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Abstract

Local pattern discovery, pattern set discovery and global modeling build together as
consecutive steps a specific case of global pattern discovery. As each of these three steps
have gained an increased attention in recent years, a great variety of techniques for each
step have been proposed. Though so far there has been no systematic comparison of the
possible choices. In this paper, we will consider a special representative of local patterns,
namely class association rules, and evaluate several options for pattern set discovery and
for global modeling for this type of classification rules.

1. Introduction

Classification association rule mining is basically the integration of two opossitional tasks:
classification rule mining and association rule mining. Classification rule mining extracts
a small set of classification rules from the database and uses them to build an accurate
classifier. Most of the times the rules are generated one after the other in a separate and
conquer style exploiting the interaction with previous rules. However in association rule
mining all rules in the databases that satisfy some minimum interestingness constraints
(e.g. minimum support or confidence) are generated more or less exhaustively and without
regard of their interaction with other rules. Additionally both methods differ in the rules
they discover. Classification rules have a predetermined target the so called class, while as-
sociation rules lack a predetermined target. The integration of these two mining techniques
has been proposed by (Liu, Hsu, & Ma, 1998) and is done by concentrating on a specific
subset of associations, namely class association rules (abbreviated CAR), which can be used
for classification.

Recapitulatory classification association rule mining is a specific type of global pattern
discovery as it is segmentable into three consecutive tasks. The local pattern discovery gen-
erates all class association rules satisfying predefined constraints (e.g. a minimum support,
closeness etc.). The second phase, the pattern set discovery, selects a optimal subset of the
previously generated association rules. Optimality of the subset is accordant to one or more
arbitrary selectable heuristic that estimate the usefulness of the subset for future predic-
tions using (un-)supervised information content. In most cases this task is accomplished by
wrapper or filter approach, or basically can be reduced two one of this two cases. Note that
in the first step only association rules are evaluated independently of each other, while in
the second step it is possible that single rules or subsets are evaluated independently of each
other or with inclusion of partial or total information contained in the data base. However
in both phases unsupervised or supervised evaluation measures can be employed.



The local pattern discovery has gained an increased attention (Morik, Boulicaut, &
Siebes, 2005) in recent years, resulting in a great variety of techniques for the generation of
frequent local patterns or transferred to our case of frequent class association rules (Agrawal
& Srikant, 1994; Han, Pei, Yin, & Mao, 2004). Each of these implementations yield slightly
the same result only modified by additional constraints (e.g. closeness (Zaki & Hsiao, 2002)).
This in mind we concentrate one the latter two steps, the pattern set discovery and the global
modeling. The main goal of this paper is an empirical comparison of different techniques
described in the following sections for these steps. We will examine how respectively two
representative of these perform in liaison with each other and compare these results with
the performance of each technique if combined with a respective ”‘neutral”’ technique for
the other step (e.g., selecting all class association rules, or using all selected patterns for
the prediction).

The paper is organized as follows. Section 2 and Section 3 give a short introduction into
class association rule mining, global pattern discovery and the applied methods, respectively.
Section 4.1 describes the experimental setup and evaluate the results, before section 5
concludes.

2. Class Association Rule Mining

Before we outline the principles of classification association rule mining, some notions have
to be introduced. Using terms of both classification and association rule mining, we explain
classification and association rule mining separately and show how this both techniques are
fused for class association rule mining and what modifications have to be made.

In classification rule mining, a data set D is a relation which is defined by a finite set
of m distinct attributes Ay, ..., A,, and a set of class labels C', and consists of n instances.
Each attribute A; belongs to a certain category (for our purposes only nominal and numeric
ones are feasible) and therefore has either a finite (a category) or infinite (a real number)
set of possible values a] € A;. Instances d € D are described by a set of attribute values (for
each attribute) and in our case a single label (d = (a{l,a%Z, ...,alm c). Note that in some
cases multiple labels can be allowed. Classification rules consist similar to instances of some
attribute values for mutually exclusive attributes building the body or premise of the rule
and a single predicted class forming the head or conclusion (d = (A = af* NA;=a}? ... —
¢). A rule covers an example if the example meets premise of the rule which is then called
a covering rule. If a rule covers an example, the class in the conclusion is predicted. How
these rules are generated (e.g., separate-and-conquer-rule learning) and how the covering
rules are used together for future predictions (e.g., decision lists) depends on the employed
rule learning algorithm.

In association rule mining a data set is a set of transactions. Each transaction t € T
contains a finite set of items ¢ C I, where [ is the set of all items and || > 1, and has
unique transaction identifier tid € T, where T ist the set of all tids. A set X C I is called
an itemset and a set Y C T is called tidset. If an itemset contains exactly k items it is
called k-itemset. For an itemset X, its corresponding tidset is denoted as ¢(X), the set of
all tids that contain X as a subset. Analogous for a tidset Y, we denote its corresponding
itemsets i(Y'), the set items common to all the tids in Y. Note that for an itemset X holds
t(X) = Ngext(z), and for a transaction set Y holds i(Y') = Nyext(z). The combination of



an itemset X and its tidset is called IT — Pair and is denoted by X x ¢(X). An association
rule X — Y consists of two itemsets X and Y. X forms the body or and Y is the head
of the rule. An association rule r has a support s(r) = s in D, if s percent of the cases in
D contain the head X and body Y. A rule X — y holds in D with confidence c(r) = c if
¢ percent of the cases that contain the head X also contain the head Y. Covering is here
defined analogous to classification rule learning.

In classification association terms of classification and association rule mining are used
in conjunction, as it combines some features of classification and association rule mining.
A class association rule (abbreviated CAR) r is an implication of the form X — y, where
X C I is an itemset, and y C Y a class label. A class association rule r has a support
s(r) = sin D, if s percent of the cases in D contain X and are labeled with class y. A rule
X — y holds in D with confidence c(r) = ¢ if ¢ percent of the cases that contain X are
labeled with class y.

Classification association rule mining basically consists of three steps. The first step
employs an association rule mining algorithms that generates frequent itemsets. At best the
algorithm generates only frequent itemsets which can be used to generate class association
rule. If this is not the case an additional filtering of inappropriate rules has to be applied
before one can proceed to the next step. Obviously classification data sets are not always
viable association rule mining but can be transformed into a association data set. For
example, numeric attributes can be discretized (e.g., (Fayyad & Irani, 1993)) in advance.

The second step selects the class association rules which exceed a determined threshold
for one or more given heuristic values. These heuristics can be divided into two groups. The
first group considers only the properties of the rule alone without regard of other rules (e.g.
confidence). The second group evaluates the usefulness of the rule in interaction with other
rules (e.g., cross entropy). In some cases the selected rules are sorted descending according
to one or more heuristics. Note that the heuristics for the selection and sorting can differ.

In the last step the selected rules have to be applied for the classification of examples
whose class is unknown. There are many different approaches on how this is done. One solu-
tion is the decision list. Here all rules are sorted as above mentioned and only the prediction
of the first covering is used. Other approaches like the combination of the predictions of all
covering rules will be described in the next section.

3. Global Pattern Discovery

In this section we give a short introduction into a special case of global pattern discovery
which consists as before mentioned of three consecutive tasks: the local pattern discov-
ery, pattern set discovery and global modeling. These task are described separately in
the following subsections considering closed frequent itemsets for the generation of class
association rules explaining some representatives and the respective technique briefly. For
further information about these steps and their attendant examples we refer to (Crémilleux,
Fiirnkranz, Knobbe, & Scholz, 2007)

For our convenience the local pattern discovery was adjusted to the discovery of closed
frequent itemsets. As all different closed frequent itemset discovery methods yield the same
result and do only differ in their performance. We chose the state-of-the-art algorithm
CHARM (Zaki & Hsiao, 2002) which features both a good time and space performance.



3.1 Local Pattern Discovery

Despite there are other categories of local pattern discovery (e.g. subgroup discovery (Wro-
bel, 1997; Klosgen, 2002)) we concentrate on frequent itemset mining (Goethals, 2005)
which is both the most basic and popular representative of local pattern discovery. Re-
stricting us to frequent itemset clearly leads to a biased result which misses some aspects
of the distribution of items and some co-occurrences among the associations, but for the
purpose of comparison this will not have a severe consequences.

Itemsets can be considered as local patterns because items describe only the instances of
database which are covered by the respective individual pattern. Typically frequent itemset
discovery algorithms generate the pattern in a exhaustive, top-down and level-wise search.
Most of the times the set of discovered itemsets is returned in a compressed, but complete
and reconstructable representation by using elaborate data structures (Han et al., 2004) or
by exploiting specific characteristics (Zaki & Hsiao, 2002).

For our experiments we chose the local pattern discovery algorithm CHARM (Zaki &
Hsiao, 2002) which is an effective algorithm for the enumeration of close frequent itemsets.
Not going into detail CHARM employs several innovative ideas which include using a novel
tree-like search space capable of the simultaneous exploration of the itemset and the trans-
action space, utilizing a hybrid search that skips many levels in the tree structure and a
hash-based closeness checking. For further details we refer to (Zaki & Hsiao, 2002) which
provides a survey of this specific type of global pattern discovery.

3.2 Pattern Set Discovery

The local pattern discovery phase generates pattern which are chosen on the basis of their
individual properties and performance. In practice the resulting sets of local patterns are
large and show potentially high levels of redundancy among the patterns. This two prop-
erties can be derogatory to various applications. A manual inspection of local patterns is
only feasible for a small, manageable amount of patterns. Additionally high redundancy
can hinder the performance of many, often redundant, features. Aiming to alleviate this
issues the pattern set discovery tries to reduce the redundancy by selecting only a subset
of patterns from the initial large pattern set.

Several approaches have been proposed to reduce the number of local patterns without
regard of their future use. Recent examples include constraint-based pattern set mining
(Raedt & Zimmermann, 2007) and pattern teams (Knobbe & Ho, 2006a, 2006b). Both
approaches assume that the syntactic structure of the individual patterns is irrelevant at
this stage, and that patterns can be fully characterized by a binary feature that determines
for each example whether it is covered by the pattern or not. For further details on these
or alternate approaches we refer to the just mentioned papers and to (Zaki & Hsiao, 2002)

For this work we will consider only two simple representatives of pattern set discovery.
The first one is not obviously a pattern set discovery, as it selects all patterns for the global
modeling. Therefore this ”‘all selector”’ can be considered as the neutral counterpart to the
global modeling techniques. The second one is a confidence filter which selects all items or
class association rules whose confidence exceeds a given minimum confidence threshold.



3.3 Global Modeling

There are many variants for the global modeling of pattern sets and in our case class
association rule sets, so we confined ourselves to choosing some methods for two groups
of global modeling. These groups have two facts in common. First they determine the
rules which cover the instance to be classified and integrates their predictions into a final
prediction. Second each rule has a weight for each (predicted) class. We decided to use the
laplace heuristics for the evaluation and ranking of a rule because this heuristic is always
calculable for each class for every single rule.

The first group are voting methods which use the covering rules as votes for the final
prediction. The vote of a single rule can be weighted using either its laplace value directly
or a ranking based value according to its laplace value. The second group are probabilistic
methods which use estimated probabilities as the final prediction.

3.3.1 VOTING METHODS

Common ground of all voting methods is as its name suggest the appliance of votes for a
prediction but they differ in the weights they assign to a vote of a rule. So essentially the
classification works as follows:

arg max,, ¢ Z weight(r), (1)
TE€ERc;

where R, is the set of Rules covering the example and predicting class ¢; (e.g. Ay =
al N Ay = a§--- — ¢;). The weight of the rule weight(r) depends on the chosen voting
method. Independently of the method the rules should be sorted descending or ranked in
advance using the laplace value of each rule according to the predicted class. Note that this
is an arbitrary choice as other heuristics would also be appropriate. The resulting ranking
of rules can be considered as a decision list beginning with the best rules and ending with
the worst.

The first representative Best Rule (abbrev. BR) considers as hinted by its name only
the best rule which covers the example to predicted. At first sight BR does not seem to
be a voting method but it is possible to choose voting weights that simulate its behaviour.
One possible solution is setting weightpg for the best rule to one (or any other nonzero
value) and for all other rules to zero.

The next representatives are Unweighted and Weighted Voting (abbrev. UV and WV
accordingly). These methods have in common that they use the weights of all covering
rules. UV assigns a weight of one to all covering rules, essentially this can be considered as
the counting of covering rules separately for each class. WV uses the laplace value of each
rule as its weight, so basically the laplacian weights are counted for each class.

weightyy (r) =1 weightyy (r) = laplace(r) (2)

The last two methods Linear Weighted Voting (LV) and Inverse Weighted Voting (IV)
(Mutter, 2004) differ from V and W'V as they do not use the laplace value laplace(r) but
the ranking for the weighting of a rule r. So each rule r obtains a rank rank(r) according
to the laplace sorting. The ranks are represented by integers beginning with one for the



best rule and ending with total number of rules for the worst (rankqz)-

rank(r) 1

weightry =1 — weightry =

3)

rankmas + 1 rank(r)

3.3.2 BAYESIAN DECODING

The Bayesian Decoding (abbrev. BD) is a probabilistic approach to estimate the class of
an example on the basis of the rules by which it is covered. Contrary to the previous voting
method a rule influences directly the outcome not only for the class it predicts but also for
all classes of the data set.

The goal of this method is the estimation of the probability of a class ¢; under the
observation of the conjunction of the rules R = R; A Ra A ... A Rg that cover the example,
namely Pr(¢;|R),and the prediction of the most probable class.

arg max, .o Pr(ci|R) (4)

This probability can be translated in a determinable form by applying the Bayes theo-
rem. This leads to the following formula:
Pr(R|c;)
Pr(g|R) = ————= 5
r(CZ’ ) Pr(R) ( )
As the denominator Pr(Ry ARa A. .. A Rg) does not affect the relative order of the estimated
probabilities it can be ignored. If we additionally assume that the observation of one of
the Rules R; is independent of the occurrence of the other we can make the following naive
assumption:

Pr(R|c;) = Pr(Ri ARy A ... A Rgle;) = [ Pr(Rile:) (6)
k=1
Finally the classification works as follows:

S
arg max, o Pr(c;) - H Pr(Rg|c;) (7)
k=1

Remains to be explained how these probabilities can be estimated. The first one Pr(¢;) can
be estimated simply by counting the training examples belonging to class ¢; and dividing
this number by the total number of training examples. The second one Pr(Ry|c;) can be
rated slightly different and simultaneously for all classes ¢; € C. First we determine the
number of training examples that are covered by the rule Ry separately for each class and
divide these numbers by their sum. It is possible that some rules do not cover examples of
some classes, leading to a probability of zero for these classes as a single zero probability
will yield to a product of zero. Avoiding this problem, we apply the laplace heuristic. So the
number of examples that are covered by the rule Ry is increased by one for each class and
the outcome of this is that the total sum is increased by |C|, the total number of classes.

4. Experiments

In this section we will describe at first the setup of our experiments specifying the em-
ployed methods and the used data sets. After that we will evaluate the results we obtained
comparing them with each other and concluding about .



4.1 Experimental Setup

Our experiments consist of the before mentioned phases of global pattern discovery. We
used the CHARM for the discovery of closed frequent itemsets. Most of the times it was
applied to multiclass data sets, but CHARM is designed for unsupervised data. We solved
this problem by slightly modifying CHARM and the itemsets to which it was applied. Each
itemset holds the absolute support (as a list of all examples containing the itemset) for each
class of the data set. CHARM was altered to manage this kind of itemsets in the same
way as handling the unsupervised itemsets it was designed for. With this modifications we
could apply CHARM to the data of each class operating on the data of the respective class
normally but also updating the supports for all other classes. Afterward we combined the
results into a single set of closed class association rules merging if necessary rules which are
closed for different classes. The minimum support was adjusted for each segment to 3%.
Additionally we demanded that at the respective itemset must contain least 2 instances.
Note that the first phase has only to be computed once, the results one obtains can be
stored for later use.

For the second phase we implemented the pattern set discovery algorithms we described
briefly above, selecting either all patterns or only those whose confidence meets some con-
fidence threshold. As the minimum confidence should depend on the number of the classes
each data set contains and should be preferably significant but not too restrictive, we set
it to the reciprocal value of the number of classes. So for most of the data set we obtained
different minimum thresholds.

We implemented the global modeling techniques (BR,UV , WV IV LV ,BD) described
in the previous section for the third phase. Analogous to the second phase the unweighted
voting can be considered the neutral method for the third phase as it uses the unweighted
and unbiased information of each class association rule.

In all phases for the tie breaking for class associations rules the following rule properties
were used (in descending order of relevance): the heuristic value (laplace), the number of
correct predicted examples, the number of examples of the predicted class and the number
of AV-Pairs. If these did not discriminate between two rules one was randomly chosen.

For the evaluation of the resulting classifiers we employed a stratified ten-fold cross
validation using the mean value and standard deviation of the accuracies obtained for
comparison.

For our experiments we used data sets of the UCI repository. These data sets were
chosen for a great variety of the number of instances and classes, and of different ratios
between numerical and nominal attributes. The statistical properties of the used data
sets are displayed in table 4.1 which contains the number of classes, instances, attributes
(separate for numerical and nominal attributes) and the percentage of instances belonging
to the most represented class. Additionally it includes the mean and standard deviation of
the number of patterns we obtained in our experiments.

4.2 Experimental results

At first we will have a look at table 4.1 and especially at the number of patterns for each data
sets. Note that we will not always explicitly say that we are talking about mean numbers.
Against all expectations it seems that the number of instances and classes respectively are



Attributes Patterns
Data set Instances | Nominal | Numeric | Classes | Default | Mean Dev
Autos 205 10 15 7 32,68 | 12356,9 | 3787,18
Balance-scale 625 0 4 3 46,08 65,1 4,28
Breast-cancer 286 10 0 2 70,28 1793,1 42,71
Breast-w 699 0 9 2 65,52 | 11981,9 691,83
Diabetes 768 0 8 2 65,1 187,3 24,43
Glass 214 0 9 7 35,51 2485,3 616,25
Heart-c 303 7 6 5 54,46 1802,8 512,9
Heart-h 294 7 6 5 63,95 27,6 7,53
Heart-statlog 270 0 14 2 55,56 347,4 43,02
Iris 150 0 4 3 33,33 | 14701,6 1181,1
Labor 57 8 8 2 64,91 392,7 184,6
Lymph 148 16 2 4 33,61 9670,9 1499,9
Vowel 990 3 10 11 9,09 3098,4 131,86
Zoo 101 16 1 7 40,59 213,9 14,33
Table 1: Data sets
All Patterns Confident Patterns
Mean Dev | Mean Dev
Instances -0,11 | -0,29 -0,1 -0,28
Classes -0,01 0,22 0 0,21
Nominal 0,01 0,25 0 0,25
Numeric 0,11 0,32 | 0,128 0,39

Table 2: Correlation: Patterns

not correlated with the mean number of patterns generated. For example the balance-
scale data set being one of the greater data sets has only about 65 patterns contrary to
the small data set Lymph which has about 9670 patterns. A converse example are the
data sets Breast-w and Zoo as the greater one has more patterns as the other. For the
number of classes similar examples can be found (e.g. breast-w and vowel, or autos and
diabetes). Therefore one can conclude that the number of patterns depends whether on the
number of instances nor on the number of classes. For circumstantiating this observation
we calculated the pearson’s correlation coefficient for the number of classes, instances, and
numeric and nominal attributes compared the mean and the standard deviation of patterns
(see table 4.2). The coefficients we obtained proved that there is indeed no correlation
between these values and mean number of patterns. Only the coefficients for the standard
deviation showed some small correlations but as these are nearly identical for all tested
properties they seem to be insignificant.

Now we will have a look at the results that we obtained by applying the before mentioned
methods of global modeling to all generated patterns (see table 4.2). For the evaluation of
the results we used the standard sign test with significance levels of 95% (significant) and
99% (highly significant). Herefore we used a table that contains the wins, losses, and ties
for a pair of methods (see table 4.2).

The first observation we make is that the methods BR, V, and WV are not significantly
different. Though the method WV outperforms the other in most of the times. Additionally
all three just mentioned methods are highly significant better than the methods IV and LV
and outperform (but not significantly) the method Bayes in most of the times. Note that the
method WV is even significant better than the method Bayes. The method LV outperforms



BR \% \VAY LV v Bayes
Data set Acc Dev Acc Dev Acc Dev Acc Dev Acc Dev Acc Dev
Autos 42,14 | 24,17 | 39,05 | 27,38 | 39,98 | 27,64 | 37,57 | 21,43 | 20,93 9,06 8,83 | 13,66
Balance-s. | 70,88 7,33 73,3 6,41 | 75,51 6,06 8,95 3,34 8 1,49 | 60,49 6,21
Breast-c. 70,32 9,4 70,3 6,76 | 74,14 6,91 | 29,69 6,88 | 29,35 6,69 | 70,31 6,88
Breast-w 88,71 8,74 | 96,86 2,21 | 96,57 3,38 | 95,53 2,5 | 37,89 | 17,56 74,4 8,77
Diabetes 74,35 7,28 | 75,13 7,09 | 74,35 5,88 | 42,31 9,36 | 29,82 7,98 | 73,44 5,2

Glass 55,24 | 10,85 | 52,84 | 9,74 | 58,59 12 | 39,44 | 15,21 | 16,54 | 12,81 | 58,42 | 14,24
Heart-c 83,15 | 7,41 | 78,85 | 534 | 83,82 | 6,38 | 53,47 | 8,96 | 17,48 | 8,57 | 74,56 | 6,36
Heart-h 63,50 | 30,12 | 66,1 | 26,23 | 69,08 | 29,1 | 30,18 | 22,28 | 22,33 | 20,37 | 78,7 | 21,54
Heart-s. 80,37 | 7,42 | 81,11 75 | 837 6,1 | 40,37 75 | 16,3 | 558 | 74,44 | 5,64
Tris 86,67 | 17,21 | 82,67 | 21,82 | 91,33 | 10,01 | 81,33 | 21,03 | 53,33 | 31,47 58 | 46,83
Labor 75,67 | 24,14 67 | 31,83 67 | 31,33 67 | 30,85 | 29,33 | 17,76 | 81,33 | 19,95
Lymph 78,43 | 14,27 | 77,76 | 10,81 | 78,43 | 9,74 | 68,24 | 14,75 | 31,19 | 18,61 | 2,05 | 4,56
Vowel 42,83 | 11,05 | 30,81 | 6,18 | 45,25 | 4,76 | 17,17 | 4,44 | 7,77 | 4,93 | 18,59 | 12,9
Zoo 92 | 11,35 93 | 10,59 92 | 11,35 90 | 10,54 87 | 14,94 90 | 10,54

Table 3: Results: All Patterns

\% WV LV v Bayes
BR | 8-6-0 | 2-9-3 13-1-0 | 14-0-0 | 11-3-0
\Y - 3-10-1 | 13-0-1 | 14-0-0 | 10-4-0
WV | - - 13-0-1 | 14-0-0 | 12-2-0
LV - - - 14-0-0 | 4-9-1
v - - - - 2-12-0

Table 4: All Patterns: Win-Loss-Tie

the method IV highly significant and is insignificant worse than Bayes. The results of Bayes
are highly significant better than those of the method IV.

So we come to the conclusion that the group of methods BR, V, and WV perform best,
whereby the method WYV is the best choice. The other methods are in descending order of
performance are Bayes, LV and IV.

Next we will evaluate the results that we obtained employing only the confident patterns
(see table 4.2) and table 4.2). For the evaluation of the results we used the standard sign
test as described above.

Like before the methods BR, V, and WV are not significantly different and are slightly
better than the other methods. All these methods are (highly) significant better than the
methods IV and LV. The only exception are BR and IV as BR is not significant better than
IV. As already seen for the previous results the methods BR, V, and WV are not significant
than Bayes. Here this is also for the method WV the case. The method LV outperforms
highly significantly the method IV as before seen but is now comparable to Bayes. The
results of Bayes are not significant better than those of the method IV.

So the conclusions of this experiments are very similar to the previous ones. The group
of methods BR, V, and WV has the best performance. As before the best representative
is the method WV. The (descending) order of performance remains unchanged: Bayes, LV
and TV.

If we compare the results using all patterns and confident patterns respectively one can
see that these depend strongly on the employed methods. There is a marginal worsening for
BR and WV if we use only confident patterns and a marginal improvement respectively for
the method V. The method BR profits of the constriction to confident patterns by about



BR \% \VAY LV v Bayes
Data set Acc Dev Acc Dev Acc Dev Acc Dev Acc Dev Acc Dev

Autos 42,14 | 24,17 | 40,48 | 28,76 | 39,98 | 27,64 | 37,57 | 21,43 | 26,33 | 10,23 | 32,57 | 22,72
Balance-s. | 70,88 7,33 71,7 7,93 | 73,28 7,26 | 68,49 8,74 | 50,62 23,5 | 70,57 | 70,31
Breast-c. 69,96 8,8 74,5 7,92 74,5 7,92 | 74,86 7,66 | 74,86 7,17 | 70,57 9

Breast-w | 88,71 | 8,74 | 96,71 | 3,01 | 96,57 | 3,38 | 96,43 | 1,93 | 9543 | 3,48 | 65,97 | 12,91
Diabetes | 74,35 | 7,28 | 71,09 6,3 | 72,13 | 5,1 | 68,22 | 6,46 | 67,58 | 6,93 | 73,31 | 5,00

Glass 55,24 | 10,85 | 52,4 | 9,29 | 58,59 | 11,13 | 44,98 | 13,73 | 34,63 | 11,67 | 63,79 | 16,08
Heart-c 83,15 | 7,41 | 83,16 | 532 | 83,82 | 6,38 | 73,25 | 6,25 | 22,43 | 5,76 | 74,23 | 6,52
Heart-h 63,50 | 30,12 | 68,4 | 29,01 | 69,43 | 288 | 50,57 | 23,85 | 22,32 | 17,68 | 61,78 | 47,1
Heart-s. 80,37 | 7,42 | 8222 | 6,25 | 82,96 | 6,34 | 81,11 | 6,36 | 72,59 | 9,27 | 75,19 | 4,64
Tris 86,67 | 17,21 86 | 15,53 | 91,33 | 10,01 | 86,67 | 13,7 70 | 29,19 | 55,33 | 41,7
Labor 75,67 | 24,14 | 68,67 | 33,19 | 68,67 | 33,19 67 | 29,83 | 68,67 | 31,28 | 84,33 | 14,74
Lymph 78,43 | 14,27 | 77,76 | 9,85 | 79,1 | 9,05 | 70,95 | 15,1 46 | 18,42 | 64,19 | 18,62
Vowel 42,83 | 11,05 | 36,87 | 6,77 | 46,16 | 5,15 | 21,01 | 4,83 | 12,12 | 5,77 | 38,38 10
Zoo 92 | 11,35 93 | 10,59 92 | 11,35 90 | 10,54 87 | 14,94 90 | 10,54

Table 5: Results: Confident Patterns

Vv \VAY LV v Bayes
BR 7-7-0 | 3-10-1 | 10-3-1 | 12-2-0 | 11-3-0
\% - 3-9-2 12-2-0 | 12-1-1 | 10-4-0
WV | - - 13-1-0 | 12-1-1 | 11-3-0
LV - - - 12-1-1 | 6-7-1
v - - - - 3-11-0

Table 6: Confident Patterns: Win-Loss-Tie

7% which is not an ignorable amount. For the method IV and LV these improvements are
even better as they are about 24,5% and 16,5% in the mean.

5. Conclusions

In this paper we described how the class association rule mining can be segmented into
three steps: local pattern discovery, pattern set discovery and global modeling. As there
are several exchangeable methods for each of these steps we gave a short survey of some of
the appropriate methods respectively.

For our experiments we extended the closed frequent itemset mining algorithm mining
CHARM to the end that it can be applied to the closed class association rule mining
for multi class problems. Hereby we obtained sets of closed association rules which were
additionally filter by a class wise minimum confidence threshold. We applied some voting
methods and a bayesian approach for global modeling one time to all the patterns and one
time to the confident patterns only.

It turned out that the number of patterns depends only on the data set itself and is not
correlated to any of its numerical properties (like the number of classes). For all and the
confident patterns the methods Best Rule, Voting, and Weighted Voting were outperforming
all other methods. Whereby Weighted Voting was always slightly better than the others
and is therefore the best choice for global modeling so far. These methods did not profit of
the additional confidence properties. Only the remaining methods Inverse Voting, Linear
Voting and Bayes saw minor to major improvements through this constraint.
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Appendix A. Probability Distributions for N-Queens
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