
I

Supervised Local Pattern Discovery

Diplomarbeit

Im Studiengang Wirtschaftsinformatik

angefertigt am Fachgebiet Knowledge Engineering

der Technischen Universität Darmstadt

von

Sven Wagner

Februar 2008

Betreuer: Prof. J. Fürnkranz, Jan-Nikolas Sulzmann

II

Ehrenwörtliche Erklärung

Hiermit versichere ich, die vorliegende Diplomarbeit ohne Hilfe Dritter und nur
mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle
Stellen, die aus den Quellen entnommen wurden, sind als solche kenntlich
gemacht worden. Diese Arbeit hat in gleicher oder ähnlicher Form noch keiner
Prüfungsbehörde vorgelegen.

Darmstadt, 5.2.2008

III

Table of Contents:

I List of figures .. V

II List of Tables ... VI
III List of abbreviations .. VII

1 Introduction... - 1 -
1.1 Motivation .. - 1 -
1.2 Objectives of the research ... - 2 -
1.3 Problem formulation... - 2 -
1.4 Overview.. - 3 -

2 Data Mining and Pattern Discovery .. - 4 -
2.1 KDD... - 4 -
2.2 Rule Learning .. - 6 -

2.2.1 Inductive Rule Learning.. - 7 -
2.2.2 Association Rule Learning.. - 8 -
2.2.3 Hypothesis Language... - 9 -

2.3 Local pattern discovery.. - 11 -
2.4 Supervised Local Pattern discovery techniques - 16 -

3 Problem Definitions in Supervised Local Pattern Discovery - 20 -

3.1 Cluster Grouping ... - 20 -
3.1.1 Subgroup Discovery ... - 21 -
3.1.2 Contrast sets .. - 23 -
3.1.3 Correlated Pattern Mining... - 25 -

3.2 Exception Rules... - 26 -
3.3 Conclusion... - 28 -

4 Data preprocessing and data quality .. - 30 -

4.1 Discretization of continuous variables.. - 31 -
4.2 Data Structure ... - 33 -

4.2.1 FP-Tree .. - 34 -
4.2.2 Binary Vectors .. - 36 -

4.3 Missing variables ... - 37 -
4.4 Feature Subset selection ... - 40 -
4.5 Conclusion... - 41 -

5 Search .. - 43 -

5.1 Search type ... - 46 -
5.1.1 Search strategies.. - 46 -
5.1.2 Heuristic search.. - 49 -
5.1.3 Exhaustive searches .. - 52 -

5.2 Quality Functions... - 66 -

IV

5.3 Weighting... - 76 -
5.4 Conclusion... - 80 -

6 Post processing .. - 84 -

7 Related topics in supervised local pattern detection - 87 -

7.1 Subgroup Discovery in Relational Databases................................ - 87 -
7.2 Subgroup Discovery in Time Series Data - 89 -

8 Conclusion.. - 91 -

Appendix A: Basic Statistics... - 93 -

Literature.. - 105 -

V

I List of figures

Figure 1. Overview on the processes of local pattern discovery algorithms. - 19 -

Figure 2. PreprocessData pseudo code... - 31 -

Figure 3. FP-growth Tree... - 36 -

Figure 4. Missing-FP-Tree for SD-Map example.. - 39 -

Figure 5. Generic pattern discovery algorithm ... - 44 -

Figure 6. An example generality lattice for three attributes with two values for
each attribute. .. - 47 -

Figure 7. FP-growth multipath tree and single path prefix tree - 56 -

Figure 8. Set enumeration tree for attributes {1,2,3,4} - 61 -

VI

II List of Tables

Table 1. Example Standard Data Representation.................................... - 34 -

Table 2. Input Data FP-growth ... - 35 -

Table 3. Input data for SD-map example ... - 38 -

Table 4. Summary of pre-processing by algorithm................................... - 42 -

Table 5. Example Table of hypothetical contrast set data........................ - 68 -

Table 6. Summary of algorithms for local pattern discovery - 82 -

VII

III List of abbreviations

KDD = Knowledge Discovery in Databases

DNF = Disjunctive Normal Form

TP = True positives

FP = False positives

FP-Tree = Frequent Pattern Tree

TN =True negatives

FN =False negatives

SPD =Supervised Pattern Discovery

SLPD =Supervised Local Pattern Discovery

Introduction

- 1 -

1 Introduction

1.1 Motivation

Supervised local pattern discovery is a midfield task between associations rule

mining and inductive learning. It aims at finding patterns in labeled data that are

descriptive. Lavrač et al. (2005) describe a pattern as being local while the

global counterpart to a pattern is a model, which explains data formation.

Practical use of algorithms in this area is motivated through their successful

application in a variety of contexts. For instance, supervised local pattern

applications have been used in marketing. Lavrač et al. (2004a) used it to

distinguish specific characteristics of customer groups with a focus on

discovering actionable or operational rules. Other applications use it for

identification of risk factors for coronary heart disease (Gamberger and Lavrač,

2002a,b) as well as university marketing which led to changes in student

recruiting practices (Bay and Pazzani, 2001). Rather than trying to build a

model which could be used to predict the behavior of a certain example, local

patterns have been used to describe examples and build knowledge with the

experts that work in student recruiting or marketing or other branches, helping

them on a day to day basis. The task works on labeled data, which makes it

applicable for research questions focused on few attributes of interest In

contrast, association rule discovery works on unlabeled data and is concerned

with questions like what products are typically bought together. Supervised local

pattern discovery works with labeled data and can therefore help answering

questions like what features do people have that have repeatedly bought a

certain product or possibly never bought a certain product. In rule learning the

goal is to find good rules which help to discriminate between examples of

different groups. The goal is to be able to infer the class of unknown examples.

In supervised local pattern discovery, patterns or rules are of interest that might

not be the best discriminators, but they might still contain valuable information

for a working professional. In recent years, several new algorithms have

Introduction

- 2 -

appeared that derived new approaches to supervised local pattern discovery

from rule mining. This thesis surveys those algorithms and presents a way of

integrating local pattern discovery algorithms in a generic rule learning

environment.

1.2 Objectives of the research

The aim of this study is to give an overview on recent works in the area of

supervised local pattern discovery. Recent developments and similarities in the

different algorithms for detecting local patterns in data are presented. As this

thesis is mainly intended as a literature study there is no distinct research

question or research hypothesis which will be followed. Instead the general aim

of this thesis is to provide an overview on recent developments in the area of

supervised local pattern discovery and to provide an abstract understanding of

the general mechanisms which are applied by all algorithms. Therefore this

thesis presents a generic local pattern discovery system which can be used to

implement a majority of the algorithms presented here.

1.3 Problem formulation

To be able to understand the topic one first needs to define what is meant by

patterns. Hand (2002) defines a pattern as “a data vector serving to describe an

anomalously high local density of data points”. This can be interpreted as a rule

which is used to describe a set of similar examples. Informally, a pattern is

defined as a local anomaly which is of special interest. Therefore it is important

to note the difference of this definition compared to other usages of the word

pattern, especially pattern here does not indicate repetitive regularities but

areas of exceptionally dense data in a wide and normally sparsely occupied

data space. An example for a sparsely occupied data space is the combination

of all products in a certain store carrying thousands of different products. Only a

few items will regularly be bought together. Therefore it is obvious that patterns

as used here are always local since they do not describe a repetitive regularity

which would have global meaning for the data of interest. Despite this definition,

Introduction

- 3 -

since the research area is relatively new, there is so far no generally accepted

definition. Especially, locality presents a problem which is described in section

2. Pattern discovery should also be contrasted to what is described as pattern

matching. Hand describes the key difference as follows: pattern matching

means that the patterns, the information of interest, come from outside the data.

Its aim is not to look for unknown anomalies, but rather the anomaly is known

beforehand and is being scanned for in the data. This thesis describes

algorithms that are developed to be used for supervised pattern discovery. This

means that patterns describe different data points according to an attribute of

special interest. That way one can consider the data as being labeled. For this

thesis most interesting are algorithms that have been discussed as problems

called subgroup discovery, contrast set discovery or exception rule discovery.

1.4 Overview

This thesis is structured as follows. Chapter 2 gives a more detailed introduction

into the topic. Chapter 3 defines the different problem statements that have

been developed in the realm of supervised local pattern discovery. Chapters 4

to 6 describe the actual algorithms in terms of data preprocessing, search

algorithms and post-processing. In chapter 7 some related algorithms are briefly

discussed before chapter 8 concludes this thesis.

Data Mining and Pattern Discovery

- 4 -

2 Data Mining and Pattern Discovery

After having discussed the basic properties of supervised local pattern

discovery (SLPD) in the introduction, this chapter describes the tasks in more

detail. It shows how SLPD is a midfield task between the two related tasks of

inductive rule learning and association rule mining. Section 2.1 introduces the

tasks of knowledge discovery in databases in general before section 2.2

discusses the rule learning task more deeply as the basis for supervised pattern

discovery. Section 2.3 reviews the problems of finding a general definition for

local pattern discovery and addresses the issue of supervised learning in the

context of pattern discovery. Section 2.4 covers the task from an algorithmic

point of view which is used as a guideline for the latter part of this thesis.

2.1 KDD

Fayyad et al. (1996) define Knowledge Discovery in Databases (KDD) as „the

non-trivial process of identifying valid, novel, potentially useful, and ultimately

understandable patterns in data.” Furthermore they depict a pattern as a

description of a subset of the data that can be stated in a simpler form than

enumerating all facts of that subset. Similarly Hand (2002) describes a pattern

as “a data vector serving to describe an anomalously high local density of data

points”.

In KDD one can generally distinguish between two main goals. First there is the

predictive task. Predictive algorithms deal with the prediction of unknown

variables in a database based on some other known variables (Fayyad et al.

1996). Often this task is described as model building (Lavrač, Železný &

Džeroski, 2005; Hand, 2002). An example for this task is rule mining algorithms

(e.g. see Fürnkranz, 1999). The second goal is descriptive in nature. It aims at

finding understandable patterns in the data. As Hand (2002) points out, pattern

detection, as a research goal by itself, is a relatively new research area. An

example of descriptive pattern detection and one of the most well known

Data Mining and Pattern Discovery

- 5 -

applications is the discovery of association rules (Agrawal, Imielinski & Swarni,

1993). Association rules are often used in terms of market basket analysis,

which tries to discover itemsets in a market basket which are frequently bought

together.

Fayyad et al. (1996) identified classification, regression, clustering,

summarization, dependency modeling, as well as change and deviation

detection as primary data mining tasks. Classification and regression are both

prediction tasks which aim at mapping an example according to a rule based

model or a learned function to one of several predefined classes or to a real

valued prediction variable. To be able to do that, both task learn a function

based on examples that have been labeled according to the predefined classes

in the case of classification learning or have a real value as a label in the case

of regression. New examples are labeled based on the model that has been

learned using the previously seen examples. Essentially in classification there is

a finite number of classes, while with regression an example is assigned a real

number.

Clustering, summarization, dependency modeling and change and deviation

detection are descriptive tasks. Clustering aims at grouping examples in

subsets which can be exclusive but not necessarily have to be depending on

the context. While in the classification context, examples had been labeled, in

clustering, labeling prior to cluster discovery is not assumed. Summarization

highly compresses information on a subset of the data. It is descriptive and the

summary might contain valuable information for a human reader though it might

be too general to be used for classification purposes. An example for a

summarization task is to calculate mean and standard deviation for the fields of

an example table. Dependency modeling aims at discovering dependencies

between variables, which are described in terms of existence and magnitude.

Deviation detection is used for discovering changes which have occurred over

time.

Data Mining and Pattern Discovery

- 6 -

Since for supervised local pattern discovery rule learning algorithms are most

relevant, the next section discusses rule learning in short before the following

section discusses issues of SLPD.

2.2 Rule Learning

Rule learning means that the results of the learning algorithm lead to “if … then

…” type of rules. Considering the classification above, rule learning can be used

in predictive as well as descriptive settings. It is applied in classification tasks,

where the rule consequent consists of one of the predefined classes, while the

rule antecedent is a combination of values of attributes of the examples.

Similarly rules are applied for descriptive tasks such as association rule

discovery. Before going a bit more into both tasks, one should define more

formally what should be understood when discussing rules. The definitions

follow the work of Zimmermann and De Raedt (2005).

Definition 1 (Literal). A literal is an attribute-value-pair vA = with][AVv ∈ . An

instance dvv ,...,1 is covered by a literal l of the form vAi = iff

.vvi =

Definition 2 (Rule). A rule r is of the form hb ⇒ with illb ∧∧= ...1 the rule body

and dllh '...'1 ∨∨= the rule head. An instance e is covered by b iff e
is covered by all b’s literals and e is correctly covered by the entire
rule r iff it is covered by at least one literal in h as well.

In the definition },...,{ 1 dAA=Α is a set of ordered attributes and },...,{][1 pVVAV =

is the domain of A . An instance e is a tuple dvv ,...,1 with][ii AVv ∈ .

Additionally, for every instance e there is a weight which is set to 1 by default.

Removing an example is equivalent to setting the example weight to 0. A

multiset E= },...,{ 1 nee is called a data set.

Definition 2 allows for multiple outcomes of a rule. In the case of a binary

classification the rule head typically states that covered examples are positive.

Data Mining and Pattern Discovery

- 7 -

In those algorithms presented here, the rule head consists of only one literal

rather than a disjunction of literals.

Since a rule should be applicable to more than one example, one is often

interested in how many examples satisfy the rule body and the rule head. This

is called support of a rule.

Definition 3 (Support) For a literal l the support of l is defined as
}lby coveredis|{)sup(eel = with Ee∈ . .

Also for a rule body b the support of b is defined as
}bby coveredis|{)sup(eeb = with Ee∈ . Often this is just described

as coverage. .
Finally, the support of a rule with only a single consequent

}hby coveredisbby coveredis|{)sup(eeehb ∧=⇒ with Ee∈ .

Often it is said that a rule r covers x examples, which means that the support of

rule r is x. As mentioned above, rule learning can be classified in two

conceptual problems, inductive rule learning and association rule discovery.

Algorithms that had originally been developed for either of those tasks are the

basis for the algorithms for SLPD therefore it is helpful to discuss both issues a

little further.

2.2.1 Inductive Rule Learning

As said before the aim of the classification task is to define a function which is

used to map examples to a predefined set of classes. In inductive rule learning

the function is based on a set of rules. Each of the rules cover a part of the

example space and the whole set of rules describes the global model which

ideally describes the way the data has been generated. The rules are

discovered through a sequential covering algorithm where for each discovered

rule, all examples covered by that rule are removed and only then the next rule

is discovered ignoring all previously covered examples. Discovery is performed

by searching the hypothesis space, often done by starting from the most

general rule, which covers all examples, to more specialized rules which cover

less examples, though the number of examples that belong to a specific class

Data Mining and Pattern Discovery

- 8 -

should increase while the number of examples covered that belong to another

class should decrease. Alternatively, search can start with a single example as

a first, very specific, rule, which is generalized during the search. The search

stops after a stopping criterion is met or there are no more examples left, since

they have all been covered by at least one rule. The discovered set of rules

describes the data. There is a wealth of different algorithms that are based on

this covering approach. Most of them differ in the way a new rule is generated

or the way the hypothesis spaces is being searched.

This type of learning is called supervised learning since all the training data has

already been labeled. Those labels make up the possible values for

classification. For an unclassified example it is now possible to predict a

classification by finding a rule that can be applied to cover this example. Since

the final goal of inductive rule learning is the classification of unseen examples,

it is necessary to make sure that discovered rules are general enough so they

are likely to be applicable to new, unseen examples. This is often done by

preferring shorter rules. In cases where more than one rule applies to the

previously unseen example, voting schemes can be used or the order in which

rules are tested can be seen the decisive factor.

Rule sets are not the only possibility to generate models. Decision trees (e.g.

Mitchell 1997) can also be applied, but since rule set algorithms have been

more commonly used for developing SLPD algorithms there is no need to

discuss this issue further. More often, association rule learning algorithms have

been found useful in a SLDP context. Therefore the problem of association rule

mining is discussed next.

2.2.2 Association Rule Learning

Other than inductive rule learning, association rule learning is a descriptive task.

It has originally been motivated through market basket analysis. In a shopping

setting, it might be interesting to analyze buyer behavior. Therefore one can ask

Data Mining and Pattern Discovery

- 9 -

what items are often bought together and possibly place different often bought

items in a way that encourages buying other items as well.

Association rules are defined on binary attributes Ι∈I which are called items.

On those attributes, transactions in form of a binary vector e with e[k] = 1 if item

k was part of the transaction e are stored in a transactional database T.

Agrawal (1993) defines an association rule as follows:

Definition 4 (Association rules) An association rule is an implication of the form

bIX ⇒ with X being a set of items and XI b ∉ . The rule has to be
above a certain confidence threshold 10 ≤≤ c which entails that at
least %c of all transactions in T that satisfy X also satisfy bI . This
means that among those transactions that comprise all items in X,
at least %c also contain item bI .

Compared to inductive rules as described above one should notice that the rule

head can be any item Ι∈I as long as it is not part of the antecedent. This is

opposed to the idea of supervised learning in which the rule head is limited to a

number of classes. In this sense, association rule learning is a type of

unsupervised learning. Nevertheless there have been successful attempts to

apply association rule discovery algorithms for inductive rule learning by limiting

the rule heads therefore the differences between association rule discovery and

inductive rule learning are rather conceptual and in terms of intended

applications. Therefore algorithms for both problem types have been used as

basis for the development of SLPD algorithms.

2.2.3 Hypothesis Language

After having defined what is meant by a rule, how a rule covers an example and

described two related and important rule learning tasks, it is necessary to

discuss how rules are applied in the algorithms and what that means for the

search. The hypothesis language constraints the search space in which an

algorithm can look for a problem solution by defining what a hypothesis or rule

looks like. This section gives an overview on hypothesis language with regard to

the algorithms that are described in this paper.

Data Mining and Pattern Discovery

- 10 -

Most algorithms that have dealt with the issue of supervised local pattern

discovery have done so in a propositional approach. Mostly this is done in a

conjunctive approach which does not allow for internal disjunctions. As a result,

rules that are built can be described as conjunctions of selectors.

mllb ∧∧= ...1

with m ≤ d and d being the total number of attributes, there is at most one literal

per attribute, since otherwise a rule would have zero coverage.

Some authors have suggested the use of internal disjunctions which leads to

rules of the type of

mlllllb ∧∧∨∨∧= ...)(
321 2221

With)(
321 222 lll ∨∨ being different attribute value combinations for the second

attribute. This type of hypothesis language does however lead to an exponential

increase in possible rules. Atzmüller and Puppe (2006) explicitly describe a way

of dealing with the problem in their algorithm, though their suggestions are

merely a technical choice that does not necessarily help in reducing the search

space. First they argue if internal disjunctions are only needed for few attributes

they can be implemented straightforward. Though, if all possible combinations

are needed, the authors suggest the use of conjunctions of negated selectors

rather than disjunctions. Internal disjunctions are also part of the MESDIF

(Multiobjective Evolutionary Subgroup DIscovery Fuzzy rules) algorithm

(Berlanga et al. 2006). Since the algorithm performs a genetic search and is

therefore a heuristic approach the algorithm should be able to handle the

increased search space since only approximations of the best rules are

discovered anyway.

In terms of hypothesis language the MESDIF algorithm is exceptional in another

aspect as well. Different from the other algorithms, MESDIF, applies fuzzy logic

to deal with continuous variables. This means that rather than discretizing

Data Mining and Pattern Discovery

- 11 -

continuous variables and replacing the original value with the corresponding

discretized version, fuzzy logic allows replacing the value with different

corresponding discretized values but only to a certain degree. This degree of

membership to one or more of the new values is dependent on a membership

function. Berlanga et al. (2006) suggest the use of uniform partitions with

triangular membership functions in cases where there is no available expert

knowledge.

First order logic approaches are rarely used. First order logic has been applied

by Lavrač et al (2002) in the RSD algorithm. Here, it is used only to generate

features to form a single table from a multi-relational database on which then

essentially the CN2-SD algorithm is run which makes use only of propositional

logic. Wrobel (1997) also uses first-order logic in order to be able to deal with

multiple relations rather than just a single table. The rules itself are stated in first

order logic.

Since few of the algorithms depart from the propositional approach, the

expressiveness of the discussed algorithms and search costs can be

considered similar for most algorithms. This is not surprising since one of the

goals of local pattern discovery is that discovered patterns should be human

understandable. Using a different approach might lead to similar or even better

patterns, though depending on the language in which they are stated, they

might be difficult to understand. Therefore one should remember that only those

algorithms that try to discover patterns in multi-table databases are employing a

first order approach. All other algorithms use conjunctive rules as described

above.

2.3 Local pattern discovery

Previous sections discussed the tasks of KDD generally and inductive rule

learning and association rule learning problems especially. Also the distinction

between predictive and descriptive tasks has been introduced. As it is possible

to turn a descriptive association rule discovery algorithm into an predictive rule

Data Mining and Pattern Discovery

- 12 -

learner has one can see that the lines are often dependent on application and

interpretation rather than in methodology. Therefore, supervised local pattern

discovery has characteristics of inductive as well as descriptive learning. Lavrač

et al. (2005) describe the task as between purely descriptive and predictive

induction. This view is justified by recognizing that supervised pattern discovery

can be seen as a way of supervised learning, while it is also a form of

descriptive induction since the goal is to discover interesting patterns as

knowledge rather than building a model explaining the data generating process.

Therefore, a key issue to be aware of is that when trying to discover new

knowledge through patterns, it is important that the results are probable to fit

new data as well. Consequently, it is important that the discovered patterns

generalize well beyond the data they were discovered on. Only if this property

can be assumed to hold, one can consider the discovered knowledge as

applicable to other data and consider it useful. This is also a needed property of

supervised learning which underlines the relations between both tasks.

It should now be made clear what is to be understood when discussing

supervised local pattern discovery. Therefore let’s first discuss what is meant by

local patterns. Hand (2002) described the local pattern discovery problem

analogously to statistical modeling as

data=background_model+local_patterns+random_component

The definition given by Hand is one of the first definitions that arose on local

patterns. There is still a discussion going on, on how to correctly define local

patterns. Bonchi and Giannotti (2005) summarize a discussion on how to define

local patterns by three main criteria:

1. local patterns cover small parts of the data space

2. local patterns deviate from the distribution of the population of which
they are part of

3. local patterns show some internal structure.

Data Mining and Pattern Discovery

- 13 -

Most notable in the discussion on local patterns is the focus on small parts of

the data space. Hand, for instance, describes local patterns as being “small”

phenomena. Yet, it is not clear what exactly makes a small pattern. Bonchi and

Gianotti discuss this issue using the question of whether association rules could

be considered as local patterns. The problem is that all association rules taken

together form a model of the data. Thus, in their opinion, the set of association

rules cannot be considered a local pattern. A single rule though could be

considered a local pattern unless it has very high support, representing obvious

or already known knowledge. The same is true for the aforementioned idea of

turning the set of learned patterns into a classifier. The key idea for describing

local patterns as small phenomena of sorts is that large patterns can be

discovered by humans and most likely have already been discovered, therefore

there is no need to rediscover this knowledge using machine learning tools.

Nevertheless, the question on how big is too big for being a local pattern is

difficult to answer. Hand (2002) suggests choosing a distance measure

dependent on the data and application domain. Also the necessary threshold

should be chosen domain specific. An example of such a measure can be

frequency as has been used in searching for frequent patterns. A frequent

itemset or frequent pattern has been defined as follows (Han et. al, 2004)

Definition 5 (Frequent pattern) A pattern A is frequent if A’s support is no less
than a predefined minimum support threshold ξ . The support of a
pattern A is the number of transactions in T that contain the
pattern.

While a very frequent pattern can be considered a global pattern, a less

frequent pattern would be considered local (Bonchi and Giannotti, 2005).

While most of the points discussed so far were originally aimed at the task of

unsupervised local pattern discovery, the discussion should also hold for the

case of supervised local pattern discovery. Nevertheless the interpretation of

smallness plays a less significant role in problem definitions that could be

considered part of the SLPD problem family. As Lavrač et al. (2005) define the

task of subgroup discovery as finding “population subgroups that are statistically

Data Mining and Pattern Discovery

- 14 -

‘most interesting’, e.g. are as large as possible” it shows that their definition

does not solely focus on small phenomena. Similarly, Fürnkranz (2005)

interprets a single rule from a rule set as a local pattern. Therefore the issue of

locality has rarely been tackled from the small phenomena point of view in the

algorithms that have been introduced so far.

The other important property of supervised local pattern discovery is the focus

on supervised data. Supervised local pattern discovery is the process of

discovering properties of a population of examples that have a certain property

of interest. This property of interest can be seen as a label distinguishing two or

more groups in the population, making it possible to classify examples. For

instance in a setting which tries to discover patterns in car accident data, one

might be interested in seeing commonalities of lethal accidents, accidents with

heavy injuries, light injuries and accidents without any injuries. Supervised

pattern discovery only looks for patterns with regard to those categories. The

alternative would be to search for patterns in non-labeled data which means

that patterns can be of any kind while in supervised pattern detection pattern

rules are learned with only the attributes of interest as possible rule outcomes.

This is similar to rule learning in the classification task and therefore patterns

could be used to predict a classification for unknown examples. This has been

undertaken by Lavrač et al. (2004a) which showed a reasonable performance at

this task.

Local pattern discovery can be considered somewhat similar to the task of

clustering (Höppner, 2005). There are important differences though. First, the

focus on labeled data distinguishes supervised local pattern discovery most

from the related task of clustering. Clustering typically is applied for unlabelled

data, therefore automatically creating class labels for different clusters.

Considering the problem of supervised local pattern discovery, there is a

second issue that needs to be considered. Clustering should result in different,

exclusive clusters where every example does belong to exactly one cluster.

Höppner argues that if this constraint is relieved then clustering and pattern

Data Mining and Pattern Discovery

- 15 -

discovery are practically the same. This point was made for the task of

subgroup discovery which is a specific task within the general concept of local

pattern discovery.

Before discussing how local pattern discovery can be performed from an

algorithmic point of view and what kind of challenges need to be addressed,

one possible element of confusion should be addressed. As pointed out by

Fayyad et al (1996), it is important to distinguish pattern discovery from pattern

recognition. While pattern discovery is a descriptive task of identifying a pattern

and presenting it in an understandable way, pattern recognition is a predictive

task in which an application has to label a new example according to previously

seen examples. Additionally, pattern recognition needs to identify the example

despite differences in appearance, e.g. in speech recognition. Hand (2002)

elaborates by stating that in pattern discovery the information comes mostly

from inside the data itself, while in pattern recognition outside patterns such as

words have to be recognized in a wealth of examples. This is again meant for

unsupervised pattern discovery. Though in supervised pattern discovery the

only type of information provided from outside the database is the feature of

interest. Therefore in pattern detection, one needs not only to find patterns in

the database, but should also establish that the found pattern is indeed a

pattern that has occurred due to the underling model responsible for data

generation and has not just occurred by chance. He points out that for this, the

algorithm can rely only on the information in the database and no other

information.

To summarize this section we can state that the supervised local pattern

discovery task needs to satisfy the following criteria: patterns discovered need

to be local in that sense that they do not describe a complete model of the

evaluated data, though there is no generally accepted definition of locality yet.

Second, supervised local pattern discovery is a task that is performed on

labeled data and therefore is similar to classification rule learning systems.

Therefore the discussion on problems in discovery of supervised local patterns

Data Mining and Pattern Discovery

- 16 -

often refers to problems that have also been discussed in the context of

supervised learning.

2.4 Supervised Local Pattern discovery techniques

This section now deals generally with the algorithmic solution to the problem of

supervised local pattern discovery and discusses the problems that have to be

addressed. In doing so it provides the structure of the later part of this paper.

A variety of approaches have been developed, though mostly the issue of

locality is somewhat ignored. The most important approaches are described in

detail in chapter 3. This section aims at describing the most important aspects

of supervised local pattern discovery techniques. This provides the background

for the structure of the later chapters of this thesis. Due to the wealth of different

vocabulary, the terms rule and pattern are used interchangeably in this thesis.

This is possible since supervised patterns discovery consists of a pattern

description and a corresponding classification which can be considered a rule.

In Kralj et al. (2007) one can find a description of synonyms that have arisen in

the contexts of subgroup discovery, rule learning and contrast set mining.

As has been discussed above, single rules derived from a rule learning

algorithm or association rules can be considered local patterns. Hence most

algorithms draw from the literature on rule learning or association rule mining.

Additionally using rule based systems for pattern discovery has the advantage

of being understandable for humans. When considering association rule mining

based approaches though, criticism arises on the wealth of rules that are found

(Bay & Pazzani, 2001; Höppner, 2005). Mined rules are often so vast that they

are hardly manageable. Nevertheless, the principles of mining for association

rules are commonly used in supervised pattern mining. Opposed to that, other

algorithms are based on rule learning algorithms like CN2 (Clark and Niblett,

1989, Clark and Boswell, 1991). These have the advantage that using only the

best rules significantly reduces the total number of rules presented to the user,

though at the cost of potentially missing important yet slightly less well

Data Mining and Pattern Discovery

- 17 -

performing rules. Furthermore, the use of a heuristic search might even lead to

missing the actual best patterns. So, in supervised local pattern discovery the

goal is to find human understandable, interesting rules without loosing too much

information. Some solutions that have been suggested deal with avoiding

finding highly correlated rules. For instance, if one rule is stating that young

drivers are more likely to be involved in an accident, a second one stating that

drivers that only recently acquired their driver’s license are more likely to be

involved in an accident is not interesting once the first one is found since both

rules cover nearly the same examples (Scholz, 2005). Generally a simple

solution to the problem of finding too many rules is to offer the user the ability to

limit the number of rules that are found. In such a scenario it is important to

make sure that those first best rules are as diverse as possible. Another

possibility is to post-process discovered rules in such a way that only those

rules that are deemed interesting are shown to the user or only those rules that

are quite different from those already presented are presented next. As can be

seen, discovery and presentation of rules are interconnected and important in

local pattern discovery. Therefore this discussion leads to two important aspects

of an algorithm for this task. First one needs to determine which rules are better

or more interesting through the use of a quality measuring function and

secondly, a possible post-processing step is often required in which rules that

have been found are further analyzed in order to avoid excessive amounts of

rules.

Another problem posed by the task of supervised local pattern discovery is the

problem of the vastness of the search space. In order to reduce this problem, it

is possible to try either a heuristic approach to rule discovery which may lead to

good, though possibly suboptimal solutions or to try exhaustive search which

employs constraints to limit the search space. This leads to search algorithms

that find all rules considering constraints such as minimum frequency. This

constraint could be chosen rather strict to make search feasible. This latter

approach is used mostly in frequent itemset approaches trying to find

Data Mining and Pattern Discovery

- 18 -

association rules. The search space problem is also influenced by the

hypothesis language which should hence be a topic for discussion as well.

Last but not least there is the data quality problem. A quality problem could be

either missing values or simply wrong data. While solutions have been

suggested in the literature to deal with the first problem through a pre-

processing step, wrong data cannot be addressed automatically. In this context

Hand (2002) reminds us to be careful when using results from data mining as

he states Twyman’s Law that “any figure that looks interesting or different is

usually wrong”. Furthermore there is the question of representability. As most

rule based algorithms are based on a symbolic representation of attribute-value

pairs, continuous variables pose some problems. These can also be addressed

during a pre-processing phase.

Considering the discussion above there have been four key steps identified that

have been addressed in the presented literature. First one needs to perform

pre-processing of the data in order to improve data quality and adapt the data to

language constraints, second there is the search has to be organised efficiently,

whether by employing heuristic searches or exhaustive search and how those

are implemented. Third, there are quality functions used in order to find the best

rules and fourth post-processing issues that try to avoid presenting the user too

many rules.

Figure 1 shows an overview on the supervised local pattern discovery task

based on the tasks discussed above. The processes PreprocessData,

Data Mining and Pattern Discovery

- 19 -

 Procedure LOCALPATTERNDISCOVERY(Examples)

1 LocalRules={ }

2 FinalRules={ }

3 PREPROCESSDATA(Examples)

4 LocalRules=FINDLOCALPATTERNS(Examples)

5 FinalRules=POSTPROCESSPATTERNS(Examples,LocalRules)

6 return(FinalRules)

Figure 1.Overview on the processes of local pattern discovery algorithms

FindLocalPatterns, and PostProcessPatterns are described in their respective

sections. Note that the key process here is the FindLocalPatterns and that most

of the preprocessing task consists of issues that are not unique to the

supervised local pattern discovery task and that cannot easily be generalized.

They are important to mention though, since often these tasks deal with aspects

that do necessarily pose a problem for the original application of an underlying

algorithm. For instance, the missing value problem does not occur in an

association rule discovery scenario for market based data, but it does pose a

problem for pattern discovery on other data.

Before discussing the different processes, the following chapter presents the

most important problem definitions that have been developed in the area of

supervised local pattern discovery. After that, chapters’ four to six discuss the

different algorithms in detail according to the order formulated above. Chapter

seven will then show some other algorithms that deviate significantly from those

discussed in chapters four to six.

Problem Definitions in Supervised Local Pattern Discovery

- 20 -

3 Problem Definitions in Supervised Local Pattern

Discovery

SLPD is being discussed from a variety of viewpoints. All approaches try to

discover interesting subsets in a dataset or even within a subset of the dataset.

This chapter presents different problem definitions that have arisen in the

literature which can be attributed to the field of supervised local pattern

discovery. Most of these fields have been discussed independently of the other

literature, though some attempts of incorporating different research streams

have been performed (i.e. Zimmerman and de Raedt, 2005, Kralj et al., 2007).

The key research streams have been named subgroup discovery, contrast sets,

correlated pattern mining, exception rules and cluster grouping, which itself is a

superset of subgroup discovery and correlated pattern mining. Those are

described in more detail in the following sections. The goal of this section is to

provide an overview on the research streams that have been developed by the

different research communities. Furthermore, it is a goal of this section to

underline the research questions that where asked which lead to the

development of this type of problem. These research streams are important

since different algorithms have been developed within the different

communities. As we will see, most research goals are achievable by applying

adapted algorithms that had originally been developed with a different research

question in mind.

3.1 Cluster Grouping

Cluster grouping has been developed by Zimmerman and de Raedt, (2005) to

unify several data mining concepts that are among the group of supervised local

pattern discovery. There is no explicit research question that was at the

beginning of the development of this problem type. Rather than that, the

question was to unify different seemingly different problem definitions. The

authors also have devised an algorithm which can solve the problem of cluster

Problem Definitions in Supervised Local Pattern Discovery

- 21 -

grouping, the CG-algorithm. For the current analysis, the definition of the cluster

grouping problem is most interesting. Zimmerman and de Raedt, define the

problem of cluster grouping as

 Given:

- A set of literals L

- A data set Ε

- An interesting measure σ

- A set of target Literals T

Find:

The set of k rules expressible in L having the highest value of σ on Ε
w.r.t. the given target literals T .

Using this definition the authors define subgroup discovery as well as correlated

pattern mining which is shown next.

3.1.1 Subgroup Discovery

The task of subgroup discovery has been described by Lavrac et al. (2004a) as

follows:

“Given a population of individuals and a property of those individuals we

are interested in, find population subgroups that are statistically ‘most

interesting’, e.g., are as large as possible and have the most unusual

statistical (distributional) characteristics with respect to the property of

interest.”

Furthermore, Gamberger & Lavrač (2002b) add that a subgroup description of

the data should meet the following properties

- the subgroup’s coverage is sufficiently large

- the subgroup has a bias towards target class coverage

- the subgroups are sufficiently diverse

- the subgroups are understandable, simple and actionable.

Problem Definitions in Supervised Local Pattern Discovery

- 22 -

A more formal definition of the task is given by Zimmerman and de Raedt

(2005) using their notation as shown above:

Given:

- }V[A]v},{A\|{ t ∈Α∈== AvAL

- A data set Ε

- An interestingness measure σ

-]}[|{ tt AVvvAT ∈==

Find:

The set of k rules expressible in L having the highest value of σ on Ε
w.r.t. the given target literals T .

One has to be aware that in the original definition of Zimmermann and de Raedt

(2005) the interestingness measure σ has been identified as WRAcc. This is

due to the authors referring to the CN2-SD algorithm by Lavrac et al. (2004a).

As one of this paper’s aims is to present the literature on supervised pattern

discovery, possible other instantiations of σ are presented in section 5.2. The

definition of the target literals is only true for CN2-SD since it is possible to find

rules for all possible values of an attribute. Using a different algorithm (i.e.

Gamberger and Lavrač, 2002a), only a single literal from an attribute is chosen

to be the property of interest in which case the target definition is the same as

with correlated pattern mining. Concerning the goal of the search, it needs to be

stated that rather than finding k rules, some algorithms presented use

exhaustive search and do not limit the number of discovered patterns during the

search but rather suggest choosing the best k pattern in a post-processing step.

Wrobel (1997) has extended the problem of subgroup discovery to usage of

multi-relational databases.

Most algorithms that will be described in this thesis have dealt with the issue of

subgroup discovery. Those algorithms are CN2-SD, which is a variation of the

CN2 algorithm aimed at subgroup discovery, algorithm SD, which is a simple

beam search algorithm that uses a quality function that allows for user guided

Problem Definitions in Supervised Local Pattern Discovery

- 23 -

search through a parameterizable quality function. Also the MESDIF

(Multiobjective Evolutionary Subgroup DIscovery Fuzzy rules) algorithm is

explicitly designed with subgroup discovery in mind. As opposed to the other

algorithms, MESDIF employs a genetic search and multiple quality functions.

Furthermore Apriori-SD, a subgroup discovery algorithm based on the Apriori

algorithm and SD-Map are two algorithms that employ exhaustive search. Even

though SD-Map was developed for subgroup discovery, the algorithm is

capable of dealing with single value properties of interest only, rather than a

range of values for a single attribute. A more detailed discussion of those

algorithms is the subject of the next three chapters. The following section

describes the related task of contrast set discovery as described by Bay and

Pazzani (2004).

3.1.2 Contrast sets

Contrast set mining aims at finding differences between groups and has been

introduced by Bay and Pazzani (2004). This is motivated largely by research

questions derived from social research based on census data. The aim of

contrast set discovery is to distinguish one or more groups against each other

or contrasting the development of a group over different points of time. As

opposed to other statistical techniques like time series analysis, contrast set

mining deals with a multitude of observations at different points of time rather

than observations throughout a time period. While in subgroup discovery the

discussion evolves around finding subgroup descriptions which characterize a

specific subset of examples, in contrast set discovery the aim is finding contrast

sets, which help to differentiate groups against each other. In order to be able to

do that, the examples are divided into groups which correspond to the

classification of examples in the subgroup case.

The problem of contrast set mining is defined as follows.

Problem Definitions in Supervised Local Pattern Discovery

- 24 -

A contrast set is a conjunction of attribute value pairs (Ai,V(Ai)) defined on

groups G1,G2,…,Gn with no attribute occurring more than once. The groups are

mutually exclusive meaning that jiGG ji ≠∀=∩ {} .

Bay and Pazzani (2004) introduce also a notion of support for contrast sets with

respect to the groups. “Support of a contrast set with respect to a group G is the

percentage of examples in G where the contrast set is true.”

Considering the formal definition given above one can describe contrast set

mining as

Given:

- }V[A]v},{A\|{ t ∈Α∈== AvAL

- A data set Ε

- An interestingness measure
2χ

-]}[|{ tt AVvvAT ∈==

Find:

The set of k rules expressible in L having the highest value of 2χ on Ε
w.r.t. the given target literals T and different groups.

Note that here the interestingness measure is set to
2χ . The key difference in

contrast set mining is when trying to evaluate the different contrast sets, one

need to be aware of the different groups. That means rather than comparing the

number of examples that are covered by a contrast set rule to the whole

population, in contrast set mining the number of covered positive examples in

one group is compared to the number of covered positive examples in all other

groups independently. Using the
2χ measure one can find significant deviations

between the groups and therefore find interesting contrast sets.

Problem Definitions in Supervised Local Pattern Discovery

- 25 -

As shown by Kralj et al. (2007) contrast set mining is so similar to the task of

subgroup discovery that it is possible to use subgroup discovery algorithms for

contrast set mining. This is done by sequentially applying a subgroup discovery

algorithm to all groups that should be contrasted individually. Webb et at (2003)

also found that contrast mining can be tackled using the so called Opus_AR

rule learning algorithm which discovers association rules though it does not rely

on the frequent itemset paradigm. He therefore concludes that contrast set

mining is a special case of rule learning.

In this paper, STUCCO (Bay and Pazzani, 2003) is presented since it is the only

algorithm that has been developed especially for this problem formulation. In

the final chapter, GroupSAX is presented to show how contrast set mining can

be done on sequential data. The next section discusses correlated pattern

mining.

3.1.3 Correlated Pattern Mining

Correlated pattern mining has been established by Morishita and Sese (2002).

It is motivated through the lack of interestingness of some association rules

despite high confidence. Therefore the authors use a correlation measure in

order to determine which items are actually correlated and thus are deemed

interesting. Zimmermann and de Raedt (2005) formulate the problem of

correlated pattern mining in terms of cluster grouping as follows:

Let },{][:},,...,{ 1 truefalseIVIII z =Ι∈∀=Ι be the set of items,

Given:

- }|{ Ι∈== ItrueIL \

- Ε a transaction database

- σ is a correlation measure such as 2χ

- T is a single literal Ll ∈

As Zimmermann and de Raedt point out, the approach suggested by Morishita

and Sese is restricted to itemsets that appear together and are therefore

Problem Definitions in Supervised Local Pattern Discovery

- 26 -

positively correlated. Nevertheless by also accepting literals set to false, it

would be possible to mine for negative correlation, therefore finding rules such

as e.g. item x is rarely bought together with item y. A similar though more

general approach to this kind of itemset mining without the definition of a target

literal has been suggested by Silverstein et al. (1998)

A specific algorithm for correlated pattern mining is not discussed in this paper

since the CU-algorithm (Zimmerman and de Raedt, 2005) for general cluster

grouping problems is presented. It is based on algorithms for correlated pattern

mining developed by Morishita and Sese (2002). The next section discusses the

rather different approach of exception rule mining which aims at finding local

patterns within all examples covered by a strong rule.

3.2 Exception Rules

The idea of exception rule discovery (Suzuki, 2004) is that it is possible to

increase the accuracy of a rule r by finding a significant exception population for

r, which is described by an exception rule. Hereby, the examples covered by

rule r are partitioned into true positive (TP) and false positive (FP) examples.

Among the FP examples exception rule discovery tries to find large groups that

can be considered a regular exception to the rule. The authors cite the example

rule that “fastening your seatbelt is safe” is common knowledge, though the

exception rule is “using a seatbelt is risky for a child”. As can be seen from this

example, discovery of exception rules can lead to better knowledge discovery

results. In terms of the discussion of supervised local patterns, the total

example space is partitioned twice, first by discovering a strong rule and second

by searching for a meaningful exception. This means we are looking for local

patterns within patterns that could be described as local as well.

The authors define a conjunction rule as a rule represented by a conjunction of

attribute value-pairs as the rule body and single attribute-value pair as the rule

head. The aim of exception rule discovery is to find pairs of rules which include

the strong rule with its associated exception rule. Therefore the aim is to find a

Problem Definitions in Supervised Local Pattern Discovery

- 27 -

strong rule h...vvvvb
µµ
⇒∧∧∧= 321 with h being a single attribute-value pair,

with an exception rule h''...v'v'v'v'b
vv

→∧∧∧=
321

 with h' being an attribute-value

pair of the same attribute as h but of a different value. The exception rule is

fully stated as: “if
µ

b then h and if
µ

V and
v
'V then h' ”. The discovered pattern

is represented as a rule pair.

M

hbb

hb
bbhhr

v

v

≤

→∧

→
≡

νµ

µ

µ

µ

,

''
)',,',(

With M being the user specified maximum number of attribute-value pairs in the

rule body.

Considering the definition of pattern detection given in section 2.3 as a relatively

small phenomenon, exception rules appear to fit rather strict. While the strong

rule could be considered a global pattern, the corresponding exception rule

defines a local pattern which deviates significantly from the distribution created

by the strong rule and can still be considered a small phenomenon with regard

to the base distribution.

Describing the task using the definition scheme above, one can define the task

of exception rule mining as follows:

Given:

- }V[A]v},{A\|{ t ∈Α∈== AvAL

with MAvA ≤∈Α∈= }V[A]v},{A\|{ t defining the maximum length

for each possible rule.

- A data set Ε

- σ =)',',,(νµ bhbhACEP

-]}[|{ tt AVvvAT ∈==

Find:

Problem Definitions in Supervised Local Pattern Discovery

- 28 -

The set of k rule pairs '),b(b
νµ

 expressible in L having the highest value

of σ on Ε w.r.t. the given target literals T .

3.3 Conclusion

The aim of this chapter was to present the different problem formulations that

have been used in order to motivate supervised local pattern discovery. From

the problem formulations one can see that the general goal is to discover

interesting knowledge which describes that data.

The research questions posed by the different problem definitions can be

described as finding the most interesting subsets of examples in the data for the

case of subgroup discovery. This can be used to answer questions like, what

common properties do buyers of a certain product share. In the case of contrast

set mining, the question is what properties distinguish different groups of

examples. Here the question could be described as, what common properties

do buyers of a certain product distinguish from those who do not buy that

particular product and what properties do those examples have. Correlated

pattern mining asks the question of when a discovered pattern has to be

considered interesting Research questions that can be answered using

correlated pattern mining are similar to that of subgroup discovery, but

discovered patterns are validated to be correlated. Exception rule mining was

motivated through improving predictive accuracy of rules covering a large part

of the example space. It can be considered as local pattern mining since the

exception takes into account locality explicitly. As can be seen, the research

questions that were at the at the focus of discussion when developing the

problems all look at the problem of local pattern discovery from different angles

or simply put a different focus on similar problems like subgroup discovery and

correlated pattern mining.

Nevertheless, the problem definitions can be considered similar and the

algorithms that are applied can typically be used for either task. This is most

obvious in the case of cluster grouping algorithms. As discussed by Kralj et al.

Problem Definitions in Supervised Local Pattern Discovery

- 29 -

(2007) the differences between subgroup discovery and contrast set mining are

terms and interpretation of results rather than being actual different tasks. The

Cluster Grouping problem formulation works as a superset of those different

problem statements and the CU algorithm is able to complete all the related

tasks. Nevertheless, also the other algorithms that have been developed for the

different subtasks are able to perform the tasks equivalently. Exception Rule

discovery is another issue. Since the goal is to find rule pairs, it is not directly

compatible with the other tasks. Yet it is possible to change the way the

algorithms which have been developed for the other tasks work by first letting

them discover large group descriptions and then letting them search for

subgroups within those group descriptions. Therefore these tasks can all be

considered similar.

Data preprocessing and data quality

- 30 -

4 Data preprocessing and data quality

This chapter is the first chapter to discuss the different algorithms for SLPD.

The algorithms that are described are CN2-SD, Algo-SD, MESDIF, Apriori-SD,

SD-Map, CG-Algorithm, STUCCO as well as MEPRO. This chapter is

concerned with the task of data preprocessing and data quality issues. Data

preprocessing addresses things like conversion of the data structure to fit a

specific algorithm and feature selection. This is not the focus of the algorithms,

but rather a necessity in order to be able to deal with different problems that can

lead to problems such as a too large search space with continuous variables or

missing data. The goal of this chapter is to present obstacles that have to be

faced when applying any algorithm for supervised local pattern discovery. Also

elective procedures which may make searching easier have been discussed in

the literature and should therefore be mentioned in this chapter.

The algorithms studied here are mostly using symbolic representation of the

data and are therefore unable to cope with continuous variables. Furthermore

there are several other issues discussed in this section that are being tackled

during the preprocessing phase. There is the topic of missing values for which

solutions have been suggested in some algorithms individually while others

suggest more general possibilities. Furthermore the data structure has to be

adapted to the individual algorithms. So far we assume that all examples are

stored in a database using a symbolic representation for all attribute values.

Some algorithms require special data formats to work efficiently, consequently it

is necessary to preprocess the data in a way that it can be used in accord with a

specific algorithm. Finally it can also be useful to apply feature subset selection

as suggested by Kavŝec, et al. (2003). As can be seen from the description,

there are challenges that are algorithm specific, while others are algorithm

independent such as feature subset selection. All these questions are

discussed in more detail next.

Data preprocessing and data quality

- 31 -

 procedure PREPROCESSDATA(Examples)

1 For all }][|{ ∞=AVA do

2 DISCRETIZE(A)

3 CHANGEDATASTRUCTURE(EXAMPLES)

4 INCORPORATEMISSINGVALUES(EXAMPLES)

5 PERFORMFEATURESUBSETSELECTION

Figure 2.PreprocessData pseudo code

Considering the program shown in Figure 1, this chapter implements the

PREPROCESSDATA(Examples) procedure. In that regard Figure 2 presents

the pseudo code that describes the actions that can be undertaken during the

preprocessing phase. Note that again some of the measures, such as

discretization are nearly universally needed, while others such as changes in

the data structure would be needed only for SD-Map as well as MESDIF and

Apriori-SD.

Lines 1-2 describe the discretization of continuous attributes which is discussed

in section 4.1. This section describes the different discretization algorithms

which can instantiate the DISCRETIZE(A) procedure though a more detailed

implementation is not shown. Line 3 and 4 discuss the procedures for changing

the data structure and dealing with missing values which are described in

section 4.2 and 4.3. Since there are several possibilities to implement the

issues discussed in lines 2-4 which do not necessarily share many common

traits a detailed pseudo code implementation is omitted. Lines 5 present a

function for feature selection which is discussed in section 4.4.

4.1 Discretization of continuous variables

As has been mentioned already this discretization has to be performed for

nearly all algorithms presented here. The only exception of sorts is the MESDIF

Data preprocessing and data quality

- 32 -

algorithm presented by Berlanga et al. (2006). The authors use fuzzy rules in

order to cope with continuous variables. This is still a kind of discretization

though it is performed directly during the runtime of the search algorithm rather

than in a preprocessing step. Discretization has been a challenge already for

rule learning algorithms and association rule learners even before trying to

detect local patterns. Therefore possible solutions can be found in the literature

for rule learning. Since here we are concerned with labeled data and therefore

with supervised learning, it is possible to employ methods developed for labeled

data. Two possible solutions are chi-merge algorithm by Kerber (1992) or

Entropy Split by Fayyad and Irani (1993).

Chi-merge is a bottom-up algorithm that first creates an interval for every value

that can be found in at least one example and sorts them either ascending or

descending. Adjacent intervals are merged if the distribution of positive and

negative examples is independent. To decide whether the distribution is

independent, the chi value for those two intervals is calculated.

∑∑
= =

−
=

2

1 1

)²(
²

i

c

j ij

ijij

E

EO
χ

ijO is the number of examples in the i-th interval that are of class j and the ijE is

the expected frequency. This is the number of examples in the intervals times

the a priori frequency for the whole distribution for positive and negative

examples. Those two intervals which have the smallest ²χ value are merged.

This is done as long as there are more intervals than desired or as long as there

is still at least one pair of two adjacent intervals that have a ²χ value less than

a predefined threshold.

Entropy Split uses a top down approach. First, all values that are present in any

example are added to a single interval and ordered according to the value. Next

compute a split point for all values which represent a class change in the

ordered list. This is done by computing the entropy value for a specific split

point. This is calculated as

Data preprocessing and data quality

- 33 -

E-Score(A,B,E)=)()(BA

BA

BA

BA
EEntropy

E

E
EEntropy

E

E
≥

≥

<

< +

E is the data set, A is the attribute in question and B is the boundary.

Furthermore, BAE < describes the set of examples where the value is less than

the boundary B, BAE ≥ describes the set of examples where the value is equal or

larger than the boundary and entropy is calculated as:

E

E

E

E

E

E

E

E
EEntropy

−−++ −−= 22 loglog)(

with E+ representing all positive examples of the set and E- representing all

negative examples. The E-score is calculated for all possible split points and the

split is performed where the score is minimal. This procedure is then recursively

continued for the different partitions until the number of partitions that was

Alternatively it is of course possible to use known domain specific

discretizations such as discretizing age (0-18) as baby (0-3), child (4-6), school

child(7-10) and teenager (11-18) or using equal width intervals or equal

frequency kind of discretizing algorithms which are always applicable, even in

cases when working with unlabeled data.

4.2 Data Structure

We assume that all algorithms are capable of working with the standard

symbolic representation of the data as depicted in Table 1. Nevertheless some

algorithms rely on a specific data format in order to be efficient. Therefore this

section presents alternative data formats as used by the algorithm presented by

Data preprocessing and data quality

- 34 -

 A1 A2 A3 A4 A5 A6 A7 A8 A9 A0
Domain(A) {a,s} {f,k} {c,o} {m,h,e} {p,l,j} {b,d} {x} {y} {z} {true,

false}
1 a f c m p d x y z True
2 a f c m l b x y z True
3 s f o h j b x y z False
4 s k c e p b x y z False
5 a f c m p d x y z true

Table 1. Example Standard Data Representation

Atzmüller and Puppe (2006) in their SD-Map algorithm as well as the

dataformat used by Apriori-SD (Kavŝec, Lavrač, & Krastačić. 2003). Changing

the data structure according to the needs of a specific algorithm could be

performed in an additional step when performing the search which relies on the

data structure. Despite this change, the data structure is described as an option

during preprocessing since it makes it possible to implement the solution of

dealing with missing values (e.g. 4.3) according to Atzmüller and Puppe (2006)

even if the complete algorithm should not be used.

Table 1 shows the standard data representation. Row 2 shows the domain of

the attributes and rows 3 to 7 show example data. Attribute A0 describes the

attribute of interest.

4.2.1 FP-Tree

The data structure chosen by Atzmüller and Puppe (2006) for the SD-Map

algorithm is the Frequent Pattern tree (Han et al., 2004) that has been

developed in the context of association rule and frequent pattern mining. The

FP-growth algorithm uses only two passes through all examples ei in the

database in order to find all frequent itemsets. In the first pass, it counts how

often each attribute Aj is found in all the examples and sorts the attributes in

descending order in a sorted list L. Attributes that occur less than the minimal

user specified support are ignored, hence the elements of L are a subset of all

possible attribute values V[A]. In a second pass through the data, the FP-tree is

build. The FP-tree consists of nodes for each attribute counting how often it has

Data preprocessing and data quality

- 35 -

ID A1 A2 A3 A4 A5 A6 A7 A8 A9 Attribute
of interest

Ordered frequent
items

1 a f c m p d x y z True x,y,z,f,c,a,m,p

2 a f c m l b x y z True x,y,z,f,c,a,b,m

3 s f o h j b x y z False x,y,z ,f,b

4 s k c e p b x y z False x,y,z, c,b,p

5 a f c m p d x y z True x,y,z, f,c,a,m,p

Table 2. Input Data FP-growth

been found in the data. For the SD-Map algorithm, the nodes contain the

number of times an attribute has been found in the data, though the count is

split into positive and negative examples. Attributes that are found in different

parts of the tree are linked through a node-link for discovery of frequent patterns

and initial node-links are stored in a header table. The creation of the data

structure used in the FP-growth algorithm is illustrated based on an example of

Han et al. (2004) though it has been extended to incorporate the changes made

by Atzmüller and Puppe. The example contains building the tree according to

seen examples which is presented next and is continued in section 5.1.3.2

where discovery of frequent itemsets is presented. Notice that the minimum

support for a frequent itemset is set to 3.

� Frequent itemsets: x:5,y:5,z:5, f:4,c:4,a:3,b:3,m:3:p:3

To build the FP-tree, the ordered frequent items are used as seen in column

four in Table 2. Column three describes whether an example has the property of

interest or whether it does not. Taking the first example leads to a single-path

tree xyzfcamp with count 1|0 for each node with the one representing one

positive example and the zero representing that so far no negative examples

have been found here. The next example (200) increases the counts to 2|0 for

xyzfca and creates a new branch bm with counts 1|0 for each element. The

third example increases the counts for xyzf and branches out to b:1|0 and so

Data preprocessing and data quality

- 36 -

Figure 3.FP-growth Tree

on. Finding those examples and creating the FP-tree will result in the tree as

seen in Figure 3.

This section has shown how the data structure of the FP-Tree is build. It is

useful to do this already in the preprocessing stage as this offers an alternative

opportunity to deal with missing values and thus provides more flexibility. More

information on how to use this data structure in order to find frequent patterns

and therefore local patterns is provided in section 5.1.3.2.

4.2.2 Binary Vectors

In the Apriori-SD (Kavŝec, Lavrač, & Krastačić. 2003) case the authors

specifically state that the algorithm runs on a binarized database in which every

attribute is represented as a binary vector where for every example exactly one

element is set to 1 representing the value of the attribute. In cases of missing

values the vector will consist only of 0s. In the case of MESDIF (Berlanga et al.,

2006) the authors do not explicitly demand such a data structure, yet, since

root

x:3|2

y:3|2

z:3|2

f:3|1

c:3|0

a:3|0

m:2|0

p:2|0

b:0|1

b:1|0

m:1|0

c:0|1

b:0|1

p:0|1

Data preprocessing and data quality

- 37 -

rules are internally represented as binary vectors it can be useful to work with

the same data representation as in the Apriori-SD case.

4.3 Missing variables

Another important problem are missing values. Incomplete data can be

problematic since too many incomplete examples could misguide a learner or

pattern discovery agent to believe there is a certain pattern when actually there

is not. The easiest way to deal with incomplete data is to simply ignore

incomplete examples completely. Unfortunately this can often lead to a situation

in which rather few examples are left for the data mining process. Second,

Lavrač et al. (2004b) suggest training a rule learner such as CN2 (Clark &

Niblett, 1989) to predict the missing values rather than ignoring all or parts of

the examples

Third, it is possible to ignore incomplete data in a case by case approach for

each rule. While creating a new rule only those examples are counted that fulfill

the rule body and therefore have no missing values concerning the attributes in

the rule. The problem is that when trying to find statistically relevant subgroups

the distribution of elements concerning the rule body is usually compared to the

total distribution in the total set of elements. Due to the missing attributes one

cannot simply use the total numbers of the base distribution since the value for

an attribute is unknown and therefore it could satisfy the rule body or not. For

that reason one needs to subtract all those examples that have missing values

on attributes in the rule body. This problem is addressed by Atzmüller and

Puppe (2006). They use a special data structure derived from their approach to

develop an efficient way of counting all those examples that need to be taken

into account as the base distribution. Hereby, they create a FP-tree which

counts missing values for each attribute according to whether this example is a

positive or a negative one. This FP-tree is used in order to calculate the number

of complete examples for each rule using attributes that have missing values.

Since the data structure of the FP-tree has already been discussed the next

Data preprocessing and data quality

- 38 -

Table 3. Input data for SD-map example

paragraphs discuss an example of how to use the structure to count missing

values.

Next, an example will describe how to create the missing-FP-tree. Consider the

data in 0. Attributes A1 to A5 are the attributes that describe the examples,

attribute A5 is the target attribute and the target value is true. The possible

values are {a,b,c,d,e,f,g,i} with dom(A1)={a,b}, dom(A2)={c,d}, dom(A3)={e,f},

dom(A4)={g,h,i}, dom(A5)={a,b}. The total number of positives is six and the total

number of negative examples is 4. A total of 6 examples have missing values

and there are in total 7 values missing.

Now the missing-FP tree is created. Since only values from the attributes A1 to

A3 have been used in building the tree only those attributes have to be

considered. The first example only contains a missing value for attribute A4

therefore there is no addition to the tree. The third example has a missing value

for attribute A1 therefore a first node A1:1|0 is created since the example is

positive. Next, example 4 adds another node A3:1|0 and example 5 increases

the TP count on A1:2|0. Finally example 9 increases the FP count on A1:2|1 and

creates a new node A3:0|1 resulting in a tree as depicted in Figure 4.

ID A1 A2 A3 A4 A5
Frequent

Items
1 a c e missing true ace
2 a c e h true ace
3 missing d e g true de
4 a c missing g true ac
5 missing d f h true d
6 b d f i true d
7 b C f missing false c
8 b C e g false ce
9 missing D missing h false d

10 a C e i false ace

Data preprocessing and data quality

- 39 -

Figure 4.Missing-FP-Tree for SD-Map example

The tree can now be used in calculating the quality measures for specific rules.

Some examples are shown now to clarify how this can be done. Consider one

would like to create a rule ae ⇒ . There are three examples that support the

rule and two examples which would be counted as false positives. To evaluate

the goodness of the rule we need the missing-FP-tree since we cannot use the

base distribution 0p =0.6 as the relative frequency for all positive examples since

not all examples actually have a value for A3. Therefore it is necessary to count

only those that have a value there using the missing FP-tree. We can see in the

tree that there is one positive example that has no value for A3 and one

negative example which we cannot use. Thus 0p =0.625. With p=0.6 this is a

rather poor subgroup. To show how to calculate the values of all true positives

TP and all false positives FP which can be used in a quality function we chose

pattern ae:2|1 which implies a rule aea ⇒∧ . In this examples the problem is to

count all the examples that have missing values for attribute A1 or A3 but not to

count those examples twice that have missing values in both attributes. This

can be achieved by using the formula as presented by Atzmueller and Puppe:

∑∑
∈=

−=∨∨
M2m1

1)(missing)(missing)...(missing mAAA i

n

i

n

root

A1:2|1

A3:0|1

A3:1|0

Data preprocessing and data quality

- 40 -

With 2≥m and M= },...,{ 1 nAA . This means one need to add all missing

attributes according to the missing-FP-tree and then remove all those examples

that have been counted more than once. In this example it means for TPmissing

that we add (2+0+1)-0=3 and for FPmissing we add (1+1+0)-(1)=1. Therefore the

adjusted TP’=TP l- TPmissing=6-3=3 and FP’=FP-FPmissing=4-1=3. Using these

adjusted values it is possible to compute quality functions which are based on

the total number N’=TP’+FP’ or on TP’ and FP’. In this case the rule aea ⇒∧

has a value of p=0.66 while 0p =0.5, which at least is an improvement over the

original distribution.

4.4 Feature Subset selection

One of the few algorithms that suggest the use of feature subset selection is the

Apriori-C algorithm which is used as the basis of Apriori-SD. This is meant to

improve predictive quality and to avoid problems with data containing too many

attributes which leads to a huge search space. Jovanoski and Lavrač (2001)

examined different feature selection options such as statistical correlation, odds

ratio and deviations of the RELIEF algorithm. They concluded with suggesting

the use of the odds ratio algorithm which performed best in their evaluations.

Odds ratio is computed as:

1)(0)(;
)(1

)(
)(,

)|(

)|(
log)(

2

1 ≠∧≠
−

== APAP
AP

AP
Aoddswhere

CAodds

CAodds
AOddsRatio

Here, C1 is the target class and C2 the union of all non-target classes and n the

number of examples. P(A) represents the probability of an attribute calculated

as the relative frequency. The attributes are ordered according to descending

odds ratio, that is all attributes are included that are greater than a user

specified cut-off parameter. The reason for using only a user specified number

of features as discussed by Jovanoski and Lavrač (2001) is the problem of

exponential runtime behavior of the Apriori search algorithm with regard to the

number of frequent features. Being able to discard some features therefore can

significantly speed up the search.

Data preprocessing and data quality

- 41 -

4.5 Conclusion

This chapter has discussed some important premises that have to be met

before it is possible to start with the search for local patterns. Most of the topics

discussed here are equally important for local pattern discovery as they are for

rule learning. Hence, rarely any specific algorithms to deal with those topics

have been developed. Table 4 summarizes the approach taken by different

algorithms. “Not Specified” in line 2 means that the authors do not suggest a

specific algorithm to be used for discretization though discretization as such is

necessary. Also, missing values have to be dealt with in any algorithm, though

only SD-Map incorporates a method in the algorithm itself. Feature Subset

Selection (FSS) is a optional action that might help in improving the speed or

the accuracy of the algorithm, but it is not necessary. As can be seen, it was

suggested only for use with the Apriori-SD algorithm.

Key processes in pre-processing are ways to deal with missing values and

discretization . Unhandled, both problems may either make attributes unusable

or lead to distorted results. Therefore both processes are a necessity for every

pattern discovery algorithm.

Data structure could be considered a mere technical choice, but some

algorithms, like the SD-MAP algorithm gain their efficiency from a specialized

data structure. For other algorithms, like the Apriori-SD, the choice of a binary

vector is due to the origins of the Apriori algorithm which works on transactional

data in which every item of a transaction is represented by a one.

Data preprocessing and data quality

- 42 -

CN2-
SD

Algo-
SD MESDIF

Apriori-
SD STUCCO

CU-
Algo

SD-
MAP

Not Specified x x x x x x Discretization

Fuzzy logic x

Standard x x x x
Binary
Vector x x x

Data
Structure

FP-Tree x
Missing
Values x

FSS x

Table 4. Summary of pre-processing by algorithm

After pre-processing, the search for local patterns is performed. This is the topic

of the next chapter. The search is the essential part of the discovery process

and can be split into two key activities. First, the search itself and second the

measurement of pattern quality. These two activities are the key points of the

next chapter.

Search

- 43 -

5 Search

This chapter describes the two central problems of pattern discovery algorithms,

first the question on how to efficiently search for patterns in a potentially huge

search space and second how to evaluate different patterns. Generally one can

distinguish between two types of search, first, heuristic search, which uses an

evaluation function to rank discovered solutions and typically refines those

solutions that present the best solutions so far. Second there is exhaustive

search. Exhaustive search aims at searching the total search-space for good

solutions. Since such an effort can be considered futile if performed brute force,

exhaustive search algorithms introduce sensible restrictions on what patterns

should be like. Typically those restrictions are minimum frequency restrictions

which guarantee that a pattern does cover at least a minimum number of

examples. Using those restrictions, large parts of the search space can be

pruned and therefore exhaustive search can be performed efficiently.

The second part of this chapter discusses quality functions. As said already,

quality functions are used to rank discovered patterns and lead the search.

They can also be used to limit the number of patterns that are presented to the

user to the best n patterns. Quality functions can be taken from inductive

statistical analysis to test for significant deviations of a pattern from the original

distribution. Measurement of good rules is often done using a coverage

approach, which traditionally removes examples that are part of an already

discovered pattern. In the area of subgroup discovery reweighting examples

rather than removing them has been used frequently. Therefore, different

weighting schemes are presented in the third section of this chapter.

Search

- 44 -

 procedure FINDLOCALPATTERNS (Examples)

1 Patterns={}

2 CandidatePatterns={ }

3 CandidatePatterns=GenerateCandidatePatterns(Examples)

4 while POSITIVE(Examples) {}≠

5 Pattern=FINDBESTPATTERN(<Examples,ExampleWeights>,CandidatePatterns)

6 Covered=COVER(Pattern,<Examples, ExampleWeights>)

7 if STOPPINGCRITERION(Patterns,Pattern,<Examples,ExampleWeights>)

8 exit while

9 ExampleWeights =COMPUTEEXAMPLEWEIGHTS(<Covered,ExampleWeights>)

10 Patterns=Patterns ∪ Pattern

11 CandidatePatterns=CandidatePatterns \ Patterns

12 return(Patterns)

 procedure FINDBESTPATTERN(<Examples,ExampleWeights>, CandidatePatterns)

13 InitPattern=INITIALIZEPATTERN(<Examples,ExampleWeights>,CandidatePattern)

14 InitVal=EVALUATERULE(InitPattern)

15 BestPattern=<InitVal,InitPattern>

16 Patterns={BestPattern}

17 While Patterns {}≠

18 Candidates=SELECTCANDIDATES(Patterns,<Examples,ExampleWeights>, CandidatePatterns)

19 Patterns=Patterns \ Candidates

20 For Candidate ∈Candidates

21 Refinements=REFINERULE(Candidate,Examples)

22 For Refinement∈Refinements

23 Evaluation=EVALUATEPATTERN(Refinement,

24 <Examples,ExampleWeights>)

 Unless STOPPINGCRITERION(Refinement, <Examples,

25 ExampleWeights>)

 NewPattern=<Evaluation,Refinement>

26 Patterns=INSERTSORT(NewPattern,Patterns)

27 If NewPattern>BestPattern

28 BestPattern=NewPattern

29 Patterns=FILTERPATTERNS(Patterns,<Examples,ExampleWeights>)

30 return(BestRule)

Figure 5.Generic pattern discovery algorithm

Search

- 45 -

Before going into the details of how the search for local patterns is organized in

the respective algorithms, some general discussion on how search can be

performed should come first. To present the way those algorithms work, Figure

5 presents a generic pattern discovery algorithm which is based on the generic

rule learning algorithm as presented in Fürnkranz (1999).

As opposed to the generic rule learner discussed by Fürnkranz (1999), two

changes have been introduced. First, this learner includes working with

example weights which has been applied in CN2-SD, Apriori-SD as well as the

MESDIF algorithm. Second, a new function,

GENERATECANDIDATEPATTERNS, has been introduced in the

FINDLOCALPATTERNS routine. The GENERATECANDIDATEPATTERNS

function is implemented only by those algorithms that apply an adapted version

of an association rule mining algorithm. It is discussed in more detail in section

5.1.3

Essentially, the algorithm tries to discover a best pattern using the

FINDBESTPATTERN function and then decreases the weight of all examples

that are covered by the pattern. This weight decrease can be done in different

ways and is discussed in section 5.3. Function FINDBESTPATTERN uses a

heuristic search for good patterns by starting with an initial pattern which is

iteratively refined until a stopping criterion is fulfilled. The best pattern is chosen

during each refinement. A list of patterns is kept in cases where more than a

single pattern is further refined. Otherwise the FILTERPATTERN function

returns only a single best pattern. To decide which refinement is best, an

evaluation is performed using a quality function which is discussed in section

5.2. Those patterns that were discovered are applied in the COVER method

which returns all examples that are covered by the pattern. For those examples,

the COMPUTEEXAMPLEWEIGHTS changes the example weights according to

a user specified weighing scheme. Weighing schemes are presented in 5.3.

The FINDBESTPATTERN function is the essential function for all heuristic

search algorithms. Those algorithms that apply an adapted version of an

association rule mining algorithm typically only use the function as a post-

Search

- 46 -

processing step. Since GENERATECANDIDATEPATTERNS already

discovered all patterns in the case of exhaustive search, FINDBESTPATTERN

in this case is only used as a filter to minimize the number of patterns that are

presented to the user.

Before going into details described above, some general notes on search

strategies are presented first.

5.1 Search type

This part describes the search in more detail. The next section describes

general search strategies that can be applied when considering local pattern

discovery as search. Sections 5.1.2 and 5.1.3 describe the search as it is

performed by the algorithms. First, heuristic search is presented, which is used

by CN2-SD, algo-SD and MESDIF and second, exhaustive search algorithms

are presented, such as Apriori-SD, CG-Algorithm and SD-Map.

5.1.1 Search strategies

As Fürnkranz (1999) elaborates for rule discovering, there are three principal

search strategies. These strategies decide how, among all possible rules,

candidate rules are generated. Patterns or rules can be organized in the

generality lattice of the hypothesis space. A lattice is a partial ordering of all

attribute-value combinations that can possibly be used to create patterns. The

ordering follows the relation “is more general then”. For instance, if there are

two patterns,

P1: (?,R,?)=>True

P2: (?,R,T)=>True

the first one covers all examples that are covered by P2 plus those that do not

have T as the third value. Therefore the first pattern is more general than the

second pattern. A third pattern, e.g. (H,?,?)=>True is neither more general nor

Search

- 47 -

more specific, therefore, generality only describes a partial order. Figure 6

describes this situation for three attributes with two values each.

Figure 6.An example generality lattice for three attributes with two values for each attribute.

There are three ways to traversing the lattice. First, an algorithm can use a top-

down approach, which means to pass through the lattice starting from the most

general rule through iterative specializations to a specific rule. Alternatively,

rules can be generated through bottom-up search by employing a specific

example as a starting rule which covers exactly one example. This single

example rule is then iteratively generalized. The third possibility is to start a

bidirectional search which combines both approaches.

Search

- 48 -

In those pattern discovery algorithms studied here, the top-down strategy

prevails. Since it is used in the CN2 algorithm, CN2-SD makes no changes to

the search strategy. Also those algorithms based on Apriori style mechanisms

usually climb through the lattice in a top-down fashion. There is also a case in

which the bidirectional search is applied. In the MESDIF algorithm the authors

use a genetic search algorithm (5.1.2) to find the best rules by combining the

best rules reached so far and then performing generalization or specialization

operations randomly. Therefore it cannot always be made sure that the new rule

is a refinement of any of both parent rules. An explicit use of a bottom-up

approach has not been found in the literature.

?R? ?G? ??T ??C H?? F??

?RC ?RT ?GC ?GT HR? FR? HG? FG? H?C H?T F?C F?T

HRC HRT HGC HGT FRC FRT FGC FGT

∅

???

Search

- 49 -

5.1.2 Heuristic search

This section goes briefly over the issue of different heuristic search algorithms

that have been developed and applied successfully. Search algorithms have

been discussed in length in the literature (i.e. Russell & Norvig, 2003,

Domschke & Drexl, 2002, Fürnkranz 1999). Here, a brief general outline of the

concept is given and then the local pattern discovery algorithms that apply it are

shown. Heuristic searches often find good though not necessarily optimal

solutions. In local pattern discovery two approaches have been used. Most

often, the beam search algorithm has been applied in this context. Despite the

fact that beam search has been used often, other possible search strategies

could be used as well for the pattern discovery. Secondly, a stochastic search

has also been applied in form of genetic search. When considering the

algorithm description in Figure 5, please note that none of the algorithms of this

section implement the GenerateCandidatePatterns function, therefore

CandidatePatterns remains an empty set throughout the runtime of the

algorithm.

5.1.2.1 Algorithms based on beam search

Beam search uses a beam of k rules that are refined during a single loop.

Among all refinements the best k examples are chosen and further refined until

a stopping criterion is fulfilled. Beam search is an extension of the Hill Climbing

algorithm that only refines a single best rule, rather than the k best rules. The

algorithm as outlined here has the advantage of being efficient, though, as all

heuristic approaches it does not guarantee finding the best possible solution.

The algorithm may not necessarily perform better than a hill-climbing algorithm.

This is due to the possibility that during the search, one local optimum may

dominate even the global optimum. Therefore it is likely, that local optima will

mislead the search. The simultaneous refinement of the k rules in the beam

does not necessarily mitigate this problem. Especially, though not exclusively in

cases where the beam is chosen relatively narrow this behavior can happen. In

Search

- 50 -

terms of the description in Figure 5, beam search can be implemented in

function FILTERPATTERNS which then filters out all but the best k patterns.

Beam search has been applied in rule discovery amongst others by Clark and

Niblett (1989) when designing the CN2 algorithm. For that reason it has been

applied in CN2-SD (Lavrač et al., 2004a). Beam search is also used for

alternative approaches to subgroup discovery such as the expert-guided search

using algorithm SD (Gamberger and Lavrač, 2002). In the case of algorithm SD

the authors only try to discover a number of n best rules, with n being a user

specified value which is used as the beam size. Therefore, after a certain

stopping criterion is matched, the algorithm simply returns all patterns in the

beam to the user. They suggest choosing a large beam and postprocessing the

discovered patterns to only present the best k<n best patterns. Considering the

algorithm given in Figure 5, the return(bestpattern) command should be altered

to return the set of rules in the beam. Refinement is performed by both

algorithms by creating all possible specializations for all rules in the beam.

Refinements are considered to become part of the beam only if they are

improvements over the more general rule in order since more general rules are

typically preferred since they are expected to generalize better on unknown

data.

5.1.2.2 Genetic algorithms

Genetic algorithms are described as a variation to stochastic beam search

(Russell & Norvig, 2003). Rather than randomly choosing the k successor rules,

in genetic algorithms the different rules are combined in a way which is

described as sexual reproduction. As in the case of beam search, the best k

rules are stored and referred to as the population. A fitness function or quality

function is used to rank the members of the population. Among all members of

the population some are selected that are used for cross-breeding. Hereby

there is a crossover between both rules A and B. This means that the rules are

seen as a number of n attribute value combinations and the new rules consists

of the attribute-value combinations 1…h of rule A and h+1…n of rule B with

Search

- 51 -

h<n. The choice of the value h in which to separate and mix the different rules

can be arbitrary. Finally, mutation adds a random element which changes the

value of a single attribute value combination with some low probability. This

helps avoiding local extremities. The exact implementation is algorithm specific.

Mutation can remove a single attribute or swap a specific value for a different

][AVv ∈ . It is also possible to add a random attribute value combination to the

rule.

Next I discuss the MESDIF search algorithm which employs genetic search.

When implementing a genetic algorithm based on the generic algorithm

depicted in Figure 5, the most important changes have to be to the

REFINEPATTERN process. Here the genetic operations, recombination or

breeding and mutation are implemented.

The MESDIF algorithm (Berlanga et al., 2006) applies a genetic search using

two population sets. The initial population consists of all examples and the

second, namely the elite population, is the part of the population that dominates

most other individuals. Domination is the fitness function discussed above. In

the MESDIF case, domination consists of three independent goals that are to

be maximized at once. For each example or rule, the number of examples that it

dominates according to the three goals, is calculated and the best rules are

stored in the elite population. Each individual is represented as a rule which in

turn is represented as a binary vector where every binary digit corresponds to a

variable][AVv ∈ . The individuals are taken from the elite population and bred

with other members of the elite population using binary tournament selection

with crossover and mutation. Mutation requires that at least half of all mutation

operations call for a flip of a one to a zero, thereby generalizing the rules and

therefore increasing the coverage. Since there is no inherent stopping criterion

in the algorithm like in the case of separate and conquer rule learning, a

stopping criterion has to be stated explicitly. This is done by stating the number

of runs that are performed by the genetic search.

Search

- 52 -

As this section has shown, there are three algorithms that have been developed

based on heuristic rule learning. CN2-SD and Algo-SD are based on beam

search and MESDIF is based on genetic search. All three have been developed

in the context of subgroup discovery. Besides the search strategy, those

algorithms distinguish themselves through the use of different quality functions.

This will be discussed in section 5.2. Before that, the search strategy of the

other algorithms is presented. They are implementing exhaustive search, mostly

based on association rule mining and frequent pattern discovery.

5.1.3 Exhaustive searches

Besides the aforementioned heuristic search strategies, many algorithms are

built on the advances made in the area of association rule discovery. This is a

natural step since association rule discovery usually performs an exhaustive

search of the search space considering restrictions on properties such as

support and confidence and leads naturally to rules and local patterns. For that

reason the search strategies of those algorithms are discussed in this section.

Regarding the algorithm in Figure 5, one can consider the search for frequent

patterns as an implementation of the GENERATECANDIDATEPATTERNS

function. Different research streams in this area have come up with quite

different solutions. Ceglar and Roddick’s (2006) survey on association rule

mining algorithms identifies two main classes of classical of algorithms. First,

candidate generation algorithms which identify candidate patterns based on

previously discovered itemsets and second pattern growth algorithms that mine

for good patters in special data structures. A generic algorithm that could

integrate the different streams of association rule mining algorithms has not

been found in the literature and is out of the scope of this thesis. Therefore, the

implementation of the GENERATECANDIDATEPATTERNS function is

algorithm specific and discussed in the following sections. Since many

association rule discovery algorithms tend to discover a wealth of patterns, the

results should be considered candidate patterns which need to be filtered

before being presented to the user. For filtering the most interesting patterns,

Search

- 53 -

coverage approaches have been suggested (Lavrač et. al, 2002; Gamberger

and Lavrač, 2000) and will be discussed in chapter 6. These approaches are

nearly identical with the coverage which has been applied by algorithms such

as CN2-SD or MESDIF. Therefore the search for all possible patterns using

association rule mining tools can be regarded as a preprocessing step prior to a

coverage approach is then used to evaluate and rank those patterns that have

been discovered. In this case the procedure FINDBESTPATTERNS is changed

in that way, that INITIALIZEPATTERN chooses one arbitrary candidate from the

set of CandidatePatterns. The SELECTCANDIDATES simply selects all

CandidatePatterns as candidates. Since all possible patterns have already been

discovered and we are now only choosing the best ones, there is no need to

refine any candidate. Therefore the return value of refinement should always be

the candidate itself. After that, the evaluation is performed according to the

chosen quality function (see 5.2). If there are departures from this approach for

any algorithm described below, it is mentioned in the respective sections.

5.1.3.1 Apriori-SD and Apriori search

The first algorithm which employs association rule mining tools, the Apriori-SD

(Kavŝec et al., 2003) algorithms, is based on the Apriori algorithm (Agrawal &

Srikant, 1994). Apriori searches through the space of all possible attribute-value

combinations looking for frequent itemsets. The algorithm is based on the idea

that one can only find frequent itemsets in those cases where all subsets are

frequent. For that reason the Apriori algorithm makes a first pass over the

database in order to find all 1-frequent itemsets. Using those itemsets it

generates new large itemsets in the k-th loop by creating all combinations of all

k-1 large itemsets, which is called the apriori-join. Largeness is defined along a

user specified minimum support saying that at least a certain percentage x% of

transactions must include those itemsets. Among all frequent itemsets found,

the algorithm now tries to discover association rules.

This search strategy has been applied by the adaptation for subgroup

discovery, the Apriori-SD algorithm. Since Apriori originally does not deal with

Search

- 54 -

labeled data, Apriori-SD adapts the classifying algorithm Apriori-C (Jovanoski &

Lavrač, 2001) for subgroup discovery, which is an Apriori variant developed for

classification purposes.

The Apriori-C algorithm is an improved version of the association classification

introduced by Liu, Hsu and Ma (1998). The technique used is based on the idea

of first generating all association rules that satisfy minimum support and

minimum confidence criteria and then apply a post processing step to turn those

rules into a classifier. In order to avoid generating all possible association rules,

only those rules whose right hand side contains only the classification attribute

are mined. Those rules are called class association rules (CARs). Among all

CARs that have been discovered, the best n rules are chosen according to

some quality function by applying a coverage approach. The Apriori-SD

algorithm changes the coverage style of the Apriori-C by implementing a

weighting scheme in the post-processing phase instead of eliminating covered

examples, thereby finding the best patterns. In essence the algorithm applies

the CN2-SD algorithm but rather than trying to discover new patterns through

beam search it only evaluates and compares those patterns that have already

been discovered in the Apriori step (see section 6). In Figure 5, the Apriori rule

mining step is performed in the GenerateCandidatePatterns function and the

rest of the coverage approach is applied as discussed above.

5.1.3.2 SD-MAP and FP-Growth

Another frequent pattern mining algorithm that has been modified for subgroup

discovery is the FP-growth algorithm (Han et al 2004). It is the basis for the SD-

Map algorithm by Atzmüller and Puppe (2006). The algorithm assumes that

there is only one single property of interest which is a single attribute value

combination rather than all attribute values of a specific attribute with more than

two values. This section first describes how to use the adapted FP-growth

algorithm to mine frequent itemsets and later discusses how the SD-Map

algorithm can be integrated in the generic algorithm shown in Figure 5.

Search

- 55 -

The main changes that have been introduced are the way examples are

counted when creating the FP-tree and the possibility to use the FP structure to

efficiently deal with missing values (see 4.3). As described in section 4.2.1 the

original counting of frequency of attribute values has been replaced by counting

the frequency of positive and negative examples for every minimum frequent

attribute-value combination. Since for the discovery of frequent itemsets it the

absolute number of examples that pass a specific node is still required, this

value can be computed simply as the sum of all positive and negative examples

counted for that specific node. Splitting the count in the nodes is beneficial since

it makes it possible to calculate the quality function during pattern mining

already and one avoids searching the original database to get those counts if

the original counting would have continued. Also, one can remove the nodes

that would otherwise be needed to represent the target value. Next the

algorithm is described using a detailed example.

As discussed in section 4.2.1, before applying the FP-growth method, one first

needs to create the FP-growth tree. This is done by counting the frequency of

all attribute values and sorting them in descending order in a first scan of the

database. Those values that do not exceed a specific threshold for a minimum

frequency are ignored. In a second scan over the database, those frequent

values which are found in an example are then used to create the FP-Tree.

Figure 3 describes the FP-tree that has been created using the example data in

Search

- 56 -

Figure 7.FP-growth multipath tree and single path prefix tree

Table 2. This example describes how to search the FP-tree in order to generate

frequent patterns that can later be evaluated in terms of local patterns thereby

continuing the example.

It is important to notice, that in the resulting tree all elements have the same

linear head (x,y,z) therefore it is useful to remove the head from the rest of the

tree and later merge the results of both parts. First, the lower part of the tree, as

seen in Figure 7 on the left, is used to explain how one can extract frequent

patterns from this data structure. The FP-growth algorithm is a recursive

algorithm that builds FP-trees for all attributes in order to discover all frequent

patterns.

The extraction of frequent patterns is done by evaluating all attributes in list

L=(x:5,y:5,z:5,f:4,c:4,a:3,b:3,m:3:p:3), the sorted list of attribute-value

frequencies, in ascending order. Therefore the first value to be considered is p.

Since frequent pattern mining is only done with regard to the total number of

examples that share an item or an itemset I only state the sum this total number

for the different attributes. Starting with a pattern that only includes p itself leads

to (p:3=(2|0 and 0|1)) and there are two possible paths through the tree

inner_

f:3|1

c:3|0

a:3|0

m:2|0

p:2|0

b:0|1

b:1|0

m:1|0

c:0|1

b:0|1

p:0|1

x:3|2

y:3:2

z:3:2

root

Search

- 57 -

(f:4,c:3,a:3,m:2,p:2) and (c:1,b:1,p:1). Since in the first path p is found twice,

there are two examples that include (f,c,a,m,p) and one that includes (c,b,p).

Consequently, there are two prefix paths {(fcam:2), (cb:1)}. These two are p’s

subpattern base, called conditional pattern base, since they are conditional on

p. These two subpatterns are used to build p’s conditional FP-tree. Again one

needs to count all attributes to find all attributes that occur more often than the

minimum frequency. This leads to only (c:3), since c is part of both prefix paths.

Therefore the new tree consists only of one branch which results in the only one

frequent pattern (cp:2|1). By using this notation one can calculate the quality

function of a pattern truepc ⇒∧ , though this does not yet include the linear

head. The head could be incorporated in the pattern but since the quality of this

extended pattern would be the same, this specialization would probably not lead

to better results. This is true only if such a specialization affects all branches of

the FP-tree that contain the pattern in question.

Next, attribute m is assessed. Again its single item pattern is (m:3) and there

are two paths through the tree that can reach m. ((fcam:2) and (fcabm:1)).

Derived from those, m’s conditional pattern base is {(fca:2),(fcab:1)}. It is used

to build the m’s conditional FP-tree. P is not being considered anymore since p

has already been considered and all frequent itemsets that include m and p are

already known. This leads to (f:3,c:3,a:3) a tree consisting of only one branch.

This tree ((f:3,c:3,a:3|m) has to be recursively mined for all frequent patterns.

Hereby all items (f), (c), (a) have to be considered individually. Using the order

in the tree we start with pattern (am:3), which corresponds to a conditional

pattern base of {(fc:3)}. Using this pattern base (f:3,c:3|am), to two patterns,

(cam:3) and (fam:3) can be created, with the conditional pattern base of (cam:3)

being {(f:3)}, which is mined as (f:3|cam) and reveals pattern (fcam:3), thereby

ending this recursion. Now the second pattern, pattern (cm:3) still has to be

searched. Its conditional pattern base is {(f:3|cm)}. The search results in pattern

(fcm:3). Now the last pattern including f and m leads to only a single pattern

(fm:3). As a result, all patterns including m are {(m:3), (am:3), (fm:3), (cam:3),

(fam:3), (fcam:3), (cm:3), (fcm:3)}. Here Han et al. note that it is important to

Search

- 58 -

see that when the FP-tree consists only of a single path, frequent itemsets can

be discovered by creating all combinations of items in that path.

Continuing with item (b:3) which has three paths {(f:4,b:1),(f:4,c:3,a:3,b:1),

(c:1,b1)}. This leads to the following conditional pattern base {(f:1), (fca:1),

(c:1)}. Looking at the pattern base reveals that the largest patterns that could be

created are (fb:2) and (cb:2) which are both beneath the minimum support of

three and therefore the mining of (b:3) stops. Next to be mined is item (a:3).

There is only one path (f:4, c:3, a:3) leading to a single conditional pattern base

of (fc:3|a). Therefore all patterns found are {(a:3),(ca:3),(fa:3),(fca:3)}. Mining

item (c:4) leads to a sub-pattern base of {(f:4)} which leads to a frequent itemset

(fc:3). Item (f:4) has no conditional pattern base.

Remembering that in the beginning the original tree had been split, therefore

the frequent itemsets that have been mined so far are not yet complete. As we

have seen in the previous tree, single path FP-trees can be mined by simply

creating all combinations of items. Therefore we first mine the linear path in this

way. This gives the following frequent itemsets {(z:5),(y:5),(x:5),

(zy:5),(zx.5),(yx:5), (zyx:5)}. Since these are all itemsets that are in the path of

all the itemsets mined above, they all need to be combined, meaning that every

frequent pattern in the multipath-FP tree needs to be combined with every

frequent pattern in the single-path part of the FP tree. The result consequently

consists of all frequent itemsets that are in the multipath FP-tree, all itemsets

that are in the linear part of the FP-tree and the combination of both. When

choosing more general patterns it is most likely that those itemsets would not be

incorporated in the patterns since they do not add anything.

As Han et al. (2004) point out, the tree that is created needs not to be minimal

but usually reduces the size of the data significantly and increases the speed of

the search for frequent patterns.

Originally SD-Map evaluates all discovered patterns according to a user chosen

quality function at the time of discovery of the pattern. This has the advantage

Search

- 59 -

of being fast since the occurrence counts are stored in the tree and therefore

known for every pattern. Since Atzmüller and Puppe (2006) suggest limiting the

number of returned patterns, again one can first mine all patterns without

evaluating the goodness and perform the evaluation in the

FINDBESTPATTERN function. The maximal number of patterns would then be

the STOPPINGCRITERION of the main loop in the FINDLOCALPATTERNS

function. Using the algorithm in Figure 5 offers two alternative approaches to

discovery of the best k rules. First, as initially discussed by Atzmüller and Puppe

(2006), the quality of a pattern could be calculated according to the occurrence

counts without making use of a coverage approach. Alternatively one could also

discover the best k patterns using weighted coverage. For the first alternative,

all potential patterns are stored including information on occurrence counts. The

original implementation could be considered using a reweighting function that

always keeps the weights at one. In this case the algorithm in Figure 5 would

not be efficient since the evaluation of the patterns does not change throughout

the runtime and the same order of patterns is rediscovered in every loop, only

the first pattern is missing. In this case it would be more efficient to return a list

of best patterns, rather than returning a single best pattern. Nevertheless, since

no access to the database is necessary and all information for calculating the

quality of the patterns will be stored with the patterns, filtering the best k

patterns should perform reasonable. When making use of a weighting scheme,

the occurrence counts cannot be used, but the approach would be in line with

others such as CN2-SD and Apriori-SD. In comparison with the original

description, a weighting scheme requires scanning the database to calculate

the quality function which takes away part of the advantage of the SD-Map

algorithm that minimizes database access. Nevertheless, those costs are

comparable that of other algorithms, for instance Apriori-SD. The changed

approach is similar to that of Apriori-SD, only the technique of discovering

frequent itemsets is changed. This also clarifies that both approaches are quite

similar. Next, the Contrast Set mining algorithm Stucco is presented.

Search

- 60 -

5.1.3.3 STUCCO and MAX-Miner

Similar to the SD-Map algorithm which uses the FP-growth algorithm in order to

generate candidate itemsets from which the patterns are created, Bay and

Pazzani (2004) use an adapted max-miner algorithm for their contrast set

mining tool STUCCO. The search space consists of all possible combinations of

attributes which are represented in a set-enumeration tree. Before discussing

individual adaptations made, the MAX-Miner algorithm is presented first.

The Max-Miner algorithm was developed by Bayardo (1998) with the aim of

improving on the shortcomings of the Apriori algorithm concerning the problem

of being unable to mine long patterns. According to the author the proposed

algorithm for finding frequent itemsets scales nearly linearly with the number of

maximal patterns in the data independent of the length of the longest pattern

while Apriori scales exponentially with the longest pattern.

The Max-Miner algorithm uses the set-enumeration-tree (SE-Tree) (Rymon,

1992) to create all possible itemsets to subsequently search through. The idea

of the SE-tree is to impose an order on a previously unordered set of items or

attributes-values that should be enumerated and expand the nodes by

combining the values according to the imposed order. An example using 4

values is shown in Figure 8.

In order to efficiently pass through the SE-tree it is important to be able to prune

uninteresting parts of the tree. Therefore the items are organized in candidate

groups. A candidate group g is composed of a header group h(g) which is the

itemset enumerated by the current node and a tail group t(g) which consists of

all nodes not in the first group. For node 1 this would look like the following.

h(g)={1} and t(g)={2,3,4}. This can now be used to find boundaries for the

support of frequent itemsets. These are calculated by calculating

Search

- 61 -

Figure 8.Set enumeration tree for attributes {1,2,3,4}
1

)()(gtiigh ∈∀∪ and)()(gtgh ∪ . If)()(gtgh ∪ is a frequent itemset it is

automatically the maximally frequent itemset of that branch and therefore there

is no need to continue searching in the part of the tree. This is called superset-

frequency pruning. Another instance of superset-frequency pruning is pruning a

candidate group g if)()(gtgh ∪ is a subset of an already known frequent

itemset. If for any item i, igh ∪)(is not frequent, all nodes in the sub-tree

including this item will be infrequent and thus need not be explored further.

Therefore before expanding the node this item has to be removed from the tail

set. This is called subset-infrequency pruning.

As has been said the items need to be ordered, Bayardo suggests sorting them

in ascending order according to support. Those items that are most frequent

should be last in line and will therefore be part of most heads or tails when

1 cf.. Rymon (1992),Bayardo (1998), Bay & Pazzani (2001)

{ }

1

1,2 1,3 1,4

1,2,3 1,2,4 1,3,4

1,2,3,4

2 3 4

2,3 2,4

2,3,4

3,4

Search

- 62 -

trying to find frequent itemsets. This is important since those items are more

likely to be in the frequent patterns. The algorithm uses a breadth-first-search

approach to find all frequent itemsets.

In Bay and Pazzani’s (2004) implementation for contrast set mining the authors

replace the pruning strategies suggested by Bayardo with their own improved

pruning techniques using properties of the contrast set mining task itself. They

distinguish three types of pruning possibilities. First of those is the so-called

effect size pruning. Nodes are pruned if the difference between the highest

support for this attribute set from any group j and the lowest support form any

other group i is smaller than delta. The second type of pruning is based on

statistical significance. Therefore a node will be pruned if the expected cell

frequencies in the contingency table are too low. The authors suggest an

expected value of three or less as a threshold. Also they suggest pruning a

node if the maximum value of ²χ is below the lα cutoff value. Last, the authors

suggest a way of interest based pruning which prunes specializations of

contrast sets which do not differ in their support to the subset. As those

specializations usually do not contain any new information they are pruned.

Also, those nodes are pruned in which one group has an extensively higher

support than all the other groups and this relation remains the same regardless

of what attributes are appended.

All nodes that remain after pruning is done are transformed into rules with the

rule head being the property of interest. Therefore there is no need for filtering

any frequent itemsets to contain only those that actually contain the property of

interest as would be the case in Apriori-SD. Discovered rules are then tested for

statistical significance (see section 5.2) as a quality measure. The algorithm can

be performed according to the algorithm depicted in Figure 5. Since the

algorithm does not perform a coverage approach, there is no reweighting of

examples after each loop in the FINDLOCALPATTERNS function. Since in the

case of Stucco the quality function is not used to rank different contrast sets but

to determine statistical significance, the discovery of a significant contrast set is

Search

- 63 -

used as the STOPPINGCRITERION in the FINDBESTPATTERN procedure.

The whole approach stops when there can no significant pattern be found

among the candidate patterns.

5.1.3.4 Branch and Bound

Different from the other approaches presented above Zimmermann and De

Raedt (2005) use a branch and bound version of the search in order to find

local patterns. This approach is more similar to the heuristic rule learning

algorithms presented earlier since it does not return all possible patterns but

only the best n patterns, where n is a user specific number. As opposed to the

heuristic searches presented in 5.1.2 this approach does guarantee finding the

best patterns.

The key idea of the CG-algorithm is to use a correlation measure for which an

upper bound can be calculated. This is possible, since a convex function’s

maximum value can be found at an extreme point which is found in a corner of

the feasible region, the region of all potentially possible solutions. Therefore one

needs to calculate the quality value for all corner points of the feasible region in

order to find the upper bound. The feasible region can be described as a

convex set, which is defined as a set in which all points between any two points

a and b in the set are also part of the set. In order to find a good upper bound,

with good meaning a low upper bound, it is necessary to use the minimal

convex set which bounds the solution space. This minimal set is called the

convex hull. The upper bound can be used to prune away known to be

uninteresting parts of the search space. It is calculated for every possible rule

specialization in order to prune those specializations whose upper bound is

beneath a certain threshold which is increased during runtime of the algorithm.

The rule with the highest upper bound is further specialized since one hopes to

find the best solution where the upper bound is maximal. Next, the question of

how to identify and constraint the feasible region is discussed, but first some

notation has to be introduced.

Search

- 64 -

In order to easily use occurrence counts for calculating correlation measures,

Zimmermann and Bosch (2005) define a stamp point as follows.

Definition 6 (Stamp point): For a given data set E every rule r of the form

dhhb ∨∨⇒ ...1 induces a tuple dyyx ,..., 1 of variables. This tuple is
called the stamp point.

In Definition 6 the x is the occurrence count/support of the rule body b while the

yi are the occurrence counts for a rule including rule body b and consequent hi.

In the binary case with only a single outcome in the rule head a stamp point

would look like (x,y) with yx ≥ .

To be able to find the rule with the highest upper bound, all possible

specializations have to be generated. These specializations of rule r can be

called r’.)}'({ rspSact = is defined as the set of all stamp points from all rules

that are specializations of r. These stamp points can be written as

''

1 ,...,,')'(dyyxrsp = . In order to avoid computing actS , one can compute

actposs SS ⊇ , where possS is the set of all possible stamp points. This can be used

as an upper bound and is calculated for each rule and only the rule with the

highest upper bound is explored further by actually generating all

specializations. In order to calculate possS one needs to consider the following

constraints:

1. 0'≥≥ xx
2. 0: ≥≥∀ iyxi

3. 0: ' ≥≥∀ ii yyi

4. ii yxyxi −≥−∀ '':

These constraints form convex sets. Since possS is the intersection of those sets,

possS is a convex set itself (Zimmermann and de Raedt, 2005). Looking for

extreme values, one only needs to consider the points that form the convex hull,

which is the smallest convex set containing all points of the convex set, and this

is what is done by the algorithm. In the two-dimensional case, the convex hull is

Search

- 65 -

made up of only four points 0,0,0,,,,, yxyyyx − . Of those points only

0,,, yxyy − have to be considered since yx, is no different from r and

therefore rule r should be chosen. The point 0,0 describes a rule that does not

cover any examples and is therefore of no use. Hence the maximum value of

the correlation measures of those two points has to be chosen as the upper

bound. The work as described here is restricted to a single binary target literal

as the rule head though the authors also expand their work to rules with multiple

outcomes. The key problem here is efficiently computing the upper bound. This

is described with regard to the suggested quality function category utility in the

following chapter.

As mentioned above, the branch and bound approach is similar to rule learning.

It can even be implemented using the algorithm in Figure 5 with only few

changes. The search would start with BestPattern being the most general

pattern and SELECTCANDIDATES would always choose the best pattern. This

candidate would be refined and an evaluation of the refinement would be

calculated representing the upper bound for all refinements. There is one

change that has to be applied though. The values calculated for the refinements

are pattern evaluations that represent the upper bound of this or a specialization

of this pattern. When testing if the new pattern is better than the current best

pattern, one cannot use this value. Rather than testing this for every refinement,

here the actual evaluation for the candidate, from which the refinements were

generated, needs to be calculated and compared to the best pattern so far. This

value will then be the lower bound. The FILTERPATTERNS process can then

filter all patterns whose upper bound is below this lower bound.

A branch and bound approach has also been applied by Suzuki (2004) for the

exception rule discovery task MEPRO. The search goes depth-first through a

tree which consists of all rule pairs. In each level of the tree, there is a literal

added to either the strong rule or the exception rule. The upper bound is then

calculated according to the quality measure ACEP (see 5.2). Similar to the

Search

- 66 -

description above, the best k rule-pairs that have been discovered are stored

and the k-th rule pair is the lower bound. Every branch of the tree that does not

manage to reach at least that lower bound can be pruned. Therefore the

algorithm can efficiently search the tree and time efficiently present solutions.

5.2 Quality Functions

In order to be able to find rules and judge whether one is better than another

one a quality functions has to be chosen. This is true in the case of the rule

learner based algorithms which use heuristic searches as well as for those

algorithms applying exhaustive searches. The literature has discussed a wealth

of different quality functions (e.g. Fürnkranz, 1999, Fürnkranz and Flach, 2005).

This section examines some of those quality functions that have been

discussed with regard to local pattern discovery. Considering notation, I chose

one in which p means all covered positive examples, n means all covered

negative examples, P means all positive examples in the distribution and N

refers to all negative examples in the distribution. This does imply that there is

only a binary classification which is not necessarily a restriction to the

applicability of the quality function. Nevertheless, I feel it helps in better

understanding the quality functions. Often a measure does not count the

number of examples but the sum of example weights. In those cases, formulas

have been added with a “ ‘ “ to indicate that for instance p’ does not mean the

number of covered positives but the sum of weights of all covered positive

examples. The quality functions are presented here with regard to the

algorithms that use them. Therefore first, the quality function for the STUCCO

algorithm for contrast set mining is shown, then the functions for CN2-SD,

algorithm-SD, CU-algorithm, MESDIF and Exception Rule learning with MEPRO

are shown. This is followed by some quality functions that have been discussed

in the literature with regard to local pattern discovery,

Search

- 67 -

Contrast Set Mining - ²χ

∑∑
= =

−
=

r

i

c

j ij

ijij

E

EO

1 1

)²(
²χ

The ²χ test compares the discovered distribution of examples in the different

contrast sets with the expected distribution according to the total set of

examples. Usually, this value is compared to a value from the 2χ distribution

table in order to find out whether one can assume the null hypothesis, for

instance that both distributions are the same is true.

In the 2χ formula above, the ijO represents the observed frequencies in row i

and column j, while the ijE represent the expected frequencies for that cell. The

expected frequencies are calculated according to the null hypothesis that there

is no difference between the different groups, therefore Therefore it is

calculated as

NOOE
i ijj ijij /∑∑=

with N being the total number of examples. This is compared to a ²χ statistic

with (r-1)*(c-1) degrees of freedom.

In terms of contrast set mining the hypothesis tested using the 2χ test is

depicted below.

)|()|(ji GtruetcontrastSePGtruetcontrastSePij =≠=∃ 1.

δ≥−)GntrastSet,support(co),tcontrastSe(supportmax j
ij

iG 2.

Search

- 68 -

 Set 1 Set 2 Set 3 Set 4 Total

Positive 130 12 412 50 604

Negative 1102 350 2135 320 3907

Totals 1232 362 2547 370 4511

Table 5. Example Table of hypothetical contrast set data

The first property (1) is the null hypothesis that the probability of a discovered

contrast set between two groups is significantly different. This is checked using

the ²χ -measure. The second property (2) is simply a test on whether the

support difference is greater than the user defined threshold. Therefore, the

quality function chosen by Bay and Pazzani (2001) defines the quality of the

found contrast set as a combination of the ²χ function and the support

difference. One important choice when doing statistical testing is the choosing a

level of significance according to the users needs. Typically, a level of 95.=α is

chosen This means there is a 5% chance of type 1 error, meaning that one

would erroneously reject a null hypothesis although it is actually true. The

problem with choosing a significance level is that in data mining, there are

hundreds or even thousands of hypothesizes tested. Even though the chance of

type 1 error is still only 5% for each test, in absolute terms there may be many

cases in which for instance contrast sets are evaluated to be statistically

significant, though in reality they just occurred by chance. In order to avoid that

problem, Bay and Pazzani (2001) employ the Bonferroni inequality. The

Bonferroni inequality states that the propability of the union of a set of events is

less or equal the sum of the individual probabilities. Events in the context of

statistical testing are test with a certain user selected significance level. In a

series of tests the Bonferroni inequality states that the type 1 error of that test

Search

- 69 -

series is equal or less than the sum of the individual significance levels. Using

the inequality one can guarantees the that the type 1 error of several test

remains below a threshold α if the sum of significance levels of all tests is equal

to or below α . Since it cannot be said for sure how many test will have to be

performed, the authors suggest setting α to

),2min(1−= l

l

l

l
C

α

α

α

where i is the current depth of the search tree and lC is he number of

candidates at level i. Obviously those strict cut-offs lead to an increase of type 2

errors, which means that significant contrast sets are wrongfully rejected. The

authors nevertheless still find it helps in only discovering the most important and

consequently most interesting contrast sets.

Statistical tests are also used by others in the realm of subgroup discovery. For

instance Klösgen and May (2002b) employ the binomial test in their subgroup

discovery system SubgroupMiner:

)(
)1(

npNP

NP
n

NP

P

NP

P

NP

P

np

p

+−+

+

+
−

+

+
−

+

With np + representing the size of the subgroup,
np

p

+
represents the share of

the target group in the subgroup and
NP

P

+
 represents the share of the target

group in the total population.

 CN2-SD, Apriori-SD - WRAcc

)
''

'

''

'
()

''

''
()(

NP

P

np

p

NP

np
rWRAcc

+
−

+
⋅

+

+
=

Search

- 70 -

Weighted Relative Accuracy trades off the generality of the rule and the relative

accuracy compared to the default accuracy. The measure is therefore using the

insight that a rule can only be interesting if its distribution deviates considerably

from the prior distribution of the class. To avoid too specific rules, generality

)
''

''
(

NP

np

+

+
 is used as a weight in order to find considerably general rules. One

important issue is the weighting scheme used with this measure. This is further

described in section 5.3.

Wrobel (1997) uses a variation of the WRAcc measure for the MIDOS

algorithm. For evaluating found subgroups, the algorithm employs a variation of

the WRAcc heuristic:

+
−

+
⋅

+

+

<
+

+

=

otherwise
NP

P

np

p

NP

np

s
NP

np
if

rq

)
''

'

''

'
()

''

''
(

''

''
0

)(

min

The only difference is that Wrobel additionally demands a minimum support. In

those cases where a rule covers less than the minimum percentage of all

examples, the rule is automatically evaluated to zero.

Accuracy itself has only been used in early subgroup discovery systems. It has

been suggested by Klösgen (1996) in the context of subgroup discovery as one

of several possible rule quality functions.

NP

nNp
rAccuracy

+

−+
=

)(
)(

Accuracy measures a single rule and compares all correctly classified examples

to the total number of examples. As Fürnkranz (1999) points out the measure is

equivalent to maximizing np − since P and N are equal for all rules.

Search

- 71 -

Algorithm-SD

Gamberger and Lavrač (2002) have suggested two possible quality measures

for algorithm-SD. The aim of the Algorithm-SD is to be able to perform subgroup

discovery which uses expert knowledge. Therefore their suggestions for quality

functions q aim at making it possible for the expert to influence the search. The

suggested functions include a user settable parameter g which can be used to

find different rules according to the user preferences. First there is the

qg quality measure

gn

p
qg

+
=

qg trades off covered positive and negative examples with a user settable factor

g. Generally a larger g means a more general rule, consisting of more falsely

covered examples, is acceptable. A smaller g would mean a higher accuracy,

since covering negative examples is made relatively expensive. The parameters

allow guiding the search towards more specific rules, using smaller values for g,

the authors recommend a value between 0 and 1. In the same way, more

general rules can be found employing a larger value of g, the authors suggest a

value larger than 10, will present more general rules. A value of 1 will weight

each covered TP equal to one covered FP. Secondly the authors also

suggested the measure

qc quality measure

ncpqc *−=

Gamberger and Lavrač (2002) introduce the parameter c in order to be able to

include a cost factor that allows the user to specify the number of additional

covered positive examples for every new false positive. It serves the same

cause as the factor g in the qg –measure. This quite intuitive measure is equal in

its results to measure qg when an exhaustive search of the TP/FP Space is

Search

- 72 -

performed. Yet, the authors argue qc will prefer more specific rules in a heuristic

setting as proposed with algorithm SD. Additionally, the authors argue that

general rules will be cut of by the qc measure due to its constant slope of equal

rules. For that reason the authors encourage the use of the qg measure.

Besides those two measures, Algo-SD also requires that all discovered patterns

satisfy a user specified minimum support criterion. Using such a constraint

makes sure that discovered patterns cover a significant part of the examples.

CU-Algorithm - Category Utility

∑ ∑ ∑
∈ Α∈ ∈

=−==
},{][

21

21

)²()²|()(
2

1
),(

CCC A AVv

vAPCvAPCPCCCU

Zimmermann and de Raedt (2005) suggest the use of the category utility. The

measure had originally been applied to clustering algorithms and programs

(Mirkin, 2001; Fisher, 1987). It measures the “goodness” of a category. In the

term above, the Cs represent the different clusters. It compares the probability

of a feature taking on a specific value with regard to a cluster and compares it to

the a priori probability of this feature value without knowledge of the cluster. The

idea of the measure for usage in the CU-algorithm is to consider all elements

covered by the rule body as part of the first cluster and all those that are not

covered as part of the second one. The only attributes which are of interest here

are the binary target attributes that are used for classification. Therefore

Zimmermann and de Raedt reformulate category utility as

∑ ∑ ∑
Α∈ ∈ ¬∈

=−==Α
t rrA falsetruev bbb

tr vAPbvAPbPbCU
},{ },{

)²))()²|()((
2

1
(),(

It can now be described as the sum of partial category utilities.

∑
Α∈

=Α
tA

rtr AbCUbCU }){,(),(

This can be put in the p-n notation as follows.

Search

- 73 -

∑
Α∈

+
−

+−++

+−+
+

+
−

++

+
+

+
−

+−++

+−+
+

+
−

++

+

A

NP

n

npNP

n

NP

npNP

NP

n

np

n

NP

np

NP

p

npNP

p

NP

npNP

NP

p

np

p

NP

np

2222

2222

)(

)(

2

1

2

1

)(

)(

2

1

2

1

All p and n have to be considered with regard to the attribute in question but this

description is not as concise as one would wish for, therefore indices have been

omitted.

For Category Utility the authors suggest calculating the upper bound as follows

∑

Α∈
∈<<

A

i
pppxx

pxCU
AA

i

)','(maxmax
},{''0

maxmin

It iterates over all possible values of x’ which represent the number of covered

examples for a fictitious specialization and searches for the maximum value for

all category utility values. The summation goes over all possible outcomes,

meaning all possible rule heads. The maximum and minimum values for pA are

determined by the value of x’ since 'xp A ≤ and obviously pA cannot be larger

than the total amount of covered examples of this class. This means for

calculation of the upper bound only 2d(x-2) calculations have to be performed.

MESDIF

Confidence (Precision)

np

p
hbConf

+
=⇒)(

Confidence, also known as precision in rule learning, measures the number of

true positive examples covered among all covered examples. It actually is not

only important in terms for the MESDIF algorithm, but Apriori style algorithms

Search

- 74 -

use confidence to evaluate association rules. In that case, the measure is

interpreted as a percentage of examples covered by a certain rule over all

examples, since originally in the market basket context there is no classification.

For the MESDIF algorithm, Berlanga et al. (2006) suggest the use of an

adapted version of the confidence measure.

)()(

)(
)(

nAPCpAPC

pAPC
hbConf

+
=⇒

APC is the Antecedent Part Compatibility and can be considered a weighting

function. It measures the degree of membership of an example. Since here

fuzzy rules are applied, an example that is covered by the rule body needs not

necessarily be covered completely since it can only be covered to some degree

depending on the fuzzy value. Therefore, confidence is calculated as the sum of

the compatibility degree between examples that fulfill the rule divided by those

that only fulfill the rule body. This quality measure is only one part of a

multiobjective optimization algorithm that also tries to maximize original support

as well as a measure the authors call support.

Original Support

''

'
)(

NP

p
rSup

+
=

Support measures the number of positive examples covered by a rule

compared to the total number of examples. Berlanga et al. (2006) use the

measure to compare the level of interest of a rule compared to all other rules.

They do this by introducing example weights which are decreased for each rule

that covers that particular example, therefore making sure that other more

interesting rules are found without loosing the example altogether. The weights

of each example are calculated as
k

1
 with k being the number of times the

example has been covered already if it has been covered at least once.

Search

- 75 -

Furthermore the authors suggest their own definition of support as a third

quality measure.

Support

P

p
r =)(1sup

This measure is used in order to compare the interestingness of the rule in

terms of how many examples of the class are covered with regard to the total

number of examples of that class. The aim of this measure is to endorse

diversity of the discovered rules. For calculating this measure, the number of

examples is used rather than the weights. If the example weights where to be

used, support and original support would be equivalent.

Exception Rule learning with MEPRO

J-Measure

NP

N
NP

n

NP

n

NP

P
NP

p

NP

p
bhjwhere

NPnpj
NP

np
NPnpJ

+

+
+

+

+

+
+

=

+

+
=

22 log*log*);(

);;;();;;(

The quality function J measures the quantity of information which is compressed

by a rule. It has originally been suggested as a quality measure for the ITRULE

rule learning algorithm (Smyth, P. and Goodman, 1992) for a rule b�h. In order

to be applicable in the context of rule pair exception rule discovery, Suzuki

suggests the use of an adapted version of this measure called ACEP

ACEP

);'();(),',,(νµµνµ bbhJbhJbhbhACEP ∧≡ .

Search

- 76 -

The ACEP measure is a specialized measure developed for use with exception

rule pairs. The h represents the class of the strong rule µb and 'h represents the

class of the exception rule νµ hh ∧ . In this case, the p and n values are counted

with regard to the classification defined in the rule heads h and h’. It is a

multiplicative version of the J-measure which includes the values for the strong

rule as well as the exception rule. By using a multiplicative form, the authors

avoid domination of high values as would be the case in an additive

conjunction.

SD-Map - qRG-measure

)1(
NP

P

NP

P

NP

P

np

p

qRG

+
−⋅

+

+
−

+
=

In their application Atzmüller and Puppe (2006) do not encourage the use of a

particular quality function since the key issue for the algorithm is efficient

discovery of good patterns. Nevertheless a postprocessing step is suggested to

only present the best k patterns to the user. Therefore the authors suggest the

qRG-measure as one possibility to evaluate rules. The measure compares the

deviation of the relative frequency of the target in the subgroup with the relative

frequency of the target variable in the whole population. The divisor is a

normalizing factor which should be the same for all rules considering there are

no missing values. In case of missing values the numbers for the whole

population can be calculated according to the description in 4.3. The qRG-

measure is part of the WRAcc though here it does not encourage generality of

discovered rules. Therefore one could as well use WRAcc in a way as

discussed in section 6.

5.3 Weighting

As discussed earlier, using examples weighting has been employed in CN2-SD

as well as the MESDIF algorithm. Using weights for the examples, the authors

Search

- 77 -

mitigate the effect of eliminating covered examples that leads to skewed

example subsets. It also helps finding better rules that do in fact perform mildly

worse than the first found rule, but still would do significantly better than rules

found after removal of those examples and therefore can be considered

interesting from a pattern discovery point of view, though less so from a

classification point of view. Thus, it is important to evaluate what different

possibilities for weighting examples there are.

Lavrač et al. (2004a) suggest two different ways of example weighting. A

multiplicative weighting scheme that uses a parameter 10 << γ to compute the

weight i

j iew γ=),(, with),(iew j being the weight of example je which has been

covered by i rules. Alternatively they suggest the use of an additive weight,

which is computed as
i

iew j
+

=
1

1
),(. According to their experiments, Lavrač et

al. (2004a) suggest using the additive weighting scheme since on average it

performed better than the multiplicative scheme and is easier to calculate. The

additive weight is also suggested by Berlanga et al. (2006) in the MESDIF

algorithm, yet, since it does weight examples only after they have been covered

at least once, the authors do without adding one to the denominator. According

to Lavrač et al., initially all examples should be weighted with a value of 1 which

then decreases with each applicable rule. As discussed above, the weighted

relative accuracy measure was adapted using the example weights rather than

just counting examples.

An alternative weighting scheme has been developed by Scholz (2005). The

key motivation for this enhanced scheme is the question of how to make sure

that the algorithm does not only find already known rules, but rather

uncorrelated, new rules. This also gives opportunities to incorporate existing

knowledge in the search and thereby helps to avoid rediscovering it thereby

leading to more useful discovered knowledge. Prior knowledge could be in the

form of patterns that were discovered during the runtime of the algorithm or

manually discovered patterns. The author essentially develops the idea of

Search

- 78 -

sample weights further by applying a technique which is similar to boosting

techniques. The aim of the weighting scheme is to remove discovered

knowledge from the distribution without altering the underlying original

distribution too much.

The key idea is to produce a new distribution from the old distribution in which

the rule r, which represents the prior knowledge, is no longer supported. This

means that in the new distribution D’ the probability of finding a positive

example among all examples is the same as finding a positive example among

those for which rule h is true. Therefore the rule body b and positive examples

+Y are independent.

)()|('' ++ = YPbYP DD 3.

In order to avoid a distortion of the new distribution D’ beyond the original

distribution and thereby destroying knowledge contained in the original

distribution or even falsely creating new correlations the author describes six

constraints that must hold.

)()(' bPbP DD = 4.

)()(' ++ = YPYP DD 5.

)|()|(' ++++ ∩=∩ YbxPYbxP DD 6.

)|()|(' −+−+ ∩=∩ YbxPYbxP DD 7.

)|()|(' ++++ ∩=∩ YbxPYbxP DD 8.

)|()|(' −+−+ ∩=∩ YbxPYbxP DD 9.

Constraints 4 and 5 imply the prohibition of changes to the probability of events

that are not influenced by the rule, meaning that the probability of a random

draw from the new distribution should not be different. The example space can

Search

- 79 -

be partitioned in four groups. Every example x belongs to either one group. The

first partition includes those examples which are covered by rule r and are

positive, the second partition includes examples where rule r is applicable and x

is a negative while partitions three and four are those examples that are not

covered by r and are either positive or negative. Constraints 6-9 imply that the

new partition is defined proportionally to the original partition. This means that if

the probability of seeing on specific example halves, the probability of those

examples which either share the property of interest or not and those that are of

the same class or not will also halve. Scholz (2005) argues that if that was not

done, one would without reason prefer some examples over some others in the

new distribution.

The weights are computed as discussed in the following. Rather than using

weights of 1 for all examples at the beginning, example weights are chosen so

that class priors are equal for all classes. This is done as it is proven by Scholz

(2005) that in such a stratified sample the subgroup discovery task using the

WRAcc utility function can as well be solved using a standard rule learning

algorithm with accuracy as its utility function. Therefore a generic rule learner

can be used to find appropriate rules. After a rule has been discovered the

examples have to be reweighted with regard to constraints 6-9. This is done by

multiplication of the example weights of all examples x with

∩∈→

∩∈→

∩∈→

∩∈→

=→

−+

++

−+

++

+

YbxforYbLift

YbxforYbLift

YbxforYbLift

YbxforYbLift

xYhLift

)(

)(

)(

)(

),(

Lift is calculated as

)(

)|(

)(

)(
)(

BP

ABP

BP

BAP
BALift =

∩
=→

It measures the relative frequency of an outcome given a specific rule relative to

the general frequency of that outcome. As shown by Scholz, the recalculation of

Search

- 80 -

the example weights as described above ensures the applicability of the

constraints as defined above.

The significance of the work is that it incorporates prior knowledge, usually in

the form of already found rules. It thereby limits the amount of rules found and

avoids rules that are highly correlated and therefore cannot be considered

interesting. Consequently, rules found are described as being diverse and

therefore potentially more useful than with other weighting schemes. The

weighting can either be put in place through example weights or resampling,

making the algorithm applicable even to algorithms that are difficult to work with

example weights.

5.4 Conclusion

This section discussed how the search for good patterns is organized. It

discussed the different approaches which are based on either a heuristic or an

exhaustive search in the space of possible local patterns. Table 6 summarizes

the search type and the applied quality functions for all algorithms.

Sections 5.1.2 and 5.1.3 have shown that heuristic as well as exhaustive

searches can be implemented based on the same generic algorithm based on

rule learning. The reason for that is that is that the frequent pattern mining

algorithms typically are used to generate candidate local patterns only. Those

candidate patterns are then evaluated to find the k best patterns which are

presented to the user. The k best patterns can be discovered using a coverage

approach. In the case of frequent pattern mining algorithms, this is discussed as

post-processing. Since this approach is basically the same approach as in

heuristic local pattern discovery, both forms can be incorporated in a single

generic rule discovery algorithm. One can consider the use of frequent pattern

mining algorithms as an early filter for what can be considered potentially good

rules. In the context of association rule mining based algorithms, the applied

quality function can have a different meaning than it has for the other

algorithms. Here a quality function, such as ²χ or support, defines only the

Search

- 81 -

minimum requirement a pattern has to satisfy. They are not used for comparing

different patterns. For that, another quality function has to be applied in order to

discover the best patterns, unless all discovered pattern should be presented.

Unlike exhaustive algorithms, CN2-SD, Algo-SD, MESDIF, CU-Algo and

MEPRO only generate a predefined number of patterns. In its original version,

CU-Algorithm tries to discover only the single best pattern, though that can be

changed to either discover the best k pattern during the first search or to

discover the best pattern remove or reweight covered examples and repeat the

process k times.

In terms of quality functions, the survey has shown that quite different quality

function have been applied for supervised local pattern discovery. Lavrac et al.

(2002) explicitly suggest the use of WRAcc as a measure specifically for

subgroup discovery, though this has not become a defining element of

subgroup discovery. It has been applied for CN2-SD as well as Apriori-SD. In

order to justify subgroup discovery and other approaches as an independent

field of research, quality functions should be used that distinguish the field from

inductive rule learning, since the goal is not predictive accuracy but interesting

descriptions of the data. This has been achieved so far through application of

weighting schemes in combination with WRAcc as well as combinations of

Search

- 82 -

Search Strategy

Search Type

Quality
Function

Problem
Definition

Weighting

CN2-SD Heuristic
Beam Search
(CN2) WRAcc

Subgroup
Discovery

Yes

Algo-SD Heuristic Beam Search qg, qc
Subgroup
Discovery

No

MESDIF Heuristic Genetic Search

Confidenc
e,
original
Support,
Support

Subgroup
Discovery

Partially

Apriori-SD Exhaustive Apriori Search WRAcc
Subgroup
Discovery

Yes

STUCCO Exhaustive Max-Miner ²χ
Contrast Set
Mining

No

CU-Algo Exhaustive Branch and Bound
Category
Utility

Cluster
Grouping

No

SD-MAP Exhaustive FP-Tree
not
specified

Subgroup
Discovery

(No)

MEPRO Exhaustive Branch and Bound ACEP
Exception
Rule Mining

No

Table 6. Summary of algorithms for local pattern discovery

different quality functions or by incorporating cost factors so user specific

settings are possible.

Table 6 summarizes the main properties of the algorithms that were presented

in this chapter. One can see that most algorithms that have been presented

here have been developed in the realm of subgroup discovery. The second

column shows the search type that is applied. This refers to the algorithms on

which the local pattern mining algorithms are based. In the case of SD-Map, the

no weighting scheme has been set in brackets since there is no explicit quality

function suggested by the authors. Since one could use the results and filter

them though application of the WRAcc function, it is possible to use a weighting

scheme with this algorithm, as has been suggested above. In the case of the

MESDIF algorithm, example weights are used only for the original support

function. All other functions work with weights fixed to one.

Search

- 83 -

As discussed above, post processing is often necessary in order to avoid

presenting too many and often uninteresting patterns. The following chapter

presents how post processing is done in most algorithms.

Post processing

- 84 -

6 Post processing

The post processing phase is mostly concerned with which rules should be

presented to the user. This is a problem for those algorithms that perform an

exhaustive search of the pattern space, since this type of search is most likely

to generate a wealth of rules that cannot or should not be presented to the user.

In the previous chapter, this step has been integrated in the core process of the

algorithm in Figure 5. Despite this, the issue should be discussed in this chapter

a bit more, since also alternative approaches can be used to implement post

processing. Since the goal of post processing is filtering all but the most

interesting patterns, first the term interesting is briefly discussed.

Generally it is difficult to discuss interestingness since interestingness can be

seen as a subjective measure as well as an objective measure. Klösgen (1996)

describes subjective interestingness measures such as usefulness which

relates the knowledge found by a pattern to the objectives of the user.

Unexpectedness (Silberschatz & Tuzhilin, 1995) means that it is surprising to

the user, which means it should take into account background knowledge of the

user. Actionability (Silberschatz & Tuzhilin, 1995) is another such subjective

measure, which means that a user should be able to use the discovered

knowledge in some way. Since all those measures of interestingness somehow

relate to the specific user and his or her knowledge, it is hardly possible for an

algorithm to derive such knowledge. Nevertheless, there are ways to present

what can be assumed to be interesting patterns, for instance on a basis of what

has already been presented, thereby reducing the total number of patterns

shown to the user.

Such an approach has been suggested for STUCCO (Bay and Pazzani, 2002).

They suggest two different ways to post process data and reduce the number of

patterns presented to the user. The first of those is statistical surprise. This

means the user is shown the most general contrast sets first and only later will

be shown more complicated contrast sets if they are surprising with regard to

Post processing

- 85 -

what has been shown previously. To do that they first use a log-linear model of

expected values given knowledge of presented rules and only present rules that

deviate from those expected values. Second, they suggest looking for linear

relations in cases where there groups can be seen as time series data, since

those relations might be easily understandable and might therefore be

interesting. An idea similar to the first one has been suggested by Knobbe and

Ho (2006). Here the authors describe measures which are used to build what

they call pattern teams. Pattern teams are sets of patterns aim at fulfilling six

criteria. Those criteria include that patterns should not overlap strongly or

complement each other strongly, new patterns should not be added to the set if

they approximately cover only a linear combination of examples already in the

set, patterns should be mutually exclusive and when using patterns as a

classifier they should be the best classifier possible and finally, patterns teamed

together should be on the convex hull of the ROC space of all patterns.

Rather than filtering surprising patterns by statistical surprise or linear

relationships, an obvious constraint is to present only a fixed number n of

patterns that have been found and make sure only the best patterns according

to some criterion are chosen. This can be done during the runtime of the

algorithm or the algorithm can search all valid patterns and then post process

those results. This approach is used by Apriori-SD algorithm. Here, the authors

follow Lavrač et. al (2002) which generalizes the approach of subgroup

discovery through rule induction based on weighted coverage which has been

implemented in of CN2-SD. To measure rule quality, WRAcc is used. Rather

than removing covered examples completely they merely decrease example

weights according to the additive reweighing strategy. This also means that

possible improvements through alternative weighting schemes as suggested by

Scholz (see 5.3) could also improve the performance of Apriori-SD. Similarly for

algorithm-SD, a post processing step was suggested to minimize the number of

presented rules by first choosing the maximal number n of rules that should be

shown to the user and then choosing as diverse such n rules as possible,

though the suggested algorithm does not guarantee statistical independence.

Post processing

- 86 -

The approach was first introduced by Gamberger and Lavrač (2000). They

propose choosing the rule that covers most examples as a first rule. Examples

are weighted so that each covered example’s weight is calculated as an

additive weight. Using this approach, diverse rules are selected since similar

rules acquire a less favorable quality value. The idea is quite similar to the idea

presented earlier only in this case the evaluation function is simply the sum of

all covered example weights rather than WRAcc. This is the same approach

that has been integrated into the algorithm depicted in Figure 5.

This chapter completes the presentation of the different algorithms. It shows

ways of dealing with the problem of too many discovered patterns. Essentially,

algorithms like Algo-SD and Apriori-SD perform a weighted coverage approach

to evaluate rules. SD-Map does not specifically suggest how to perform this

task but also suggests comparing discovered patterns and only presenting the

most interesting ones. This could be done either directly when mining for

interesting patterns, though this does not make it possible to remove or

reweight covered examples. Therefore a post processing step similar to the

mentioned above has been suggested in chapter 6. The coverage approach

which has been discussed here is similar to the approach chosen by heuristic

search algorithms like CN2-SD, the key difference is that there are no

refinements needed since all valid patterns are known beforehand.

Related topics in supervised local pattern detection

- 87 -

7 Related topics in supervised local pattern detection

This chapter reviews two related topics that have not been discussed

previously. First, there is the issue of searching for local patterns in relational

databases and second there has been a specific application for contrast set

mining in time series data. Both applications are discussed in the following two

sections.

7.1 Subgroup Discovery in Relational Databases

So far all algorithms that have been discussed have used a single relation in

order to find local patterns. However, there is the issue of finding interesting

local patterns in relational databases. For this problem, several algorithms have

been developed (Železný and Lavrač, 2006; Lavrač, Železný and Flach, 2002;

Wrobel, 1997; Klösgen and May, 2002a,b). In the following, I briefly describe

those algorithms.

RSD (Železný and Lavrač, 2006; Lavrač, Železný and Flach, 2002) works by

using first order feature construction from which it creates a single relation. On

this relation RSD employs the CN2-SD subgroup discovery rule learning

algorithm which produces propositional rules. For feature construction RSD

uses a Prolog program as background knowledge. This is done by only using

the background knowledge independently of the actual data. Next the features

are instantiated using the most common values. Then the features are used to

reproduce the single relation that is needed in order to be able to apply the

CN2-SD algorithm. Nevertheless, it is essentially only an extension of the CN2-

SD algorithm but does not add in terms of expressivity, since first-order logic is

only applied for feature construction while the approach itself is again purely

propositional.

While RSD only produces a single relation of constructed features the MIDOS

algorithm (Wrobel, 1997) actually works on the multi-relational table. Thus, it

describes the hypothesis language space as a propositional hypothesis space

Related topics in supervised local pattern detection

- 88 -

which uses first order predicates in order to represent the different relations of

the database and uses conjunctions of those first order literals as the group

description.

),(),(),(),,(3210 RUrRZrUYrZYXr ∧<∧∧

The variables r0 to r4 represent the relations and within these literals there are

foreign links (Y,Z,U,R) which have to be considered according to the foreign

links stored in the data base. Refinement of rules2 is done according to the

foreign links that are found in the relations. These are ordered and guarantee

that each path through the tree which consists of relations and foreign links is

visited at most once. The search is organised as a general to specific search

which can use breadth-first, depth first or best first search algorithms. The

search is organised along the graph of database relations with the links being

the edges. Due to the optimal refinement operator the algorithm can also search

the space of possible subgroups in parallel. The search is aimed at finding the

best k subgroup descriptions. To be able to find the best k subgroups one

needs to prune uninteresting parts of the search space. Thereby two types of

pruning are applied. First, if the quality measure is zero the part of the tree can

be pruned since results cannot become any better if more items are added.

Second, MIDOS uses optimistic estimate pruning which is based on the fact

that the algorithm only looks for the best k subgroups. If the optimistic estimate

for the q(h) is less than the worst of the already found solutions, this part of the

tree can be pruned as well. The optimistic estimate is calculated as the WRAcc

with the
N

pn)('
set to one.

2 See also Hoche and Wrobel (2001)

Related topics in supervised local pattern detection

- 89 -

Klösgen and May (2002a,b) describe the SubgroupMiner system that is used to

infer subgroups within spatial data. The similar to MIDOS SubgroupMiner also

works directly on the multi-relational table rather than preprocessing the

database and forming only a single relation. Hence the hypothesis language

consists of concepts that contain attribute value pairs for each relation and links

between the different relations within each concept.

7.2 Subgroup Discovery in Time Series Data

Lin and Keogh (2006) expanded the notion of contrast sets to work with time

series data. They aim at identifying key patterns that are able to distinguish

between two sets T and S of time series data. For doing that they introduce the

concept of Time-Series-Diffs (TS-Diff). A TS-Diff(T,S,n) is a subsequence C of

time series T of length n that has the largest distance to its closest match in S.

They aim at finding the most relevant pattern according to TS-Diff. Their quality

measure in order to distinguish different pattern is the Euclidean Distance.

∑
=

−=
n

i

ii stSTDist
1

2)(),(

To be comparable, both time series’ have to be normalized to have a zero mean

and a standard deviation of one. They expand the brute force algorithm of

comparing each subsequence of length n in T with each subsequence of length

n in S by ordering all subsequences in T and S so that a good first pattern,

meaning one with a large nearest-match distance can be found quickly. This

enables early stopping of comparisons later in the search since a pattern does

not need to be fully searched if its closest match is already closer than the best

found so far. In order to be able to produce an ordering which makes such an

ordering possible the authors suggest the use of the Symbolic Aggregate

ApproXimation (SAX) (Lin et al., 2003). In SAX, they transform time series data

in symbolic representation using a limited alphabet of size α and a word size w.

Related topics in supervised local pattern detection

- 90 -

Using the transformed data, they store all αw possible patterns in a hash table

and count how often each pattern has appeared. Using this knowledge they try

to organize the outer loop going over data in T in order to find a good first

pattern by going through the buckets in S which are empty and finding those

buckets in T that are non empty. Those should have relative higher probability

of having a large difference to their closest match in S. In order to be able to

abort the search early, the first patterns in the inner loop searching through S

that are searched should be relatively close to the comparing pattern in T.

Therefore when the i-th pattern in T is being evaluated the corresponding SAX

word A is created and the pattern is compared first with all those sequences of S

that are found in the corresponding hash table bucket of A. These

subsequences should be relatively similar to the one we are comparing it to,

therefore assuming a relatively great difference has been found early, the

search will not have to be continued since the pattern already has found a

matching pattern closer to it.

As we can see, the rule learning makes use of the special data structure of time

series analysis. The groups are trivially defined by the two time series that are

being evaluated. Due to the data structure, the problem has originally a

complexity of O(n²) due to the comparisons. Lin’s and Keogh’s analysis has

shown that in the best case scenario the running time of the algorithm will be

only O(n) if the patterns are visited in perfect order. Their heuristic makes it

possible to increase the possibility of near-perfect ordering with only a few extra

loops over the data. This leads to an improvement in runtime that can be

expected, since it is a heuristic approach only this does not change the upper

limit of the running time behavior of O(n²), but still, in practice, it can be

expected to be significantly faster.

Conclusion

- 91 -

8 Conclusion

This thesis surveyed the literature on supervised pattern discovery. The

different definitions that have been developed in different research communities

have been presented in a single paper and discussed. It can be seen that

problems that are discussed in the literature with regard to rule learning also

apply to most of the algorithms mentioned here. This is hardly surprising

considering that all algorithms presented here are modifications of standard rule

learning algorithms or association rule learning systems. Generally the survey

has shown that almost any rule learning algorithm can be used for supervised

local pattern discovery. Typically the difference with regard to standard rule

learning is the emphasis on discovering descriptive patterns rather than

predictive rules. For that reason, there is less emphasis on predictive accuracy.

This can be seen in the way patterns are chosen. For the discovery of local

patterns, statistical testing methods, like the ²χ test or binomial tests, are

applicable. This is because the absolute interestingness compared to other

patterns is less important than the identification of patterns as such. Since such

an approach could lead to quite many discovered patterns a post processing

step is needed to filter the best patterns. In this case a quality function is

needed that can rank the identified patterns. As discussed in section 5.2

WRAcc is such a function which had been suggested for the discovery of

subgroups in data.

Considering the algorithms that have been discussed one of the most important

differences has been the type of search applied. This difference is less

important than is appears to be. The reason for that is, that pattern discovery

algorithms which use association rule discovery often add a post-processing

step in which the best k patterns are chosen. This is usually done by

implementing a coverage approach which does without the search for new

patterns but only evaluates those patterns that have already been discovered

and then removes or reweights covered examples. This is quite similar to the

Conclusion

- 92 -

algorithms based on rule learning. Therefore one can consider the association

rule search as a special kind of refinement. Rather than refining a singe best

rule or a beam of k best rules, refinement is done by deliberately choosing the

best rule in a limited set of pre-discovered rules. For that reason, it was possible

to integrate the association rule learning based discovery algorithms in the

generic rule learning algorithms as presented in chapter 5.

Appendix A: Basic Statistics

- 93 -

Appendix A: Basic Statistics

This appendix describes some important basic statistical terms, axioms and

theorems. It follows the definitions and presentation of Mittelhammer (1999)

Probabilities

Probabilities are used to quantify the level of certainty or uncertainty associated

with observations made in a situation whose outcome is determined by chance.

Some important terms in the context of probability theory are experiment,

sample space, outcome and event.

An experiment is a process for which the outcome cannot be specified in

advance, but for which all possible outcomes are known in advance. The

outcome is the final result or observation of the experiment. A sample space is

a set that contains all possible outcomes of a given experiment. This is typically

described as Ω . Since it is a set, one can classify the sample space by the

number of element it contains. These can be finite, countably infinite, or

uncountably infinite. A sample space that is finite or countably infinite is called a

discrete sample space while an uncountably infinite sample space, such as all

the points of an interval, is called a continuous sample space. An event is a

subset of the sample space, therefore events are collections of outcomes of an

experiment. Those events that consist only of a single element Ω∈ω are called

elementary events.

Probability theory is based on three axioms defined by the Russian

mathematician A. N. Kolmogorov. Before introducing those axioms, first, the

event space A has to be discussed. The event space is the domain of the

function RP: →A , which assigns a probability to every possible event.

Therefore the event space is the set of all events in the sample space Ω .

Axiom 1: 0)(≥⊂ APAeventanyFor A ,

Appendix A: Basic Statistics

- 94 -

Axiom 2: 1)(=AP

Axiom 3: Let I be a finite or countably infinite index set of positive integers,

and let }:{ IiAi ∈ be a collection of disjoint events contained in S.

Then, ∑ ∈∈ =
Ii iiIi APAP)()(U

A disjoint event means that BA ∩ = Ø, for two composed events A and B .

Axiom 1 states that a probability can never be negative and axiom 2 states that

the maximum probability is 1. Since A contains all possible outcomes, the

probability for an outcome which is in A is 1. The third axiom means that

probabilities are additive. A function that satisfies all three axioms is called a

probability measure. All problem types of assigning probabilities to events in a

sample space share a common mathematical structure. It is a 3-tuple which is

called the probability space P)A ,,(Ω . Ω contains all possible outcomes, A is a

set of sets which represents all events for which a probability will be defined and

P is a probability set function which assigns probabilities to events in A .

Some important probabilistic theorems

Theorem A.1: Let Ω⊆A , then)-P(AP(A) c1= with AAc \Ω= which means

cA is the complement of A .

Theorem A.2: P(Ø)=0

Theorem A.3: Let A and B be two events in a sample space such that

BA ⊂ . Then P(A) ≤ P(B) and P(B-A)=P(B)-P(A)

Theorem A.4: Ω⊂A and Ω⊂B , then)()()(CBAPBAPAP ∩+∩=

Theorem A.5: Ω⊂A and Ω⊂B , then)()()()(BAPBPAPBAP ∩−+=∪

For proof of these theorems, I refer the reader to Mittelhammer (1999).

Appendix A: Basic Statistics

- 95 -

Conditional Probability and Independence

Conditional probabilities are used to determine changes in probabilities

according to some additional information. For instance, if the question is to

determine the outcome of tossing two coins sequentially, probabilities change

after the outcome of the first coin is determined. Potential outcomes are

{(H,H),(H,T),(T,H),(T,T)}. Prior to the first toss, all events have probabilities of ¼.

If the first toss’ outcome is H, both events, {(T,H),(T,T)} are impossible, which

means P((T,H))=0 and P((T,T))=0, while the probability for both other outcomes

is 1/2. Therefore there is a need to define conditional probabilities.

Definition A.1: (Conditional Probability) The conditional probability of event

A, given event B, is given by
)(

)(
)|(

BP

BAP
BAP

∩
= for two

events A and B in the sample space.

A probability function based on conditional probabilities has to obey to the same

axioms as a normal probability function. Therefore, the theorems discussed

above are applicable accordingly. Note that conditional to B means that the

event B is certain, therefore the conditional probability 1)|(=BBP .

This can be put in terms of relative frequency in cases where there is a finite

sample space, an event space that contains all subsets of the sample space

and a probability function that assigns a probability for every SA ⊂ as

)(

)(
)(

SN

AN
AP = . In this case conditional probability on an event B is given by

)(

)(

)(

)(

)(

)(

)(

)(
)|(

BN

BAN

SN

BN

SN

BAN

BP

BAP
BAP

∩
=

∩

=
∩

=

An alternative presentation of conditional probabilities is known as Bayes’s rule.

It is based on the theorem of total probability.

Appendix A: Basic Statistics

- 96 -

Theorem A.6: (Theorem of total probability) Let the events IiBi ∈, , be a

finite or countably infinite partition of the sample space, S,

so that =∩ kj BB Ø for any kj ≠ and SBiIi =∈U . Let

IiBP i ∈∀> 0)(. Then ∑∈
=

Ii ii BPBAPAP)()|()(.

This means that the total probability of A is distributed over all partitions of the

sample space. Derived from that is Bayes’s rule.

Theorem A.7 (Bayes’s Rule) Let the events IiBi ∈, , be a finite or

countably infinite partition of the sample space, S, so that

=∩ kj BB Ø for kj ≠ and SBiIi =∈U . Let IiBP i ∈∀> 0)(.

Then, provided P(A)=0:

∑∈

=
Ii ii

jj

j
BPBAP

BPBAP
ABP

)()|(

)()|(
)|(

In a two event case, Bayes’s rule can be written as follows:

)()|()()|(

)()|(
)|(

BPBAPBPBAP

BPBAP
ABP

¬¬+
=

Opposed to conditional probability, in which one event influences the outcome

of the experiment, there is the notion of independence.

Definition A.2: (Independence) For two events A and B in the sample

space, A and B are called independent if

)()()(BPAPBAP =∩ . If A and B are not independent, they

are dependent events.

For two independent events A and B we can write

)()(/)()()(/)()|(APBPBPAPBPBAPBAP ==∩=

)()(/)()()(/)()|(BPAPAPBPAPABPABP ==∩=

Appendix A: Basic Statistics

- 97 -

so one can see that the probability is not influenced by the other events. Note

that if A and B are independent, A and Bc, Ac and B as well as Ac and Bc are also

independent.

Random Variables and Distribution Functions

Many results of experiments have the form of real numbers. Other experiments

that do not have real numbers as outcomes often have a countable number of

outcomes that can be codified as real numbers. Such an outcome is called a

random variable.

Definition A.3: (Random Variable) Let } P,,{ AΩ be a probability space. If

X: R→Ω is a real-valued function having as its domain the

elements of S, then X: R→Ω (X for short) is called a

random variable.

Using random variables induces a real valued sample space

}),(|{)(SwwXxxXR ∈== , where X is the random variable and x is the image of

X in the sample space. Next one needs to define the probability space that is

induced by a random variable. For that one needs to define a probability set

function and the event space. The induced probability space can be written as

) PR xx ,(X),(A with

}),(|{)(SwwXxxXR ∈==

R(X)}in event an isA |A{x =A

xx },,)(|{),()(A∈∀∈∈== AAwAwXwBBPAP

)(XR is the sample space expressed as a real number, xA is the event space

for outcomes of the random variable and xP is the probability set function which

is defined on events in xA .

Appendix A: Basic Statistics

- 98 -

Next the probability density function needs to be defined to be able to define the

probability set function. This is first done for the discrete case.

Definition A.4: (Discrete Random Variable)A random variable is called

discrete if its range consists of a countable number of

elements.

Definition A.5: (Discrete Probability Density Function) The discrete

probability density function f, for a discrete random variable

X is defined as f(x)=probability of x,)(XRx ∈∀ and f(x)=0

)(XRx ∉∀ .

Since any event in xA is a subset of)(XR we can use Axiom 3 to define

that ∑ ∈
=

Ax
xfAP)()(x with xA∈A . The probability density function f can be

described as a table or as an algebraic specification which is typically

preferable. In the case of discrete probability function f(x), the results can be

interpreted as the probabilities of the elementary events x∈R(x). In the case of

continuous random variables f(x) cannot be interpreted as a probability since

there are uncountably many elementary events in R(x). Therefore we cannot

just sum up the probabilities of all elementary events. Rather than that, it is

necessary to integrate over uncountably infinite events in order to define a

probability.

Definition A.6: (Continuous Random Variable) A random variable is called

continuous if its range is uncountably infinite and if there

exists a nonnegative-valued functions f(x), defined for all

),(∞−∞∈x , such that for any event

∫ ∈=⊂ dxxfAPXRA AxX)()(),(and)(0)(XRxxf ∉∀= . The

function f(x) is called a continuous probability density

function

Appendix A: Basic Statistics

- 99 -

Note that for any elementary event x, f(x)=0, therefore it should not be

interpreted as the probability but only as the density value of f(x). In order to

calculate probabilities integration is necessary.

Derived from the probability density function f one can create the cumulative

distribution function F.

Definition A.7: (Cumulative Distribution Function) A cumulative distribution

function of a random variable X is defined by

),()()(∞−∞∈∀≤= bbxPbF . We consider two cases for

which F has to be defined:

1. Discrete X:

∑
>

≤

=

0)(

)()(

xf
bx

xfbF

2. Continuous X:

∫
∞−

=
b

dxxfbF)()(

A cumulative density function (CDF) can be used to ask question like what is

the probability of getting less than 3 or less when throwing a fair dice. To

answer such a question one can use the CDF. In the dice example one can

simply add all events smaller or equal to the result three to receive ½ as the

result.

A CDF’s domain is the real line, while the range is the interval [0,1]. Also,

0)()(lim)(lim =∅=≤= −∞→−∞→ PbxPbF bb

1))(()(lim)(lim ==≤= ∞→∞→ XRPbxPbF bb .

Furthermore, if ba < then)()()()(bFbxPaxPaF =≤≤≤= . It is possible to

create a discrete probability density function from a continuous density function

by choosing a countable collection of outcomes x1<x2<x3<… for a discrete

random variable X. f(x) can then be defined as

Appendix A: Basic Statistics

- 100 -

 f(x1)=F(x1)

 f(xi)=F(xi)-F(xi-1), i=2,3,…,

 f(x)=0 for)(XRx ∉

Mathematical Expectation

The expected value of a random variable can be considered to be the center of

gravity of its density function. It can be defined as

Definition A.8: (Expected Value) The expected value of a discrete random

variable exists, and is defined by ∑ ∈
=

)(
)()(

XRx
xxfXE ,

iff ∞<∑ ∈)(
)(

XRx
xfx ,

Note that the existence criterion is necessary to make sure that the sum

absolutely converges. Only in that case it is possible to define the expected

value. The above definition is valid only for discrete values. The definition for a

continuous random variable is given next:

Definition A.9 (Expected Value)The expected value of a continuous

random variable exists, and is defined by ∫
∞

∞−

= dxxxfXE)()(,

iff ∞<∫
∞

∞−

dxxfx)(

One can consider the expected value as a weighted average of the possible

outcomes of the random variable in the continuous case. The expected value is

also known as the mean of the random variable X and denoted by the symbol

µ .

Another important measure for random variables is the variance of a random

variable and the standard deviation.

Appendix A: Basic Statistics

- 101 -

Definition A.10: The variance of a random variable X is calculated as

)²(µ−XE and will be denoted as ²σ , or by var(X).

Definition A.11: The standard deviation of the random variable X is the

nonnegative square root of its variance (²σ) and is

denoted by σ

Both the standard deviation and the variance are measures for the spread of

the density function. The less spread there is around the mean, the smaller are

both the variance and naturally the standard deviation.

So far the discussion has evolved only on univariate random variables where

only a single probability density function has been defined. As an extention to

this there is the multivariate case in which there is more than one real-valued

function defined on the elements of the sample space. In this case the

probability density function is called the joint probability density function, f,

which is defined on a multivariate random variable X=(X1,…,Xn). For the

multivariate case, one can define measures to analyze the interaction of two or

more random variables. For instance the question on whether there is a linear

association between two random variables X and Y. This can be measured

through the use of covariance:

Definition A.12: Covariance is calculated as)))())((((YEYXEXEXY −−=σ .

It is denoted by XYσ or by cov(X,Y).

Covariance can alternatively be calculated as

)()()(YEXEXYEXY −=σ

Proof:

)()()(

)]()()()([

)))())((((

YEXEXYE

YEXEYXEYXEXYE

YEYXEXEXY

−=

+−−=

−−=σ

Appendix A: Basic Statistics

- 102 -

Covariance is bound by YXXY σσσ ≤ . In order to be able to compare

covariances, a scaled version has been developed. It is called the correlation

between X and Y

Definition A.13 The correlation between two random variables X and Y is

defined by
YX

XY
XYYXcorr

σσ

σ
ρ ==),(

Correlation is bound 11 ≤≤− xyρ , where 1−=xyρ means there is a perfectly

negative relationship between the random variable X and Y while 1=xyρ implies

a perfectly positive relationship. 0=xyρ means there is no linear relationship

between X and Y, though there might still be a different kind of common

variance. If both random variables are independent, correlation 0=xyρ , though

since there might be another kind of dependence, 0=xyρ does not imply

independence.

Hypothesis Testing

The goal of hypothesis testing is to draw conclusions from a random sample

thereby being able to control the probability of error. To be able to test a

hypothesis it first needs to be stated in a way that it is part of the probability

space of the random sample. The goal of the statistical test is to either accept

what is called the null hypothesis or to reject it, if the outcome of the random

sample does not fit the expectation under the null hypothesis.

Definition A.14 (Statistical Hypothesis) A set of potential probability

distributions for a random sample from a process or

population is called a statistical hypothesis. The hypothesis

to be tested is called the null hypothesis which is denoted

as H0. If H0 is rejected is, it is rejected in favor of the

alternative hypothesis HA.

Appendix A: Basic Statistics

- 103 -

A further goal of statistical testing is to provide means to control for making

incorrect decisions. When considering hypothesis testing whose outcome is

either true or false, there are four possible outcomes in terms of correctness or

incorrectness of the results. First, the hypothesis is correct and the test says

just that and second, the hypothesis is incorrect and the test rejects it. In those

two cases the statistical test has decided correctly. Similarly there are two

situations in which error occurs.

Defintion A.15 (Statistical Error)Let H be a statistical hypothesis being

tested for acceptance or rejection. Then the two types of

errors that can be made by the statistical test are

1. type I error: rejecting H when H is true

2. type II error: accepting H when H is false.

In statistical testing, one controls type I error actively by choosing a significance

level α . For instance choosing a significance level 05,0=α means that one in

20 test is expected to reject the null hypothesis though it is actually true. Simply

decreasing the significance level does not help since a less strict rejection

criterion will increase the risk of type II errors. This is since choosing a

significance level partitions the random sample outcome space in acceptance

and rejection areas. When trying to avoid type I error, this means the

acceptance area is enlarged which leads to a increased probability of falsely

accepting H.

The process of performing a statistical test can be divided into four steps. First,

one needs to state the null hypothesis H0 which is being tested and the

alternative hypothesis HA which has to be assumed true if H0 is rejected.

Second, the outcome of the test has to be calculated depending on the type of

test that is being applied. This outcome has to be compared to the values for

accepting or rejecting the hypothesis. To be able to do that, one needs to

choose a significance level which is used to partition the set of random-sample

Appendix A: Basic Statistics

- 104 -

outcome in a critical region, in which the hypothesis is rejected, and an

acceptance region. Now in a fourth step one can decide whether the calculated

test statistic lies within the acceptance region and should therefore be accepted

or not.

Literature

- 105 -

Literature

Agrawal R., Imielinski T., & Swami A. N.. Mining association rules between sets of items in large
databases. In Proceedings of the 1993 ACM International Conference on Management of Data
(SIGMOD’93), 1993.

Agrawal R., & Srikant R. (1994). Fast Algorithms for Mining Association Rules, In Proceedings. of the
20th Intl. Conf. on Very Large Databases. Sep 12-15, Chile, 487-99

Atzmüller, M., & Puppe, F: (2006) SD-Map - A Fast Algorithm for Exhaustive Subgroup Discovery. In. J.
Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.): Knowledge Discovery in Databases: PKDD
2006: Lecture Notes in Artificial Intelligence 4213 6-17. Springer-Verlag Berlin Heidelberg

Bay, S. D. & Pazzani, M. J.. (2001) Detecting group differences: Mining contrast sets. Data Mining and
Knowledge Discovery, 5(3):213–246, 2001.

Bayardo, R. J. (1998). Efficiently mining long patterns from databases. Proceedings of the ACM
SIGMOD Conference on Management of Data. p. 85-93

Berlanga, F., del Jesus, M. J., Gonzáles, P., Herrera, F., & Mesonero, M. (2006). Multiobjective
Evolutionary Induction of Subgroup Discovery Fuzzy Rules: A Case Study in Marketing. In P.
Perner (Ed.): Advances in Data Mining. 6th Industrial Conference on Data Mining, ICDM 2006,
Lecture Notes in Artificial Intelligence 4065, pp. 337-349. Springer-Verlag Berlin Heidelberg

Bonchi, F., & Giannotti, F. (2005) Pushing Constraints to Detect Local Patterns. K. Morik et al. (Eds.):
Local Pattern Detection - Lecture Notes Artificial Intelligence 3539, pp. 1–19, Springer-Verlag
Berlin Heidelberg

Ceglar, A. & Roddick, J. F. (2006). Association Mining. ACM Computing Surveys, 38 (2). Article 5

Domschke, W. & Drexl, A. (2002). Einführung in Operations Research. 5. Auflage, Springer Berlin,
Heidelberg, New York. pp 114-124

Fayyad, U. M., Piatetsky-Shapiro, G. & Smyth, P. (1996). From Data Mining to Knowledge Discovery:
An Overview. In Fayyad, U. M., Piatetsky-Shapiro, G. and Smyth, P and Uthurusamy R. (Eds.).
Advances in Knowledge Discovery and Data Mining. AAAI Press / The MIT Press. pp. 1-34

Fayyad, U. M., & Irani, K. B. (1993). Multi-Interval Discretization of Continuous-Valued Attributes for
Classification Learning. In Ruzena Bajcsy (Ed.): Proceedings of the 13th International Joint
Conference on Artificial Intelligence. Chambéry, France, 1993. Morgan Kaufmann, pp. 1022-
1029

Fisher, D. H. (1987). Knowledge Acquisition Via Incremental Conceptual Clustering. Machine Learning
2(2), pp. 139-172

Fürnkranz, J. (1999). Separate and Conqure Rule Learning. Artificial Intelligence Review 13, pp. 3–54,
1999.

Fürnkranz, J. (2005). From local to global patterns: Evaluation issues in rule learning algorithms. In
Morik, K., Boulicaut, J.-F., and Siebes, A. (Eds.), Local Pattern Detection, pp. 20-38. Springer-
Verlag.

Fürnkranz, J. & Flach, P. (2005). ROC 'n' rule learning -- towards a better understanding of covering
algorithms. Machine Learning, 58(1):39-77

Literature

- 106 -

Gamberger, D., & Lavraˇc, N. (2000) Confirmation rule sets. In Zighed, D.A., Komorowski, J. & Zytkow,

J. (Eds.) Principles of Data Mining and Knowledge Discovery PKDD 2000, Lecture Notes in
Artificial Intelligence 1910, pp.34–43, Springer

Gamberger D., & Lavrač, N. (2002a) Generating Actionable Knowledge by Expert-Guided Subgroup
Discovery. In T. Elomaa, H. Mannila, and H. Toivonen, editors, Proceedings of the 6th
European Conference on Principles of Data Mining and Knowledge Discovery - Lecture Notes
in Artificial Intelligence 2431, pp. 163--174. Springer-Verlag, August.

Gamberger, D. & Lavrač, N. (2002b). Expert guided subgroup discovery: Methodology and application.
Journal of Artificel Intelligence Research 17, pp. 501-527

Gamberger, D., & Lavrač, N. (2006) Relevancy in Constraint-Based Subgroup Discovery. In J.-F.
Boulicaut et al. (Eds.): Constraint-Based Mining - Lecture Notes in Artificial Intelligence 3848,
pp. 243–266, 2005. Springer-Verlag Berlin Heidelberg

Goethals, B. (2003). Survey on Frequent Pattern Mining. Manuscript
http://www.adrem.ua.ac.be/bibrem/pubs/fpm_survey.pdf (25.09.2007)

Han, J., Pei, J., Yin, Y. and Mao, R. (2004) Mining Frequent Patterns without Candidate Generation: A
Frequent-Pattern Tree Approach. Data Mining and Knowledge Discovery, 8(1):53-87

Hand, D. J. (2002). Pattern Detection and Discovery. In D.J. Hand et al. (Eds.): Pattern Detection and
Discovery, Lecture Notes Artificial Intelligence 2447, pp. 1–12

Hoche, S. & Wrobel, S. (2001) Relational Learning Using Constrained Confidence-Rated Boosting. In C.
Rouveirol and M. Sebag (Eds.): Inductive Logic Programming, 11

th
 International Conference,

ILP 2001 – Lecture Notes in Artificial Intelligence 2157. pp. 51–64

Höppner, F. (2005). Local Pattern Detection and Clustering. In Morik, K., Boulicaut, J.-F., and Siebes, A.
(Eds.), Local Pattern Detection - Lecture Notes Artificial Intelligence 3539, pp 20-38. Springer-
Verlag.

Jovanoski, V., & Lavrač, N. (2001) Classification Rule Learning with APRIORI-C. In P. Brazdil and A.
Jorge (Eds.): Progress in Artificial Intelligence – 10th Portuguese Conference on Artificial
Intelligence - Lecture Notes Artificial Intelligence 2258, pp. 44–51,

Kavŝek, B., Lavrač, N. & Jovanoski, V. (2003). APRIORI-SD: Adapting Association Rule Learning to
Subgroup Discovery. In M.R. Berthold et al. (Eds.): Advances in Intelligent Data Analysis V –
Proceedings on 5th International Symposium on Intelligent Data Analysis 2003, Lecture Notes
in Computer Science 2810, pp. 230–241, 2003. Springer-Verlag Berlin Heidelberg

Kerber R. (1992). ChiMerge: Discretization of Numeric Attributes. In William R. Swartout (Ed.):
Proceedings of the 10th National Conference on Artificial Intelligence. San Jose, CA, July 12-
16, 1992,. The AAAI Press / The MIT Press, pp. 123-128

Klösgen, W. (1996) Explora: A multipattern and multistrategy discovery assistant. In U. M.Fayyad, G.
Piatetsky-Shapiro, P. Smyth, and R. Uthurusamy, editors, Advances in Knowledge Discovery
and Data Mining, pp. 249–271. AAAI Press,1996.

Klösgen, W. (1998) Deviation and Association Patterns for Subgroup Mining in Temporal, Spatial, and
Textual Data Bases. Proceedings on First International Conference on Rough Sets and Current
Trends in Computing: RSCTC'98 - Lecture Notes Artificial Intelligence 1424. pp.1-18.

Literature

- 107 -

Kloesgen,W., & May, M. (2002a). Census Data Mining—An Application. ECML/PKDD’02 Workshop on
“Mining Official Data”. http://www.di.uniba.it/~malerba/activities/mod02/pdfs/kloesgen.pdf
(29.01.2008)

Klösgen W. & May M. (2002b). Spatial Subgroup Mining Integrated in an Object-Relational Spatial
Database. In T. Elomaa et al. (Eds.): Principles of Data Mining and Knowledge Discovery –
Lecture Notes in Artificial IntelligenceI 2431, pp. 275-286, Springer-Verlag Berlin Heidelberg.

Knobbe, A. J., & Ho, E. K. Y. (2006). Pattern Teams. In J. Fürnkranz, T. Scheffer, and M. Spiliopoulou
(Eds.): Knowledge Discovery in Databases: PKDD 2006: Lecture Notes in Artificial Intelligence
4213. pp. 577-584. Springer-Verlag Berlin Heidelberg

Kralj, P., Lavrac, N., Gamberger, D., & Krstacic, A. (2007) Contrast Set Mining Through Subgroup
Discovery Applied to Brain Ischaemina Data. The 11th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD 2007) 579-586

Lavrač, N. Železný, F. & Flach, P. A.. (2002a). RSD: Relational subgroup discovery through first-order
feature construction. Inductive Logic Programming. 12

th
 International Conference, ILP 2002.

Lecture Notes on Artificial Intelligence 2583 pp. 149-165., Springer-Verlag Berlin Heidelberg

Lavrač, Nada, Flach, Peter, Kavšek, Branko & Todorovski, Ljupčo, (2002b). Adapting classification rule
induction to subgroup discovery. In Proceedings of the IEEE International Conference on Data
Mining (ICDM’02), pp. 266–273.

Lavrač, N. Kavšek, B. Flach, P. A. & Todorovski, L (2004a). Subgroup Discovery with CN2-SD. Journal
of Machine Learning Research (5) pp. 153--188,

Lavrač, N., Cestnik, B., Gamberger, D., & Flach, P. (2004b) Decision Support through subgroup
discovery: Three Case Studies and the Lessons learned. Machine Learning, 57, pp. 115-143.

Lavrač, N., Železný, P. & Džeroski, S. (2005). Local Patterns: Theory and Practice of Constraint-Based
Relational Subgroup Discovery. In Carbonell, J. G. and Siekmann J. (Eds.) Local Pattern
Detection, International Seminar. Lecture Notes in Artificial Inteligence 3539

Lin, Jessica & Keogh, Eamonn (2006) Group SAX: Extending the Notion of Contrast Sets to Time
Series and Multimedia Data. In. J. Fürnkranz, T. Scheffer, and M. Spiliopoulou (Eds.):
Knowledge Discovery in Databases: PKDD 2006: Lecture Notes in Artificial Intelligence 4213,
pp. 284 – 296, 2006. Springer-Verlag Berlin Heidelberg 2006

Lin, J., Keogh, E., Lonardi, S., & Chiu, B. (2003). A Symbolic Representation of Time Series, with
Implications for Streaming Algorithms. In Proceedings of the 8th ACM SIGMOD Workshop on
Research Issues in Data Mining and Knowledge Discovery.
http://www.cs.ucr.edu/~eamonn/SAX.pdf (28.01.2008)

Liu, B., Hsu W. & Ma Y. (1998). Integrating Classification and Association Rule Mining. Proceedings of
the Fourth International Conference on Knowledge Discovery and Data Mining KDD-98. pp. 80-
86

Mirkin, B. (2001). Reinterpreting the Category Utility Function. Machine Learning 45, pp. 219-228

Mitchell, T. M. (1997). Machine Learning. McGraw-Hill Companies, Inc. New York. pp 55-78, 274-304

Mittelhammer, R. C. (1999). Mathematical Statistics for economics and business. 3. corr. Print.
Springer. New York

Literature

- 108 -

Morishita, S. & Sese, J. (2000). Traversing Itemset Lattices with Statistical Metric Pruning. In:
Proceedings of the Nineteenth ACM SIGACT-SIGMOD-SIGART Symposiumon Principles of
Database Systems, ACM (2000) 226–236

Russell, S., & Norvig, P. (2003). Artificial Intelligence: A Modern Approach. 2nd edition, Prentice Hall,
New Jersey.

Rymon, R. (1992). Search through Systematic Set Enumeration. In Proc. of Third Int ‘1 ConJ on
Principles of Knowledge Representation and Reasoning, 539-550.

Silberschatz, A., & Tuzhilin, A. (1995). On subjective measures of interestingness in knowledge
discovery. In Proceedings of the First International Conference on Knowledge Discovery and
Data Mining, 1995 pp. 275–281. http://citeseer.ist.psu.edu/silberschatz95subjective.html.
(28.01.2008)

Silverstein, C., Brin, S. & Motwani, R. (1998). Beyond market baskets: Generalizing Association Rules
to Dependence Rules. Data Mining and Knowledge Discovery, 2(1). p. 39-68.

Smyth, P. & Goodman, R. M. (1992). An Information Theoretic Approach to Rule Induction from
Databases, IEEE Trans. Knowledge and Data Eng., 4(4),pp. 301-316.

Scholz, M. (2005). Sampling-based sequential subgroup mining. Conference on Knowledge Discovery
in Data Proceeding of the eleventh ACM SIGKDD international conference on Knowledge
discovery in data mining. pp. 265 - 274

Suzuki, E. (2004) Discovering Interesting Exception Rules with Rule Pair. ECML/PKDD 2004 15th
European Conference on Machine Learning (ECML) 8th European Conference on Principles
and Practice of Knowledge Discovery in Databases (PKDD). www.ke.informatik.tu-
darmstadt.de/ events/ECML-PKDD-04-WS/Proceedings/suzuki.pdf (28.01.2008)

Webb, G. I., Butler, S. M., & Newlands, D. (2003) On Detecting Differences Between Groups
Proceedings of the Ninth ACM SIGKDD International Conference on Knowledge Discovery and
Data Mining (KDD-2003)

Wrobel S. (1997). An algorithm for multi-relational discovery of subgroups. In: J. Komorowski and J.
Zytkow (eds.). Principles of Data Mining and Knowledge Discovery, First European
Symposium. pp. 78 - 87, Springer Verlag, Berlin, New York, 1997

Železný, F. & Lavrač, N. (2006). Propositionalization-based relational subgroup discovery with RSD.
Machine Learning 62 (1-2). 33 - 63

Zimmermann A. & De Raedt, Luc (2005) Inductive Querying for Discovering Subgroups and Clusters.
In. Jean-François Boulicaut Luc De Raedt and Heikki Mannila (Eds.) Constraint-Based Mining
and Inductive Databases. LNCS 3848. pp. 380-399

