Improving Cargo Train Availability with Predictive
Maintenance: An Overview and Prototype
Implementation

Sebastian Kauschke

kauschke @tk.tu-darmstadt.de
Knowledge Engineering Group & Telecooperation Group
Technische Universitit Darmstadt, Germany

Abstract. In cargo transportation, reliability is a crucial issue. In the case of rail-
way traffic, the consequences of locomotive failure are not limited to the affected
machine. Beside the cost of the machine itself, delays are caused and ultimately
propagated through the railway network, rendering the accumulated cost of a
single incident unpredictable. In order to avoid failures, Predictive Maintenance
(PM) can be used. Predictive Maintenance targets the substitution of existing
maintenance processes (e.g. time-based preventive maintenance) by conveniently
scheduled corrective maintenance through exploitation of the underlying deteri-
oration processes. In an ideal PM scenario, constant monitoring of the machine
is available, measuring all relevant variables, e.g., temperatures or vibrations on
a regular basis. However, in the real world, this assumption is limited: The hard-
ware often does not deliver the required amount of data in the necessary precision.
Often the machines record only a log-file which provides all activities — useful or
not — that the various systems in the machine keep track of.

In this paper, we give a short overview on PM in general and on the various types
of systems that can be considered for PM. We elaborate on the differences in data
as well as the nature of the systems it is possible to predict failures upon.

In a prototypical example, we make use of machine learning methods to construct
a failure prediction model for cargo trains. This data-driven approach focuses on
a specific failure problem which is important to improve upon and aims at an easy
prototype implementation for the currently available system.

We train a classification model which uses the pattern structure of the diagnostic-
messages of the locomotive to recognize abnormal activities in the locomotives
behaviour. A meta-classification layer on top of this anomaly detection allows
us to build a prediction mechanism. We evaluate our findings on the data of 340
locomotive tours and elaborate on possible improvements of the method.

1 Introduction

Predictive maintenance (PM) scenarios usually evolve around big machinery. This is
mainly caused by those machines being both expensive and important for production
processes of the company they are used in. Failure of these machines usually have a
plethora of negative effects, some of them causing chain reactions that affect further
process steps. A successful predictive maintenance method for a machine can help at

preventing this, aid in planning for resources and material, and reduce maintenance
cost and production downtime. In order to benefit from PM, a constant monitoring and
recording of the machine status data is required.

Usually, historical data is used to train a model of either the standard behaviour of
the machine, or — if enough example cases have been recorded — a model of the deviant
behaviour right before the failure. These models are then used on live data to determine
whether the machine is operating within standard parameters, or, in the second case, if
the operating characteristics are similar to the failure scenario. If the model is trained
correctly, it will give an alarm in due time.

In our example case, the machines are cargo trains. These trains are pulling up to
3000 tons of cargo, so a lot of parts are prone to deterioration effects. DB Schenker
Rail started the TechLok project in 2011 with the goal to discover underlying processes
of specific failures to implement counter-measures. In [2] we evaluated the process of
building such a model based on a specific failure type. In this paper we are focussing
on the power converter, a unit converting high-voltage electricity from the power lines
to be used to drive the electric train motors.

This paper is organized as follows. Section 2 will give an overview of possible
scenarios that are suited for predictive maintenance. In Section 3 we elaborate on the
methods used in data driven scenarios, before introducing our own prototype for power
converter failure prediction in Section 4 and 5. Finally show the results and give an
outlook on improvements and future research in Section 6.

2 Scenarios

A prerequisite for the implementation of a successful PM system is the availability of a
model. There are different approach to construct such a model: Either we learn it from
data we collected, or we build it based on our understanding of the physical basics of
the system. Another option is to rely on experience with the system, which we can turn
into an expert model or a fuzzy model. Physical models are usually based on complex
mathematical calculations that try to perfectly simulate the real system. While this is
clearly a desirable situation, it is difficult to construct such a model in the first place and
may take a long time. Expert models rely on the knowledge of people that have worked
with a machine and know all of its behavioural patterns, such that they can extract rules,
recommendations and guidelines based on their knowledge.

In order to be able to construct a data driven model, data that resembles the machine
status in some way is required. This can be a stream of measurements from sensors em-
bedded in the machine, or more abstract information, for example log-files, that allow
conclusions on the underlying state of the machine. Log-files in this case are sort of
an expert system, because they were programmed by people that implemented rules
such as When X occurs, then issue message Y based on a certain reasoning. Still, data
driven methods can be able to extract knowledge from these expert systems that humans
themselves can not comprehend or derive, because it is too complicated or there is just
too much data. The downside of these models on the other hand is that they may work
fine, but we might be unable to comprehend why. This is especially true for models

constructed with advanced techniques like deep neural networks, which are very hard
to interpret.

In conclusion, the different model types are not mutually exclusive. On the contrary,
it might help to have all of them available to get better predictions from their combined
abilities.

General information regarding predictive maintenance can be found throughout var-
ious research fields and in practitioners books (c.f. [10],[7]) as well as books about the
financial and management aspects (c.f. [5]). An overview of various PM methods is
given in [8] in more detail.

In Fig. 1 we show a flowchart with which we can assess what type of machine
learning is suitable for a given predictive maintenance scenario. In this paper we will
elaborate on supervised and unsupervised learning and further discuss the possibilities
and pitfalls that occur in data-driven scenarios.

Is the data from the
machine accessible?

Data-Driven Model Physical Model

to create physical model

No

}

No Knowledge-based Model:
Expert Model or
Fuzzy Logic Model

Historic data

Can the data be labelled?

' !
No
]

Unsupervised learning Supervised learning

Reinforcement Learning

Fig. 1. Assessing a PM scenario

3 Data Driven Methods

In this section we will elaborate on the different types of data that usually exist when
dealing with complicated machinery. After that we take a look at various types of chal-
lenges that are of interest for us and show some pitfalls that might occur. In recent

years data around big machinery is constantly growing, along with the complexity of
the machines themselves. Deriving knowledge-based or physical models has become
increasingly complicated, hence data centred approaches have become more popular.

3.1 Types of Data

As mentioned before, data usually comes in one of two forms: Either as continuous
series of one or multiple sensor-readings (e.g. temperature, vibration), or as a log-file
of system messages.

Time Series of Sensor Readings Monitoring a machine all of the time to its fullest
extent, maybe even get readings on all values multiple times per second, is the dream
scenario from a data point of view. With this amount of data we can extract or filter out
exactly the measurements needed to build a model for a specific scenario.

Despite from this being practically utopical, it brings up a lot of challenges. How
does the data get stored? Where does it get stored? In the machine itself, or in a central
database? Is there even a connection to that central database? Do we have access to the
data so we can do real-time evaluations? How big will this database get over time? Is
this expensive?

Most of the times the answer to the last question will be yes. Either caused by a lot
of measured variables, by the number of machines that have to be monitored, or by the
combination of both. Large databases are needed to cope with these amounts of data
properly in terms of storage and retrieval. Measuring all the possible data also causes
further problems when building a model, such that it is probably unclear which are the
relevant measurements for the selected situation. This can be solved with automated
feature selection algorithms, but their usage itself requires thorough understanding and
is not trivial.

Event Based Data In some situations, there is no availability of sensor data. This
may be because it was not wanted by the manufacturer of the machine, or because
the machines themselves were built in times where storage and computing power was
restricted. Nevertheless, when dealing with (modern) machinery that is somehow auto-
mated or operated via a computer, sensors will be integrated in the machine for con-
trolling purposes. Most of the time the machine will provide a log-file. In a log-file
the machine records activities, warnings and failure messages. We will refer to these
recorded messages as diagnostic messages (DM).

Diagnostic messages are a caused by internal rules being triggered, which might result
from internal evaluation of actual sensor readings. These sensor readings are usually
provided in addition to the error message, so that an engineer can identify the underly-
ing condition causing the error. The disadvantage of this type of data is, that through its
event based nature, there is only information recorded when something actually hap-
pens. When we want to gather lots of information about e.g. a specific temperature
reading this might be a problem, because there is no way of retrieving continuous read-
ings over an extended timespan.

A possible advantage of this type of data might be, that just the analysis of these
messages w.r.t. amount and frequency can lead to a conclusion, e.g. significantly higher
amount of certain messages showing abnormal operation and hint on potential failures

(c.f. [2D).

3.2 Types of Learning

The field of machine learning is grouped into various sub-categories, based on what
type of data and additional information exists, and what one tries to accomplish with it.
In this section we will explain a few machine learning problems that are relevant to our
research as well as the approaches used to solve them.

Classification and Supervised Learning Classification is the task of predicting a class
for a given data instance, the so called label. In order to do this, a so called classifier is
used. A set of rules for example can act as a classifier. This ruleset decides based on the
attributes of the instance, which class it most likely belongs to, e.g. If Height > 2 AND
width < 1 THEN class = Tree.

Usually, classifiers are trained in a supervised fashion. This means, a learning al-
gorithm is trained on a labelled dataset (the labels are provided manually) to extract
the essential differences between the given classes and decide which class an instance
belongs to. Common classes of classification algorithms are: Rule learners, Decision
tree learners, Bayes Classifier learners, Support-Vector-Machines and (Deep) Neural
Networks.

Clustering and Unsupervised Learning When dealing with datasets that are not la-
belled, clustering algorithms are used to establish similarities between instances and
group them into clusters. This can be used to gain more insight in the data. In some
cases, these calculated clusters can be mapped to real-world classes and thus let us gain
knowledge. Depending on the complexity of the algorithm and the data, clustering can
be computationally heavy and the results hard to interpret.

Popular algorithms for clustering are K-Means (Distance-based), Expectation Max-
imisation Clustering (Probability-based) and DBSCAN (Density-based).

Anomaly Detection Anomaly detection (also known as outlier detection) tries to iden-
tify instances in a dataset that do not fit the existing patterns. This can be caused by
unusual or false measurements and other deviations, as well as novelties that were never
seen before. Outlier detection can be solved based on cluster analysis as well as distance
or density based approaches with adapted clustering algorithms.

3.3 Problem Types

When performing maintenance, e.g. in regular intervals, the goal is always to assure
the flawless functionality of a machine by checking various parts. Depending on the
importance of these parts, they will be maintained more or less frequently. For parts

that are prone to physical deterioration, this frequency is dependent on the design of the
part, e.g. it is engineered to be replaced every two years, but can also be influenced by
experiences that have been made maintaining the part in the past.

In order to perform predictive maintenance, a deterioration process has to be present.
Damages that are caused abruptly, e.g. through external influences, can not be predicted.
Besides the necessity of a deterioration, it is also important that this deterioration, or
side effects thereof, are (i) picked up by sensors and (ii) recorded for further analysis.
Deterioration speed affects the prediction horizon, meaning the time difference between
a possible prediction and the actual failure. Slowly deteriorating systems can be identi-
fied earlier, allowing for better scheduling of replacement or reparation arrangements,
whereas spontaneous deterioration is limited in this regard. Although for slowly dete-
riorating systems the prediction horizon is usually larger, it does not necessarily mean
the system decays in a linear fashion. The behaviour can also resemble a series of rather
abrupt deterioration steps, or change depending on the circumstances (e.g. outside tem-
perature or weather conditions).

Beside the underlying physical processes that may vary for each type of deteriora-
tion and hence show in different ways, from a data point of view there are also differ-
ences and challenges to be overcome, which we will adress in the following section.

3.4 The Example Inconvenience

In general, companies try to avoid failure of their equipment as much as possible. This
generates a problem when trying to learn a model to predict failure. Usually there are
not many cases available where the complete history of the failure is recorded up until
the moment of breakdown. For supervised learning this is problematic in such a way
that it complicates the model training process due to lack of examples. Based on a
severely skewed example distribution with only a few positive failure examples, the
model training has to be adapted. Techniques such as Over- and Subsampling, class-
weight balancing as well as other methods can be used to help solve these problems,
but should always be used with caution. In the further sections we will use subsampling
based on various ratios to reduce the distribution gap to a fixed factor. Which factor
yields the optimal results will be discovered experimentally.

4 Building a Classification Model

In this section we propose a two-step approach for classifying tours of cargo locomo-
tives in an online manner. A tour resembles the timespan between starting the locomo-
tives’ electric systems and shutting it down. In our case we only look at tours that are at
least two hours long with over 100 kilometres driven. We will train a classifier based on
the diagnostic data instances, and then introduce a meta classifier to combine individual
predictions to an assessment of the entire tour. First we describe the labelling process
we used for our supervised learning approach. After that, we elaborate on intermediate
results that we obtained by applying the learned models on the data and build the meta
classifier for tour-level classification based on the observations of the results.

4.1 Converting Diagnostic Data to Instances

Diagnostic data is collected on the locomotive in the form of a logfile, in which all
events occurring in the various systems of the locomotive are recorded. In total, there
are 6909 different event types, the so called diagnostic messages (DM). Diagnostic
messages can contain status information, warnings or specific error messages. They
have two timestamps, one depicting the time when the message started (from), and one
when it ended (o). This is a specific feature to diagnostic messages that other event-log
systems might not have.

In our pursuit to classify tours in an online scenario with /ive data, we decide to
keep the overhead for data transformation into our desired form as small as possible.
Therefore we look at each diagnostic message as a boolean value, which is either active
or inactive for any specific point in time. In the historical data this can be decided based
on the from and to values that are set for each DM.

Table 1. Example of status vectors as binary instances with relevant changes

Instance \Code | Ci C; G Ci .. G GCu G
Instance 1 1 0 0 1 0 1 0
Instance 2 1 1 0 1 0 1 0
Instance 3 0 1 0 1 0 1 0

Preparing the data this way, we receive a set of instances per tour. The size of this
set depends on the duration and the circumstances. An example is shown in Tab. 1.

4.2 Labelling with variable Window Size

Since the data is unlabelled we only have information about when the incident hap-
pened. To train the classifier, we need to artificially generate labelled instances to learn
upon. This is a crucial aspect with influence on the quality of the resulting classifier. We
use a modified version of the labelling method suggested by Létourneau et al. [4]. This
method uses a windowed labelling approach: We label the instances such that they are
labelled positive in a window before the failure occurs, and negative otherwise. Because
we do not know which the indicative instances are or how they are different from non-
indicative instances, we define an integer w as the duration of this window, the so called
warning epoch (see Fig. 2). We will determine the optimal value of w experimentally.

Negative
u Positive
m Failure

Fig. 2. The labels assigned to instances of an exemplary incident tour

We are looking at a failure that has a short prediction horizon, meaning that the
selection of the positive instances is crucial to the success of the method. Otherwise our
classifier will not be able to build an adequate model. The number of positive instances
depends on the size of the labelling window w. We analysed the quantity of labelled
instances in the incident tours by using window sizes from 60 to 9600 seconds (more
precisely: 60, 150, 300, 600, 1200, 2400, 4800, 9600) in order to determine plausible
values for w. For the lower end of the window size spectrum, e.g. 60 and 150 seconds,
we receive low numbers of positive instances, so that some of the tours contribute no
instances to train the classifier upon.

We are also dealing with a heavily skewed dataset in terms of positive and negative
instance numbers since we have very few incidents but a large number of normal tours.
With this few instances to train upon, we expect poor classification performance from
the models trained with these parametrisations in the evaluation.

By training the classifier this way, we do not expect to achieve a perfect classifier,
but rather create an anomaly detector that can be deployed with little effort on the given
systems. More complex anomaly detection methods are available in the form of e.g.
One-class SVM [6], but they can not be implemented in this proof of concept prototype.

4.3 Instance level Classification

After we constructed the models by the procedure given in Section 4.2, we apply them
on the given tour data. Since the model is trained to recognize the instances right before
the failure, and we assume those instances show a different behaviour than while oper-
ating normally, it will classify instances as positive when they match the pattern of the
almost-failure instances. In an ideal scenario, the model would classify tour instances
as negative, and switch to positive when nearing the point of failure, much like the data
it has been trained with.

Unfortunately, this behaviour occurred rarely when we applied the model. Instead,
the model would give predictions like those shown in Fig. 3. We found five principal
types of behaviour when inspecting the classification results of a sample of tours.

T1 - The classifier gives constant positive results when nearing the point of failure.
T2 - Spontaneous spikes give hints on faulty behaviour, but there is no consistency.
T3 - A cluster of spikes, or multiple clusters, with variances in density/length.

— T4 - A positive phase is followed by a negative phase.

TS - Purely negative, no indication is given.

If we want to make a prediction for a complete tour based on the results of the instance
level classifier, we can do this in a naive way by assuming that if a single instance is
classified as positive, the tour will be classified as incident. If the classified tour is an
actual incident, the types T1-T4 would give true positive results, and a false negative in
case of TS.

Besides the classification of incident tours, we also classified non-incident tours
using the same model. Unfortunately, the behaviours shown in Fig. 3 could also be ob-
served there, although T1-T4 occurred less often. The naive method would create false
positives in cases T1-T4 when making predictions for the whole tour. To solve this on

T1
[en) =
T
|

T2
[
T T

T4 T3
—Oo RO R
T T
!

TS5

o
T

I I I I I I I I I
0 50 100 150 200 250 300 350 400 450 500

Instance number

Fig. 3. Instance level classification behaviour in tours: principal types (Incident at 500)

the instance level, we need more precisely trained models. This issue was anticipated:
with only 40 examples of PCF, a well-performing generalised model was not to be ex-
pected.

Depending on the parametrisation of the model, types T1 and T4 did not occur at all
in our sample set of non-incident tours. Behaviour type T2 on the other hand occurred
frequently. We will propose an advanced meta classifier to prevent these occurrences
from creating false positives and improve tour-level classification in the next section.

4.4 Tour-level Meta Classification

In this section we will propose two methods for the meta-layer of the prediction pro-
cess. The baseline tour classifier SimpleDirect, and a method which will improve tour-
classification performance beyond the limitations of SimpleDirect.

The SimpleDirect Tour Classifier. We use the SimpleDirect (SD) method as a baseline
tour classification method. The classifier SD is defined such that it uses an instance clas-
sifier CI. If C1 classifies an instance as positive, SD will classify the tour as incident.

The instance classifier gives us an indication based on a single instance as class:
either positive (as in: failure is likely) or negative. It is un-intuitive to base the classifi-
cation of a whole tour on a single instance. We would rather look at a certain number
of instances and make the decision on multiple results of instance classifications. We
present a naive approach to this problem which improves on the SimpleDirect schema.

Meta Classification by Percentage Threshold. This method requires a threshold ¢ =
positive/total to be surpassed to predict the incident label for the whole tour. Instance
level classification is applied separately to the instances in the order of their arrival

time, and the result is used to calculate the threshold. The method requires a minimum
number of seen instances w.r.t. the threshold ratio. This has the positive effect that it
reduces false positives in the case of T2-type instance classifications, but it also limits
the classifier to make a very early decision caused by the necessity of a minimum of seen
instances. We will take this into account when evaluation the performance in Section 6.

5 Prototype for Power Converter Failure prediction

In the following, we will introduce the classifiers, elaborate on the methods we used
to help improve the problem with imbalanced classes, explain our chosen evaluation
method and state all variants of the tour-level meta classifier we used. Finally, we will
explain the evaluation method.

5.1 Parametrisation of the Classifiers

Our goal is to create a lightweight prototype installation of the prediction system, which
means we have to rely on classifiers that can be implemented on the given systems.
We decided to go with two basic classifiers, JRIP (as the WEKA [13] implementation
of the RIPPER rule learning algorithm [1]) and J48 (WEKA implementation of C4.5
decision tree learner [9]). A ruleset or a decision tree is easy to implement on a system
that only allows a low-level scripting language, and therefore the right choice for our
endeavours. Furthermore, they are interpretable by humans. This is especially useful
for the engineers to draw conclusions from the learned rules or trees and helps justify
or discard a model.

5.2 Sampling and Balancing

As a result of the chosen labelling process we have a set of instances with a highly
skewed class imbalance of up to 99 to 1. Training a classifier on this kind of data might
give suboptimal results, because classifiers will focus on the majority class (and subse-
quently be correct more than 99 % of the time). We will apply the Subsampling tech-
nique SpreadSubsample' in order to improve classifier performance:

Subsampling rebuilds the training set, such that a certain ratio between the rarest
and the most frequent class is realised. For example we use this to create a 15:1 spread
ratio of negative to positive class. Of course by this measure the number of negative
instances in the training set will be reduced, which might have an influence on learning
the class in some classifiers.

We used both of the classifiers with their default WEKA configuration. The default
configurations provide solid classification performance, which we can later optimise,
but at the moment we will concentrate on the other parameters.

! http://weka.sourceforge.net/doc.stable/weka/filters/supervised/instance/SpreadSubsample.html

5.3 Leave One Tour Out Evaluation

Our data consists of all 40 incident tours, and we add a random sample of 300 non-
incident tours from our pool of tours that have a duration of more than 2 hours and
100 km.

For evaluation we use a leave-one-out cross-validation method, i.e. we train the
model on 339 tours and apply it to the remaining one, for each of the 340 tours. This
method is a version of the leave one batch out method described in [3], which leaves a
batch of instances out of the training data. In our case, a batch consists of all instances
from the left-out tour. We want the maximum possible number of incident tours in the
training set, so that the classifier has the best chance to learn a proper model. By this
we assure that at least 39 incident tours are in each training set, which gives the best
possible conditions for the classifier.

At the instance level, the 40 incident tours contribute 10903 and the 300 non-
incident tours 58919 instances to the train/test data. The number of positive instances
depends on the w value.

5.4 Variants

We used the following parameters and values in combination to find the optimal result:

The labelled Data. We used the process described in Section 4.2 in two variants. The
first variant excludes the instance that contained the actual failure, the second in-
cludes it.

Labelling Windows. We used 7 labelling window sizes as described in Section 4.2 from
300 s to 9600 s in order to empirically find the optimal window.

Class Balancing. For balancing we used Subsampling (see Section 5.2) in 3 variants
with spread-factors of 15, 30 and 50 and a variant with no balancing.

Tour-level. In order to classify complete tours we applied the percentage threshold (see
Sec. 4.4) in 6 variants (2, 5, 10, 20 and 30 % threshold) as well as SimpleDirect (1
hit in total). Since the result is determined by this parameter in combination with
the instance level classifier we used a wide spread of values.

As stated before, we used both J48 and JRip as classifiers, resulting in a total of 1260
combinations of parameters. For each of these combinations we applied the leave-one-
tour out evaluation method, resulting in around 10000 hours computing time for the
complete evaluation. Unfortunately, caused by time constraints, we were not able to
compute multiple runs with different sample sets of non-incident tours.

6 Experiment Results

In this section, we will describe the baseline of our experiment, show the results we
achieved, and compare the enhanced meta classifier to the SimpleDirect baseline.

6.1 The Accuracy Baseline

Since we are targeting the classification of tours and have no related method to use as
a baseline, the ratio of the tour classes will be the starting point. We are using a dataset
with 40 incident tours and 300 non-incident tours, so a classifier that always chooses
the majority class would achieve an accuracy of 88.2 %, albeit with no frue positives.

6.2 Relevant Results

Due to the amount of parameter combinations we will not be able to show all results
here, instead we show a pre-filtered set based on the criterion, that the minimum time-
to-failure (mTTF) should never be zero, which would mean that a tour was classified
based on the last instance in the tour, and be of no practical use. Furthermore, we sort
the remaining results by accuracy. We want as few false positives as possible, but at the
same time a maximum of true positives. After the filtering we are left with 574 resulting
classification variants.

Caveat. In our evaluation we assume that false positives are costly. Unfortunately we
do not know the real cost of PCF and false alarms, so we can not base our findings on
it. With over 90000 tours in our dataset, even a 1 % false positive rate would lead to
900 locomotives having to be checked. Therefore we want to find a method that creates
little to no false alarms. We also asked the people that will have to use this system, and
they would rather work with a method that has a higher confidence and less hits than a
classifier that creates many false alarms.

The results (Tab. 2) are ranked by the criteria mentioned above. The columns contain
the following information:

1. Rk: Rank as determined by our sorting criteria
2. fI.: Dataset contains the failure instance (f.I. = 1) or not (f.1.=0)
3. Window: Size of the specific labelling window
4. Classifier: The classifier used
5. Balancing: Balancing method (Subsampling or None)
6. Meta Classifier: Parametrisation of the meta classifier, or SimpleDirect (SD)
7. Accuracy: Percent correctly classified instances
8. aTTF: Average TTF in correctly classified incident tours in hours
9. mTTF: Minimum TTF in correclty classified incident tours in minutes
10. TP, TN, FP, FN: True positive, true negative, false positive and false negative tours

Table 2 shows that we can achieve multiple combinations with no false positives.
On the top ranks we have a maximum of 12.5 % (5 of 40) true positives. Although this
does not seem impressive at first sight, with an expensive failure like the PCF this can
be a valuable asset used for cost reduction. All the methods in the top ranks show an
average time-to-failure high enough for a person to react. But for example at Rk. 9 the
reaction time could be too short to react properly because the mTTF is only one minute.

As far as the optimal labelling window is concerned, the best performing configu-
rations were built on the 2400 s window size. Although we can not precisely determine

Table 2. Top results with mTT'F' > 0 ordered by Accuracy

Rk f.I.|Window Classifier Balanc. Meta Accur. aTTF mTTF TP TN FP FN
1 0 |2400 JRip subs50 2perc 89.57 891h 14122m 5 304 0 36
2 0 {2400 JRip subs50 Sperc 89.57 854h 13847m 5 304 0 36
3 0 [4800 JRip subs30 20perc 89.57 11.55h 99.02m 5 304 1 35
4 0 |4800 JRip subs30 30perc 89.28 14.89h 62.62m 3 305 0 37
5 0 |4800 JRip subs50 30perc 89.28 12.33h 62.62m 4 304 1 36
6 1 |2400 J48 20perc 89.24 10.89h 9943m 3 304 0 37
7 1 {2400 J48 30perc 89.24 9.64h 86.03m 3 304 0 37
8 1 [2400 JRip 2perc 89.24 850h 14123m 3 304 0 37
9 1 |2400 JRip subsl5 20perc 89.24 1546h 1.03m 8 299 5 32
10 1 |2400 JRip subs50 30perc 89.24 629h 86.03m 3 304 0 37
11 0 |2400 JRip 2perc 88.99 794h 14122m 3 304 0 38
12 0 |2400 JRip Sperc 88.99 7.75h 13847m 3 304 0 38
13 0 [2400 JRip 10perc 88.99 7.35h 13570m 3 304 0 38
14 0 |2400 JRip 20perc 88.99 579h 1.02m 3 304 0 38
15 0 |[2400 JRip subs50 10perc 88.99 7.10h 13570m 3 304 O 38
16 0 |2400 JRip subs50 20perc 88.99 535h 1.02m 3 304 0 38
17 0 [4800 JRip subs15 30perc 88.99 14.85h 66.90m 4 303 2 36
18 0 |60 JRip subs50 10perc 88.95 18.87h 4878 m 4 302 1 37
19 1 |2400 JRip Sperc 88.95 10.00h 13848 m 2 304 0 38
20 1 {2400 JRip 10perc 8895 9.56h 13572m 2 304 0 38
Table 3. Top 5 results with mTT'F' > 0 and SimpleDirect meta classifier

Rk |f.I. Window Classifier Balanc. Meta Accur. avgTTF minTTF TP TN FP FN
45910 2400 J48 SD 12.17 11.96h 53.70m 42 0 303 O

4600 2400 J48 subs50 SD 1217 11.96h 53.70m 42 0 303 O

4611 1200 J48 SD 12.17 11.42h 4502m 42 0 303 O

46211 1200 JRip SD 12,17 11.42h 4502m 42 0 303 O

463|1 1200 J48 subsl5 SD 1217 1142h 4502m 42 0 303 O

4641 1200 J48 subs30 SD 1217 11.42h 45.02m 42 0 303 O

4651 1200 J48 subs50 SD 1217 11.42h 45.02m 42 0 303 O

466|1 1200 JRip subsl5 SD 12.17 1142h 4502m 42 0 303 O

why this works best, we assume it’s a combination of the number of instances and the
relevance of the instances they cover. Most of the top 20 results also include some ver-
sion of the SpreadSubsample filter, but the variants without balancing are not far behind
(e.g. Rk.6). All of the top results perform above baseline in terms of accuracy, although
not by much.

We can also see that the tour-level meta classification increases the classification
performance compared to SimpleDirect (Tab. 3). The first configuration that uses Sim-
pleDirect is ranked on position 459 in the results. It performs substantially less good in
terms of accuracy because it can not differentiate the tour classes at all. This is also the
case for all other SD variants.

The percentage threshold method has the disadvantage that it has to gather a certain
number of instances before it can make a decision. But as we see in Tab. 2 and 3, this
is a necessity for a useful classification and the TTF values are still usable in real world
applications.

6.3 Conclusion and Outlook

We have created the basis for an easy-to-implement prediction prototype that can be
realised even on systems with limited capabilities. In our case, a ruleset with a meta
classifier built on top shows good recognition performance, while creating no false
positives on our dataset. This is especially useful to create trust in the method among
the engineers and people that are supposed to use it on daily basis.

The next step will be the realisation of the prototype as well as research methods
with higher complexity that improve upon the achieved results. At the moment we apply
fixed labelling windows to all tours. This might not yield the optimal result for each of
the tours. It is likely that we have to decide upon other criteria to improve the labelling,
in order to train a better instance-level classifier. Also, the tour-classification is naive
at the moment. We will try to learn another classification model on the output of the
instance-level classifier w.r.t. the tour class, so that the results can be improved and we
achieve more hits and less false alarms. Further improvements could be achieved by
combining multiple classifiers and their decisions on the instance as well as the tour
level. Finally, we will also apply more complex learning algorithms on the data. While
the practical use may be limited at the moment, it is useful to see if the results can be
improved.

Further approaches would include treating this problem as a multi-instance problem
[11], especially regarding the question, if the online character of this situation can be
handled in a multi-instance setting. Another way of approaching the topic would be via
pattern learning [12], e.g. by discovering sequences of diagnostic messages that lead to
failure, and of course apply Deep Learning methods (e.g. Recurrent Neural Networks
for time series classification.

References

10.

11.

12.

13.

. William W Cohen. Fast effective rule induction. In Proceedings of the twelfth international

conference on machine learning, pages 115-123, 1995.

. Sebastian Kauschke, Immanuel Schweizer, and Frederik Janssen. On the challenges of real

world data in predictive maintenance scenarios: A railway application. In Sebastian Gorg,
Gilbert Miiller, and Ralph Bergmann, editors, Proceedings of the LWA 2015 Workshops:
KDML, FGWM, IR, and FGDB, pages 121-132. CEUR Workshop Proceedings, October
2015.

. Miroslav Kubat, Robert C Holte, and Stan Matwin. Machine learning for the detection of oil

spills in satellite radar images. Machine learning, 30(2-3):195-215, 1998.

. Sylvain Létourneau, Fazel Famili, and Stan Matwin. Data mining for prediction of aircraft

component replacement. In IEEE Intelligent Systems Jr — Special Issue on Data Mining,
pages 59-66, 1999.

. Joel Levitt. Complete Guide to Predictive and Preventive Maintenance. Industrial Press,

2011.

. David Martinez-Rego, Oscar Fontenla-Romero, and Amparo Alonso-Betanzos. Power wind

mill fault detection via one-class v-svm vibration signal analysis. In Proceedings of Interna-
tional Joint Conference on Neural Networks, 2011.

. R Keith Mobley. An introduction to predictive maintenance. Butterworth-Heinemann, 2002.
. Ying Peng, Ming Dong, and Minglian Zuo. Current status of machine prognostics in

condition-based maintenance: a review. The International Journal of Advanced Manufac-
turing Technology, 50(1-4):297-313, 2010.

. JRoss Quinlan. C4. 5: programs for machine learning. Morgan Kaufman Publishers, Inc.,

1993.

Cornelius Scheffer and Paresh Girdhar. Practical machinery vibration analysis and predic-
tive maintenance. Elsevier, 2004.

Ruben Sipos, Dmitriy Fradkin, Fabian Moerchen, and Zhuang Wang. Log-based predic-
tive maintenance. In Proceedings of the 20th ACM SIGKDD international conference on
knowledge discovery and data mining, pages 1867-1876. ACM, 2014.

Risto Vaarandi et al. A data clustering algorithm for mining patterns from event logs. In
Proceedings of the 2003 IEEE Workshop on IP Operations and Management (IPOM), pages
119-126, 2003.

Ian H Witten and Eibe Frank. Data Mining: Practical machine learning tools and techniques.
Morgan Kaufmann, 2005.

