
Efficient Voting Prediction
for Pairwise Multilabel Classification

Eneldo Loza Menćıa, Sang-Hyeun Park, Johannes Fürnkranz

TU Darmstadt - Knowledge Engineering Group
Hochschulstr. 10 - Darmstadt - Germany

Abstract

The pairwise approach to multilabel classification reduces the problem to learn-
ing and aggregating preference predictions among the possible labels. A key
problem is the need to query a quadratic number of preferences for making a
prediction. To solve this problem, we extend the recently proposed QWeighted
algorithm for efficient pairwise multiclass voting to the multilabel setting, and
evaluate the adapted algorithm on several real-world datasets. We achieve an
average-case reduction of classifier evaluations from n2 to n+ dn log n, where n
is the total number of possible labels and d is the average number of labels per
instance, which is typically quite small in real-world datasets.

Key words: multilabel classification, voting aggregation, learning by pairwise
comparison, efficient classification

1. Introduction

Multilabel classification refers to the task of learning a function that maps
instances x̄ ∈ X to label subsets Px̄ ⊂ ℒ, where ℒ = {�1, . . . , �n} is a finite set
of predefined labels, typically with a small to moderate number of alternatives.
Thus, in contrast to multiclass learning, alternatives are not assumed to be
mutually exclusive, such that multiple labels may be associated with a single
instance.

A prototypical application scenario for multilabel classification is the assign-
ment of a set of keywords to a document, a frequently encountered problem in

Email addresses: eneldo@ke.tu-darmstadt.de (Eneldo Loza Menćıa),
park@ke.tu-darmstadt.de (Sang-Hyeun Park), juffi@ke.tu-darmstadt.de (Johannes
Fürnkranz)

This is the authors’ version of the work retrieved from www.ke.tu-darmstadt.de. The
original publication appeared in Neurocomputing, 73:7-9, pp. 1164 – 1176, 2010, doi:10.
1016/j.neucom.2009.11.024, and is available at www.sciencedirect.com/science/article/

B6V10-4Y646JK-3/2/6c043e816e88387deed6ff0301a9666c

1

the text classification domain. With upcoming Web 2.0 technologies this do-
main is extended by a wide range of tag suggestion tasks (e.g. (Tsoumakas,
Katakis, and Vlahavas, 2008; Katakis, Tsoumakas, and Vlahavas, 2008)). This
kind of problems are often associated with a large number of instances or classes
which demand for an efficient processing. The Reuters-2000 dataset for instance
is composed of over 800,000 documents and 103 classes (cf. Section 5.2), a
benchmark extracted from the del.icio.us platform contains almost 1000 classes
(Tsoumakas et al., 2008) and the EUR-Lex database consists of almost 4000
classes (cf. Section 5.2). Other tasks include protein classification and semantic
multimedia annotation.

The predominant approach to multilabel classification is binary relevance
learning (BR). In BR the problem is decomposed into several binary problems
in the following way: for each class a binary classifier is trained to discriminate
between examples of the class and the examples of the remaining classes. A
different approach is to have a classifier for each possible pair of classes that is
trained to distinguish only between these two classes. This approach is usually
denominated one-vs-one, round robin or pairwise classification and has shown
to achieve a higher predictive quality in the multiclass (Fürnkranz, 2002; Hsu
and Lin, 2002) as well as in the multilabel case (Loza Menćıa and Fürnkranz,
2008b; Fürnkranz, Hüllermeier, Loza Menćıa, and Brinker, 2008).

It has been shown that the complexity for training an ensemble of pair-
wise classifiers is comparable to the complexity of training a BR ensemble
(Fürnkranz, 2002; Loza Menćıa and Fürnkranz, 2008b). The reason is that
even though we have a quadratic number of classifiers in a pairwise ensemble as
opposed to a linear number in the BR ensemble, each of the pairwise classifiers
contains fewer examples. More precisely, each original training example occurs
in all of the n BR classifiers, whereas it only occurs in n− 1 pairwise classifiers.
Thus, the total number of training examples in the union of all training sets is
smaller in the pairwise case. The fact that these examples are distributed over
a larger number of different classifiers makes the pairwise approach particularly
attractive for expensive classifiers like SVMs.

However, the problem remains that a quadratic number of classifiers has to
be evaluated to produce a prediction. Our first attempts in efficient multilabel
pairwise classification lead to the algorithm MLPP, which uses the fast percep-
tron algorithm as base classifier. With this algorithm, we successfully tackled
the large Reuters-RCV1 text classification benchmark, despite the quadratic
number of base classifiers (Loza Menćıa and Fürnkranz, 2008b). Although we
were able to beat the competing fast MMP algorithm (Crammer and Singer,
2003) in terms of ranking performance and were competitive in training time,
the costs for testing were not satisfactory.

Park and Fürnkranz (2007) recently introduced a method named QWeighted
for multiclass problems that intelligently selects only the base classifiers that are
actually necessary to predict the top class. This reduced the evaluations needed
from n(n − 1)/2 to only n log n in practice, which is near the n evaluations
processed by BR.

In this paper we introduce a novel algorithm which adapts the QWeighted

2

method to the MLPP algorithm. In a nutshell, the adaption works as fol-
lows: instead of stopping when the top class is determined, we repeatedly apply
QWeighted to the remaining classes until the final label set is predicted. In or-
der to determine at which position to stop, we use the calibrated label ranking
technique (Fürnkranz et al., 2008), which introduces an artificial label for indi-
cating the boundary between relevant and irrelevant classes. We evaluated this
technique on a selection of multilabel datasets that vary in terms of problem
domain, number of classes and label density. The results demonstrate that our
modification allows the pairwise technique to process such data in comparable
time to the one-per-class approaches while producing more accurate predictions.

Nevertheless, this novel algorithm still uses a quadratic number of base classi-
fiers, i.e. the memory requirements grow quadratically to the number of classes.
This problem cannot be solved by the QWeighted approach, however, we have
recently introduced a variant of MLPP that represents the perceptrons as a
linear combination of training examples in order to enable the algorithm to
handle a large amount of classes (Loza Menćıa, Park, and Fürnkranz, 2008;
Loza Menćıa and Fürnkranz, 2008b).

A related work on the issue of efficient multilabel classification is the HOMER
algorithm by Tsoumakas et al. (2008). The label set is organized through clus-
tering into a hierarchy of labels. A multilabel classifier is then trained at each
inner node. This reformulating leads to less complex problems at each inner
node and hence allows to train the classifier ensemble more efficiently in terms
of computations and memory. We are currently cooperating with the authors on
combining HOMER and our approach in order to reduce the memory require-
ment and obtained first encouraging results (Tsoumakas, Katakis, Loza Menćıa,
Park, and Fürnkranz, 2009).

This work is organized as follows: Section 2 defines the problem and describes
the basic algorithms such as perceptrons, binary relevance, MLPP and CMLPP.
Section 3 introduces QWeighted and the adaptation to multilabel classification.
In Section 4 we compare the time and space complexity of the different algo-
rithms. Section 5 is dedicated to the experimental setup along with the used
datasets and evaluation measures, the results are presented in Section 6. Section
7 provides a final discussion and concludes this paper.

2. Multilabel Classification

We represent an instance or object as a vector x̄ = (x1, . . . , xa) in a feature
space X ⊆ Ra. Each instance x̄i is assigned to a set of relevant labels Pi, a
subset of the n possible classes ℒ = {�1, . . . , �n}. For multilabel problems, the
cardinality ∣Pi∣ of the label sets is not restricted, whereas for binary problems
∣Pi∣ = 1. For the sake of simplicity we use the following notation for the binary
case: we define ℒ = {1,−1} as the set of classes so that each object x̄i is assigned
to a class �i ∈ {1,−1} , Pi = {�i}.

3

2.1. Perceptrons

We use the simple but fast perceptrons as base classifiers (Rosenblatt, 1958).
As support vector machines (SVM), their decision function describes a hyper-
plane that divides the a-dimensional space into two halves corresponding to
positive and negative examples. We use a version that works without learning
rate and threshold:

o(x̄) = sgn(x̄ ⋅ w̄) (1)

with the internal weight vector w̄ and sgn(t) = 1 for t ≥ 0 and −1 otherwise.
If there exists a separating hyperplane between the two sets of points, i.e. they
are linearly separable, it is proved that the following update rule finds it (cf.,
e.g., (Bishop, 1995)).

�i = (�i − o(x̄i)) w̄i+1 = w̄i + �ix̄i (2)

The main reason for choosing the perceptrons as our base classifier is because,
contrary to SVMs, they can be trained efficiently in an incremental setting,
which makes them particularly well-suited for large-scale classification prob-
lems such as the Reuters-RCV1 benchmark (Lewis, Yang, Rose, and Li, 2004),
without forfeiting too much accuracy though SVMs find the maximum-margin
hyperplane (Freund and Schapire, 1999; Crammer and Singer, 2003; Shalev-
Shwartz and Singer, 2005).

In addition, important advancements were achieved in recent times trying to
adapt the perceptron algorithm in order to maximize the margin of the separat-
ing hyperplane, without losing the advantages of simplicity and efficiency that
characterize the perceptron algorithm (Li, Zaragoza, Herbrich, Shawe-Taylor,
and Kandola, 2002; Crammer, Dekel, Keshet, Shalev-Shwartz, and Singer, 2006;
Khardon and Wachman, 2007; Tsampouka and Shawe-Taylor, 2007). The pre-
sented algorithms can easily be adapted in order to use these variants if desired.

Nevertheless, we also experimented with SVMs as base classifier. Although
we were able to increase prediction accuracy in some cases, many datasets could
not be processed despite using the efficient LibLinear library (Fan, Chang, Hsieh,
Wang, and Lin, 2008).

2.2. Binary Relevance Ranking

In order to provide a baseline and to show the efficiency of the pairwise
approach, we compare our algorithms to the binary relevance (BR) or one-
against-all (OAA) variant with perceptrons as base classifier.

In the binary relevance method, a multilabel training set with n possible
classes is decomposed into n binary training sets that are then used to train n
binary classifiers. So for each pair (x̄i,Pi) in the original training set n different
pairs (x̄i, �ij) with j = 1 . . . n are generated as follows:

�ij =

{
1 �j ∈ Pi

−1 otℎerwise
(3)

4

Figure 1: Subproblems in binary relevance for multilabel classification: original three-class
problem (green, blue and black classes, shown as overlapping clouds in left picture) is divided
into green vs. rest (second picture), black vs. rest (third) and blue vs. rest two-class sub-
problems. Separating hyperplanes, denoted by red lines, have to respect all examples (inside
the clouds). Clouds of negative examples have dotted lines.

Figure 2: Subproblems in pairwise multilabel classification: original three-class problem is
divided into green vs. blue (second picture, black examples are ignored), green vs. black
(blue is ignored) and blue vs. black two-class subproblems. Separating hyperplanes have to
respect only examples from two classes in contrast to BR in Figure 1. Dotted lines denote the
ignored class.

Note, that all of these n decomposed training sets are of the same size as the
original training set. A brief visual description of this technique is available in
Figure 1.

Supposing we use perceptrons as base learners, n different oj classifiers are
trained in order to determine the relevance of �j . In consequence, the combined
prediction of the binary relevance classifier for an instance x̄ would be the set
{�j ∣ oj(x̄) = 1}. If, in contrast, we want to obtain a ranking of classes according
to their relevance, we can simply use the result of the internal computation of
the perceptrons as a measure of relevance. According to (1) the desired linear
combination is the inner product o′j(x̄) = x̄ ⋅w̄j . So the result of the prediction is

a vector ō′(x̄) = (x̄w̄1, . . . , x̄w̄n) where component j corresponds to the relevance
of class �j . Ties are broken randomly to not favor any particular class.

2.3. Multilabel Pairwise Perceptrons (MLPP)

In the pairwise binarization method for multiclass classification, one classifier
is trained for each pair of classes, i.e., a problem with n different classes is

decomposed into n(n−1)
2 smaller subproblems. For each pair of classes (�u, �v),

only examples belonging to either �u or �v are used to train the corresponding

5

Require: Training example pair (x̄i, Pi), perceptrons {w̄u,v ∣ u < v, �u, �v ∈ ℒ}
1: Ni ← ℒ ∖ Pi
2: for each (�u, �v) ∈ Pi ×Ni do
3: if u < v then
4: w̄u,v ← TrainPerceptron(w̄u,v, (x̄i, 1)) ⊳ train as positive example
5: else
6: w̄v,u ← TrainPerceptron(w̄v,u, (x̄i,−1)) ⊳ train as negative example

7: return {w̄u,v ∣ u < v, �u, �v ∈ ℒ} ⊳ updated perceptrons

Figure 3: Pseudocode of the (incremental) training method of the MLPP algorithm.

o1,2 = 1 o2,1 = -1 o3,1 = -1 o4,1 = -1 o5,1 = -1
o1,3 = 1 o2,3 = 1 o3,2 = -1 o4,2 = -1 o5,2 = -1
o1,4 = 1 o2,4 = 1 o3,4 = 1 o4,3 = -1 o5,3 = -1
o1,5 = 1 o2,5 = 1 o3,5 = 1 o4,5 = 1 o5,4 = -1

v1 = 4 v2 = 3 v3 = 2 v4 = 1 v5 = 0

Figure 4: MLPP voting: an example x̄ is classified by all 10 base perceptrons oi,j , i ∕=
j , �i, �j ∈ ℒ. Note the redundancy given by oi,j = −o′j,i. The last line counts the pos-
itive outcomes for each class.

classifier ou,v. All other examples are ignored. In the multilabel case, and
assuming u < v, an example is added to the training set for classifier ou,v if �u is
a relevant class and �v is an irrelevant class or vice versa, i.e., if (�u, �v) ∈ Pi×Ni

or vice versa (�u, �v) ∈ Ni×Pi with Ni = ℒ∖Pi as negative labelset (cf. Figure
2). Thus training examples of class �u will receive a training signal of +1,
whereas training examples of class �v will be classified with −1. Figure 3 shows
the training algorithm in pseudocode. Of course, MLPPs being perceptrons,
they can also be trained incrementally.

During classification, the predictions of the base classifiers ou,v are inter-
preted as preference statements that predict for a given example which of the
two labels �u or �v is preferred. In order to convert these binary preferences
into a class ranking, we use a simple voting strategy known as max-wins, which
interprets each binary preference as a vote for the preferred class. Classes are
then ranked according to the number of received votes after the evaluation of

all n(n−1)
2 perceptrons. Ties are broken randomly in our case.

Figure 4 shows a possible result of classifying the sample instance of Figure
6. Perceptron o1,5 predicts (correctly) the first class, consequently �1 receives
one vote and class �5 zero (denoted by o1,5 = 1 in the first and o5,1 = −1 in

Several extensions of the pairwise approach, such as Pairwise Correcting Classifiers (Mor-
eira and Mayoraz, 1998) and Tri-Class SVMs (Angulo, Ruiz, González, and Ortega, 2006),
also integrate the remaining examples into the training process. In several experiments, this
has lead to an improved performance, which has to be paid with a considerable increase in
training time, and more complex decision boundaries for the involved classifiers.

6

~

~
~

~~

~
~

~
~

~
~

~

~
~

-

-
-

-
-

-

--

-

-

-

-

-

-
-

-
-

-

#

#

#
#

#

#

#
#

##

o
o

o o
o

o
o

o
o

o

o
o

o

o

o
o

o
o

o

+

+
+

+

+

+
+

+
+

+
+

+
+

+
+

+

+

+

x

x
x

xx

x
x

x
x

x

x
x

x
x

(a) binary-relevance classification
n classifiers, each separates one

class from all other classes. Here:
+ against all other classes.

~

~
~

~~

~
~

~
~

~
~

~

~
~

+

+
+

+

+

+
+

+
+

+
+

+
+

+
+

+

+

+

(b) pairwise classification
n(n−1)

2 classifiers, one for each pair
of classes.
Here: + against ∼.

Figure 5: One-against-all and pairwise binarization.

the last row). All 10 perceptrons (the values in the upper right corner can be
deduced due to the symmetry property of the perceptrons) are evaluated though
only six are ‘competent’ since only they were trained with the original example.

This may be disturbing at first sight since many non-competent perceptrons,
i.e. perceptrons discriminating �u and �v for a given instance x̄i with �u, �v ∈ Pi

or �u, �v ∈ Ni, are involved in the voting process: o1,2 is asked though it cannot
know anything relevant in order to determine if x̄ belongs to �1 or �2 since it was
neither trained on this example nor on other examples belonging simultaneously
to both classes �1 and �2 (or to none of both). In the worst case the resulting
noisy votes (votes from non-competent perceptrons) concentrate on a single
negative class, which would lead to misclassifications. But note that any class
can at most receive n−1 votes, so that in the extreme case when the competent
perceptrons all classify correctly and the non-competent ones concentrate on a
single class, a positive class would still receive at least n−∣P ∣ and a negative at
most n− ∣P ∣ − 1 votes. Class �3 in Figure 4 is an example for this: It receives
all possible noisy votes but still loses against the positive classes �1 and �2.

The pairwise binarization method is often regarded as superior to binary rel-
evance because it profits from simpler decision boundaries in the subproblems
(Fürnkranz, 2002; Hsu and Lin, 2002). In the case of an equal class distribu-
tion, the subproblems have 2

n times the original size whereas binary relevance
maintains the size. Typically, this goes hand in hand with an increase of the
space where a separating hyperplane can be found. An intuitive visualization
of this aspect can be found in Figure 5 for the multiclass case and in Figure 2
for the multilabel case, in contrast to the BR binarization depicted in Figure
1. A simple example also illustrates this: imagine you repeatedly insert points
around two points on a line. The distance between the two sets will inevitably

7

��

�� ���� ��

��
�

	

Figure 6: MLPP training: training exam-
ple x̄ belongs to Px̄ = {�1, �2}, Nx̄ =
{�3, �4, �5} are the irrelevant classes, the
arrows represent the trained perceptrons
w̄1,3, w̄1,4, w̄1,5, w̄2,3, w̄2,4, w̄2,5.

��

�� ���� ��

��

��

	

Figure 7: calibration: introducing virtual
label �0 that separates P and N . Percep-
trons w̄1,0, w̄2,0, w̄0,3, w̄0,4, w̄0,5 are addi-
tionally trained.

��

�� ���� ��

��

��

	

Figure 8: CMLPP training: the complete
set of trained perceptrons.

monotonically decrease with increasing number of points. Thus it is very likely
for a subproblem to have a larger margin than the full problem.

Particularly in the case of text classification the obtained benefit clearly
exists. An evaluation of the pairwise approach on the Reuters-RCV1 corpus (cf.
Section 5.2), which contains over 100 classes and 800,000 documents, showed a
significant and substantial improvement over the MMP method (Loza Menćıa
and Fürnkranz, 2008b).

2.4. Calibrated Label Ranking

To convert the resulting ranking of labels into a multilabel prediction, we
use the calibrated label ranking approach (Brinker, Fürnkranz, and Hüllermeier,
2006; Fürnkranz et al., 2008). This technique avoids the need for learning a
threshold function for separating relevant from irrelevant labels, which is often
performed as a post-processing phase after computing a ranking of all possible
classes. The key idea is to introduce an artificial calibration label �0, which
represents the split-point between relevant and irrelevant labels. Thus, it is

8

o0,1 = -1 o1,0 = 1 o2,0 = 1 o3,0 = -1 o4,0 = -1 o5,0 = -1
o0,2 = -1 o1,2 = 1 o2,1 = -1 o3,1 = -1 o4,1 = -1 o5,1 = -1
o0,3 = 1 o1,3 = 1 o2,3 = 1 o3,2 = -1 o4,2 = -1 o5,2 = -1
o0,4 = 1 o1,4 = 1 o2,4 = 1 o3,4 = 1 o4,3 = -1 o5,3 = -1
o0,5 = 1 o1,5 = 1 o2,5 = 1 o3,5 = 1 o4,5 = 1 o5,4 = -1

v0 = 3 v1 = 5 v2 = 4 v3 = 2 v4 = 1 v5 = 0

Figure 9: MLPP voting with calibrated label �0: an example x̄ is classified by all 15 base
perceptrons. The last line counts the positive outcomes for each class.

assumed to be preferred over all irrelevant labels, but all relevant labels are
preferred over �0. This introduction of an additional label during training is
depicted in Figure 7, the combination with the normal pairwise base classifiers
is shown in Figure 8.

As it turns out, the resulting n additional binary classifiers { oi,0 ∣ i = 1 . . . n}
are identical to the classifiers that are trained by the binary relevance approach.
Thus, each classifier oi,0 is trained in a one-against-all fashion by using the whole
dataset with { x̄ ∣�i ∈ Px̄} ⊆ X as positive examples and { x̄ ∣�i ∈ Nx̄} ⊆ X as
negative examples. At prediction time, we will thus get a ranking over n + 1
labels (the n original labels plus the calibration label). Then, the projection of
voting aggregation of pairwise perceptrons with a calibrated label to a multilabel
output is quite straight-forward:

P̂ = {� ∈ ℒ ∣ v(�) > v(�0)}

where v(�) is the amount of votes class � has received.
Figure 9 extends the example from figure 4 and shows a possible result

of classifying with the calibrated label �0. It shows the ideal case, where for
instance, the relevant classes �1 and �2 receive a vote, respectively, in direct
comparison with the calibrated label (perceptrons o1,0 and o2,0). After evalu-
ating all perceptrons, the number of votes for the calibrated label v(�0) = v0 is
used as the split-point to discriminate relevant classes from irrelevant classes.
In this example, �1 and �2 are returned as the set of relevant classes P̂ .

We denote the MLPP algorithm adapted in order to support the calibration
technique as CMLPP. This algorithm was again applied to the large Reuters-
RCV1 corpus and to other smaller datasets presented also in Section 5.2, out-
performing the binary relevance and MMP approach. For further details please
refer to (Fürnkranz et al., 2008).

3. Quick Weighted Voting

As already seen, the quadratic number of base classifier does not seem to be
a serious drawback for training MLPP and also CMLPP. However, at prediction
time it is still necessary to evaluate a quadratic number of base classifier. Two
approaches to overcome this problem for multiclass and for multilabel task are
presented in the following.

9

Require: example x̄; classifiers {ou,v ∣ u < v, �u, �v ∈ ℒ}; l1, . . . , ln = 0
1: while �top not determined do
2: �a ← argmin�i∈ℒ li ⊳ select top candidate class
3: �b ← argmin�j∈ℒ∖{�a} li and oa,b not yet evaluated ⊳ select second
4: if no �b exists then
5: �top ← �a ⊳ top rank class determined
6: else ⊳ evaluate classifier
7: vab ← oa,b(x̄) ⊳ one vote for �a (vab = 1) or �b (vab = 0)
8: la ← la + (1− vab) ⊳ update voting loss for �a
9: lb ← lb + vab ⊳ update voting loss for �b

Figure 10: Pseudocode of the QWeighted algorithm (multiclass classification).

3.1. QWeighted for Multiclass Classification

For the multiclass case, the simple but effective voting strategy, which is
applied often to combine the predictions of pairwise classifiers to one multiclass
classification result, can be computed efficiently with the Quick Weighted Voting
algorithm (QWeighted) (Park and Fürnkranz, 2007), which is shown in Figure
10. Instead of the evaluation of the quadratic number of all pairwise perceptrons,
it is possible to evaluate a smaller subset of it in order to compute the class with
the highest accumulated voting mass.

During a voting procedure there exist many situations where particular
classes can be excluded from the set of possible top rank classes, even if they
reach the maximal voting mass in the remaining evaluations. Its main idea can
be described in a simple example: Given n classes with n > j, if class �a has
received more than n − j votes and class �b lost j votings, it is impossible for
�b to achieve a higher total voting mass than �a. Thus further evaluations with
�b can be safely ignored for the comparison of these two classes.

Pairwise classifiers will be selected depending on a loss value, which is the
amount of potential voting mass that a class has not received. More precisely,
the loss li of a class �i is defined as li := pi − vi, where pi is the number of
evaluated incident classifiers of �i and vi is the current vote amount of �i. Ob-
viously, the loss will begin with a value of zero and is monotonically increasing.
The class with the current minimal loss is one of the top candidates for the top
rank class.

First the pairwise classifier oa,b, in our case the perceptron w̄a,b, will be
selected for which the losses la and lb of the relevant classes �a and �b are
minimal, provided that the classifier oa,b has not yet been evaluated. In the
case of multiple classes that have the same minimal loss, there exists no further
distinction, and we select a class randomly from this set. Then, the losses la
and lb will be updated based on the evaluation returned by oa,b (recall that vab
is interpreted as the amount of the voting mass of the classifier oa,b that goes
to class �a and 1 − va,b is the amount that goes to class �b). These two steps
will be repeated until all classifiers for the class �m with the minimal loss has
been evaluated. Thus the current loss lm is the correct loss for this class. As all

10

other classes already have a greater loss, �m is the correct top rank class.
Theoretically, a minimal number of comparisons of n − 1 is possible (best

case). The worst case, on the other hand, is still n(n−1)/2 comparisons, which
can, e.g., occur if all pairwise classifiers classify randomly with a probability of
0.5. In practice, the number of comparisons will be somewhere between these
two extremes, depending on the nature of the problem.

3.2. QWeighted for Multilabel Classification

A simple adaptation of QWeighted to multilabel classification is to repeat
the process. We can compute the top class �top using QWeighted and remove
this class from ℒ and repeat this step, until the returned class is the artificial
label �0, which means that all remaining classes will be considered to be irrel-
evant. This adaptation uses two simple extensions of the original algorithm.
Firstly, the information about which pairwise perceptrons have been evaluated
and their results are carried through the iterations so that no pairwise percep-
tron is evaluated more than once. And secondly, by using the calibrated label
ranking approach we know beforehand that at some point the vote amount of
the artificial label has to be computed. So, in hope for a better starting distri-
bution of votes, all incident classifiers oi,0 respectively w̄i,0 of the artificial label
are evaluated explicitly before employing iterated QWeighted. We denote this
method as QCMLPP1.

In addition to this straight-forward adaptation, we considered also a slightly
improved variant (QCMLPP2). In retrospect, QCMLPP1 computes a partial
ranking of classes down to the calibrated label. That means that for all relevant
labels all their incident classifiers are evaluated. It neglects the fact that for
multilabel classification the information that a particular class is ranked above
the calibrated label is sufficient, rather than to which amount. QCMLPP2 works
in the same way as QCMLPP1 except that it stops the evaluation of the current
top rank �t if it already received a higher voting mass than the calibrated label.
The class �t is not automatically removed from the set of labels as in QCMLPP1,
since further evaluations for the computation of other classes can occur, but it
can not be selected as a new top rank candidate. The pseudocode of QCMLPP2
is depicted in Fig. 11.

Note that the effectiveness of this testing procedure is highly influenced by
the relation of average number of relevant labels to total number of labels. We
can expect a high reduction of pairwise comparisons if the above relation is
relatively small, which holds for the most real-world multilabel datasets.

We are currently investigating further variants for improving the perfor-
mance. For example, different search heuristics based on other losses than the
number of “lost games“ are imaginable. Furthermore, the selection of the two
next classes for evaluation can also be varied, i.e. by pairing the “best“ and
the “worst“ class in the next iteration instead of the two currently best classes.
In addition, we are working on the derivation of formal complexity bounds to
strengthen the QWeighted approach.

11

Require: example x̄; classifiers {ou,v ∣ u < v, �u, �v ∈ ℒ}; l0, . . . , ln = 0
1: v0 ← 0, P̃ ← ∅
2:

3: for i = 0 to n do ⊳ evaluate all classifiers of artificial label �0

4: li ← o0,i(x̄)
5: v0 ← v0 + (1− li) ⊳ compute votes of calibrated label

6:

7: repeat
8: while �top not determined do ⊳ apply adapted QWeighted
9: �a ← argmin�i∈ℒ li

10: �b ← argmin�j∈ℒ∖{�a} li and oa,b not yet evaluated
11: if va ≥ v0 or no �b exists then ⊳ adapted stopping criterion
12: �top ← �a
13: else ⊳ evaluate classifier
14: vab ← oa,b(x̄) ⊳ update statistics
15: va ← va + vab
16: vb ← vb + (1− vab)
17: la ← la + (1− vab)
18: lb ← lb + vab
19:

20: if vtop ≥ v0 then
21: P̃ ← P̃ ∪ �top ⊳ relevant label found
22: ltop ← +∞ ⊳ arrange �top at the end of possible opponents queue

23:

24: until vtop ≥ v0 and ∣P̃ ∣ < n ⊳ check if all relevant labels found
25:

26: return P̃ ⊳ return relevant labels

Figure 11: Pseudocode of the QCMLPP2 algorithm.

12

4. Computational Complexity

The notation used in this section is the following: n denotes the number of
possible classes, d the average number of relevant classes per instance in the
training set, a the number of attributes and a′ the average number of attributes
not zero (size of the sparse representation of an instance), and m denotes the
size of the training set. For each complexity we will give an upper bound O in
Landau notation. We will indicate the runtime complexity in terms of real value
additions and multiplications ignoring operations that have to be performed by
all algorithms such as sorting or internal real value operations. Additionally, we
will present the complexities per instance since all algorithms are incrementally
trainable.

4.1. Memory Requirements

BR follows an one model per class approach, so it has to keep one percep-
trons for each class in memory, leading to O(n ⋅ a) memory space. In contrast,

the pairwise approaches require one perceptron for each of the n(n−1)
2 pairs of

classes, hence we need O(n2a) memory. In addition, the calibrated versions
require an overhead of n perceptrons for the comparisons with the artificial
label.

4.2. Training

For processing one training example, n dot products have to be computed by
BR, plus at most the same amount if there was a prediction error. The MLPPs
require O(dn) dot products, one for each associated perceptron. Assuming that
a dot product computation costs O(a′), we obtain a complexity of O(dna′) per
training example. Thus, assuming similar loss rates, the pairwise training will
be only on average d resp. d+ 1 for the calibrated version slower than the BR
algorithm despite training a quadratic number of base classifier.

4.3. Prediction

During prediction the one-per-class approach achieve O(na′) computations
for one instance. For the pairwise approach without the usage of QWeighted
all perceptrons have to be evaluated, leading to O(n2a′) computations. The
same upper bound holds analytically for QCMLPP, but as previous experiments
have shown for the multiclass case, QWeighted (QW) reduces the amount of

required base classifier evaluations from n(n−1)
2 to n log (n) in practice (Park

and Fürnkranz, 2007). Let CQW be the runtime of one iteration of QWeighted.
Then, it is easy to see that the number of base classifier evaluations for the
multilabel adaptations of QWeighted is bounded from above by n + d ⋅ CQW,
since we always evaluate the n classifiers involving the calibrated class, and
have to do one iteration of QWeighted for each of the (on average) d relevant
labels. Assuming that QWeighted on average needs CQW = n log (n) base
classifier evaluations we can expect an average number of n+ dn log n classifier
evaluations for the QCMLPP variants, as compared to the ≈ n2 evaluations for

13

Table 1: Computational complexity given as upper bounds of number of addition and multipli-
cation operations, for each instance. n: #classes, d: avg. #labels per instance, a: #attributes,
a′: #attributes∕= 0.

training prediction memory

BR O(na′) O(na′) O(na)
MLPP O(dna′) O(n2a′) O(n2a)
QCMLPP O(dna′) ∼ na′ + dn log (n) a′ O(n2a)

the regular CMLPP. Thus, the effectiveness of the adaption to the multilabel
case crucially depends on the average number d of relevant labels. We can
expect a high reduction of pairwise comparisons if d is small compared to n,
which holds for most real-world multilabel datasets.

A compilation of the analysis can be found in Table 1, together with the
complexities of BR. Note that the stated prediction time for QCMLPP in the
table is not an analytical complexity bound like the others, it is an empirically
estimated value.

At first view QCMLPP does not benefit analytically from the QWeighted
voting, but there is empirical evidence for a clear improvement compared to
the full voting. There is no disadvantage of using QCMLPP instead of CMLPP
unless a more fine-grained distinction between classes than relevant-irrelevant
is required.

Note that we have assumed a linear dependence on the number of training
instances since we use the perceptron algorithm as our base classifier. For base
classifiers with a super-linear relationship the ratio to BR in terms of training
complexity may be further reduced due to the smaller subproblems (Fürnkranz,
2002). While a perceptron needs the same time for a problem of m examples
than for n problems of m

n examples, it does not hold the same for a learning

algorithms like SVMs or C4.5 since mx > n(m
n)x = (mx

nx−1) for x > 1.

5. Experimental Setup

5.1. Multilabel Evaluation Measures

There is no generally accepted procedure for evaluating multilabel classi-
fications. Our approach is to consider a multilabel classification problem as
a meta-classification problem where the task is to separate the set of possible
labels into relevant labels and irrelevant labels. Let P̂x̄ denote the set of la-
bels predicted by the multilabel classifier and N̂x̄ = ℒ ∖ P̂x̄ the set of labels
that are not predicted by the classifier. Thus, we can, for each individual in-
stance x̄, compute a two-by-two confusion matrix Cx̄ of relevant/irrelevant vs.
predicted/not predicted labels:

14

Cx̄ predicted not predicted

relevant ∣Px̄ ∩ P̂x̄∣ ∣Px̄ ∩ N̂x̄∣ ∣Px̄∣
irrelevant ∣Nx̄ ∩ P̂x̄∣ ∣Nx̄ ∩ N̂x̄∣ ∣Nx̄∣

∣P̂x̄∣ ∣N̂x̄∣ ∣ℒ∣

From such a confusion matrix Cx̄, we can compute several well-known measures:

∙ The Hamming loss (HamLoss) computes the percentage of labels that
are misclassified, i.e., relevant labels that are not predicted or irrelevant
labels that are predicted. This basically corresponds to the error in the
confusion matrix.

HamLoss(Cx̄)
def
= 1− 1

∣ℒ∣
∣∣P̂x̄△Px̄

∣∣ (4)

The operator △ denotes the symmetric difference between two sets and is

defined as A△B def
= (A ∖B) ∪ (B ∖A), i.e. P̂x̄△Px̄ has all labels that only

appear in one of the two sets.

∙ Precision (Prec) computes the percentage of predicted labels that are
relevant, recall (Rec) computes the percentage of relevant labels that are
predicted, and the F1 -measure is the harmonic mean between the two.

Prec(Cx̄)
def
=
∣P̂x̄ ∩ Px̄∣
∣P̂x̄∣

Rec(Cx̄)
def
=
∣P̂x̄ ∩ Px̄∣
∣Px̄∣

(5)

F1(Cx̄)
def
=

2
1

Rec(Cx̄) + 1
Prec(Cx̄)

=
2Rec(Cx̄)Prec(Cx̄)

Rec(Cx̄) + Prec(Cx̄)
(6)

To average these values, we compute a micro-average over all values in a test
set, i.e., we add up the confusion matrices Cx̄ for examples in the test set and
compute the measure from the resulting confusion matrix. Thus, for any given
measure f and m test documents, the average is computed as:

favg = f(

m∑
i=1

Ci) (7)

To combine the results of the individual folds of a cross-validation, we average
the estimates f javg , j = 1 . . . q over all q folds.

For the case of a zero denominator, a common convention is to define the result as zero.

15

Table 2: Statistics of datasets. The attribute number in parenthesis denotes the actual used
number of features, i.e. for scene and yeast the number of features after adding the pairwise
products and for the text collections the amount after feature selection. Label-set size d
denotes the average number of labels per instance, and label density indicates the average
number of labels per instance d relative to the total number of classes n.

dataset n #instances m #attributes a d density
scene 6 2407 294 (86732) 1.07 17.9 %
emotions 6 593 72 1.87 31.1 %
yeast 14 2417 103 (10712) 4.24 30.3 %
tmc2007 22 28596 49060 2.16 9.8 %
genbase 27 662 1186 1.25 4.6 %
medical 45 978 1449 1.25 2.8 %
enron 53 1702 1001 3.39 6.4 %
mediamill 101 43907 120 4.38 4.3 %
rcv1-v2 101 804414 231188 (25000) 3.24 3.1 %
r21578 120 11367 21474 (10000) 1.26 1.0 %
bibtex 159 7395 1836 2.4 1.5 %
eurlex sm 201 19348 166448 (5000) 2.21 1.1 %
eurlex dc 410 19348 166448 (5000) 1.29 0.3 %
delicious 983 16105 500 19.02 1.9 %

5.2. Datasets

The datasets that were included in the experimental setup cover three ap-
plication areas in which multilabeled data are frequently observed: text catego-
rization (among others, the Reuters-RCV1 and Reuters-21578 datasets and the
EUR-Lex dataset), multimedia classification (the scene, mediamill and emo-
tions datasets) and bioinformatics (yeast and genbase). Table 2 provides an
overview of the different characteristics of the used datasets.

The Reuters Corpus Volume I (Reuters-RCV1) is one of the most widely used
test collection for text categorization research. It contains 804,414 newswire doc-
uments, which we split into 535,987 training documents (all documents before
and including April 26th, 1999) and 268,427 test documents (all documents af-
ter April 26th, 1999). We used the token files of Lewis et al. (2004), which are
already word-stemmed and stop word reduced. However we repeated the stop
word reduction as we experienced that there were still a few occurrences. The
25,000 most frequent features on the training set were selected and weighted
with TF-IDF weights (Salton and Buckley, 1988). We did not restrict the set of

The Reuters-RCV1 dataset is available from http://www.ai.mit.edu/projects/

jmlr/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm (Lewis et al., 2004), the
Reuters-21578 dataset from http://www.daviddlewis.com/resources/testcollections/

reuters21578/, EUR-Lex from http://www.ke.tu-darmstadt.de/resources/eurlex/ and
the remaining datasets from http://mlkd.csd.auth.gr/multilabel.html.

16

103 categories although one class does not contain any examples in the training
set.

We also experimented with the older Reuters-21578 corpus (Lewis, 1997),
which has 11,367 examples and 120 possible labels. Through similar pre-pro-
cessing as in the Reuters-RCV1 dataset, we obtained 10,000 features for this
dataset.

The EUR-Lex is a recent dataset containing 19,348 legislative documents
from the European Union and is publicly available under http://www.ke.

informatik.tu-darmstadt.de/resources/eurlex/. The documents are clas-
sified according to three different classification schemes: subject matter with 201
classes, directory code with 410 classes and EUROVOC with 3956 classes. How-
ever, we did not conduct experiments on the latter dataset since with almost
4000 classes we would need to maintain nearly 8 mio. perceptrons in memory.
A special variant of MLPP was developed in order to be able to process datasets
of this size (Loza Menćıa and Fürnkranz, 2008a). After a similar pre-processing
as for RCV1 and Reuters-21578, we obtained 5,000 features.

Other text classification datasets include medical from a competition that
aimed at assigning codes from the International Classification of Diseases to
clinical free texts, the enron dataset of business-related emails from the Enron
Corp. management, bookmarks and bibtex, collections from the social book-
marking platform BibSonomy, the tmc2007 dataset of aviation safety reports
assigned to flight problem types, and the large delicious dataset extracted from
the del.icio.us social bookmarking platform. We used the pre-determined train-
ing/test splits.

The learning task in the yeast gene functional multiclass classification prob-
lem is to associate genes with a subset of 14 functional classes from the Compre-
hensive Yeast Genome Database of the Munich Information Center for Protein
Sequences. Each of 2417 genes is represented with 103 features. In previous
experiments (Loza Menćıa and Fürnkranz, 2008b), we found that even the pair-
wise problems are hard to separate with a linear classifier (much more so in the
binary relevance setting). Thus, in this set of experiments, we added all pairwise
feature products to the original feature representation, in order to simulate a
quadratic kernel function.

The task in the scene dataset (Boutell, Luo, Shen, and Brown, 2004) is to
recognize which of six possible scenes (beach, sunset, field, fall foliage, mountain,
urban) can be found in a 2407 pictures. Many pictures contain more than one
scene. For each image, spatial color moments are used as features. Each picture
is divided into 49 blocks using a 7× 7 grid. A picture is then represented using
the mean and the variance of each color band of each block, i.e., using a total of
2× 3× 7× 7 = 294 features. Like in the Yeast dataset, we enriched the feature
set with all pairwise feature products.

Furthermore, the genbase dataset contains a protein classification task. The
dataset from the mediamill Challenge is dedicated to news video classification,

http://mips.gsf.de/genre/proj/yeast/

17

and in emotions the task is assign emotions to music.

5.3. Algorithmic Setup

All algorithms are trained incrementally. For the RCV1 dataset, a single,
chronological pass through the data was used (one epoch) because our previous
results have shown that multiple iterations are not necessary (Loza Menćıa and
Fürnkranz, 2008b). For the remaining text classification we report the results
for 10 epochs. The classifiers for the supposedly more difficult non-textual
datasets were trained using 100 epochs. However, in terms of the relative order
of the tested methods, we found that the results are quite insensitive to the
exact numbers of epochs.

For yeast, scene, Reuters-21578 and EUR-Lex the reported results are es-
timated from 10-fold cross-validation. In order to ensure that no information
from the test set enters the training phase for the text datasets, the TF-IDF
transformation and the feature selection were conducted only on the training
sets of the cross-validation splits. For datasets for which it was not indicated we
used the first two-thirds of examples for training and the remaining for testing.
Specifically, we used 391 training examples for emotions, 21519 for tmc2007, 463
for genbase, 465 for medical, 1123 for enron, 30993 for mediamill, the aforemen-
tioned 535,987 for rcv1-v2, 4930 documents for bibtex and 12,920 for delicious.

All the perceptrons of the different algorithms were initialized with random
values.

6. Evaluation

The following sections analyze, in short, the predictive quality and in a more
extensive way the computational efficiency of the presented algorithms.

6.1. Computational Efficiency

Our analysis of computational efficiency concentrates on the savings in base
classifier evaluations using the QWeighted method on the different multilabel
datasets.

Table 3 depicts the gained reduction of prediction complexity of the QWeighted
approach with respect to the classifier evaluations for CMLPP. For each of the
four listed methods (BR, CMLPP, QCMLPP1 and QCMLPP2) the average
number of base classifier evaluations is stated. In addition, for QCMLPP1 and 2
the ratio of classifier evaluations to the complete set of pairwise classifiers, which
are typically evaluated in the CMLPP approach, are denoted within brackets,
to emphasize the achieved reduction.

The first remarkable observation is the clear improvement when using the
QWeighted approach. Except for the four smallest datasets regarding the la-
belsize, both variants of the QCMLPP use less than 20 percent of the classifier
evaluations for CMLPP.

Another appreciable point, especially regarding the mentioned deviation, is
the clearly visible correlation between the gained reduction and the label den-
sity of the problem, i.e. the ratio of the average number of labels per instance

18

T
a
b

le
3
:

C
o
m

p
u

ta
ti

o
n

a
l

co
st

s
a
t

p
re

d
ic

ti
o
n

in
a
v
er

a
g
e

n
u

m
b

er
o
f

cl
a
ss

ifi
er

ev
a
lu

a
ti

o
n

s
p

er
in

st
a
n

ce
.

T
h

e
it

a
li
c

v
a
lu

es
n

ex
t

to
th

e
tw

o
m

u
lt

il
a
b

el
a
d

a
p

ta
ti

o
n

s
o
f
Q
W

ei
g
h
te
d

sh
o
w

th
e

ra
ti

o
o
f

cl
a
ss

ifi
er

ev
a
lu

a
ti

o
n

s
to

C
M

L
P

P
a
n

d
th

e
se

co
n

d
ri

g
h
tm

o
st

co
lu

m
n

d
es

cr
ib

es
th

e
a
v
er

a
g
e

n
u

m
b

er
o
f

re
le

v
a
n
t

la
b

el
s.

d
a
ta

se
t

n
B

R
C

M
L

P
P

Q
C

M
L

P
P

1
Q

C
M

L
P

P
2

n
lo

g
(n

)
n

+
d
n

lo
g

(n
)

d
d
en

si
ty

d n

sc
en

e
6

6
2
1

1
1
.5

1
(5

4
.8

%
)

1
1
.4

6
(5

4
.6

%
)

1
0
.7

5
1
7
.5

0
1
.0

7
1
7
.9

%
em

o
ti

o
n
s

6
6

2
1

1
7
.0

3
(8

1
.1

%
)

1
6
.5

9
(7

9
.0

%
)

1
0
.7

5
2
6
.1

0
1
.8

7
3
1
.2

%
y
ea

st
1
4

1
4

1
0
5

6
7
.5

7
(6

4
.4

%
)

6
4
.9

9
(6

1
.9

%
)

3
6
.9

4
1
7
0
.6

5
4
.2

4
3
0
.3

%
tm

c2
0
0
7

2
2

2
2

2
5
3

8
1
.7

6
(3

2
.3

%
)

7
8
.0

1
(3

0
.8

%
)

6
8
.0

0
1
6
8
.8

9
2
.1

6
9
.8

2
%

g
en

b
a
se

2
7

2
7

3
7
8

7
1
.5

3
(1

8
.9

%
)

6
2
.1

1
(1

6
.4

%
)

8
8
.9

9
1
3
8
.2

3
1
.2

5
4
.6

3
%

m
ed

ic
a
l

4
5

4
5

1
0
3
5

1
1
2
.7

8
(1

0
.9

%
)

1
0
3
.6

7
(1

0
.0

%
)

1
7
1
.3

0
2
5
9
.1

2
1
.2

5
2
.7

8
%

en
ro

n
5
3

5
3

1
4
3
1

2
8
6
.3

6
(2

0
.0

%
)

2
6
2
.3

0
(1

8
.3

%
)

2
1
0
.4

3
7
6
4
.2

4
3
.3

8
6
.3

8
%

m
ed

ia
m

il
l

1
0
1

1
0
1

5
1
5
1

4
8
9
.4

5
(9

.5
0

%
)

3
7
8
.0

4
(7

.3
4

%
)

4
6
6
.1

3
2
1
4
2
.6

4
4
.3

8
4
.3

4
%

rc
v
1
-v

2
1
0
3

1
0
3

5
3
5
6

4
8
5
.2

3
(9

.0
6

%
)

4
5
6
.2

3
(8

.5
2

%
)

4
7
7
.3

8
1
6
4
9
.7

0
3
.2

4
3
.1

5
%

r2
1
5
7
8

1
2
0

1
2
0

7
2
6
0

3
7
8
.4

5
(5

.2
1

%
)

3
2
5
.9

4
(4

.4
9

%
)

5
7
4
.5

0
8
4
3
.8

7
1
.2

6
1
.0

5
%

b
ib

te
x

1
5
9

1
5
9

1
2
7
2
0

6
0
4
.3

7
(4

.7
5

%
)

4
9
2
.7

3
(3

.8
7

%
)

8
0
5
.9

6
2
0
9
3
.2

9
2
.4

0
1
.5

1
%

eu
rl

ex
sm

2
0
1

2
0
1

2
0
3
0
1

9
2
6
.7

1
(4

.5
6

%
)

7
7
1
.6

2
(3

.8
0

%
)

1
0
6
5
.9

6
2
5
5
6
.7

8
2
.2

1
1
.1

0
%

eu
rl

ex
d
c

4
1
0

4
1
0

8
3
8
4
5

1
6
6
7
.1

6
(1

.9
8

%
)

1
1
3
6
.8

5
(1

.3
5

%
)

2
4
6
6
.6

2
3
5
9
1
.9

5
1
.2

9
0
.3

1
%

d
el

ic
io

u
s

9
8
3

9
8
3

4
8
3
6
3
6

4
8
6
8
0
.1

2
(1

0
.1

%
)

4
6
8
3
5
.8

9
(9

.6
8

%
)

6
7
7
3
.4

7
1
2
9
8
1
4
.4

0
1
9
.0

2
1
.9

3
%

19

to the total number of labels. The dataset with the highest density, emotions,
achieved the lowest reduction, followed by yeast with a similar density and re-
duction ratio. Similarly both QCMLPP variants evaluated the lowest ratio of
classifiers for the dataset with the lowest density, the eurlex dc dataset. This
observation confirms the previously stated expectation that the reduction is
highly influenced by the density. This effect is not surprising, since roughly
speaking QCMLPP employs iteratively QWeighted until the calibrated label is
found, and the number of iterations is obviously related to the density. Fur-
thermore the results show that QCMLPP2 slightly but constantly outperforms
QCMLPP1.

For estimating the average runtime in practice, two columns were included,
which state the n log (n) and n+dn log (n) values for the corresponding datasets.
We can clearly confirm that the number of classifier evaluations is for all con-
sidered datasets smaller than the previously estimated upper bound of n +
dn log (n). Note that the value for yeast 170.65 is actually greater than the
number of existing classifiers (105). This is due to the fact that the values lie
yet in a range where lower order terms have still an impact in the equation.

Figure 12 visualizes the above results and allows again a comparison to dif-
ferent complexity values such as n, n log(n) and n2. The upper figure is a
recapitulation of the results from Park and Fürnkranz (2007) extended with
multiclass classification performance results of the multilabel datasets consid-
ered in this paper: instead of evaluating until finding the calibrating label,
QWeighted was only applied once such as if it was a multiclass problem. These
results for the simulated multiclass classification performance support addition-
ally the statement that QWeighted achieves an n log(n) runtime in practice.
For better readability, a logarithmic scale for both axis is used. The lower fig-
ure is more interesting in this context, where multilabel classification prediction
complexity of QCMLPP is presented. Note that the y-axis now describes the
number of comparisons, respectively, classifier evaluations divided by the num-
ber of labels, which is graphically motivated and allows a finer distinction of
the different curves. Note also that for the black curve (n + dn log (n)), the
actual average number of labels from data was used for computing the values
and are identical to the ones from Table 3. These values are also depicted in
the additional Figure 13, which shows again the comparison of computational
costs split into two figures, the first for smaller datasets with n < 103 and the
second for larger datasets. In comparison to Figure 12, the x-axis is now linear
and we have added the dataset names to the data points.

As we can see from these figures, the empirical runtime bound n+dn log (n)
is never exceeded. We conclude that this estimate is a reasonable indicator for
the runtime complexity of QCMLPP.

6.2. Predictive Quality

Although it is not the focus of this study, we will compare in this section
the prediction quality of BR and CMLPP in order to demonstrate the expected
advantage of the pairwise approach. Note that the multilabel losses of the
QCMLPP are exactly equal to those of CMLPP since both compute for every

20

2 5 10 20 50 100 200 500 1000

1e
+

01
1e

+
02

1e
+

03
1e

+
04

1e
+

05

number of classes

nu
m

be
r

of
 c

om
pa

ris
on

s

vehicle

glass/image
yeast/vowel

soybean
letter

rcv1−v2

reuters21578

EUR−Lex subject matter

EUR−Lex directory code

●

●●

● ●

●

●●

●
●

●
● ● ●

●

●

((n((n −− 1)))) 2

nlog((n))
QWeighted

n

5 10 20 50 100 200 500 1000

5
10

20
50

10
0

20
0

50
0

number of labels

nu
m

be
r

of
 c

om
pa

ris
on

s/
nu

m
be

r
of

 la
be

ls

●

●

●

●

●
●

●

●

●

●

● ●

●

●
●

(n(n+1))/2, CMLPP

nlog((n))
QCMLPP1

QCMLPP2
n + dn log(n)

Figure 12: Prediction complexity of QWeighted and QCMLPP: number of comparisons needed
in dependancy of the number of classes n for different multiclass and multilabel problems.
Upper figure: Problems vehicle to letter in the first figure are multiclass problems already
analyzed by Park and Fürnkranz (2007), while multiclass versions of the multilabel datasets
as described in Table 2 were evaluated within this study. Lower figure: QCMLPP1/2 is
compared to n(n+ 1)/2 as in CMLPP, n as in BR and n log (n) on 14 multilabel datasets.

21

0 20 40 60 80 100

1
2

5
10

20
50

number of labels

nu
m

be
r

of
 c

om
pa

ris
on

s/
nu

m
be

r
of

 la
be

ls

●

●

●

●

●

●

●

●

scene
emotions

yeast

tmc2007

genbase medical

enron

mediamill

●

(n(n+1))/2, CMLPP

nlog((n))
QCMLPP1

QCMLPP2
n + dn log(n)

n

0 200 400 600 800 1000

1
2

5
10

20
50

10
0

20
0

50
0

number of labels

nu
m

be
r

of
 c

om
pa

ris
on

s/
nu

m
be

r
of

 la
be

ls

●

●

● ●

●

●

rcv1−v2
r21578

bibtex
eurlex_sj

eurlex_dc

delicious

●

(n(n+1))/2, CMLPP

nlog((n))
QCMLPP1

QCMLPP2
n + dn log(n)

n

Figure 13: Prediction complexity of QCMLPP : the upper figure contains the small datasets,
the bottom figure the large datasets

instance the same partitioning into relevant and irrelevant labels. Table 4 shows
the label set predictions performance according to Section 5.1.

The first remarkable observation is that for the overall evaluation measures
HamLoss and F1 the pairwise approach dominates the one-per-class approach
for every dataset except genbase and medical. BR’s Prec is even outperformed
for these datasets. On the other hand, QCMLPP achieves a lower Rec for the
datasets with slightly more than 100 classes, beginning at reuters-21578 with
120 classes. This is due to the fact that the calibration tends to underestimate
the number of returned labels for each instance, especially for a high number
of total classes. A possible explanation for this behavior is the following: when
the binary relevance classifiers, that are also included in CMLPP, predict that v
classes are positive, then this means for the remaining classes that they have to

22

Table 4: Multilabel performance of the different algorithms. For HamLoss low values are
good, for the other three measures the higher the better. Bold values represent the best value
for each dataset and measure combination. Note that the multilabel losses of QCMLPP are
exactly equal to those of CMLPP.

HamLoss Precision Recall F1
dataset n BR CMLPP BR CMLPP BR CMLPP BR CMLPP

scene 6 10.42 10.00 71.80 71.83 71.21 74.20 71.19 72.76
emotions 6 35.64 34.08 46.78 48.62 60.15 61.90 52.63 54.47
yeast 14 24.09 22.67 60.47 62.37 59.07 63.31 59.76 62.83
tmc2007 22 7.37 6.78 62.57 64.16 66.47 73.61 64.46 68.56
genbase 27 0.26 0.48 99.22 99.59 95.49 90.60 97.32 94.88
medical 45 1.51 1.51 71.72 76.02 75.84 66.75 73.72 71.08
enron 53 7.56 6.01 41.56 52.82 47.05 49.51 44.13 51.11
mediamill 101 4.52 4.16 42.28 56.66 10.05 19.70 16.24 29.23
rcv1-v2 103 1.26 1.03 80.15 84.89 79.70 81.61 79.93 83.22
r21578 120 0.78 0.55 59.98 72.89 78.36 76.68 67.92 74.63
bibtex 159 1.57 1.35 46.53 57.97 36.30 34.84 40.78 43.53
eurlex sm 201 0.76 0.54 63.39 77.88 74.11 71.57 68.32 74.59
eurlex dc 410 0.26 0.17 56.26 79.21 70.54 61.98 62.58 69.54
delicious 983 5.58 3.48 11.88 19.77 29.59 26.51 16.95 22.65

obtain at least n− v votes of their maximum of n votes in order to be predicted
as positive. The probability that this happens for a real positive class decreases
with increasing n, since it becomes more probable that at least v base classifiers
mistakenly take a wrong decision. However, a look at the avg. predicted label
set size shows that this is only the case for the EUR-Lex datasets and not for
Reuters-21578 or delicious. For delicious QCMLPP even predicts more than 25
instead of 19 labels. On the other hand we can observe that BR always predicted
a higher label number than QCMLPP on the dataset where it achieved a higher
Rec. One extreme are the 47 predicted labels for delicious, but note that in
general it cannot be stated that BR overestimates the number of labels.

Note that it is easily possible to bias the recall/precision trade-off of the
calibration by simply subtracting or adding a fixed number of votes to the
artificial class count.

6.3. Support Vector Machines

Such as BR, MLPP is potentially able to use any binary classifier as base
classifier. Therefore, we conducted experiments with support vector machines
as base learners in order to demonstrate that the same positive effects can also
be expected from the pairwise approach and the QWeighted optimization when
using a different base learner. We used the LIBSVM implementation (Chang and
Lin, 2001) with standard settings for the non-textual datasets and the efficient
LIBLINEAR implementation (Fan et al., 2008) for textual datasets with the
primal L2-loss SVM option, which is supposed to enhance speed (Hsu, Chang,

23

Table 5: SVM as base learner - Computational costs at prediction in average number of
classifier evaluations per instance. The italic values next to the multilabel adaptation of
QWeighted (QCMLPP2) shows the ratio of classifier evaluations to CMLPP and the second
rightmost column describes the average number of relevant labels.

dataset n BR CMLPP QCMLPP2 n log (n) n+ dn log (n) d

scene 6 6 21 7.88 (37.5%) 10.75 17.50 1.07
emotions 6 6 21 11.87 (56.5%) 10.75 26.10 1.87
yeast 14 14 105 40.31 (38.4%) 36.94 170.65 4.24
tmc2007 22 22 253 68.92 (27.2%) 68.00 168.89 2.16
medical 45 45 1035 97.40 (9.41%) 171.30 259.12 1.25
enron 53 53 1431 223.42 (15.6%) 210.43 764.24 3.38
r21578 120 120 7260 303.90 (4.19%) 574.50 843.87 1.26
bibtex 159 159 12720 485.97 (3.82%) 805.96 2093.29 2.40

and Lin, 2009). We ignored the results on genbase since LIBSVM predicted the
empty label set on all test examples. For the remaining missing datasets no
results could be retrieved due to the higher memory requirements of the SVMs
compared to the simple perceptrons. For yeast and scene we did not use the
quadratic kernel simulation.

Table 5 shows the computational costs of QCMLPP2 with SVM as base
classifier. We can observe an overall similar picture compared to the results of
Table 3, the pairwise approach clearly benefits from the QWeighted optimiza-
tion. However, while the reduction in number of required comparisons for the
textual datasets is very similar, using LIBSVM seems to allow to further improve
the ratio on the non-textual scene, emotions and yeast. The explanation can
be seen in Table 6, which lists the prediction quality for BR and QCMLPP2: A
very high precision is achieved by LIBSVM for these datasets due to predicting
only a small number of labels. This cautious behavior of LIBSVM could already
be observed for the genbase dataset. QCMLPP2 with perceptrons as base clas-
sifier e.g. predicts 2.51 labels in average on the emotions test set, while with
SVM as base classifier only 1.27 are predicted. This means for QCMLPP2 in
average more than one additional QWeighted iteration for each example during
classification, which is the reason for the further reduction of the computational
costs.

Note that although the obtained reductions in number of base classifiers is
similar for both perceptrons and SVM, training the SVMs does usually require
a higher amount of CPU-time. Except for emotions, for which the time is
almost equal, and yeast and scene, which are not directly comparable due to
the different feature representations used, the perceptrons are always faster,
namely 2.3× faster for tmc2007 to even 29 × faster for enron.

Especially if we consider that the prediction quality of perceptrons and SVMs
are very similar (at least for the text classification tasks), this constitutes an
important point in defense of the perceptron algorithm. However, it is also
interesting to observe that the distance between BR and QCMLPP is consid-

24

Table 6: Multilabel performance of the different algorithms with SVM as base learner. For
HamLoss low values are good, for the other three measures the higher the better. Bold values
represent the best value for each dataset and measure combination. Note that the multilabel
losses of QCMLPP are exactly equal to those of CMLPP.

HamLoss Precision Recall F1
dataset n BR CMLPP BR CMLPP BR CMLPP BR CMLPP

scene 6 12.57 12.51 93.25 93.04 32.16 32.58 47.77 48.21
emotions 6 27.56 26.57 65.55 64.98 34.34 41.85 45.07 50.91
yeast 14 22.51 22.51 75.61 75.60 37.81 37.82 50.41 50.41
tmc2007 22 6.99 6.63 66.16 67.31 62.33 66.16 64.19 66.73
medical 45 1.09 1.11 83.12 82.10 76.56 76.79 79.70 79.36
enron 53 5.70 5.22 55.87 59.95 48.64 53.36 52.00 56.47
r21578 120 0.56 0.55 71.23 71.76 78.49 78.34 74.68 74.90
bibtex 159 1.48 1.39 50.45 54.65 37.60 39.32 43.09 45.73

erably reduced when using SVMs, which might be an indication for a higher
robustness against weak base classifier for the pairwise approach.

7. Conclusions

Multilabel classification is becoming a more and more important task in
machine learning due to the increasing amount of application scenarios where
it is necessary to not only predict one top class as in multiclass classification,
but a set of relevant classes. The common approach of training one classifier
for each class that determines a binary relevance is clearly outperformed by the
approach of learning pairwise preferences between pairs of classes. The main
disadvantage of this approach was, until now, the quadratic number of base
classifiers needed and hence the increased computational costs for prediction
and the increased memory requirements. We have presented in this paper a
time efficient efficient algorithm based on the pairwise approach.

The proposed approach combines a technique that transforms a class rank-
ing into a bipartite prediction by introducing an artificial thresholding class,
called calibration (Fürnkranz et al., 2008), with the QWeighted voting that
stops the computation of the ranking when the bipartite separation is already
determined (Park and Fürnkranz, 2007). For the combined QWeighted multi-
label method the computational costs savings compared to the normal voting
are especially important with increasing number of classes. Though not analyt-
ically proven, our empirical results show that the complexity is upper bounded
by n + dn log (n), in comparison to the evaluation of n in the case of the one-
per-class approach and O(n2) for the unmodified pairwise approach. For the
QWeighted multilabel approach, we see improvements in a more appropriate
integration of the QWeighted concept, namely to identify and exploit unneces-
sary classifier evaluations to the multilabel setting. In this context, QCMLPP2
was already a step forward.

25

The benefit in predictive quality of using CMLPP against using BR was
shown by an extensive experimental evaluation on 14 datasets. Together with
QWeighted CMLPP is able to achieve a good trade-off between predictive qual-
ity and speed in the multilabel setting. Additional experiments using state-
of-the-art support vector machines as base learner instead of the perceptron
algorithm initially used in MLPP confirmed that the binary relevance approach
is outperformed by the pairwise approach. These experiments also show that
the advantage of using the pairwise approach and QWeighted is independent of
the base learner employed.

The key remaining bottleneck is that we still need to store a quadratic num-
ber of base classifiers, because each of them may be relevant for some example.
We are currently investigating to combine QCMLPP with HOMER, an algo-
rithm that arranges multilabel base classifiers in a hierarchical tree in order to
reduce computational costs and memory consumption an setting with a high
number of classes (Tsoumakas et al., 2008). First experimental results are very
encouraging (Tsoumakas et al., 2009).

Acknowledgements

This work was supported by the EC 6tℎ Framework project ALIS (Au-
tomated Legal Information System) and by the German Science Foundation
(DFG).

References

Angulo, C., Ruiz, F., González, L., Ortega, J. A., 2006. Multi-classification by
using tri-class svm. Neural Processing Letters 23 (1), 89–101.

Bishop, C. M., 1995. Neural Networks for Pattern Recognition. Oxford Univer-
sity Press.

Boutell, M. R., Luo, J., Shen, X., Brown, C. M., 2004. Learning multi-label
scene classification. Pattern Recognition 37 (9), 1757–1771.

Brinker, K., Fürnkranz, J., Hüllermeier, E., 2006. A Unified Model for Multil-
abel Classification and Ranking. In: Brewka, G., Coradeschi, S., Perini, A.,
Traverso, P. (Eds.), Proceedings of the 17th European Conference on Artificial
Intelligence (ECAI-06).

Chang, C.-C., Lin, C.-J., 2001. LIBSVM: a library for support vector machines.
Software available at http://www.csie.ntu.edu.tw/˜cjlin/libsvm.

Crammer, K., Dekel, O., Keshet, J., Shalev-Shwartz, S., Singer, Y., Mar. 2006.
Online passive-aggressive algorithms. Journal of Machine Learning Research
7, 551–585.

Crammer, K., Singer, Y., 2003. A Family of Additive Online Algorithms for
Category Ranking. Journal of Machine Learning Research 3 (6), 1025–1058.

26

Fan, R.-E., Chang, K.-W., Hsieh, C.-J., Wang, X.-R., Lin, C.-J., aug 2008.
Liblinear: A library for large linear classification. Journal of Machine Learning
Research 9, 1871–1874.

Freund, Y., Schapire, R. E., 1999. Large Margin Classification using the Per-
ceptron Algorithm. Machine Learning 37 (3), 277–296.

Fürnkranz, J., 2002. Round Robin Classification. Journal of Machine Learning
Research 2, 721–747.

Fürnkranz, J., Hüllermeier, E., Loza Menćıa, E., Brinker, K., 2008. Multilabel
classification via calibrated label ranking. Machine Learning 73 (2), 133–153.

Hsu, C.-W., Chang, C.-C., Lin, C.-J., May 2009. A practical guide to sup-
port vector classification. Tech. rep., Department of Computer Science,
National Taiwan University, available at http://www.csie.ntu.edu.tw/

˜cjlin/papers/guide/guide.pdf.

Hsu, C.-W., Lin, C.-J., 2002. A Comparison of Methods for Multi-class Support
Vector Machines. IEEE Transactions on Neural Networks 13 (2), 415–425.

Katakis, I., Tsoumakas, G., Vlahavas, I., 2008. Multilabel text classification for
automated tag suggestion. In: Proceedings of the ECML/PKDD-08 Work-
shop on Discovery Challenge. Antwerp, Belgium.

Khardon, R., Wachman, G., Feb. 2007. Noise tolerant variants of the perceptron
algorithm. Journal of Machine Learning Research 8, 227–248.

Lewis, D. D., September 1997. Reuters-21578 text categorization test collec-
tion. README file (V 1.2), available from http://www.research.att.com/

˜lewis/reuters21578/README.txt.

Lewis, D. D., Yang, Y., Rose, T. G., Li, F., 2004. Rcv1: A new benchmark col-
lection for text categorization research. Journal of Machine Learning Research
5, 361–397.

Li, Y., Zaragoza, H., Herbrich, R., Shawe-Taylor, J., Kandola, J. S., 2002. The
Perceptron Algorithm with Uneven Margins. In: Machine Learning, Proceed-
ings of the Nineteenth International Conference (ICML 2002). pp. 379–386.

Loza Menćıa, E., Fürnkranz, J., 2008a. Efficient pairwise multilabel classifi-
cation for large-scale problems in the legal domain. In: Daelemans, W.,
Goethals, B., Morik, K. (Eds.), Proceedings of the European Conference
on Machine Learning and Principles and Practice of Knowledge Disocvery
in Databases (ECML-PKDD-2008), Part II. Springer-Verlag, Antwerp, Bel-
gium, pp. 50–65.

Loza Menćıa, E., Fürnkranz, J., 2008b. Pairwise learning of multilabel classifica-
tions with perceptrons. In: Proceedings of the 2008 IEEE International Joint
Conference on Neural Networks (IJCNN 08). Hong Kong, pp. 2900–2907.

27

Loza Menćıa, E., Park, S.-H., Fürnkranz, J., 2008. Advances in efficient pair-
wise multilabel classification. Tech. Rep. TUD-KE-2008-06, TU Darmstadt,
Knowledge Engineering Group, available at http://www.ke.informatik.

tu-darmstadt.de/publications/reports/tud-ke-2008-06.pdf.

Moreira, M., Mayoraz, E., 1998. Improved pairwise coupling classification with
correcting classifiers. In: Nedellec, C., Rouveirol, C. (Eds.), ECML. Vol. 1398
of Lecture Notes in Computer Science. Springer, pp. 160–171.

Park, S.-H., Fürnkranz, J., 2007. Efficient pairwise classification. In: Kok, J. N.,
Koronacki, J., Lopez de Mantaras, R., Matwin, S., Mladenič, D., Skowron,
A. (Eds.), Proceedings of 18th European Conference on Machine Learning
(ECML-07). Springer-Verlag, Warsaw, Poland, pp. 658–665.

Rosenblatt, F., 1958. The perceptron: a probabilistic model for information
storage and organization in the brain. Psychological Review 65 (6), 386–408.

Salton, G., Buckley, C., 1988. Term-weighting approaches in automatic text
retrieval. Inf. Process. Manage. 24 (5), 513–523.

Shalev-Shwartz, S., Singer, Y., 2005. A New Perspective on an Old Perceptron
Algorithm. In: Learning Theory, 18th Annual Conference on Learning Theory
(COLT 2005). Springer, pp. 264–278.

Tsampouka, P., Shawe-Taylor, J., 2007. Approximate maximum margin algo-
rithms with rules controlled by the number of mistakes. In: Ghahramani,
Z. (Ed.), Machine Learning, Proceedings of the Twenty-Fourth International
Conference on Machine Learning(ICML 2007). Vol. 227 of ACM International
Conference Proceeding Series. ACM, pp. 903–910.

Tsoumakas, G., Katakis, I., Loza Menćıa, E., Park, S.-H., Fürnkranz, J., 2009.
A comparison of decompositive multi-label classification models. In: Proceed-
ings of ECML/PKDD 2009 Workshop on Preference Learning.

Tsoumakas, G., Katakis, I., Vlahavas, I., 2008. Effective and efficient multilabel
classification in domains with large number of labels. In: Proceedings of the
ECML/PKDD-08 Workshop on Mining Multidimensional Data (MMD-08).
Antwerp, Belgium.

28

