
A Comparison of Strategies
for Handling Missing Values
in Rule Learning
Technical Report TUD–KE–2009-03

Lars Wohlrab, Johannes Fürnkranz
Knowledge Engineering Group, Technische Universität Darmstadt

http://www.ke.informatik.tu-darmstadt.de
http://www.tu-darmstadt.de

Abstract

In this paper, we review possible strategies for handling missing values in separate-and-conquer rule learning algorithms,

and compare them experimentally on a large number of datasets. In particular through a careful study with data with

controlled levels of missing values we get additional insights on the strategies’ different biases w.r.t. attributes with

missing values. Somewhat surprisingly, a strategy that implements a strong bias against the use of attributes with missing

values, exhibits the best average performance on 24 datasets from the UCI repository.

Contents

1 Introduction 3

2 Unknown Values 4

3 Strategies for Handling Unknown Values 5
3.1 Delete Strategy . 5

3.2 Ignored Value Strategy . 5

3.3 Any Value Strategy . 5

3.4 Special Value Strategy . 5

3.5 Common Value Strategy . 5

3.6 Pessimistic Value Strategy . 6

3.7 Predicted Value Strategy . 6

3.8 Distributed Value Strategy . 6

4 Experimental Setup 8

5 Results 9
5.1 Amputed datasets . 9

5.1.1 The credit-g dataset . 9

5.1.2 The KRKP dataset . 9

5.1.3 The segment dataset . 11

5.1.4 Summary: amputed datasets . 11

5.2 Real datasets . 12

5.2.1 Results with the Laplace-heuristic . 12

5.2.2 Results with the m-estimate . 14

5.2.3 Varying the Parameter of the Distributed Value Strategy . 14

5.2.4 Varying the Parameter of the Predicted Value Strategy . 15

5.3 Runtime . 15

6 Related Work 17

7 Conclusion 18

2

1 Introduction

In practical applications, some values in a database may not be known, and learning algorithms have to be able to deal

with such unknown values and missing information. In this paper, we empirically compare several such approaches in

a conventional separate-and-conquer rule learning algorithm. While there has been some work on how to deal with

missing values in other areas, such as decision-tree induction, there has not been that much published work in this area

in inductive rule learning. Even though most algorithms, such as CN2 (Clark and Niblett, 1989) or RIPPER (Cohen, 1995)

have some way of dealing with missing values, their procedures are not described well. Most notably there is hardly any

work that empirically compares different approaches.

To our knowledge, the only previous publication in this area is by Bruha and Franek (1996), who empirically compared

five different strategies on four different strategies. Our experimental work, reported in this paper, significantly extends

their study in various ways: First, we evaluate a larger number of strategies (eight vs. five) on a much larger set of

databases (24 datasets with missing values plus three for which we systematically varied the fraction of missing values

vs. originally four datasets). Second, we provide a deeper analysis of the results in terms of accuracy, fraction of selected

tests with missing attributes, model size and run-time. Finally, we also study the performance with two different rule

learning heuristics that implement quite different biases.

We will first briefly review the problem of unknown values (Section 2) and discuss common strategies for addressing

it (Section 3). We then describe our experimental setup in Section 4, and discuss our results on semi-real and real-world

datasets in Section 5. A discussion of related work can be found in Section 6 before we conclud in Section 7.

3

2 Unknown Values

There are several types of missing information, which may be dealt with in different ways. One can distinguish at least

three different types of unknown attribute values (let A be an attribute, and x be an example for which the attribute

value is missing):

• missing value: x should have a value for A, but it is not available (e.g., because it has not been measured).

• not applicable value: the value of A cannot be measured for x (e.g., the value of the attribute pregnant for male

patients)

• don’t care value: attribute A could assume any value for x without changing its classification

However, in practical applications one typically does not know which type of unknown value is the case. Most rule

learning systems therefore do not discriminate between the different types and treat all unknown values uniformly. A

notable exception is CN2, which can discriminate between don’t care and missing values and employs different strategies

for dealing with them.

Furthermore, unknown values have to be dealt with in two different phases, first when the rules are learned, and

second when the rules are put to use. The difference between these phases lies in the amount of available training

information: in the learning phase, one can try to use the class label of an example as additional information in order to,

e.g., guess a correct value, which may improve the quality of the training examples. However, at classification time, this

information is not available, and an unsupervised strategy, which does not use the class labels, has to be employed.

4

3 Strategies for Handling Unknown Values

The following subsections are used to introduce the particular strategies considered in this paper. Essentially, we can

distinguish three principal approaches to handling unknown values:

• ignore examples with unknown values (Delete strategy)

• treat unknown values uniformly for all examples (the Ignored Value, Any Value, Special Value, and Common Value

strategies)

• treatment of unknown values depends on the example (the Pessimistic value, Predicted value, and Distributed value

strategies)

In the following, we will briefly review these approaches.

3.1 Delete Strategy

The simplest strategy is to completely ignore examples with unknown values. This does not require any changes in the

learning algorithm, and the changes in the feature generation algorithm reduce to adding a simple filter that blocks

examples with unknown values. The key disadvantage of this method is, of course, the waste of training data.

As examples usually cannot be discarded at classification time, a different treatment has to be applied there. The

simplest solution is not to cover unknown values by any condition (the Ignore strategy, see below).

3.2 Ignored Value Strategy

The Ignore strategy simply ignores attribute values with unknown values, i.e., they cannot be covered by any feature.

Thus, every feature that tests for the unknown value will be assigned the truth value false. Like the Delete strategy, this

strategy can be easily realized in the feature generation phase, but is less wasteful with training data. In fact, one can

say that it effectively exploits the entire known information. Note that this strategy is not applicable in decision tree

induction, where typically each outcome of test is associated with a value. It is, e.g., realized in the RIPPER rule learning

system (Cohen, 1995).

3.3 Any Value Strategy

This strategy does the opposite of the Ignore strategy: while the latter treats all missing values as uncovered, this strategy

treats them all as covered. Thus it essentially corresponds to interpreting unknown values as don’t care values.

3.4 Special Value Strategy

Another straight-forward approach is to treat an unknown value as a separate value for this attribute. This corresponds

to including a separate feature that indicates whether the value of the attribute is unknown or known. This may be

particularly adequate when we interpret unknown values as not applicable values.

In some sense, the Special Value strategy may be viewed as an extension of the Ignore strategy. While both strategies

leave all examples with missing values uncovered by conventional tests, Special Value includes a separate feature that

allows to cover these examples. On the other hand, it should be noted that in scenarios where attribute values are missing

at random (and thus unknown values provide no information about the target-concept) this strategy has no advantage

compared to Ignore as the best case would then be to learn no “special” conditions at all.

3.5 Common Value Strategy

All previous approaches do not look at the data when deciding on how to treat an unknown value. If we assume the

existence of a “true” value for each unknown one, we can try to estimate this true value based on the known information.

5

The simplest approach for utilizing data-dependent information is to replace unknown values of discrete attributes by the

most common value (the mode value), and unknown values of continuous attributes by their average value (the mean

value). This method is quite straight-forward to realize, but it has its drawbacks, especially when the number of unknown

attribute values is high.

3.6 Pessimistic Value Strategy

The Pessimistic Value strategy was recently introduced in (Gamberger et al., 2008; Lavrač et al., To appear). Its key

idea is to hinder the utilisation of attributes with many unknown values by penalising the evaluation-heuristic for tests

on unknown values. Thus, when evaluating candidate rules in the learning phase, tests on missing values are always

counted as an error, i.e. positive examples with a missing value are not covered by any test based on this attribute, and,

conversely, negative examples are covered by all tests based on this attribute. As every reasonable heuristic will penalise

wrong classifications, this effectively decreases the estimated quality of conditions using attributes with missing values

(and thus of rules that use such conditions).

Note that Pessimistic Value may be viewed as a mixture between the Ignored Value and the Any Value strategy, employing

the former for positive and the latter for negative examples. It may also be seen as an adaptation of the “reduced

information gain” approach for decision trees (Quinlan, 1989).

In contrast to the learning-phase, no class information is available when classifying new examples. Hence it is not

possible to tie the decision about the coverage of an example to its class label. Thus, the Ignored Value strategy is used at

classification time.

3.7 Predicted Value Strategy

Always guessing the mean or mode values for the missing value, as in the Common Value strategy, has the obvious

disadvantage that it is not sensitive to the example in question. One can, instead, train a separate classifier for each

attribute, which can then be used for replacing the missing value with an educated guess. In principle, any classifier can

be used for this task, but lazy classifiers are particularly popular because they do not need to be trained unless a value is

needed.

Therefore, the Predicted Value strategy considered here utilises a nearest neighbor classifier for that purpose. This cor-

responds to the assumption that “similar” examples are more suitable for estimating the true values of missing attributes.

Consequently, instead of taking all available examples into account, as Common Value does, only the k most similar ex-

amples are used to determine the “common" value. Obviously, the validity of the basic assumption vastly depends on

the proper choice of the similarity function. In this paper, all experiments were performed using LinearNNSearch from

the Weka-library as similarity-function. Besides, the strategy can be parameterized by the number k of neighbours to

be considered. Different variants of the Predicted strategy employing different values for k were examined in this paper.

In order to differentiate the respective variants, the respective value of k is appended to the strategy’s identifier, e.g.

Predicted.3 for k=3.

The NN-based Predicted Value strategy can also be seen as a generalisation of the Common Value strategy as it contains

Common as special case for k=∞ (or k equals the size of the dataset, respectively).

It may happen that all k nearest neighbours also have unknown values for the desired attribute. In this case, a fallback

strategy should be used which is capable of handling missing values directly. Here, the Ignore strategy has been applied

for that purpose.

3.8 Distributed Value Strategy

Finally, one can predict a probability distribution over all possible values. The example with the missing value is then

divided into fractions. Each of these fractions receives a different feature-based representation, and an example weight

wx ∈ [0, 1], which indicates the degree to which this example can be covered (conventional, unweighted examples only

have values 0 or 1). Implementing this approach requires a non-trivial modification of the rule learner that adapts all

counting routines to weighted examples.

A variant of this technique is, e.g., used in the CN2 rule learner (Clark and Niblett, 1989; Clark and Boswell, 1991),

which, in the learning phase, uses Laplace-corrected example weights, but for computing rule weights and for classifying

new examples, uses equal fractions for all possible values of the missing attribute.

As the splitting of examples can lead to an enormous inflation of the dataset, it is advisable to limit this effect. Here

a configurable weight-threshold has been applied, i.e. example-fractions whose weights fall below the given threshold

after a split-operation are dropped. If all fractions have to be dropped, the Ignore strategy is used as a fallback strategy

6

again. In the experiments reported in this paper, we used seven weight thresholds ranging from 0.01 to 0.95. In order to

label the respective variants, the fractional part of the threshold is appended to the strategy’s identifier.

7

4 Experimental Setup

For our experiments, we implemented all eight strategies for handling missing values in a simple separate-and-conquer

(SeCo) rule-learner with a top-down hill-climbing search for individual rules. Rules are greedily refined until no more

negative examples are covered, and the best rule encountered in this refinement process (not necessarily the last rule)

is returned. As a search heuristic, we used Laplace and the m-estimate in the setting recommended by Janssen and

Fürnkranz (2008). We did not employ explicit stopping criteria or pruning techniques for overfitting avoidance. The

resulting algorithm is essentially equivalent to CN2 (Clark and Niblett, 1989).

We compared these strategies on a number of datasets, both real and artificially prepared. In the UCI repository for

machine learning databases (Hettich et al., 1998), we found 24 datasets1 with missing values.

In addition, we selected three larger datasets without missing values (CREDIT-G, KRKP, SEGMENT) from which we re-

moved varying fractions of the values of certain attributes in order to simulate different scenarios. In analogy to the

term “value imputation”, which denotes the replacement of a missing value with an educated guess, we call the oppo-

site procedure of replacing a true value with an unknown value “value amputation”. The artificial missing values were

introduced according to the following two-step strategy:

1. attribute selection: In order to ensure that the selected attributes have a significant impact on the result, we selected

the three most relevant attributes according to a χ2-test.

2. value removal: From each of these three attributes, we removed m% of the values from the dataset, where the

amputation level m was varied in steps of 15%.

By this means the original dataset is transformed into a family of six “amputed datasets” with 15% to 90% missing

values for each amputed attribute.2 Note that the second step, value removal, assumes that the values are missing at

random. It is questionable whether this assumption holds in practice, but as we complement these results with results on

24 real-world datasets, we think this assumption is not crucial.

The two configurable strategies Distributed and Predicted have by default been configured with a minimum weight

threshold of 0.05 (Distributed.05) and a neighbourhood of size 9 (Predicted.9) respectively, but we will also report results

that show the effect of different parameter choices.

All methods were evaluated with 10-fold cross-validation within the Weka data mining library (Witten and Frank,

2005). In addition to the estimated predictive accuracy, the times required to learn and evaluate the respective models

have been monitored as well. A more detailed description of the procedure and more detailed experimental results can

be found in (Wohlrab, 2009).

1 audiology, auto-mpg, autos, breast-cancer, breast-w, breast-w-d, bridges2, cleveland-heart-disease, colic, colic-orig, credit, credit-a, echocar-

diogram, heart-h, hepatitis, hypothyroid, labor, labor-d, mushroom, primary-tumor, sick-euthyroid, soybean, vote, vote-1
2 The amputed attributes were checking_status, duration, credit_history for credit-g, bxqsq, rimmx, wkna8 for krkp, and intensity-mean, rawred-

mean, hue-mean for segment.

8

5 Results

In this section, we summarize our results. In section 5.1, we will start with the results on the amputed datasets, for which

we can measure not only accuracy but also the degree to which increasing levels of missing values leads to a decrease

in an attribute’s estimated quality. Results on 24 real-world datasets will be discussed in section 5.2, before we conclude

with a brief discussion of run-time differences between the methods (section 5.3).

5.1 Amputed datasets

Three datasets without missing values have been prepared as described in section 4. A key advantage of the artificial

creation of the missing values in these datasets is that it facilitates having a closer look at the characteristics of the

learnt models. In particular, we will consider the fraction of amputed conditions, i.e., rule conditions which test one of

the amputed attributes. This gives an impression to which degree the classification of an example depends on these

attributes.

It turns out that each of the three dataset families reveals its own specific properties. But before having a look at the

results we should think about which results are to be expected. Regarding the fraction of amputed conditions, the most

natural behaviour would probably be a gradual reduction of those tests according to the gradual decrease of the attributes’

quality. On the other hand, the effects on the achievable accuracy should vastly depend on what Saar-Tsechansky and

Provost (2007) introduced as feature imputability (FI). If the FI is high, i.e. the attribute’s value is more or less redundant,

the tests on the attribute can probably be replaced by tests on other attributes without a significant decrease in accuracy.

In contrast to that, if the FI is rather low the information contained in the knocked-out attribute can hardly be replaced

and thus the accuracy is likely to suffer.

5.1.1 The credit-g dataset

If we look at the results on the CREDIT-G dataset (first row of figure 5.1), we have to notice that the learner generally per-

forms poorly on this dataset, being significantly outperformed even by the ZeroRule-algorithm. Against this background

the results should be handled with the given care. Despite this they can still provide interesting insights. At a first glance

the accuracy curves (figure 5.1.1) seem to be quite volatile. Though, three remarkable observations can be made:

First, the Delete strategy performs relatively well – at a amputation level of 30% the accuracy is hardly worse than

that achieved on the complete data. Only at very high amputation levels the accuracy clearly suffers. This also illustrates

that even Delete can compete with the other strategies in case of heavy overfitting to the training data when the learner

benefits from using less examples.

Secondly, both the Pessimistic and the Any strategy are clearly outperformed by all other strategies. On the other hand,

Distributed is obviously performing best among all strategies, hardly losing any accuracy in average. The accuracy curves

of both Pessimistic/Any and Distributed notably correspond to the fraction of amputed conditions in the learnt ruleset. As

shown in figure 5.1.2, the influence of the amputed attributes is dramatically reduced by Pessimistic and Any, whereas

the Distributed strategy even increases the fraction of amputed conditions.

5.1.2 The KRKP dataset

The results of the learner on the KRKP dataset (second row of figure 5.1) are considerably better, achieving a 99%

accuracy, compared to only 53% with ZeroRule. It turns out that the characteristics of this dataset actually are quite

different, which is reflected in the course of accuracy in terms of significant losses coming along with the increasing

missing-rates (figure 5.1.3). In comparison to the Delete strategy, the other strategies can be divided into two groups

according to their accuracy: On the one hand, Common, Ignore, Special, Distributed and Predicted consistently outperform

the Delete strategy, achieving very similar accuracies for almost all amputation levels. On the other hand, Any and

Pessimistic are clearly outperformed by Delete on the lower amputation levels.

The impact of knocking out values on the learnt models is quite different from the other amputed datasets. It stands

out that most strategies learn much larger models after missing values are introduced (compared to the original model,

as shown in table 5.1). Also, all strategies besides Delete and Pessimistic increase the fraction of amputed tests at the

beginning (figure 5.1.4). This clearly indicates that the three amputed attributes are really hard to replace in this dataset.

9

5.1.1: achieved accuracies (credit-g) 5.1.2: proportion of amputed conditions in the induced models (credit-g)

5.1.3: achieved accuracies (KRKP) 5.1.4: proportion of amputed conditions in the induced models (KRKP)

5.1.5: achieved accuracies (segment) 5.1.6: proportion of amputed conditions in the induced models (segment)

Figure 5.1: Influence of increasing missing-rates on the models learnt on the CREDIT-G (top), KRKP (middle), and SEGMENT

(bottom) dataset family

10

m Delete Ignore Predicted Common Special Pessimistic Distributed Any

15% -30% +9% +19% +186% +186% +191% +391% +414%

30% -41% +106% +34% +149% +149% +255% +549% +344%

Table 5.1: Size of the models built on the KRKP dataset – increase/decrease (with respect to the number of conditions)

compared to the model learnt on the original dataset, for two different amputation levels m.

5.2.1: average relative size of the models (in terms of #conditions, relative

to the respective base-model)

5.2.2: average proportions of amputed conditions

Figure 5.2: Averaged properties of the models learnt on the three amputed dataset-families

On the other hand, on this dataset both the fraction of amputed tests and the model-size are no suitable measures for the

strategies’ quality – at least they cannot explain the poor performance of Any.

5.1.3 The segment dataset

Just like on the KRKP data the SeCo-learner generally performs well on the SEGMENT dataset (last row of figure 5.1).

Hence, the Delete strategy cannot benefit from the reduction of the training set and again suffers a significant loss in

accuracy. However, the accuracy-trends of the other strategies differ a lot from the previous two amputed datasets. All

strategies except from Predicted and Distributed can almost keep the accuracy achieved on the original data whereas

Predicted and Distributed lose up to 16% and 23% , respectively. So the FI obviously is very high in this case, thus the

information contained in the missing attributes can be almost entirely substituted by using the other attributes. The

fundamental difference regarding the accuracy is also reflected in the characteristics of the learnt models. The two

underperforming strategies use a more or less constant (Predicted) or even increasing (Distributed) fraction of amputed

conditions for classifying examples – which has certain drawbacks in cases of high FI. Moreover the size of the models

learnt with these strategies gets smaller the more attribute-values are knocked-out. In contrast to that the models learnt

with the other – well-performing – strategies get a bit larger with increasing amputation level.

The impact of these strategies on the fraction of amputed conditions is slightly different, though. Again, Any and

Pessimistic rapidly reduce this fraction – which, in contrast to the previous two datasets, works on this dataset. On the

contrary, Common, Ignore and Special reduce the fraction rather gradually, which should rather correspond to the “real”

remaining quality of the amputed attributes.

5.1.4 Summary: amputed datasets

All in all it stands out that only the three strategies Ignore, Special and Common perform equally well on all three dataset-

families. This observation remarkably reflects the fact that these strategies are the ones exhibiting the most natural

behaviour towards missing values by gradually reducing the influence of the amputed attributes according to the fraction

of removed values (as depicted in figure 5.2.2).

On the other hand, both the Pessimistic and the Any strategy seem to enforce a rapid decrease in the use of amputed

conditions. At a amputation level of 30% the average fraction of amputed conditions has already dropped to merely

9% (Any) or even 3% (Pessimistic), respectively, compared to an average of 25% on the original datasets. While in the

11

case of Pessimistic the reduction is explicitly enforced by construction, this cannot be stated for Any where it is rather

likely to be a – surprisingly strong – side-effect of the lowered selectivity of the amputed conditions (going along with

the increasing coverage of example-noise). Unfortunately, this reduction is apparently hardly related to the remaining

quality and importance of the attributes with respect to the models’ predictive power, because in two out of three cases

both strategies are outperformed by Delete on the lower amputation levels.

The opposite behaviour regarding the utilisation of amputed conditions could be observed with Distributed and Pre-

dicted. Both the strategies kept the fraction of amputed tests constant or even increased it on all three datasets. In

particular, the fraction has not even been decreased in case the information could have actually been replaced by other

attributes. This kind of bias is apparently favoured by the construction-algorithm of the amputed datasets, but the results

on the segment-dataset clearly indicate the inferiority of this behaviour in cases of high FI.

So Distributed/Predicted and Pessimistic/Any reveal somehow contrary characteristics – whereas the first group sticks

to the amputed attributes even if they could be replaced by known information, the latter abstain from using amputed

attributes, partly putting up with a considerable overhead in theory size (cf. table 5.1), even if the respective attributes

cannot be replaced equivalently. Consequently, these two pairs do not perform equally (well) on any of the three dataset-

families.

But of course it has to be taken into account that three datasets can never be representative and thus the results

shall primarily provide some insights in how the different strategies actually work and how they might perform under

certain conditions. We also must note that the algorithm used for generating the datasets has (intentionally) been biased

towards removing valuable attributes, so that we could study the effect of missing values on important attributes. It is

questionable whether this is a realistic model for missing value distributions, and thus it is unclear to what extent these

results can be generalized to datasets with real missing values. This will be investigated in the next section.

5.2 Real datasets

The diversity of the dataset characteristics is, of course, much higher on the real data, if only because of the larger number

of datasets. Moreover, the distribution of the missing values will not suffer from an inevitable bias caused by the model

behind the algorithm for generating the artificial missing values. Against this background, a one-to-one transfer of the

previous results cannot be expected.

The studies on the real datasets have been performed with both the learner’s default configuration using the Laplace-

estimate as evaluation heuristic and an alternative configuration using m-estimate for evaluating the candidate rules. We

only present aggregated results over all datasets. A detailed listing of the respective accuracies can be found in the

appendix of (Wohlrab, 2009).

5.2.1 Results with the Laplace -heuristic

Figure 5.3 shows the average differences to the median accuracy of the eight strategies with a rule learner that uses

the Laplace-heuristic as a search strategy. Six out of the eight strategies are very close (±0.5%) to the median-value –

Pessimistic as the apparently best strategy achieves an average of only +0.41% whereas Any at the 6th position still gets

−0.45%. Only Distributed and – not surprisingly – Delete are clearly outperformed by the other strategies.

Figure 5.3: Average differences to the median accuracy for the different strategies on the real datasets

12

Delete Distributed Predicted Ignore Common Special Any Pessimistic

Laplace

#winner 2 4 3 4 3 6 4 7

avg. rank 5.9 5.0 4.6 4.5 4.3 4.2 3.9 3.5

m-estimate

#winner 1 2 4 7 5 6 3 4

avg. rank 6.4 5.4 4.9 4.2 4.1 3.7 3.7 3.7

Table 5.2: Number of “won” datasets and average rank of the different strategies, using the Laplace-estimate and the

m-estimate, respectively, as evaluation-heuristic

5.4.1: using the Laplace heuristic 5.4.2: using the m-estimate heuristic

Figure 5.4: Nemenyi-diagrams (for α= 0.05), depicting the average ranks and the C D0.05 – the strategies connected by a

bar do not differ significantly

Pairwise t-tests reveal that all strategies besides Distributed perform significantly better than Delete (at a level of

α=0.01). By relaxing the level of significance to 0.075 it becomes possible to also tell Distributed apart from Delete, but

no further differentiation can be made.

Due to the large number of pairwise tests the overall probability of an error is effectively larger than the α used in

the respective tests. Thus it might be preferable to ensure a globally valid significance level, such as the Friedman-F -test

(Demšar, 2006; Iman and Davenport, 1980), a non-parametric rank-based test which compares all strategies at the same

time. In contrast to the previously performed t-test or an ANOVA, it does not make any assumptions on the distribution of

the data. Moreover the results presented by Demšar (2006) indicate that in practical ML-applications the Friedman-F -test

does not have less power than an ANOVA.

The Friedman-F -statistic is F -distributed with 7 and 161 degrees of freedom. The test yields a value of 2.51 (according

to the average ranks listed in table 5.2) which allows us to reject the null hypothesis that the choice of the strategy has

no effect at all at a level of α=0.05. After gaining this insight we can now try to identify pairwise differences by the

Nemenyi post-hoc test. This tests provides a critical difference C Dα, which is required so that two strategies apart can be

assumed to be different with a given error-probability α.

For k=8 classifiers and N=24 datasets, the critical differences for α= 0.1 and α= 0.05 are C D0.1=1.97 and C D0.05=2.14,

respectively. So only Pessimistic (for α=0.05) and Any (for α=0.1) can be identified as performing significantly better

than Delete. All other strategies perform too similar to recognise significant differences by this test. Figure 5.4.1 shows

the respective CD-diagram.

What makes it so hard to detect global differences between the strategies is that even the strategies that perform well

on average perform rather poorly on some datasets, whereas even the strategies performing rather poor in average also

perform very well on some datasets. This is also reflected in the quite even distribution of the “winners” among the

strategies, as shown in table 5.2.

Another problem is that about one third of the considered datasets have only a few missing values – which makes the

particular strategies behave very similar as they, of course, can only differ in the handling of examples having missing

values. Hence, to a large degree, the strategies’ order on these datasets is prone to be determined by chance. As a

rank-test is not sensitive to the absolute accuracy-differences, all datasets have the same influence on the overall result

which gives quite a high weight to the “random” ordering on those datasets (compared to tests based on the accuracy-

differences). Thus rank-based tests like the Friedman-F -test and the Nemenyi-test are likely to be less powerful in the

scenario considered here.

13

Figure 5.5: Differences to the median-accuracy achieved with Laplace- and m-estimate, respectively

5.2.2 Results with them-estimate

For the sake of validation, we also ran the SeCo-learner using the m-estimate as the evaluation-heuristic. We used a

value of m = 22.466 as recommended by Janssen and Fürnkranz (2008) for this learner. By this means, the averaged

accuracy of all applied strategies increased from 0.97% (Distributed.05) up to 2.46% (Ignore). Thus, the comparison

of the strategies to the median does not yield substantially different results, as can be seen from figure 5.5. The only

noticable deviation is the slightly increased difference between Any and the top five strategies. This is also reflected in

the average ranks – here Any loses 1.5 positions in average, dropping back from an average rank of 3.9 (position 2) to

only 5.4 (position 6).

So there seems to be a more distinct separation between “good” and “not so good” strategies. This impression is

also reflected by the Friedman-F-test – the respective statistic yields a value of 4.44 which allows for rejecting the null-

hypothesis even at a level of α=0.0005. The C Ds provided by the Nemenyi-test stay the same as before – hence the five

top-ranked strategies (namely Predicted, Common, Special, Ignore, Pessimistic) perform significantly better than Delete at

a level of 0.05 (figure 5.4.2).

5.2.3 Varying the Parameter of the Distributed Value Strategy

Recall that the Distributed value strategy has a parameter, which specifies a minimum instance weight, which specifies

that fractions of instances below this threshold are ignored for classification. We evaluated seven different configurations

with minimum instance weights (MIWs) between 0.01 and 0.95. With respect to two basic characteristics of the learnt

models, the average size (#conditions) and rule-complexity (#conditions per rule), a very clear trend can be observed:

with decreasing MIW, the models become larger and the rules more complex (table 5.3a).

The specified MIW is also almost perfectly reflected in the average ranks of the particular Distributed-variants, which

are monotonously increasing from 2.85 for Distributed.01 up to 5.13 for Distributed.95 (table 5.3b). The overall differ-

ences are highly significant according to the Friedman-test (FF=5.44, F-distributed with 6 and 132 degrees of freedom).

This allows for applying post-hoc tests in order to detect pairwise differences. The Nemenyi-test yields a C D of 1.88 for

α=0.05, hence at least Distributed.01/.05 can be identified as performing significantly better than Distributed.60/.95.

When regarding Distributed.01 as the base-classifier the Bonferroni-Dunn-test additionally detects a significant difference

to Distributed.40 (C D=1.68).

The influence of the MIW-parameter can also be recognised with respect to the achieved accuracies. Compared to the

default configuration with a MIW of 0.05, an increase of this parameter corresponds with a continuous reduction of the

average accuracy. A further reduction of the MIW, however, does not lead to a higher accuracy in average – so at this

point the effort put into the more detailed representation of the attributes’ distribution does no longer pay off. Maybe

because the strong splitting of examples facilitates an overfitting to the training data, which might be indicated by the

previously mentioned effects on the complexity of the learnt models.

14

Distributed.01 Distributed.05 Distributed.10 Distributed.25 Distributed.40 Distributed.60 Distributed.95

#cond +12,83 +7,96 +6,48 -0,13 -6,43 -9,26 -18,00

#cond/rule +0,18 +0,08 +0,05 -0,02 +0,03 -0,12 -0,32

(a) Properties of the learnt models – number of conditions in total and per rule (averaged differences to the median)

Distributed.01 Distributed.05 Distributed.10 Distributed.25 Distributed.40 Distributed.60 Distributed.95

#winner 10 7 5 5 2 3 4

avg. rank 2.8 3.0 3.6 3.7 4.6 5.1 5.1

(b) Number of “won” datasets and average rank

Table 5.3: Evaluating the influence of the Distributed-strategy’s MIW-parameter

Predicted.3 Predicted.5 Predicted.9 Predicted.15

accuracy +0.17 -0.33 +0.27 -0.64

rank 2.1 3.0 2.5 2.5

Table 5.4: Evaluating the influence of the neighbourhood’s size – average differences to the median-accuracy and average

rank of the Predicted-variants

5.2.4 Varying the Parameter of the Predicted Value Strategy

For the Predicted value strategy, we employed a nearest-neighbor classifier using LinearNNSearch as the search-algorithm.

The parameter that could be varied effectively was the number of neighbours considered. However, the average differ-

ences between the particular variants (with respect both to the accuracies – see table 5.4 – and the models’ properties)

are rather small and without a clear tendency. Nevertheless, in a few cases a difference of up to 14% in accuracy could

be observed. Although the Friedman-test rejects the null-hypothesis that the neighbourhood’s size has no influence, it is

not possible to detect a systematic trend or any significant pairwise difference.

5.3 Runtime

In general, the runtimes of learning-algorithms are less important, compared to the accuracies. Moreover the SeCo-

learner evaluated in this paper is implemented in Java and also uses the Java-based Weka-framework and hence suffers

from the JRE-typical runtime-variations. So the measured runtimes shall only give a rough impression about the order

of magnitude. In this section only the averaged results on the three families of amputed datasets are taken into account

– as shown in figure 5.6.1.

Not surprisingly, the by far lowest runtime is required by the Delete strategy. This can be easily traced back to the

extreme reduction of the data – even on the first knock-out level of 15%, with three affected attributes almost 40% of the

examples have at least one knocked-out value and are thus removed from the dataset. In contrary, the longest runtimes

are continuously required by the Distributed-strategy. In particular the absence of nominal attribute values is likely to

prolong the runtime as the splitting of the example effectively increases the number of training examples independent of

whether the missing attribute is ever tested or not.

What stands out is the reduplication of runtimes with Any and Pessimistic on the first amputation level compared to

the original dataset – this can be explained by these strategies’ property to rapidly decrease the fraction of amputed

conditions which has to be “paid” with a significant size-overhead. Hence the runtimes converge together with the

models’ properties at the higher amputation levels. Conspicuously inconspicuous, however, are the runtimes of the

particular Predicted-variants – unlike one might expect from neighbourhood-based approaches.

If we take a closer look at the runtimes of the different Distributed-variants again (figure 5.6.2), we can observe the –

expected – convergency of Distributed towards Delete with respect to the runtime, going along with increasing MIW. For

the sake of comparability, the runtimes of Distributed.25 are most similar to those of most other strategies depicted in

figure 5.6.1.

The choice of the MIW influences the runtime of the Distributed strategy by trading-off two opposed effects – on one

hand the training set increases due to the splitting of examples (expanding), on the other hand the number of examples

decreases by discarding those examples whose weight drops below the MIW (shrinking). This trade-off can be observed

very well on the run of Distributed.40’s runtime-curve – the expanding effect outweighs up to an amputation level of

30%, but from the 45%-level on the tables turn and the shrinking-effect prevails, leading to a continuous reduction of

the runtime required.

15

5.6.1: standard strategies 5.6.2: Distributed-variants

Figure 5.6: Average runtimes measured on the amputed datasets

16

6 Related Work

Bruha and Franek (1996) performed a similar study but with a more restricted set of strategies (their strategies were

essentially equivalent to the Delete, Ignore, Common, Any and Distributed Value strategies evaluated within this paper)

and on a smaller set of datasets. In accordance to our findings, they concluded that the Delete routine is outperformed

by all other routines and is the only routine whose use is generally discouraged by the authors. They further divide the

other routines into two groups. The first – less successful – group is formed by Distributed Value and Common, whereas

Ignore and Any are identified as the most successful routines. This further subdivision, however, is not supported by the

results observed here. Indeed the Distributed Value strategy performed less successful but firstly, the difference has not

been big enough in order to be significant and secondly, its performance was more similar to Any than to Common.

Moreover, Bruha and Franek observe that different strategies seem to perform well for decision-tree learners on one

and separate-and-conquer rule learners on the other hand. In contrast to a separate-and-conquer learner, testing an

attribute with (many) unknown values is quite problematic for a decision-tree learner because the examples are “trapped”

in the respective subtree and thus have to be judged based on that attribute, whereas a separate-and-conquer learner

can opt for not judging certain examples based on a particular attribute/test. This is particularly interesting as a lot

of research on the field of how to handle missing attribute-values has been done with decision trees. For example,

Quinlan (1989) compared numerous configurations for treating missing values for the C4.5 algorithm. He concluded

that the splitting of examples (comparable to the Distributed Value strategy) clearly outperforms all other approaches

like attempting to determine the most likely outcome of a test. It seems obvious that this strategy is better suited for

decision-tree learning, where each example has to be classified in one branch, whereas in rule learning it can always be

passed to the next rule (or to the final default rule).

A fundamentally different approach for handling missing attribute values – in particular at prediction-time – has been

introduced by Saar-Tsechansky and Provost (2007), who suggest the use of “reduced models” (RM). The idea of the RM-

approach is to judge every example only by such a model which has been trained using only those attributes actually

specified in the respective example. In order to ensure this, a dedicated model is trained for every pattern of missing

values occurring in the data (which has to be classified) using the entire available training data for each model. This

approach has been compared to variants of the Predicted Value and Distributed Value strategies for the C4.5 decision tree

learner, and was found to outperform both of them consistently (and sometimes even by a large margin).

In order to explain this striking performance of the RMs, Saar-Tsechansky and Provost (2007) introduce the concept of

feature imputability (FI), which effectively measures an attribute’s redundancy, for characterising attributes with missing

values. They argue that both Predicted Value and Distributed Value could only succeed in cases of low FI (Distributed

Value) or high FI (Predicted Value), respectively, whereas RMs should perform well in both cases and are therefore much

more robust regarding the datasets’ characteristics.

This finding is quite interesting as none of the strategies considered here turned out to be suitable for all (or at least

the vast majority of) datasets. Against this background the utilisation of RMs could be a promising approach for separate-

and-conquer learners and certainly deserve a closer examination. As the reduced models work on a meta-level they can

be applied to any sort of inductive algorithm just out of the box.

Nevertheless, the striking performance observed with decision trees is not likely to transfer one-to-one to a separate-

and-conquer learner, because the idea behind the reduced models – judging examples only by those attribute actually

specified – is not so different from what the Ignore strategy already does. So one could argue that the particular rules

effectively are nothing but “reduced models” as they apply only to those examples not lacking any of the attributes tested

in the respective rule. Thus, we do not expect a large difference between reduced models and Ignore.

17

7 Conclusion

Not surprisingly, we have observed that each of the studied strategies has its particular strengths and weaknesses, making

them perform well on some datasets and poorly on others. Against this background it is, of course, hard to detect clear-

cut differences. Thus it is also hard to predict whether a particular strategy is suitable for a particular dataset or not.

The only statistically backed general conclusion that can be drawn is not to apply the Delete strategy which significantly

underperforms most of the other strategies.

If there is another general trend – then it is the merely surprising insight that the choice of the strategy for handling

missing attribute values is less important on datasets with less missing values. But whereas the differences get larger on

datasets with many missing values, the number of such datasets (considered for this paper) was too small to get reliable

results.

A key result of our work that cannot be found in previous works is the quantification of the bias of the different strate-

gies towards or against the use of attributes with unknown values. While the Pessimistic and Any strategies implement

a bias against the use of such amputed attributes, the Distributed and Predicted value strategies, which try to replace

unknown values with educated guesses, seem to maintain a potential preference for these attributes.

Interestingly, the results observed on the amputed and real datasets were inconsistent, in particular with respect to

the performance of the Pessimistic strategy. Whereas this strategy’s bias against the use of attributes with missing values

turned out to be problematic on the datasets where we deliberately corrupted the three most discriminative attributes,

it achieved the highest average accuracy on the real datasets. However, the Predicted Value strategy, which performed

contrary on the amputed data, achieved about the same average accuracy on the real datasets. The obvious explanation

is that the performance on the datasets that we used for our experiments does not depend as strongly on a few attributes

as in the amputed datasets where we deliberately disturbed only the three most discriminative attributes. This can

either mean that in most datasets a variety of different attributes can be used to form good explanations (so that a bias

against some of them does not harm the performance too much), or that the missing values in these datasets are mostly

concentrated on less important attributes.

The fact that there is not a single “striking” strategy suggests that a learner should have the ability to select the

appropriate strategy for handling missing values dynamically based on the characteristics of the respective dataset. In

this context it is certainly an interesting observation that Pessimistic and Special together “win” half of the datasets, being

particularly successful on those datasets with many missing values. Whereas both the strategies perform similarly well

on average, they behave quite complementary on the particular datasets, achieving an average rank of only 2.12, which

is almost 1.5 ranks better than Pessimistic alone (cf. table 5.2). The average distance to the respectively best strategy

in terms of accuracy is only 0.91% with a median of only 0.1%. So, whereas one should not expect a single strategy to

perform well on most datasets, an appropriate combination of strategies with somehow complementary properties might

be a promising approach for reliably achieving good results. Further research is necessary to clarify this question.

Acknowledgements

We would like to thank Nada Lavrač and Dragan Gamberger for interesting discussions on their pessimistic value strategy.

This research was supported by the German Science Foundation (DFG) under grant FU 580/2.

18

Bibliography

Ivan Bruha and Frantisek Franek. Comparison of various routines for unknown attribute value processing: The covering

paradigm. International Journal of Pattern Recognition and Artificial Intelligence, 10(8):939–955, 1996. 3, 17

Peter Clark and Robin Boswell. Rule induction with CN2: Some recent improvements. In Proceedings of the 5th European

Working Session on Learning (EWSL-91), pages 151–163, Porto, Portugal, 1991. Springer-Verlag. 6

Peter Clark and Tim Niblett. The CN2 induction algorithm. Machine Learning, 3(4):261–283, 1989. 3, 6, 8

William W. Cohen. Fast effective rule induction. In A. Prieditis and S. Russell, editors, Proceedings of the 12th International

Conference on Machine Learning (ML-95), pages 115–123, Lake Tahoe, CA, 1995. Morgan Kaufmann. 3, 5

Janez Demšar. Statistical comparisons of classifiers over multiple data sets. Journal of Machine Learning Research, 7:

1–30, 2006. 13

Dragan Gamberger, Nada Lavrač, and Johannes Fürnkranz. Handling unknown and imprecise attribute values in proposi-

tional rule learning: A feature-based approach. In Tu-Bao Ho and Zhi-Hua Zhou, editors, Proceedings of the 10th Pacific

Rim International Conference on Artificial Intelligence (PRICAI-08), pages 636–645, Hanoi, Vietnam, 2008. Springer-

Verlag. 6

Seth Hettich, Catherine L. Blake, and Christopher J. Merz. UCI repository of machine learning databases.

http://www.ics.uci.edu/~mlearn/MLRepository.html, 1998. Department of Information and Computer Science,

University of California at Irvine, Irvine CA. 8

Ronald L. Iman and James M. Davenport. Approximations in the critical region of the Friedman statistic. Communications

in Statistics — Theory and Methods, 9(6):571–595, 1980. 13

Frederik Janssen and Johannes Fürnkranz. An empirical investigation of the trade-off between consistency and coverage

in rule learning heuristics. In J.-F. Boulicaut, M. Berthold, and T. Horváth, editors, Proceedings of the 11th International

Conference on Discovery Science (DS-08), pages 40–51, Budapest, Hungary, 2008. Springer-Verlag. 8, 14

Nada Lavrač, Johannes Fürnkranz, and Dragan Gamberger. Explicit feature construction and manipulation for covering

rule learning algorithms. In Jacek Koronacki, Slawomir T. Wirzchon, Zbigniew Ras, and Janusz Kacprzyk, editors,

Recent Advances in Machine Learning — Dedicated to the Memory of Ryszard Michalski. Springer-Verlag, To appear. 6

J. Ross Quinlan. Unknown attribute values in induction. In Proceedings of the 6th International Workshop on Machine

Learning (ML-89), pages 164–168, 1989. 6, 17

Maytal Saar-Tsechansky and Foster Provost. Handling missing values when applying classification models. Journal of

Machine Learning Research, 8:1625–1657, 2007. 9, 17

Ian H. Witten and Eibe Frank. Data Mining — Practical Machine Learning Tools and Techniques with Java Implementations.

Morgan Kaufmann Publishers, 2nd edition, 2005. URL http://www.cs.waikato.ac.nz/~ml/weka/. 8

Lars Wohlrab. Comparison of different methods for handling missing attribute values in the SeCo rule learner. Indepen-

dent Study Project, Knowledge Engineering Group, TU Darmstadt, 2009. In German. 8, 12

19

http://www.ics.uci.edu/~mlearn/MLRepository.html
http://www.cs.waikato.ac.nz/~ml/weka/

	1 Introduction
	2 Unknown Values
	3 Strategies for Handling Unknown Values
	3.1 Delete Strategy
	3.2 Ignored Value Strategy
	3.3 Any Value Strategy
	3.4 Special Value Strategy
	3.5 Common Value Strategy
	3.6 Pessimistic Value Strategy
	3.7 Predicted Value Strategy
	3.8 Distributed Value Strategy

	4 Experimental Setup
	5 Results
	5.1 Amputed datasets
	5.1.1 The credit-g dataset
	5.1.2 The KRKP dataset
	5.1.3 The segment dataset
	5.1.4 Summary: amputed datasets

	5.2 Real datasets
	5.2.1 Results with the Laplace-heuristic
	5.2.2 Results with the m-estimate
	5.2.3 Varying the Parameter of the Distributed Value Strategy
	5.2.4 Varying the Parameter of the Predicted Value Strategy

	5.3 Runtime

	6 Related Work
	7 Conclusion

