Technische Universitat Darmstadt
Knowledge Engineering Group
Hochschulstrasse 10, D-64289 Darmstadt, Germany

http://www.ke.informatik.tu-darmstadt.de

Technical Report TUD-KE-2007-02

Frederik Janssen, Johannes Fiurnkranz

Meta-Learning Rule Learning Heuristics

Meta-Learning Rule Learning Heuristics

Frederik Janssen JANSSEN@KE.INFORMATIK.TU-DARMSTADT.DE
Johannes Fiirnkranz FUERNKRANZ@INFORMATIK.TU-DARMSTADT.DE
Knowledge Engineering Group

Department of Computer Science

TU Darmstadt, Germany

Abstract

The goal of this paper is to investigate to what extent a rule learning heuristic can
be learned from experience. Our basic approach is to learn a large number of rules and
record their performance on the test set. Subsequently, we train regression algorithms on
predicting the test set performance from training set characteristics. We investigate several
variations of this basic scenario, including the question whether it is better to predict
the performance of the candidate rule itself of the resulting final rule. Our experiments
on a number of independent evaluation sets show that the learned heuristics outperform
standard rule learning heuristics. We also analyze their behavior in coverage space.

1. Introduction

The long-term goal of our research is to understand the properties of a heuristic that will
perform well in a broad selection of rule learning algorithms. Although different classifi-
cation rule learning algorithms use different heuristics, there has not been much work on
trying to characterize their behavior. Notable exceptions include (Lavrac, Flach, & Zupan,
1999), which proposed weighted relative accuracy as a novel heuristic, and (Fiirnkranz &
Flach, 2005), in which a wide variety of rule evaluation metrics were anlyzed and compared
by visualizing their behavior in ROC space. There are also some works on comparing prop-
erties of association rule evaluation measures (e.g., (Tan, Kumar, & Srivastava, 2002)) but
these have different requirements than classification rules (e.g., completeness is not an issue
there).

Recently, (Janssen & Fiirnkranz, 2006) performed an experimental comparison of com-
monly used rule learning heuristics, and, in particular, found parameter settings for three
parametrized heuristics, which performed quite well on a large number of datasets. In-
terestingly, the authors observed that these values resulted in heuristics with very similar
behavior. Nevertheless, the shape of these heuristics was predetermined.

In this work, we take a different road to identifying a good search heuristic for clas-
sification rule learning algorithms. The key idea is to meta-learn such a heuristic from
experience, without a bias towards existing measures. Consequently, we created a large
meta data set (containing information from which we assume that the ”true” performance
of a rule can be learned) and perform a regression with various methods on it. On this
dataset, we learned an evaluation function and used it as a search heuristic inside our im-
plementation of a simple rule learner. We experimented with various options for generating
the meta datasets, tried to assess the importance of features, experimented with different

FREDERIK JANSSEN, JOHANNES FURNKRANZ

meta-learning algorithms, and also tried a setting in which the learner tries to predict the
performance of a complete rule from its incomplete predecessors.

The ruler learner, which is used for generating the meta data and for evaluating the
learned heuristics, is described in Section 2, after which we continue with a brief discussion
of rule learning heuristics (Section 3). The meta data generation and the experimental
setup is described in Section 4. The main results are presented in Section 5.

2. Rule Learning Algorithm

For the purpose of this empirical study, we implemented a simple Separate-and-conquer
or Covering rule learning algorithm (Filirnkranz, 1999) within the Weka machine learn-
ing environment (Witten & Frank, 2005). Both the outer loop (the covering procedure)
and the top-down refinement inside the learner are fairly standard. For details about the
implementation see (Firnkranz, 2004, 1999).

Separate-and-conquer rule learning can be divided into two main steps: First, a rule is
learned from the training data by a greedy search (the conquer step). Second, all examples
covered by the learned rule are removed from the data set (the separate step). Then,
the next rule is learned on the remaining examples. Both steps are repeated as long as
positive examples are left in the training set. The refinement procedure, which is used
inside the conquer step of the algorithm, returns all possible candidate refinements that
can be obtained by adding a single condition to the body of the rule. All refinements are
evaluated with a heuristic, and the best rule is selected.

Our implementation continues to greedily refine the current rule until no negative ex-
ample is covered any more. In this case, the search stops and the best rule encountered
during the refinement process is added to the theory. Thus, the best rule is not necessarily
the last one searched. A small optimization was to stop the refinement process when no re-
finement could possibly achieve a better heuristic evaluation than the current best rule, i.e.,
when a hypothetical refinement that covers all remaining positive examples and no negative
example achieves a lower evaluation than the best rule found so far. We used random tie
breaking for rules with equal evaluation, and filtered out candidate rules that do not cover
any positive examples. Rules were added to the theory until a new rule would not increase
the accuracy of the theory on the training set (this is the case when the learned rule covers
more negative than positive examples).

We did not use any specific pruning technique, but solely relied on the evaluation of
the rules by the used rule learning heuristic. Note, however, that this does not mean that
we learn an overfitting theory that is complete and consistent on the training data (i.e.,
a theory that covers all positive and no negative examples), because many heuristics will
prefer impure rules with a high coverage over pure rules with a lower coverage.

3. Rule Learning Heuristics

Numerous heuristics have been provided for inductive rule learning, a general survey can
be found in (Firnkranz, 1999). Most rule learning heuristics can be seen as functions of
the following four arguments:

e P and N: the number of positive/negative examples in the training set

META-LEARNING RULE LEARNING HEURISTICS

Table 1: Search heuristics used in this study

heuristic function

precision]ﬁ ~ g%z

Laplace pﬁjiz

accuracy % ~p—mn

WRA | BN GE - ~ B R

correlation p(N—n)—(P—p)n
/PN(p+n)(P—p+N—n)

e p and n: the number of positive examples covered by the rule

Examples of heuristics of this type are the commonly used heuristics that are shown in
Figure 1. Precision is known to overfit the data, weighted relative accuracy (Todorovski,
Flach, & Lavrac, 2000) has a tendency to over-generalize. (Fiirnkranz & Flach, 2005) have

shown that the Laplace heuristic and its generalization, the m-estimate which is defined by

p+m- =L

Wm’ form a trade-off between these two extremes. In (Janssen & Fiirnkranz, 2006),
a parameter value for the m-estimate was determined that optimizes this trade-off. The
correlation heuristic also has a very good overall performance (Fiirnkranz, 1994).

As P and N are constant for a given learning problem, these heuristics effectively only
differ in the way they trade off completeness (maximizing p) and consistency (minimizing
n), and may thus be viewed as a function h(p,n). As a consequence, each rule may be
viewed as a point in coverage space, a variant of ROC space that uses the absolute numbers
of true positives and false positives as its axes. The preference bias of different heuristics
may then be visualized by plotting the respective heuristic values of the rules on top their
locations in coverage space, resulting in a 3-dimensional plot (p,n,h(p,n)). A good way to
view this graph in two dimensions is to plot the isometrics of the learning heuristics, i.e., to
show contour lines that connect rules with identical heuristic evaluation values. (Fiirnkranz
& Flach, 2005) have proposed this technique for analyzing the behavior of rule learning
heuristics. Another method is to plot both contour lines and the surface of the function
which is done in our visualization (cf. Section 5.3).

The goal of our work is to automatically learn such a function h(p,n), which allows to
predict the quality of a learned rule. However, note that most of the functions in Table 1
contain some non-linear dependencies between these values. In order to make the task for
the learner easier, we will not only characterize a rule by the values p, n, P, and N, but in
addition also use the following parameters as input for the meta-learning phase:

e tpr= %, the true positive rate of the rule
o fpr= 4, the false positive rate of the rule

e Prior= PJFLN, the a priori distribution of positive and negative examples

p

pra the fraction of positive examples covered by the rule

® prec =

FREDERIK JANSSEN, JOHANNES FURNKRANZ

Thus, we characterize a rule r by an 8-tuple

h(r) < h(P, N, Prior,p,n,tpr, fpr, prec)
Some heuristics use additional components, such as
e [: the length of the rule and

e p/ and n': the number of positive and negative examples that are covered by the rule’s
predecessor.

We will evaluate the utility of taking the rule’s length into account. However, as our goal
is to find a function that allows to evaluate a rule irrespective of how it has been learned,
we will not consider the parameters p’ and n’. Note that heuristics like FOIL’s information
gain (Quinlan, 1996), which include p’ and n’, may yield different evaluations for the same
rule, depending on the order in which its conditions have been added to the rule body.

4. Meta-Learning Scenario

4.1 Definition of the Meta-Learning Task

The key issue for our work is how to define the meta-learning problem. It is helpful to view
the rule learning process as a reinforcement learning problem: Each (incomplete) rule is a
state, and all possible refinements (e.g., all possible conditions that can be added to the
rule) are the actions. The rule-learning agent repeatedly has to pick one of the possible
refinements according to their expected utility until it has completed the learning of a
rule. After learning a complete theory, the learner receives a reinforcement signal (e.g.,
the estimated accuracy of the learned theory), which can then be used to adjust the utility
function. After a (presumably large) number of learning episodes, the utility function should
converge to a heuristic that evaluates a candidate rule with the quality of the best rule that
can be obtained by refining the candidate rule.

However, for practical purposes this scenario appears to be too complex. (Burges, 2006)
has tried a reinforcement learning approach on this problem, but with disappointing results.
For this reason, we tried another approach: Each rule is evaluated on a separate test set, in
order to get an estimate of its true performance. As a target value, we can either directly
use the candidate rule’s performance, or we can use the performance of its best refinement
(we evaluated both approaches). The latter is described in Section 5.6. In order to assess
the performance of a rule, we used its out-of-sample precision, but, again, we have also
experimented with other choices.

4.2 Meta Data Generation

As explained above, we try to model the relation of the rule’s statistics measured on the
training set and its ”true” performance, which is estimated on an independent test set.
Therefore, we used the rule learner described above for obtaining the above-mentioned
characteristics for each learned rule. These form a training instance in the meta data set.
The training signals are the performance parameters of the rule on the test set.

META-LEARNING RULE LEARNING HEURISTICS

procedure GENERATEMETADATA (TrainSet, TestSet)

loop until all positive examples are covered
while POSITIVE(TrainSet) # ()

find the best rule
Rule +— GREEDYTOPDOWN (TrainSet)

stop if it doesn’t cover more pos than negs
if |COVERED (Rule, POSITIVE (Ezamples))|
< |COVERED (Rule, NEGATIVE (Ezamples))|
break

loop through all predecessors
Pred «— Rule
repeat

record the training and test coverage

p < |COVERED(Rule,POSITIVE(TrainSet))|

n < |COVERED(Rule, NEGATIVE(TrainSet))|

P — |CoVERED(Rule, TOTALNEGATIVE(TrainSet))|
N — |COVERED(Rule, TOTALNEGATIVE(TrainSet))|
1 «—LENGTH(Rule)

p < |COVERED(Rule,POSITIVE(TestSet))|

7 «— |COVERED (Rule, NEGATIVE(TestSet))|

print out meta training instance
print P,N,P/(P+ N),p,n,p/P,n/N,p/(p+n),l
print out meta target information
print p,n,p/(p+ 1)
Pred «— REMOVELASTCONDITION (Pred)
until Pred = null

remove covered training and test examples
TrainSet «— TrainSet \ COVERED(Rule, TrainSet)
TestSet < TestSet \ COVERED(Rule, TestSet)

Figure 1: Algorithm for generating the Meta Data

As we want to guide the entire rule learning process, we need to record this information
not only for final rules — those that would be used in the final theory — but also for all their
predecessors. Therefore all candidate rules which are created during the refinement process
are included in the meta data as well. The GENERATEMETADATA procedure described in
Figure 1 shows this process in detail.

It should be noted, that we ignored all rules that do not cover any instance on the
test data. Our reasons for this were that on the one hand we did not have any training
information for this rule (the test precision that we try to model is undefined for these
rules), and that on the other hand such rules do not do any harm (they won’t have an
impact on test set accuracy as they do not classify any example).

FREDERIK JANSSEN, JOHANNES FURNKRANZ

To ensure that we obtain a set of rules with varying characteristics, the following para-
meters were modified:

Datasets: We used 27 datasets with varying characteristics (different number of classes,
attributes, instances) from the UCI Repository (Newman, Blake, Hettich, & Merz,
1998).1

5x2 Cross-validation: For each dataset, we performed 5 iterations of a 2-fold cross-
validation. 2-fold cross-validation was chosen because in this case the training and
test sets have equal size, so that we don’t have to account for statistical variance in the
precision or coverage estimates. We performed five iterations with different random
seeds. Note that our primary interest was to obtain a lot of rules which characterize
the connection between training set statistics and the test set precision. Therefore,
we collected statistics for all rules of all folds.

Classes: For each dataset and each fold, we generated one dataset for each class, treating
this class as the positive one and the union of all the others as the negative class.
Rules were learned for each of the resulting two-class datasets.

Heuristics: We ran the rule learner several times on the binary datasets, each time using
a different search heuristic. We used all of the heuristics of Table 1.The first four
form a representative selection of search heuristics with linear ROC space isometrics
(Firnkranz & Flach, 2003), while the correlation heuristic has non-linear isometrics.
These heuristics represent a large variety of learning biases. For example, it is known
that WRA and Accuracy tend to prefer simpler rules with high coverage, whereas
Precision and Laplace show a tendency to learn possibly complex rules with high
precision on the training set.

In total, our meta dataset contains 87, 380 examples.

4.3 Regression Methods

We used two different methods for learning functions on the meta data. First, we used a
simple linear regression using the Akaike criterion (Akaike, 1974) for model selection. A
key advantage of this method is that we obtain a simple, easily comprehensible form of the
learned heuristic function. Note that the learned function is nevertheless non-linear in the
basic dimensions p and n because of the non-linear terms that are used as basic features
(e.8:, 2/(pm).

Nevertheless, the type of functions that can be learned with linear regression is quite
restricted. In order to be able to address a wider class of functions, we used multilayer
perceptron with back propagation algorithm and sigmoid nodes. We used various sizes of
the hidden layer (1, 5, and 10), and trained for one epoch (i.e., we went through the training
data once). We have also tried to train the networks with a larger number of epochs, but
the results did not improve.

1. anneal, audiology, breast-cancer, cleveland-heart-disease, contact-lenses, credit, glass2, glass, hepati-
tis, horse-colic, hypothyroid, iris, krkp, labor, lymphography, monkl, monk2, monk3, mushroom, sick-
euthyroid, soybean, tic.tac.toe, titanic, vote-1, vote, vowel, wine

META-LEARNING RULE LEARNING HEURISTICS

Table 2: Accuracies for several methods

method ‘ MAE ‘ Accuracy | # conditions
LinearRegression | 0.22 77.43% 117.6
MLP (1 node) 0.28 | 77.81% 121.3
MLP (5 nodes) 0.27 77.37% 1085.8
MLP (10 nodes) | 0.27 | 77.53% 112.7

Both algorithms are provided by Weka (Witten & Frank, 2005) and were initialized
with standard parameters.

4.4 Evaluation methods

Our primary method for evaluating the introduced heuristics is to use these heuristics inside
the rule learner. We evaluated the heuristics on 30 UCI data sets? which were not used
during the training phase. Like the 27 data sets on which the rules for the meta data are
induced, these 30 sets have varying characteristics to ensure that our method will perform
well under a wide variety of conditions. On each dataset, the rule learner with the learned
heuristics was evaluated with one iteration of a 10-fold cross validation. The performance
over all sets was then averaged. We also evaluated the length of the theories in terms of
number of conditions.

The fit of the learned functions to the target values can also be evaluated in terms of
the mean absolute error, again estimated by one iteration of a 10-fold cross validation on
the training data.

/ 1 ' .
MAE(f) = -3 If'() = fG)l
with m denotes the number of instances, f (i) the actual value, and f'(i) the predicted value
of instance i. The mean absolute error measures the error made by the regression model on
unseen data. Therefore it provides no clear insight into the functionalities when it is used
as heuristic by the rule learner. Hence, a low mean absolute error on the meta data set
does not implicate that the function works good as heuristic (cf. Table 2).

5. Results
5.1 Quantitative Results

In the first experiment, we wanted to see how accurately we can predict the out-of-sample
precision of a rule. We trained a linear regression model and a neural network on the
eight measurements that we use for characterizing a rule (cf. Section 3) using the precision
values measured on the test sets as a target function. Table 2 displays results for the Linear
Regression and 3 different neural networks, with different numbers of nodes in the hidden
layer. The performances of the four algorithms are quite comparable, with the possible

2. auto-mpg, autos, balance-scale, balloons, breast-w, breast-w-d, bridges2, colic, colic. ORIG, credit-a,
credit-g, diabetes, echocardiogram, flag, hayes-roth, heart-c, heart-h, heart-statlog, house-votes-84,
ionosphere, labor-d, lymph, machine, primary-tumor, promoters, segment, solar-flare, sonar, vehicle,
Z00

FREDERIK JANSSEN, JOHANNES FURNKRANZ

Table 3: Coefficients of the Linear Regression
P | N |pn | » | n | 3 |5

P+N
-0.0001

‘ e ‘ constant
0.0001 | 0.0001 | 0.7485

-0.0009 | 0.165 | 0.0 | 0.3863 | 0.0267

exception of the neural network with 5 nodes in the hidden layer. This induced very large
theories (over 1000 conditions on average), and also had a somewhat worse performance
in predictive accuracy. As discussed in Section 4.4, a low mean absolute error does not
necessarily imply an accurate heuristic as becomes obvious when considering Table 2.

5.2 Coefficients of the Linear Regression

It is interesting to have a look at the learned concepts. Table 3 shows the coefficients of the
learned regression model. The most important feature was the a priori distribution of the
examples in the training data followed by the precision of the rule. Interestingly, while the
tpr has a non-negligible influence on the result, the fpr is practically ignored.

Both the current coverage of a rule (p and n) and the total example counts of the data
(P and N) have comparably low weights This is not that surprising if one keeps in mind that
the target value is in the range [0, 1], while the absolute values for p and n are in a much
higher range. We nevertheless had included them because we believe that in particular
for rules with low coverage, the absolute numbers are more important than their relative
fractions. A rule that covers only a single example will typically be bad, irrespective of the
size of the original dataset.

In order to see whether we can completely ignore the absolute values, we learned another
function which only used]DJFLN, p/P, n/N and zﬁ as input values. The linear regression func-
tion trained on this dataset performed insignificantly worse than the one that is computed
on the original set (77.43% accuracy vs. 77.20% accuracy). For the neural networks, the
performance degradation was somewhat worse.

5.3 Isometrics of the Heuristics

To understand the behavior of the learned heuristics, we follow the framework of (Fiirnkranz
& Flach, 2005) and analyze their isometrics in ROC or coverage space. Figure 2 shows a
3d-plot of the surface of the learned heuristic in a coverage space with 60x48 examples
(the sizes were chosen arbitrarily). The bottom of the graph, shows isometric lines that
characterize this surface. The upper part of the figure displays the isometrics of the heuristic
that was learned by linear regression on the data set that used only the relative features
(see Section 3). The lower part shows the best-performing neural network (the one that
uses only one node in the hidden layer).

Apparently, both functions learn somewhat different heuristics. Although the 3d-surfaces
looks fairly similar to each other, the isometric lines reveal that the learned heuristics are,
in fact, quite different. Those for the linear regression are like a variant of weighted relative
accuracy, but with a different cost model (i.e. false negatives are more costly than false
positives). The isometrics for the neural net seems to employ a trade-off similar to those of
the F-measure. The shift towards the N-axis is reminiscent of the F-measure (for an illus-

META-LEARNING RULE LEARNING HEURISTICS

_—
——— ===

— \\s\g&\\:§§§§\§ S\\\\‘{\ N

——— =
=

N
—— =\
—
—

LI e e

heuristic evaluation
o
w

heuristic evaluation
000000000
RPNWRUIONOOR

40 40

0
positives 20 positives

10

negatives negatives

(a) Linear Regression (b) Neural Network

Figure 2: Isometrics of the two functions (immediate precision)

tration see (Janssen & Fiirnkranz, 2006)), which tries to correct the undesirable property of
precision that all rules that cover no negative examples are evaluated equally, irrespective
of the number of positive examples that they cover.

However, both heuristics have a non-linear shape of the isometrics in common, which
bends the lines towards the N-axis. Effectively, this encodes a bias towards rules that cover
a low number of positive examples (compared to regular precision). This seems to be a
desirable property for a heuristic that is used in a covering algorithm, where incomplete-
ness (not covering all positive examples) is less severe than inconsistency (covering some
negative examples), because incompleteness can be corrected by subsequent rules, whereas
inconsistency cannot.

The isometrics of the linear regression are somewhat curious. In areas of high positive
coverage they behave like those of the neural network but not with that strong bend towards
the N-axis. The isometrics are symmetric which leads to a similar effect observed at the
neural net. Thus, in areas with high negative coverage rules are preferred that cover a low
number of negative examples.

5.4 Including the Length of the Rules

Some rule learning algorithms include the length of the learned rule into their evaluation
function. For example, the ILP algorithm Progol (Muggleton, 1995) uses p —n — [as a
search heuristic for a best-first search. The first part, p — n, directly optimizes accuracy
(for a fixed dataset, i.e., where the total number of positive (P) and negative (IV) examples
are fixed), and the length of the rule is used to add an additional bias for simpler rules.
However, as longer rules typically cover fewer examples, penalizing the length of a rule
may also be considered as another form of bias for high-coverage rules, which could also be
expressed by maximizing p (or p + n).

In any case, we also experimented with the rule length as an additional parameter. For
both, linear regression and neural networks this did not lead to significant changes in the
performance of the heuristics. As we will see later on the data set with the 4 features
derived in Section 5.2 are sufficient to learn a good heuristic with the Linear Regression.

FREDERIK JANSSEN, JOHANNES FURNKRANZ

Table 4: Comparison of various heuristics with training-set (p,n) and predicted (p,n) cov-
erages

heuristic args ‘ Accuracy ‘ # conditions

Accuracy (p,n) | 75.60% 104.77
(,7) | 75.39% 110.8

Precision (p,n) | 76.22% 129.17
(h,7) | 76.53% 30.0

WRA (p,n) | 75.80% 12.13
(5,7) | 69.89% 29.97

Laplace (p,n) | 76.89% 118.83
(p,7) | 76.80% 246.8

Correlation (p,n) | 77.57% 47.5
(5,7) | 58.09% 40.4

5.5 Predicting Other Heuristics

So far we focused on directly predicting the out-of-sample precision of a rule, assuming
that this would be good heuristic for learning a rule set (cf. Section 3). However, this
choice was somewhat arbitrary. Ideally, we would like to repeat this experiment with out-
of-sample values for all common rule learning heuristics. In order to cut down the number
of needed experiments, we decided to directly predict the number of covered positive (p)
and negative (7) examples. We then can combine the predictions for these values with any
standard heuristic A by computing h(p,n) instead of the conventional h(p,n). Note that
the heuristic h only gets the predicted coverages (p and 71) as new input, all other statistics
(e.g., P,N) are still measured on the training set. This is feasible because we designed the
experiments so that the training and test set are of equal size, i.e., the values predicted for
p and 7 are predictions for the number of covered examples on an independent test set of
the same size as the training set.

Table 4 compares the performance of various heuristics with measured and predicted
coverage values on the 30 test sets. In general, the results are disappointing. For three
of the five heuristics, no significant change could be observed, but for Weighted Relative
Accuracy and the Correlation heuristic, the performance degrades substantially.

A rather surprising observation is the complexity of the learned theories. For instance,
the heuristic Precision produces very simple theories when it is used with the out-of-sample
predictions, and, by doing so, increases the predictive accuracy. Apparently, the use of
the predicted values of p and 7 allows to prevent overfitting, because the predicted posi-
tive/negative coverages are never exactly 0 and therefore the overfitting problem observed
with Precision does not occur any more. The Laplace heuristic shows a similar trend, but
in this case the predictions result in more complex rules than the original ones.

In summary, it seems that the predictions of both the linear regression and the neural
network are not good enough to yield true coverage values on the test set. A closer look at

10

META-LEARNING RULE LEARNING HEURISTICS

0.7

c c
g 09 £ 065
€ o8 g

. 0.55
2 05 g
B 2 05
=1 3
[[
= =

0.45

40 40

e 30 "
positives 20 positives

0 7
negatives negatives

(a) Linear Regression (b) Neural Network

Figure 3: Isometrics of the functions (final rule precision)

the predicted values reveals that on the one hand both regression methods predict negative
coverages and that on the other hand for the region of low coverages (which is the important
one) too optimistic values are predicted (for both the positive and the negative coverage).
The acceptable performance is caused by a balancing of the two imprecise predictions (as
observed with the two precision-like metrics) or rather by an induced bias which tries to
omit the extreme values in the evaluations (which are responsible for overfitting).

Table 4 shows the results for predictions made by the neural network which performs
best so far. Interestingly, the same network which was learned on the two meta data sets
that include the length, performs consistently better, but the differences are not significant.
All other neural networks and the linear regression perform disappointingly due to the above
mentioned problems in the predictions.

5.6 Predicting the Value of the Final Rule

Rule learning heuristics typically evaluate the quality of the current, incomplete rule, and
use this measure for greedily selecting the best candidate for further refinement. However,
as discussed in Section 4.1, if we frame the learning problem as a search problem, a good
heuristic should not evaluate a candidate rule with its discriminatory power, but with its
potential to be refined into a good final rule. Such a utility function could be learned with a
reinforcement learning algorithm, which will learn to predict in each step of the refinement
process which refinement is most likely to lead to a good final rule. Unfortunately, in
(Burges, 2006) it was pointed out that this approach does not work satisfactorily.

As an alternative, we applied a method which can be interpreted as an ”offline” version
of reinforcement learning. We simply assign each candidate rule the precision value of its
final rule in one refinement process. As a consequence, in our approach all candidate rules
of one refinement process have the same target value, namely the value of the rule that has
eventually been selected. Because of the deletion of all final rules that do not cover any
example on the test set, we decided to remove all predecessors of such rules as well. Thus,
the new meta data set contains only 77,240 examples in total. For us, this seems to be the
best way to handle the predecessors because if we want to evaluate them we could only use
their immediate precision. But in the current approach we want to use the precision of the
final rule, as described above.

11

FREDERIK JANSSEN, JOHANNES FURNKRANZ

30000 30000
25000 25000
20000 20000
> >
(8] (8]
c c
3 15000 g 15000
o o
o o2
10000 10000
5000 5000
o tdah ol s st L Lot 0 | ol
0 01 02 03 04 05 06 07 08 09 1 0 01 02 03 04 05 06 07 08 09 1
precision on test set precision on test set
(a) immediate precision (b) final rule precision

Figure 4: Constitution of the meta data

A graphical interpretation of two sample sets can be found in Fig. 4 where, for a given
precision, the number of instances were counted. If a candidate rule receives the same
evaluation as its final rule (shown in Fig. 4 (b)), the frequency of the worst and the best
evaluation increases. Additionally, there are also more rules with a precision of 0.5 too,
which are mostly rules that cover a single positive and a single negative example.

All of these large rules often receive perfect training set precision but then are evaluated
on the current sample of the test set®. On this part of the data, they often do not cover
any positive example (i.e., their precision is 0) or no negative example (i.e., their precision
is 1). These rules form the majority in the meta data which is preferable because they
have the greatest variance among all rules. If a rule covers many examples in the training
set, its precision will not differ significantly by that obtained on the test set. The more
examples are covered in the training set, the lower is the probability that the rule will cover
an entirely different number of examples on the test set. If, for example, a rule tests only
one attribute and covers n examples on the training set, the probability that this rule will
cover a significantly other number than n is small.

Table 5 shows the accuracies of the two heuristics that were learned in this setting, one
with a linear regression, and one with a neural network with a single node in the hidden
layer. In particular the neural network outperformed the original setting (cf. Table 2).

We also include the results of the 5 standard heuristics that were used to create the
meta data. The induced heuristics outperform all of the standard heuristics. The Linear
Regression was trained on the meta data set that only contains the 4 most important
features which yield the best model. In terms of theory complexity it seems that about
50 conditions in average are necessary to obtain an accurate classifier. Weighted relative
accuracy, for example, learns simpler theories (as observed in (Todorovski et al., 2000)), but
seems to over-generalize. The neural network classifier performs best with the third-smallest
theory.

Figure 3 shows the 3d-surfaces and the isometrics of the two learned heuristics. In
comparison to Figure 2, it seems that their curvature towards the N-axis is considerably

3. As shown in Figure 1 the examples covered by the rule were removed from the test set too.

12

META-LEARNING RULE LEARNING HEURISTICS

Table 5: Comparison of the induced heuristics with standard ones

heuristic Accuracy | # conditions
Neural Network | 78.37 % 53.97
Linear Regression | 77.95 % 95.63
Correlation 77.57 % 47.50
Laplace 76.89 % 118.83
Precision 76.22 % 129.17
WRACcc 75.80 % 12.13
Accuracy 75.60 % 104.77

less steep, which is particularly visible at the points near the P-axis. However, the general
shape of the curves seems to remain approximately the same.

6. Conclusion

The most important result of this work is that we have shown that a rule learning heuristic
can be learned that outperforms standard heuristics in terms of predictive accuracy on a
collection of databases that were not used in the meta-learning phase. Our first results,
with used a few obvious features to predict the out-of-sample precision of the current rule,
were already en par with the correlation heuristic, which performed best in our experiments.
Subsequently, we tried to modify several parameters of this basic setup with mixed results.
In particular, predicting the positive and negative coverage of a rule on a test set, and using
these predicted coverage values inside the heuristics did not prove to be successful. Also,
more complex neural network architectures did not seem to be important, linear regression
and neural networks with a single node in the hidden layer performed best. On the other
hand, a key result of this work is that evaluating a candidate rule by its potential of being
refined into a good final rule works better for learning appropriate heuristics (both the
linear regression and the neural network are more precise if they are learned on this type
of data).

A visualization of the learned heuristics in coverage space gave some insight into the
general functionalities of the learned heuristics. In comparison to heuristics with linear
isometrics (such as precision, weighted relative accuracy, and the m-estimate that trades
off between those two), the learned heuristics have non-linear isometrics that implement
a particularly strong bias towards rules with a low coverage on negative examples. This
makes sense for heuristics that will be used in a covering loop, because incompleteness (not
covering all positive examples) can be compensated by subsequent rules, whereas inconsis-
tency (covering too many negative examples) cannot. Correlation, the standard heuristic
that performed best in our experiments, implements a similar bias (Fiirnkranz & Flach,
2005). Thus, the results of this paper also contribute to our understanding of the desirable
behavior of rule-learning heuristics.

Our results may also be viewed in the context of trying to correct overly optimistic
training error estimates (resubstitution estimates). In particular, in some of our experi-
ments, we try to directly predict the out-of-sample precision of a rule. This problem has
been studied theoretically in (Scheffer, 2001; Mozina, Demsar, Zabkar, & Bratko, 2006). In

13

FREDERIK JANSSEN, JOHANNES FURNKRANZ

other works, it has been addressed empirically. For example (Vapnik, Levin, & Cun, 1994)
have used empirical data to measure the VC-Dimension of learning machines. (Fiirnkranz,
2004) also creates meta data in a quite similar way, and tries to fit various functions to
the data. But the focus there is the analysis of the obtained predictions for out-of-sample
precision, which is not the key issue in our experiments.

A promising direction for further research is to focus more strongly on the properties of
the meta data. An interesting idea is to divide the learning problem into separate smaller
problems by learning different models on coverage intervals. Thus, these models could be
learned for rules which cover few, medium and many examples. Then, depending on the
coverage of the current rule, the corresponding model can be used. Another direction is
to focus more on the regression methods. Hence, a parameter optimization of the neural
network or the usage of a Support Vector Machine will eventually yield to better results.

References

Akaike, H. (1974). A new look at the statistical model selection. IEEE Transactions on
Automatic Control, 19(6), 716-723.

Burges, S. (2006). Meta-Lernen einer Evaluierungs-Funktion fiir einen Regel-Lerner.. Master
Thesis.

Fiirnkranz, J. (1994). FOSSIL: A Robust Relational Learner. Lecture Notes in Computer
Science, 784, 122—-137.

Fiirnkranz, J. (1999). Separate-and-Conquer Rule Learning. Artificial Intelligence Review,
13(1), 3-54.

Fiirnkranz, J. (2004). Modeling rule precision.. In LWA, pp. 147-154.

Fiirnkranz, J., & Flach, P. A. (2003). An Analysis of Rule Evaluation Metrics. In Proceedings

20th International Conference on Machine Learning (ICML’03), pp. 202-209. AAAI
Press.

Fiirnkranz, J., & Flach, P. A. (2005). ROC 'n’ Rule Learning - Towards a Better Under-
standing of Covering Algorithms. Machine Learning, 58(1), 39-77.

Janssen, F., & Firnkranz, J. (2006). On trading off consistency and coverage in inductive
rule learning.. In LWA, pp. 306-313.

Lavra¢, N., Flach, P., & Zupan, B. (1999). Rule evaluation measures: A unifying view. In
Dzeroski, S., & Flach, P. (Eds.), Proceedings of the 9th International Workshop on
Inductive Logic Programming (ILP-99), pp. 174-185. Springer-Verlag.

Mozina, M., Demsar, J., Zabkar, J., & Bratko, I. (2006). Why is rule learning optimistic
and how to correct it.. In Machine Learning: ECML 2006, 17th European Conference
on Machine Learning, pp. 330-340.

Muggleton, S. (1995). Inverse entailment and progol. New Generation Comput., 13(3&4),
245-286.

Newman, D., Blake, C., Hettich, S., & Merz, C. (1998). UCI Repository of Machine Learning
databases..

14

META-LEARNING RULE LEARNING HEURISTICS

Quinlan, J. (1996). Learning First-Order Definitions of Functions. Journal of Artificial
Intelligence Research, 5, 139-161.

Scheffer, T. (2001). Finding association rules that trade support optimally against confi-
dence.. In Principles of Data Mining and Knowledge Discovery, 5th European Con-
ference, PKDD 2001, pp. 424-435.

Tan, P.-N., Kumar, V., & Srivastava, J. (2002). Selecting the right interestingness measure
for association patterns.. In KDD, pp. 32—41.

Todorovski, L., Flach, P., & Lavrac, N. (2000). Predictive performance of weighted relative
accuracy. In Zighed, D. A., Komorowski, J., & Zytkow, J. (Eds.), 4th European
Conference on Principles of Data Mining and Knowledge Discovery (PKDD2000),
pp- 255-264. Springer-Verlag,.

Vapnik, V., Levin, E.; & Cun, Y. L. (1994). Measuring the VC-dimension of a learning
machine. Neural Computation, 6(5), 851-876.

Witten, I. H., & Frank, E. (2005). Data Mining — Practical Machine Learning Tools and
Techniques with Java Implementations (2nd edition). Morgan Kaufmann Publishers.

15

