrics gradually transform into those of coverage.

Another interesting variation of the Klösgen measure is to divide hcov by 1 − hcov

instead of raising it to the ω-th power. It has been shown before (Klösgen, 1992) that
this is equivalent to hcorrelation. This family of measures was first proposed by Klösgen
(1992), and has been frequently used for subgroup discovery.

4 Experimental Setup
The primary goal of our experimental work is to determine search heuristics that are
optimal in the sense that they will result in the best overall performance on a wide
variety of datasets. Thus, we have to keep several things in mind. First, our results
should be valid for a wide variety of datasets with different characteristics. Second,
we have to be careful not to overfit the selected datasets. Finally, we have to select
ways for assessing the performance of a heuristic. In this section, we will describe our
choices for addressing these concerns.

4.1 The Datasets
We arbitrarily selected the following 27 tuning datasets from the UCI-Repository (Asun-
cion and Newman, 2007).

anneal, audiology, breast-cancer, cleveland-heart-disease, contact-lenses,
credit, glass2, glass, hepatitis, horse-colic, hypothyroid, iris, krkp, labor,
lymphography, monk1, monk2, monk3, mushroom, sick-euthyroid, soy-
bean, tic-tac-toe, titanic, vote-1, vote, vowel, wine.

Only these datasets were used for making comparative choices between different
heuristics (e.g., for optimizing a parameter of a heuristic, or for metalearning a heuris-
tic).

To check the validity of the optimization results, we selected 30 additional valida-
tion datasets.

auto-mpg, autos, balance-scale, balloons, breast-w, breast-w-d, bridges2,
colic, colic.ORIG, credit-a, credit-g, diabetes, echocardiogram, flag, hayes-
roth, heart-c, heart-h, heart-statlog, house-votes-84, ionosphere, labor-d,
lymph, machine, primary-tumor, promoters, segment, solar-flare, sonar,
vehicle, zoo.

These datasets were used for validation only, no choices were based on the results
of these datasets.
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4.2 Evaluation Methods
Our primary method for evaluating heuristics is to use these heuristics inside the rule
learner, and observe the resulting predictive accuracies across a variety of datasets.
On each individual dataset, predictive accuracy is estimated using a single stratified
10-fold cross validation, as implemented in Weka (Witten and Frank, 2005). As we
have a large number of different individual results, a key issue is how to combine the
individual results into an overall performance measure.

In the following, we describe the metrics we used, where pi (ni) denotes the cov-
ered and Pi (Ni) are the total number of positive (negative) examples for the i-th dataset
out of a total of m datasets.

Macro-Averaged-Accuracy is the standard average of the accuracies on the m indi-
vidual datasets.

Accmacro =
1

m

m∑
i=1

pi + (Ni − ni)
Pi +Ni

A key disadvantage of this method is that the variance of the performances of the
algorithms may differ considerably, and the differences in average performance may be
dominated by the performance on a few high-variance datasets. Thus, we also consider
Micro-Averaged Accuracy, which assigns the same weight to each misclassified exam-
ple. In effect, this method assigns a higher weight to datasets with many examples and
those with few examples get a smaller weight.

Micro-Averaged-Accuracy is the fraction of correctly classified examples in all ex-
amples in the union of all examples of the different datasets.

Accmicro =

m∑
i=1

(pi +Ni − ni)
m∑
i=1

(Pi +Ni)

As there are large differences in the variances of the accuracies of the individ-
ual datasets, one could also focus only on the ranking of the heuristics and neglect
the magnitude of the accuracy differences. Small random variations in ranking perfor-
mance will cancel out over multiple datasets, but if there is a consistent small advantage
of one heuristic over the other this will be reflected in a substantial difference in the
average rank.

Average Rank is the average of the individual ranks ri on each dataset. All heuristics
were ranked after their macro-accuracy on each dataset. For heuristics that got an equal
accuracy the rank was computed by averaging their individual ranks. For example, if
four heuristics share rank 2, 3, 4 and 5 the rank for each of them would be 3.5.

Rank =
1

m

m∑
i=1

ri

In addition, we also measured the Size of the learned theories by the average number
of conditions.
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Average Size is the average number of conditions of the rule sets Ri.

Size =
1

m

m∑
i=1

|Ri|

As mentioned above, we used 27 sets for finding the optimal parameters, and 30
additional sets for checking the validity of the found values. In order to assess this
validity, we compute the Spearman Rank Correlation between the rankings of the var-
ious heuristics on these two sets (different parametrizations of the same heuristic are
counted as separate heuristics).

Spearman Rank Correlation Given two (averaged and rounded) rankings ri and r′i
for the heuristics hi, i = 1 . . . k, the Spearman Rank Correlation ρ is defined as

ρ = 1− 6

m · (m2 − 1)

k∑
i=1

(ri − r′i)2

In the metalearning experiments, we will train a function to predict the heuristic
values on a separate test set (as opposed to those that can be directly measured on the
training set). We evaluated the fit of this learned heuristic function to the target values
in terms of its mean absolute error, again estimated by one iteration of a 10-fold cross
validation on each individual training set.

Mean Absolute Error is the deviation of the predicted heuristic value h′ from the true
target value h, averaged over all n instances (the union of all instances in the test folds
of the cross-validation)

MAE(h′) =
1

n

n∑
j=0

|h′(j)− h(j)|

Note, however, that the mean absolute error measures the error made by the regres-
sion model on unseen data. A low mean absolute error on a dataset does not implicate
that the function works well as a heuristic. For example, a systematic, large over-
estimation of the heuristic value may result in a higher absolute error than a small ran-
dom fluctuation around the correct value, but may produce a much better performance
if the correct ordering of values is preserved.

5 Optimization of Parametrized Heuristics
In this section, we will determine optimal parameters for the five parametrized rule
evaluation metrics that we introduced in Section 3.4. We will analyze the average
accuracy of the different heuristics under various parameter settings, identify optimal
parameter settings, compare their coverage space isometrics, and evaluate their general
validity.
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Algorithm 3 SEARCHBESTPARAMETER(a, b, i, h, dataSets)

# global parameter
accformer ← accbest
# initialize candidate params
params← CREATELIST(a, b, i)
pbest ← GETBESTPARAM(h, params, dataSets)
accbest ← GETACCURACY(pbest)
# stop if no substantial improvement (t = 0.001)

if (accbest − accformer) < t then
return pbest

end if
# continue the search with a finer resolution
SEARCHBESTPARAMETER(pbest − i

2 , pbest +
i
2 ,

i
10 , h, dataSets)

5.1 Search Strategy
This section describes our method for searching for the optimal parameter setting. Our
expectation was that for all heuristics, a plot of accuracy over the parameter value will
roughly result in an inverse U-shape, i.e., there will be overfitting for small parameter
values and over-generalization for large parameter values, with a region of optimality
in between.

Thus, we adopted a greedy search algorithm that continuously narrows down the
region of interest. First, it tests a wide range of intuitively appealing parameter settings
to get an idea of the general behavior of each of the five parametrized heuristics. The
promising parameters were further narrowed down until we had a single point that
represents a region of optimal performance.

Algorithm 3 shows the algorithm in detail. We start with a lower (a) and upper
(b) bound of the region of interest, and sample the space between them with a certain
interval width i. For each sampled parameter value, we estimate its macro-averaged
accuracy on all tuning datasets, and, based on the obtained results, narrow down the
values a, b, and i.

Intuitively, the farther the lower border a and the upper border b of the interval are
away from the best parameter pbest, and the denser the increment, the better are our
chances to find the optimal parameter, but the higher are the computational demands.
As a compromise, we used the following approach for adjusting the values of these
parameters:

a← pbest −
i

2
, b← pbest +

i

2
and i← i

10

This procedure is repeated until the accuracy does not increase significantly. As we
compare macro-averaged accuracy values over several datasets, we adopted a simple
approach that stops whenever the accuracy improvement falls below a threshold t =
0.001.

For illustration, Table 1 shows a sample search.
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Table 1: A sample parameter search

Run set which has to be searched increment best parameter Accuracy
1 {0.1, ..., 1.0} 0.1 0.4 84.5658
2 {0.35, ..., 0.45} 0.01 0.42 84.6852
3 {0.415, ..., 0.425} 0.001 0.418 84.7015
4 {0.4175, ..., 0.4185} 0.0001 0.4176 84.7045
5 {0.41755, ..., 0.41765} 0.00001 0.4176 84.7045

Obviously, the procedure is greedy and not guaranteed to find a global optimum. In
particular, there is a risk to miss the best parameter due to the fact that the global best
parameter may lie under or above the borders (if the best one so far is 1 for example,
the interval that would be searched is [0.5, 1.5]; if the global optimum is 0.4, it would
not be detected). Furthermore, we may miss a global optimum if it hides between two
apparently lower values. If the curve is smooth, these assumptions are justified, but on
real-world data we should not count on this.

The second point means that the procedure may miss a global optimum by only
refining one candidate parameter at a time and may therefore get stuck in a local op-
timum. This is a typical problem of hill climbing search algorithms. As a remedy the
best n parameters can be refined simultaneously. This is also known as beam search
which is often used to avoid situations where the search get stuck in local optima. To
make a good choice for the number of parameters that are kept in the beam is not triv-
ial. Due to this the number of candidate parameters is limited to 3 (all experiments
confirmed that this is sufficient). The first problem could be addressed by re-searching
the entire interval at a finer resolution, but, for the sake of efficiency, we chose the
simpler version.

However, also note that it is not really important to find an absolute global optimum.
If we can identify a region that is likely to contain the best parameter for a wide variety
of datasets, this would already be sufficient for our purposes. We interpret the found
values as good representatives for optimal regions.

5.2 Optimal Parameters for the Five Heuristics
Our first goal was to obtain optimal parameter settings for the five heuristics. As dis-
cussed above, the found values are not meant to be interpreted as global optima, but
as representatives for regions of optimal performance. Figure 4 shows the obtained
performance curves. Note that the parameters for Klösgen, F-measure and m-estimate
are plotted on a logarithmic scale.

5.2.1 Cost Measures

Figures 4 (a) and (b) show the results for the two cost measures. Compared to the other
measures, these curves are comparably smooth, and optimal values could be identi-
fied quite easily. Optimizing only the consistency (i.e., minimizing the number of
negative examples without paying attention to the number of covered positives) has a
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Figure 4: Macro-averaged Accuracy over parameter values for the five parametrized
heuristics

performance of close to 80%. Not surprisingly, this can be improved considerably for
increasing values of the parameters c and cr. The best performing values were found
at c = 0.437 (for the cost metric) and cr = 0.342 (for the relative cost metric). Further
increasing these values will decrease performance because of over-generalization. If
the parameter approaches 1, there is a steep descent because optimizing only the num-
ber of covered examples without regard to the covered negatives is, on its own, a very
bad strategy.

It is interesting to interpret the found values. For the cost metric, the optimal value
c = 0.437 corresponds to a slope of (1−c)/c ≈ 1.3, i.e., one false positive corresponds
to approximately 1.3 true positives. Thus, consistency is favored over coverage. More
interestingly, this bias towards consistency not only holds for absolute numbers but
also for the true positive and false positives rates. Note that weighted relative accu-
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racy, which has been previously advocated as rule learning heuristic (Todorovski et al.,
2000), corresponds to a value of cr = 0.5, equally weighting false positive rate and
true positives rate. Comparing this to the optimal region for this parameter, which is
approximately between 0.3 and 0.35, it can be clearly seen that it pays off to give a
higher weight to the false positive rate, thereby favoring consistency over coverage.

It is also interesting to compare the results of the absolute and relative cost mea-
sures: although, as we have stated above, the two are equivalent in the sense that for
each individual dataset, one can be transformed into each other by picking an appro-
priate cost factor, the relative cost measure has a clearly better peak performance ex-
ceeding 85%. Thus, it seems to be quite important to incorporate the class distribution
P/(P+N) into the evaluation metric. This is also confirmed by the results of the m-
estimate and the Klösgen measures.

5.2.2 Klösgen measures

Figure 4 (c) shows the results for the Klösgen measures. In the region from 0.1 to
0.4 the accuracy increases continuously until it reaches a global optimum at 0.4323,
which achieves an average accuracy of almost 85%. After the second iteration of the
SEARCHBESTPARAMETER algorithm, no better candidate parameters than 0.4 were
found. The accuracy decreases again with parametrizations greater than 0.6. As illus-
trated in Figure 3, the interval [0, 1] describes the trade-off between Precision (ω = 0)
and WRA (ω = 1), whereas values of ω > 1 trade off between WRA and Coverage.
The bad performance in the region of ω > 1 (presumably due to over-generalization)
surprised us, because we originally expected that the good performance known from
subgroup discovery (Wrobel, 1997) might carry over to classification rule induction.
The main problem here seems that as long as a certain level of positive coverage is
guaranteed the negative coverage can be increased without negative effect. This be-
comes even clearer in the plot of Figure 3 (d) for ω = 7 were the positive and negative
coverage are weighted nearly equally. Finally, as the isometrics evolve to those of hcov
the difference of the positive and negative coverage vanishes completely.

5.2.3 F -measure

For the F -measure the same interval as with the Klösgen measures is of special interest
(Figure 4 (d)). Already after the first iteration, the parameter 0.5 turned out to have the
highest accuracy of 82.2904%. A better one could not be found during the following
iterations. After the second pass two other candidate parameters, namely 0.493 with
84.1025% and 0.509 with 84.2606% were found. But both of them could not be
refined to achieve a higher accuracy and were therefore ignored. The main difference
between the Klösgen measures and the F -measure is that for the latter, the accuracy has
a steep descent at a very high parametrization of 1×109. At this point it overgeneralizes
in the same way as the Klösgen measures or the cost measures (at about 55%).

Interestingly, the optimal value of c = 0.342 corresponds almost exactly to the micro-averaged default
accuracy of the largest class (for both tuning and validation datasets). We are still investigating whether this
is coincidental or not.
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5.2.4 m-estimate

The behavior of the m-estimate differs from the other parametrized heuristics in sev-
eral ways. In particular, it proved to be more difficult to search. For example, we can
observe a small descent for low parameter settings (Figure 4 (e)). The main problem
was that the first iteration exhibited no clear tendencies, so the region in which the best
parameter should be could not be restricted. As a consequence, we re-searched the
interval [0, 35] with a smaller increment of 1 because all parameters greater than 35
got accuracies under 85.3% and we had to restrict the area of interest. After this sec-
ond iteration there were 3 candidate parameters, from which 14 achieves the greatest
accuracy. After a second run, 23.5 became optimal, which illustrates that it was neces-
sary to maintain a list of candidate parameters. After a few more iterations, we found
the optimal parameter at 22.466. The achieved accuracy of 85.87% was the optimum
among all heuristics.

5.3 Experimental Results of the tuned heuristics
In this section, we compare the parameters which have been found for the five heuristics
(cf. also Table 2). Then we show experiments to make sure that our results are not only
due to overfitting of the 27 tuning datasets. We will then also describe experiments in
which the tuned heuristics are used in two other rule learning algorithms, which have
not been implemented by us, namely different versions of CN2 and Ripper.

5.3.1 Results on the 27 tuning datasets

Table 2 shows the results of the different heuristics on the 27 datasets, on which the
parameters were tuned. We show micro- and macro-averaged accuracy, the average
rank of the method on the datasets, and the average size of the learned rule sets. The
numbers in brackets indicate the ranking of the methods according to each method.
The table is sorted according to macro-averaged accuracy.

According to this metric, the m-estimate and the relative cost measure clearly out-
performed the other parametrized heuristics, as well as the standard heuristics, which
we have also briefly described in Section 3.4. Interestingly, the relative cost measure
performs much worse with respect to micro-averaged accuracy, indicating that it per-
forms rather well on small datasets, but worse on larger datasets. These two heuristics
also outperform JRip (the Weka-implementation of Ripper (Cohen, 1995)) on these
datasets.

Interestingly the cost metric performed rather bad. We think that this is due to the
fact that this is the only parametrized heuristic that does not include information about
the class distribution into its evaluation function. The m-estimate, the Klösgen mea-
sures, and the relative cost metric directly include the a priori probability of the positive
class (P/(P+N)), whereas the F -measure only normalizes the positive examples. The
results from our metalearning experiments (Section 6) will support this hypothesis.

In terms of theory size, weighted relative accuracy is the clear winner, with a pre-
dictive performance that exceeds the one of most other standard heuristics. This con-
firms the results of Todorovski et al. (2000). However, there is a large gap to the per-
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Table 2: Results of the optimal parameter settings (identified by their parameters), other
commonly used rule learning heuristics, and JRip (Ripper) with and without pruning
on the 27 tuning datasets, sorted by their macro-averaged accuracy.

Average Accuracy Average Average
Heuristic Macro Micro Rank Size
m-Estimate (m = 22.466) 85.87 (1) 93.87 (1) 4.54 (1) 36.85 (4)
relative cost (cr = 0.342) 85.61 (2) 92.50 (6) 5.54 (4) 26.11 (3)
Klösgen (ω = 0.4323) 84.82 (3) 93.62 (3) 5.28 (3) 48.26 (8)
JRip 84.45 (4) 93.80 (2) 5.12 (2) 16.93 (2)
F -measure (β = 0.5) 84.14 (5) 92.94 (5) 5.72 (5) 41.78 (6)
JRip-P 83.88 (6) 93.55 (4) 6.28 (6) 45.52 (7)
Correlation 83.68 (7) 92.39 (7) 7.17 (7) 37.48 (5)
WRA 82.87 (8) 90.43 (12) 7.80 (10) 14.22 (1)
cost measure (c = 0.437) 82.60 (9) 91.09 (11) 7.30 (8) 106.30 (12)
Precision 82.36 (10) 92.21 (9) 7.80 (10) 101.63 (11)
Laplace 82.28 (11) 92.26 (8) 7.31 (9) 91.81 (10)
Accuracy 82.24 (12) 91.31 (10) 8.11 (12) 85.93 (9)

Table 3: Results of the optimal parameter settings (identified by their parameters), other
commonly used rule learning heuristics, and JRip (Ripper) with and without pruning
on the 30 validation datasets, sorted by their macro-averaged accuracy.

Average Accuracy Average Average
Heuristic Macro Micro Rank Size
JRip 78.98 (1) 82.42 (1) 4.72 (1) 12.20 (2)
relative cost (cr = 0.342) 78.87 (2) 81.80 (3) 5.28 (3) 25.30 (3)
m-Estimate (m = 22.466) 78.67 (3) 81.72 (4) 4.88 (2) 46.33 (4)
JRip-P 78.54 (4) 82.04 (2) 5.38 (4) 49.80 (6)
Klösgen (ω = 0.4323) 78.46 (5) 81.33 (6) 5.67 (6) 61.83 (8)
F -measure (β = 0.5) 78.12 (6) 81.52 (5) 5.43 (5) 51.57 (7)
Correlation 77.55 (7) 80.91 (7) 7.23 (8) 47.33 (5)
Laplace 76.87 (8) 79.76 (8) 7.08 (7) 117.00 (10)
Precision 76.22 (9) 79.53 (9) 7.83 (10) 128.37 (12)
cost measure (c = 0.437) 76.11 (10) 78.93 (11) 8.15 (11) 122.87 (11)
WRA 75.82 (11) 79.35 (10) 7.82 (9) 12.00 (1)
Accuracy 75.65 (12) 78.47 (12) 8.52 (12) 99.13 (9)

Table 4: Spearman rank correlation between rankings of Table 2 and of Table 3

Average Accuracy Average
Heuristic Macro Micro Rank Size
Spearman 0.85315 0.92308 0.88112 0.98601
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Table 5: Win/Loss/Tie Statistics and the p-values of the sign test for the macro-
averaged accuracy of the optimized heuristics vs. standard heuristics on the 30 val-
idation datasets.

Win/Loss/Tie
p-Value Precision Laplace Accuracy WRA Corr. Sum

Cost 12/17/1 11/17/2 13/16/1 15/14/1 13/14/3 64/78/8
0.458 0.345 0.711 1.000 1.000

Relative Cost 18/9/3 18/8/4 23/7/0 20/6/4 19/9/2 98/39/13
0.122 0.0755 0.00522 0.00936 0.0872

m-Estimate 24/6/0 20/9/1 19/10/1 19/10/1 20/6/4 102/41/7
0.00143 0.0614 0.136 0.136 0.00936

Klösgen 22/8/0 18/10/2 23/7/0 19/10/1 18/8/4 100/43/7
0.161 0.185 0.00522 0.136 0.0755

F -Measure 21/6/3 18/11/1 24/4/2 21/9/0 17/9/4 101/39/10
0.00592 0.265 0.00018 0.0428 0.169

Sum 97/46/7 85/55/10 102/44/4 94/49/7 87/46/17

formance of JRip and the parametrized heuristics. This indicates that, while Precision
and Laplace obviously overfit the data, WRA has a tendency to over-generalize.

Obviously, the good results of the parametrized heuristics must be put into perspec-
tive because the parameters of the heuristics were optimized to perform well on this
subset of datasets (they were, however, not optimized on individual datasets). Thus, in
order to get a fair comparison, it seems necessary to evaluate the methods on indepen-
dent datasets, which were not used for tuning the parameters.

5.3.2 Validity of the results on 30 validation datasets

In order to make sure that our results are not only due to overfitting of the 27 tuning
datasets, we also evaluated the found parameter values on 30 new validation datasets.
The results are summarized in Table 3. The numbers in brackets describes the rank of
each heuristic according to the measure of the respective column.

Qualitatively, we can see that the relative performance of the heuristics in compar-
ison to each other, and in comparison to the standard heuristics does not change much.
The only obvious difference is the considerably better performance of JRip, which in-
dicates that some amount of overfitting has happened in the optimization phase. How-
ever, the performance of the best metrics is still comparable to the performance of
JRip, although the latter achieves this performance with much smaller rule sizes.

Table 4 shows the Spearman rank correlation coefficients between the ranking of
the heuristics on the tuning datasets and on the validation datasets. For all four mea-
surements, we observe a correlation > 0.85, which makes us confident that the found
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Figure 5: Comparison of all heuristics against each other with the Nemenyi test.
Groups of heuristics that are not significantly different (at p = 0.05) are connected.

optimal parameters are not overfitting the tuning datasets, but will also work well on
new datasets.

Table 5 gives a more fine-grained view on the performances of the optimized heuris-
tics versus the standard heuristics on the 30 validation datasets. It shows for each pair of
optimized and standard heuristic the number of wins, losses, and ties for the optimized
heuristic. Below these three values, we show the p-value for a sign test with these
values (i.e., the error probability for rejecting the hypothesis that the two heuristics are
equal). The last column shows the sum of the values of the previous columns, i.e., they
show how often the heuristic in this row has outperformed any of the heuristics in the
columns. The row sums in the last row can be interpreted accordingly.

Again, we can see that, with the exception of the cost metric, all optimized heuris-
tics outperform the standard heuristics on the majority of the datasets. There is not a
single case where a standard heuristic has more wins than an optimized heuristic. In
fact, each optimized heuristics has at least 17 wins and not more than 10 losses. In
many cases, the margin is much larger, and many of the differences are highly signifi-
cant, even with the crude sign test.

Finally, Figure 5 displays a comparison of the ten heuristics and the two versions
of JRip done with the Nemenyi test as suggested by Demsar (2006). The results from
above are verified, which means that only the Klösgen measures and the cost metric
are not significantly better than Accuracy, Precision and WRA. All other heuristics
including JRip outperform these heuristics significantly. Furthermore, even though
correlation and Laplace are not significantly worse, we notice a large gap between all
standard heuristics and the tuned ones (except the cost metric).

5.3.3 Validity of the results with other algorithms

We also implemented the heuristics in the original implementation of CN2 and JRip,
the Weka-Implementation of Ripper. Table 6 displays the results for evaluating these
algorithms on the 30 validation data sets. 2 datasets were left out because they contain

Available from http://www.cs.utexas.edu/users/pclark/software/.

23



Table 6: Macro-averaged accuracy of the five heuristics when used in JRip (with and
without pruning) and in CN2 (in unordered and decision-list mode)

Heuristic JRip JRip-P CN2-u CN2-dl SeCo
Default Heuristic 79.19 79.01 78.06 78.44 —
m-Estimate 78.64 78.36 77.86 78.17 79.22
Klösgen 78.04 78.10 78.42 78.70 78.71
F -Measure 78.54 77.13 77.62 77.98 78.70
Relative Cost 77.71 78.03 77.53 77.80 79.09
Cost 74.57 70.54 72.97 75.75 76.89

missing class values that cannot be handled by CN2. Therefore, all results displayed in
Table 6 are calculated on the remaining 28 datasets. JRip was used with and without
pruning (-P). The other parameters were left at default values. In particular, CN2 was
run in ordered and unordered mode and with the default beam width of 5.

Table 6 summarizes the results of these experiments. With respect to the relative
order of the parametrized metrics, they essentially confirm our previous results: the
m-estimate, the relative cost measure, the Klösgen measure and the F -measure are
essentially indistinguishable (with a slight over-all advantage for the m-estimate), with
the cost measure clearly lagging behind.

Compared to the original implementations, however, the results are not entirely as
expected. First, we can note that JRip’s gain heuristic seems to outperform our heuris-
tics. This is not unplausible, because we have already observed above that heuristics
that take the prior class distribution into account outperform heuristics that don’t. Gain
heuristics can be interpreted as normalizing the example distribution so that the dis-
tribution of the covered examples of the previous rule is used as a prior distribution
for finding the next literal (Fürnkranz and Flach, 2004). While, for reasons outlined in
Section 2.2, it is beyond the scope of this paper, the question whether gain heuristics
are generally preferable to absolute heuristics certainly deserves further investigation.
We are currently working on this.

More surprising to us, however, was that our metrics did not improve CN2’s default
heuristic (Laplace) in terms of predictive accuracy although they did learn simpler rules
in many cases. As we have discussed in Section 2.2, we consider the differences be-
tween our SeCo implementation and CN2’s original implementation to be only minor,
the only major difference being the strategy for handling multiple classes. Neverthe-
less, the improvements over Laplace, which we have observed in our implementation,
do not seem to carry over to this implementation. Apparently, the differences between
the algorithms are larger than we had expected, which is also witnessed by the large
difference in predictive accuracy between CN2 and SeCo.

In general, while the learned values are certainly reasonable for other algorithms,
our measures performed the best inside our own algorithm. Our SeCo implementation
outperforms both CN2 and JRip when used with our learned metrics. So, while the
good performance seems to carry over to new datasets, the metrics seem to capture
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Figure 6: Isometrics of the best parameter settings

some aspects that are specific to the algorithm used. We will discuss this issue in a bit
more detail in Section 7. In some sense, these results correspond to some more recent
results (Janssen and Fürnkranz, 2009), where we showed that different heuristics may
exhibit very different behaviors when used with different beam widths.

5.4 Interpretation of the Learned Heuristics
Figure 6 shows the isometrics of the best parameter settings of the m-estimate, the
F -measure, the Klösgen-measure, and the relative cost measure. It is interesting to
compare the implemented preference structures. The Klösgen measure and the m-
estimate appear to implement quite similar behavior. Their isometrics have almost the
same shape, except that those of the Klösgen measures are slightly non-linear. The
F -measure is also quite similar in the upper left region (high coverage and high consis-
tency), but differs slightly in the low coverage regions, where it is necessarily parallel

Note that the results described here are also from different beam widths (CN2 has a default beam width
of 5, while SeCo uses hill-climbing). We had also tried to run CN2 with hill-climbing (beam size 1), and the
results were qualitatively similar. However, we are not sure whether hill-climbing works correctly in CN2.
In particular, we noticed that the results were considerably worse because numerical attributes are practically
ignored in that mode. Thus, we decided to omit these results from the paper.
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to the N -axis. The isometrics for the relative cost measure are confined to parallel
lines. The slope of these isometrics seem to form an average: in high coverage and
high consistency regions the slope is less steep than in the other heuristics, while in
low coverage and low consistency regions it is considerably steeper. In any case, the
slope is steeper than the diagonal, i.e., it is obvious that this heuristic gives a higher
weight to consistency than to coverage.

6 Metalearning of Rule Learning Heuristics
While the previous section has focused on determining optimal parameters for a given
functional form, we will now try to learn a function h(p, n) from scratch. Thus, in
this part of the paper we do not optimize parameters any more but we try to take a
different route. First it has to be defined how a function without a predefined form can
be learned. In the following, we will therefore frame this problem as a metalearning
task, in which we try to predict the “true” performance of a rule on the test set.

6.1 Metalearning Scenario
The key issue for our work is how to define the metalearning problem. It is helpful to
view the rule learning process as a reinforcement learning problem: Each (incomplete)
rule is a state, and all possible refinements (e.g., all possible conditions that can be
added to the rule) are the actions. The rule-learning agent repeatedly has to pick one
of the possible refinements according to their expected utility until it has completely
learned the rule. Then, the learner receives a reinforcement signal (e.g., the estimated
accuracy of the learned rule), which can then be used to adjust the utility function.
After a (presumably large) number of learning episodes, the utility function should
converge to a heuristic that evaluates a candidate rule with the quality of the best rule
that can be obtained by refining the candidate rule.

However, for practical purposes this scenario appears to be too complex. Burges
(2006) has tried a reinforcement learning approach on this problem, but with disap-
pointing results. For this reason, we tried another, conceptually simpler approach,
which tries to learn the same function in a supervised fashion: Each rule is evaluated
on a separate test set, in order to get an estimate of its true performance. As a target
value, we can either directly use the candidate rule’s performance (immediate reward),
or we can use the performance of its best refinement (delayed reward). We evaluated
both approaches.

6.1.1 Meta Data Generation

We have noted above, that heuristics typically depend on the number of true and false
positives, and on the total number of positive and negative examples. However, most
heuristics model non-linear dependencies between these values. In order to make the
task for the learner easier, we will not only characterize a rule by the values p, n, P ,
and N , but in addition also use the following parameters as input for the metalearning
phase:
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• tpr = p
P , the true positive rate of the rule

• fpr = n
N , the false positive rate of the rule

• Prior = P
P+N , the a priori distribution of positive and negative examples

• prec = p
p+n , the fraction of positive examples covered by the rule

Thus, we characterize a rule r by an 8-tuple

h(r)← h(P,N,Prior, p, n, tpr, fpr, prec)

In Section 6.2.2, we will also consider the rule length l as an additional input.
As explained above, we try to model the relation of the rule’s statistics measured

on the training set and its “true” performance, which is estimated on an independent
test set. Thus, a meta-training instance consists of the abovementioned characteristics
for the corresponding rule. The training signal is the performance of the rule on the
test set. For assessing the performance of the rule, we typically use its out-of-sample
precision, but, again, we have also experimented with other choices.

As we want to guide the entire rule learning process, we need to record this in-
formation not only for final rules – those that would be used in the final theory – but
also for all their predecessors. Therefore all candidate rules which are created during
the refinement process are included in the meta data as well. Algorithm 4 shows this
process in detail.

It should be noted, that we ignored all rules that do not cover any instance on the
test data. Our reasons for this were that on the one hand we did not have any training
information for this rule (the test precision that we try to model is undefined for these
rules), and that on the other hand such rules do not do any harm (they won’t have an
impact on test set accuracy as they do not classify any example).

To ensure that we obtain a set of rules with varying characteristics, the following
parameters were modified:

Datasets: All models were trained on the 27 tuning datasets defined in Section 4.1.

5x2 Cross-validation: For each dataset, we performed 5 iterations of a 2-fold cross-
validation. 2-fold cross-validation was chosen because in this case the training
and test sets have equal size, so that we don’t have to account for statistical
variance in the precision or coverage estimates. We performed five iterations
with different random seeds. Note that our primary interest was to obtain a lot
of rules which characterize the connection between training set statistics and the
test set precision. Therefore, we collected statistics for all rules of all folds.

Classes: For each dataset and each fold, we generated one dataset for each class, treat-
ing this class as positive and the union of all the others as the negative class.
Rules were learned for each of the resulting two-class datasets.

Heuristics: We ran the rule learner several times on the 2-class datasets, each time
using a different search heuristic. We used all basic heuristics described in Sec-
tion 3. As discussed there, these heuristics represent a large variety of learning
biases, some overfitting, some overgeneralizing.
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Algorithm 4 GENERATEMETADATA(TrainSet,TestSet)
# loop until all positive examples are covered

while POSITIVE(TrainSet) 6= ∅
# find the best rule
Rule← GREEDYTOPDOWN(TrainSet)

# stop if it doesn’t cover more positives than negatives
if |COVERED(Rule, POSITIVE(Examples))|
≤ |COVERED(Rule, NEGATIVE(Examples))|
break

# loop through all predecessors
Pred← Rule
repeat

# record the training and test coverage
p← |COVERED(Pred,POSITIVE(TrainSet))|
n← |COVERED(Pred,NEGATIVE(TrainSet))|
P← |COVERED(Pred,TOTALPOSTIVE(TrainSet))|
N← |COVERED(Pred,TOTALNEGATIVE(TrainSet))|
l←LENGTH(Rule)
p̂← |COVERED(Pred,POSITIVE(TestSet))|
n̂← |COVERED(Pred,NEGATIVE(TestSet))|
# print out meta training instance
print P,N, P/(P +N), p, n, p/P, n/N, p/(p+ n), l
# print out meta target information
print p̂, n̂, p̂/(p̂+ n̂)

Pred← REMOVELASTCONDITION(Pred)
until Pred = null

# remove covered training and test examples
TrainSet← TrainSet \ COVERED(Rule,TrainSet)
TestSet← TestSet \ COVERED(Rule,TestSet)

In total, our meta dataset contains 87, 380 examples.

6.1.2 Metalearning Algorithms

We used two different methods for learning functions on the meta data. First, we used a
simple linear regression using the Akaike criterion (Akaike, 1974) for model selection.
A key advantage of this method is that we obtain a simple, easily comprehensible form
of the learned heuristic function. Note that the learned function is nevertheless non-
linear in the basic dimensions p and n because of the abovementioned non-linear terms
that are used as basic features.
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Nevertheless, the type of functions that can be learned with linear regression is
quite restricted. In order to be able to address a wider class of functions, we also tried
a multilayer perceptron with back propagation algorithm and sigmoid nodes. We used
various sizes of the hidden layer (1, 5, and 10), and trained for one epoch (i.e., we went
through the training data once). We have also tried to train the networks with a larger
number of epochs, but the results no longer improved. We used the abovementioned
numbers of nodes in the hidden layer because we wanted to have a very simple model
that can be trained very fast. Nevertheless, the functions that can be learned with one
node in the hidden layer are restricted to linear ones. For this reason we also tried 5 and
10 nodes to make sure that we have not selected a model that is too simple to perform
reasonable on the metalearning task.

Both algorithms are provided by Weka (Witten and Frank, 2005) and were initial-
ized with standard parameters. We had also tried a support vector machine for Regres-
sion. As the Regression SVMs of Weka (SVMReg and SMOReg) could not be trained
on the metadata because the datasets were too big, we resorted to the use of LibSVM
(Fan et al., 2005). However, the results were comparable to those of the neural net-
work, which in turn was worse than the linear regression. Hence we do not include
experimental results of the SVM in the paper.

6.2 Experimental Results
In this section, we discuss our experimental results with the metalearning approach.
We will start with a straight-forward baseline experiment that uses the meta-data as
described in Section 6.1.1, and then try to experimentally answer the questions whether
inclusion of the rule length improves the result, whether learning in the delayed reward
scenario is better than learning from immediate rewards, and whether other heuristic
functions perform better than (predicted) precision.

6.2.1 Baseline Experiment

In a first experiment, we wanted to see how accurately we can predict the out-of-sample
precision of a rule using the meta data as described in Section 6.1.1. We trained a lin-
ear regression model and a neural network on the eight measurements that we use for
characterizing a rule (cf. Section 3) using the precision values measured on the test
sets as a target function. Table 7 displays results for the linear regression and three
neural networks with different numbers of nodes in the hidden layer on the same 30
validation datasets that were used before (cf., Section 4). The performances of the
three algorithms are quite comparable, with the possible exception of the neural net-
work with 5 nodes in the hidden layer. The heuristic learned by this network induced
very large theories (over 1000 conditions on average), and also had a somewhat worse
performance in predictive accuracy. In general, the experiments seem to show that a
linear combination of the available features is sufficient, and that more nodes in the
hidden layer will not yield performance improvements. It can also be seen that, as dis-
cussed in Section 4.2, a low mean absolute error does not necessarily imply a heuristic
that is able to order the rules by their predictive accuracy and therefore works well as
rule evaluation measure.
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Table 7: Macro- and Micro-Averaged prediction errors of SECO for several metal-
learned heuristics. The second column shows the mean absolute error (MAE) of a
cross-validation of the meta-learning training set.

Average Accuracy
Heuristic MAE Macro Micro # conditions
LinearRegression 0.22 77.43% 80.19% 117.6
MLP (1 node) 0.28 77.81% 81.43% 121.3
MLP (5 nodes) 0.27 77.37% 80.45% 1085.8
MLP (10 nodes) 0.27 77.53% 80.27% 112.7

If we compare these results to those of Table 3 (column macro-averaged accuracy),
we can see that the learned heuristics outperform all standard heuristics with the excep-
tion of correlation. However, they do not quite reach the performance of the optimized
parametrized heuristics.

6.2.2 Significance of Rule Length

Some rule learning algorithms include the length of the learned rule into their evalua-
tion function. For example, the ILP algorithm Progol (Muggleton, 1995) uses p−n− l
as a search heuristic for a best-first search. The first part, p− n, directly optimizes ac-
curacy (for a fixed dataset, i.e., where the total number of positive (P ) and negative
(N ) examples are fixed), and the length of the rule is used to add an additional bias for
simpler rules. However, as longer rules typically cover fewer examples, penalizing the
length of a rule may also be considered as another form of bias for high-coverage rules,
which could also be expressed by maximizing p (or p + n). In any case, we also ex-
perimented with the rule length as an additional parameter. For both, linear regression
and neural networks this did not lead to significant changes in the performance of the
heuristics (e.g., for linear regression, the performance dropped by 0.03%).

6.2.3 Predicting the Value of the Final Rule

Rule learning heuristics typically evaluate the quality of the current, incomplete rule,
and use this measure for greedily selecting the best candidate for further refinement.
However, as discussed in Section 6.1, if we frame the learning problem as a search
problem, a good heuristic should not evaluate a candidate rule with its discriminatory
power, but with its potential to be refined into a good final rule. Such a utility function
could be learned with a reinforcement learning algorithm, which will learn to predict
in each step of the refinement process which refinement is most likely to lead to a good
final rule. Unfortunately, Burges (2006) pointed out that this approach does not work
satisfactorily.

As an alternative, we applied a method which can be interpreted as an “offline”
version of reinforcement learning. We simply assign each candidate rule the precision
value of its final rule in one refinement process. As a consequence, in our approach all
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Figure 7: Histogram of the frequency of observed precision values when the target
signal is the test-set precision of the candidate rule (immediate reward) and when the
target signal is the test-set precision of the final rule (delayed reward).

Table 8: Macro- and Micro-Averaged prediction errors as well as number of conditions
of the theories learned by SECO for two meta-learned heuristics, both trained using
delayed rewards. The second column shows the mean absolute error (MAE) of a cross-
validation of the meta-learning training set.

Average Accuracy
Heuristic MAE Macro Micro # conditions
Linear Regression 0.33 77.95 % 80.97 % 95.63
Neural Network 0.35 78.37 % 81.43 % 53.97

candidate rules of one refinement process have the same target value, namely the value
of the rule that has eventually been selected. Because of the deletion of all final rules
that do not cover any example on the test set, we decided to remove all predecessors of
such rules as well. This seemed to be the best way to handle the predecessors because
we would not have a reasonable value to predict. Thus, the new meta dataset contains
only 77,240 examples in total.

Figure 7 shows a histogram of the observed test-set precision values for the candi-
date rule (immediate reward) and for the final rule that has been learned when refining
this candidate (delayed reward). Clearly, in the case of delayed rewards, the frequency
of simple precision values like 0, 0.5, and 1 increases, because there are much more
rules that only cover a few examples.

Table 8 shows the accuracies of two heuristics that were learned in this setting,
the first one with a linear regression and the second one with a neural network with
a single node in the hidden layer. In particular the neural network outperformed the
original setting (cf. Table 7) and approaches the performance of the heuristics obtained
by parameter optimization (Table 3).
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Table 9: Comparison of various heuristics with training-set coverages (p, n) and cov-
erages predicted by the neural network (p̂, n̂)

Average Accuracy
Heuristic args Macro Micro # conditions
Accuracy (p, n) 75.65% 78.47% 99.13

(p̂, n̂) 75.39% 78.62% 110.80

Precision (p, n) 76.22% 79.53% 128.37
(p̂, n̂) 76.53% 80.43% 30.00

WRA (p, n) 75.82% 79.35% 12.00
(p̂, n̂) 69.89% 75.23% 29.97

Laplace (p, n) 76.87% 79.76% 117.00
(p̂, n̂) 76.80% 80.77% 246.80

Correlation (p, n) 77.55% 80.91% 47.33
(p̂, n̂) 58.09% 65.35% 40.40

6.2.4 Predicting Other Heuristic Functions

So far, we focused on directly predicting the out-of-sample precision of a rule, assum-
ing that this would be a good heuristic for learning a rule set. However, this choice
was somewhat arbitrary. Ideally, we would like to repeat this experiment with out-of-
sample values for all common rule learning heuristics. In order to cut down the number
of required experiments, we decided to directly predict the number of covered positive
(p̂) and negative (n̂) examples. Then we can combine the predictions for these values
with any standard heuristic h by computing h(p̂, n̂) instead of the conventional h(p, n).
Note that the heuristic h only gets the predicted coverages (p̂ and n̂) as new input, all
other statistics (e.g., P ,N ) are still measured on the training set. This is feasible be-
cause we designed the experiments so that the training and test set are of equal size, i.e.,
the values predicted for p̂ and n̂ are predictions for the number of covered examples on
an independent test set of the same size as the training set.

Table 9 compares the performance of various heuristics using the p and n values
measured on the training set, and the p̂ and n̂ values predicted for the test set by a
trained neural network. In general, the results are disappointing. For three of the five
heuristics, no significant change could be observed, but for weighted relative accuracy
and correlation heuristic, the performance degrades substantially.

A surprising observation is the rather low complexity of the learned theories. For
instance, the heuristic Precision produces very simple theories when it is used with the
out-of-sample predictions, and, by doing so, increases the predictive accuracy. Appar-
ently, the use of the predicted values of p̂ and n̂ allows to prevent overfitting, because
the predicted positive/negative coverages are never exactly 0 and therefore the overfit-
ting problem observed with Precision does not occur any more. The Laplace heuristic
shows a similar trend, but in this case the predictions result in more complex rules than
the original ones.

32



Table 10: Coefficients of various functions learned by linear regression

Baseline Experiment Accmacro = 77.43%

P N P
P+N

p n p
P

n
N

p
p+n

const.
0.0001 0.0001 0.7485 -0.0001 -0.0009 0.165 0.0 0.3863 0.0267

Delayed Reward Scenario Accmacro = 77.59%

P N P
P+N

p n p
P

n
N

p
p+n

const.
0.0 0.0002 0.8772 -0.0002 0.0002 0.2103 -0.297 0.1367 0.2282

Delayed Reward + Logarithmic Coverage Accmacro = 78.88%

log (P+1) log (N+1) P
P+N

log (p+1) log (n+1) p
P

n
N

p
p+n

const.
0.0709 -0.0255 0.0521 0.1139 -0.0588 0.1379 -0.3673 -0.1032 0.427

In summary, it seems that the predictions of both the linear regression and the neural
network are not good enough to yield true coverage values on the test set. A closer look
at the predicted values reveals that on the one hand both regression methods predict
negative coverages and that on the other hand for the region of low coverages (which
is the important one) too optimistic values are predicted (for both the positive and the
negative coverage). The acceptable performance is caused by a balancing of the two
imprecise predictions (as observed with the two precision-like metrics) or rather by
an induced bias which tries to omit the extreme values in the evaluations (which are
responsible for overfitting).

6.3 Interpretation of the Learned Functions
In this section, we will try to interpret the learned functions by looking at the learned
weights and by looking at their coverage space isometrics.

6.3.1 Coefficients of the Linear Regression

Table 10 shows the coefficients for three learned regression models. In the base-line
experiment, three features had a significant weight: the a priori class distribution of
the examples in the training data, the precision of the rule, and the true positive rate.
These feature weights were significant with a p-value smaller than 2×10−16 computed
with the summary-method of R. Only the false positive rate was not statistically sig-
nificant. At first it may be surprising that the false positive rate is not significant, but
its main role is to ensure consistency, which can – in the regions of interest – also be
ensured with precision. Thus, if we only consider feature weights above 0.1 as impor-
tant for the model, the learned heuristic linearly combines class distribution, coverage
and consistency. Informally, we can also observe that, in line with our observations
from Section 5, consistency receives a higher weight than coverage, although it is not
entirely clear whether these values are directly comparable.

This can be more clearly seen from the coefficients learned in the delayed reward
scenario, where the function was trained on the test set precision of the best refinement

http://www.r-project.org/
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Figure 8: Isometrics of heuristics meta-learned with linear regression and a neural
network in the delayed reward scenario

of the rule. The function is quite similar to the previous one, except that the consistency
is now enforced through two factors: a high negative weight on the false positive rate
and a positive weight on precision. In this scenario the weight of the total positives was
only significant at p = 0.01, all others were also significant with a p-value of at least
3.69× 10−5.

In both cases, the current coverage of a rule (p and n) and the total example counts
of the data (P and N ) have comparably low weights. This is not that surprising if one
keeps in mind that the target value is in the range [0, 1], while the absolute values for p
and n are in a much higher range. We nevertheless included them because we believe
that in particular for rules with low coverage, the absolute numbers are more important
than their relative fractions. A rule that covers only a single example will typically be
bad, irrespective of the size of the original dataset.

In the light of these results, we made two more experiments: In the first, we re-
moved the four coverage values from the input, and learned another function from the
remaining four features. This did not change the performance very much (77.20%
macro-averaged accuracy).

In a second experiment, we used the logarithmic values log(P + 1), log(N +
1), log(p + 1), log(n + 1) instead, with the idea that the importance of differences
in coverage is proportional to the coverage. This considerably improved the results for
linear regression. The last part of Table 10 shows the learned function. There are a few
interesting differences to the previous functions: (i) the logarithmic coverage values get
a much higher weight than their absolute counterparts (all significant at p < 2×10−16),
(ii) the prior class probability P/(P+N) receives a much lower weight (still significant
with p = 0.0021), and (iii) precision receives now a negative weight (also significant
at p < 2× 10−16), which is presumably counterbalanced by the much higher negative
weight on the false positive rate.
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6.3.2 Isometrics of the Heuristics

To understand the behavior of the learned heuristics, we will again take a look at their
isometrics in coverage space. Figure 8 shows isometrics of the heuristic learned in the
experiment with delayed rewards (without the logarithmic features) in a coverage space
with 60x48 examples (the sizes were chosen arbitrarily but are the same as for all other
previous isometrics). The left part of the figure displays the isometrics of the heuristic
that was learned by linear regression on the dataset that used only the relative features
(see Section 6.3.1). The right part shows the best-performing neural network (the one
that uses only one node in the hidden layer).

Apparently, both functions learn somewhat different heuristics. Superficially, the
isometrics of the linear regression heuristic are quite similar to the parallel lines of the
cost heuristic, but, just as we observed in the experiments of Section 5 (cf. Figure 6 (d)),
their slope is generally > 1, i.e., false positives are weighted more heavily than true
positives. The isometrics for the neural net seems to employ a trade-off similar to
those of the F -measure. The shift towards the N -axis is reminiscent of the F -measure
(cf. Figure 2), which tries to correct the undesirable property of precision that all rules
that cover no negative examples are evaluated equally, irrespective of the number of
positive examples that they cover. Interestingly, the isometrics of the linear regression
function with logarithmic features (not shown) have a quite similar appearance.

However, in all cases the isometrics have a non-linear shape, which bends them
towards the N -axis when they approach the P -axis. Thus, in regions with high consis-
tency, the bias that prefers consistency over coverage is even more emphasized. This
also has a somewhat surprising effect, namely a small bias towards rules that cover
a low number of positive examples (compared to regular precision). Intuitively, one
would expect the opposite, namely that rules with low coverage are avoided because
they are likely to be unreliable and noisy. This confirms our results for the Klösgen
measure, where we could see that parameter values ω > 1 encode a bias that avoids
low coverage regions (cf., e.g., the graph for ω = 2 in Figure 3), but that these values
did not perform well empirically. In some sense, this may be interpreted as support for
the well-known small disjuncts problem, first observed by Holte et al. (1989), namely
that rules with low coverage contribute significantly to the overall error of a rule set,
but that they also cannot be omitted without a loss in accuracy.

7 Discussion
The crucial step for the performance of a greedy covering algorithm is the choice of the
rule evaluation heuristic. In this paper, we have tried to empirically determine a good
trade-off between consistency and completeness, which are the most important criteria
for evaluating the quality of a rule.

However, it is important to keep in mind that a good rule must optimize or trade off
various criteria simultaneously. Among them are:

Consistency: How many negative examples are covered?

In concept learning or decision list learning, if a rule covers negative examples,
these misclassifications cannot be corrected with subsequent rules. When sets
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of unordered rules are learned for multi-class problems, such corrections are
possible, but obviously one should nevertheless try to find pure rules.

Completeness: How many positive examples are covered?

Even though subsequent rules may cover examples that the current rule leaves
uncovered, rule with higher coverage are typically preferred because they bring
the learner closer to the goal of covering all positive examples.

Gain: How good is the rule in comparison to other rules (e.g., default rule, predecessor
rules)?

A rule with high consistency may be bad if its predecessor had a higher consis-
tency and vice versa. Thus, many heuristics, such as weighted relative accuracy,
or information gain relate the quality of a rule to other rules.

Utility: How useful will the rule be in the context of the other rules in the theory?

A rule with high consistency and completeness may nevertheless be a bad addi-
tion to the current theory if it does not explain any new examples.

Bias: How will the quality estimate change on new examples?

It is well-known that estimates obtained on the training data will be optimistically
biased. A good heuristic has to address this problem so that the algorithm will
not overfit the training examples.

Potential: How close is the current rule to a good rule?

An incomplete rule, i.e., a rule that is encountered during the search for a good
rule, should not be evaluated by its ability to discriminate between positive and
negative examples, but by its potential to be refined into such a rule.

Simplicity: How complex or comprehensible is the rule?

In addition to its predictive quality, rules are often also assessed by their com-
prehensibility, because this is one of the key factors for preferring rule learning
algorithms over competing inductive classification algorithms. As comprehensi-
bility is difficult to measure, it is often equated with simplicity or rule length.

Our experiments addressed many of this issues directly (consistency, completeness,
gain, bias). Some of these criteria are also addressed, at least to some extent, algorith-
mically. Utility, for example, is addressed in part by the covering loop which removes
examples that have been covered by previous rules. Thus, the context of past rules is
taken into account. However, it is harder to take the context of rules that will be subse-
quently learned into account. This is particularly the case because most rule learning
heuristics only focus on the examples covered by the rule, and not on the examples that
are not covered by a rule. This is contrary to decision tree learning heuristics, which
consider all possible outcomes of a condition simultaneously. The Part (Frank and
Witten, 1998) algorithm may be viewed as an attempt to use the best of both worlds.

Consider, e.g., the difference between the information gain heuristic used in ID3 (Quinlan, 1983) and
the information gain heuristic used in Foil (Quinlan, 1990).
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Similarly, Ripper’s global optimization phase, where rules in a final theory are tenta-
tively re-learned in the context of all previous and all subsequent rules, may be viewed
as an attempt to address this issue.

It is also important to realize that these criteria are not independent. For example,
comprehensibility and simplicity are correlated with completeness: simple rules tend
to be more general and to cover more examples. Thus, a bias for completeness will
automatically correlate with a bias for shorter rules. Similarly, the idea of the Laplace-
correction as introduced in CN2 (Clark and Boswell, 1991) was to on the one hand
correct a too strong bias for consistency over completeness (by, e.g., penalizing pure
rules that cover only single examples), and on the other hand also to try to provide
more accurate probability estimates.

Nevertheless, it is not clear whether all these points can or should be addressed si-
multaneously with a single rule learning heuristic. Answering this question is beyond
the scope of this paper (in fact, we do believe that these problems should be separated
and addressed individually). However, it is the case that common rule learning algo-
rithms essentially assume that all these objectives can be captured into a single heuristic
function (only overfitting is frequently addressed by using a separate criterion). Thus,
it is a valid and interesting question how good a greedy rule learner can get under
this assumption. The work reported in this paper may be viewed as a contribution to
answering this question. It is, in our opinion, the necessary first step to a systematic
investigation of heuristic rule learning.

8 Related Work
While there are several empirical comparisons of splitting heuristics for decision tree
induction (Mingers, 1989; Buntine and Niblett, 1992), there are, somewhat surpris-
ingly, relatively few works that empirically compare different rule learning heuristics.
For example, Lavrač et al. (1992a;b) compare several heuristics for inductive logic
programming. Most works only perform a fairly limited comparison, which typically
introduces a new heuristic and compares it to the heuristic used in an existing system.
A typical example for work in this area is (Todorovski et al., 2000), where the per-
formance of weighted relative accuracy was compared to the performance of CN2’s
Laplace-heuristic. To our knowledge, our work reported in this paper is the most ex-
haustive empirical work in this respect.

On the other hand, considerable progress has been made in the principal under-
standing of rule learning heuristics. As discussed in Section 3.1, Fürnkranz and Flach
(2005) have introduced coverage space isometrics as a means for visualizing rule evalu-
ation metrics. Using this tool, they have derived several interesting results, such as that
the m-estimate effectively trades off precision and weighted relative accuracy. While
their paper contributed to a better understanding of rule learning heuristics, the authors
concluded that, in general, rule learning heuristics are not yet well understood.

There has also been significant progress on analyzing rule evaluation metrics that
are commonly used in descriptive induction tasks such as association rule discovery
or subgroup discovery. Most notably, Tan et al. (2002) have surveyed 21 rule learn-
ing heuristics and compared them according to a set of desirable properties. In gen-
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eral, they conclude that the choice of the right interestingness measure is application-
dependent, but they also identify situations in which many measures are highly cor-
related with each other. Bayardo Jr. and Agrawal (1999) analyze several heuristics
in support and confidence space, and show that the optimal rules according to many
criteria lie on the so-called support/confidence border, the set of rules that have max-
imum or minimum confidence for a given support level. Recently, Wu et al. (2007)
showed that a group of so-called null-invariant measures (measures that are not influ-
enced by the number of records that do not match the pattern) can be generalized into a
single parametrized heuristic. We plan to analyze this parametrized heuristic with the
apparatus that we have used for our results in Section 5.

Naturally, there are some similarities between heuristics used for descriptive and
for predictive tasks. For example, Lavrač et al. (1999) derived weighted relative accu-
racy in an attempt to unify these two realms, or Fürnkranz and Flach (2004) analyzed
filtering and stopping heuristics and showed that Foil’s information gain search and
MDL-based pruning has a quite similar effect as support and confidence thresholds
that are commonly used in association rule discovery. Nevertheless, it is important to
note that good heuristics for descriptive induction are not necessarily well-suited for
predictive induction (weighted relative accuracy is a good example). The key differ-
ence is that in the latter case one typically needs to learn an entire rule set, where lack
of coverage in individual rules can be corrected by the entire ensemble of rules. Incon-
sistencies, on the other hand, cannot be corrected by the induction of additional rules
(at least not in the case of concept learning). In this light, the result of this paper, that
good heuristics for predictive induction will favor consistency over coverage, appears
to be reasonable.

Our results may also be viewed in the context of trying to correct overly optimistic
training error estimates (resubstitution estimates). In particular, in some of our exper-
iments, we try to directly predict the out-of-sample precision of a rule. This problem
has been studied theoretically by Scheffer (2005) and Mozina et al. (2006). In other
works, it has been addressed empirically. For example Vapnik et al. (1994) have used
empirical data to measure the VC-Dimension of learning machines. Fürnkranz (2004)
also creates meta data in a quite similar way, and tries to fit various functions to the
data. But the focus there is the analysis of the obtained predictions for out-of-sample
precision, which is not the key issue in our experiments.

9 Conclusions
The experimental study reported in this paper has provided several important insights
into the behavior of greedy inductive rule learning algorithms.

First, we think that this has been the most exhaustive experimental comparison of
different rule learning heuristics to date. We tested five parameter-free heuristics, five
parametrized heuristics with a large number of parametrizations, and several different
metalearning scenarios. The results confirm several previously known findings (e.g.,
precision and Laplace overfit, whereas accuracy and weighted relative accuracy over-
generalize), but also yielded new insights into their comparative performance. In par-
ticular, we have determined suitable default values for commonly used parametrized
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evaluation metrics such as the m-estimate. This is of considerable practical impor-
tance, as we showed that these new values outperformed conventional search heuristics
and performed comparably to the Ripper rule learning algorithm. On the other hand,
however, we have also seen some indication that these values capture aspects of our
algorithm that may not fully transfer to other rule learning algorithms.

Second, our results also let us draw important conclusions about what factors in-
fluence a good performance of a rule learning heuristic. For example, we found that
heuristics which take the a priori class distribution into account (e.g., by evaluate rel-
ative coverage instead of absolute coverage) will in general outperform heuristics that
ignore the class distribution (e.g., the F -measure which trades off recall and precision).
This is also confirmed by the high weight that this parameter receives in our meta-
learned heuristics. Gain heuristics, which take this one step further by considering the
distribution of the predecessor rule as a prior class distribution for each individual addi-
tion to a rule, may be even more preferable, but this still needs to be investigated more
thoroughly.

We also found that for a good overall performance, it is necessary to prefer con-
sistency over coverage, i.e., to weight the false positive rate more heavily than the true
positive rate. We can most clearly observe this bias towards minimizing the false pos-
itive rate in the optimal parameter value for the relative cost metric, but it can also be
observed in other well-performing heuristics whose isometrics have a very steep slope
in the important regions. In the experiments with metalearning and in the good perfor-
mance of the correlation heuristic we can also observe that heuristics perform better if
they increase the emphasis on this aspect for rules with high consistency.

This result may also be interpreted as evidence that a good heuristic has to adapt to
the characteristics of the algorithm in which it is used. In our case, this bias towards
consistency seems to be a desirable property for a heuristic that is used in a covering
algorithm, where incompleteness (not covering all positive examples) is less severe
than inconsistency (covering some negative examples), because incompleteness can be
corrected by subsequent rules, whereas inconsistency cannot (at least not in a concept
learning scenario). This dependency on the dynamics of the algorithm is also confirmed
by one of the results of the metalearning study, in which we observed that training on
the test-set performance of the candidate rule is somewhat less efficient than training
on the performance of its best refinement. Finally, the results of the transfer of the
heuristics to other rule learning implementations also seem to confirm that they capture
individual characteristics of the algorithm.

However, our results also have their limitations. For example, we have only evalu-
ated the overall performance over a wide variety of datasets. Obviously, we can expect
a better performance if the parameter values are tuned to each individual dataset. We
think that the good performance of Ripper is due to the flexibility of post-pruning,
which allows to adjust the level of generality of a rule to the characteristic of a par-
ticular dataset. We have deliberately ignored the possibility of pruning for this set of
experiments, because our goal was to gain a principal understanding of what consti-
tutes a good rule evaluation metric for separate-and-conquer learning. We are currently
investigating the interplay of pruning and learning in more detail.
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