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Abstract. The straightforward approach to multi-label classification is
based on decomposition, which essentially treats all labels independently
and ignores interactions between labels. We propose to enhance multi-
label classifiers with features constructed from local patterns representing
explicitly such interdependencies. An Exceptional Model Mining instance
is employed to find local patterns representing parts of the data where
the conditional dependence relations between the labels are exceptional.
We construct binary features from these patterns that can be interpreted
as partial solutions to local complexities in the data. These features are
then used as input for multi-label classifiers. We experimentally show
that using such constructed features can improve the classification per-
formance of decompositive multi-label learning techniques.
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1 Introduction

Contrary to ordinary classification, in multi-label classification (MLC) one can
assign more than one class label to each example [2, 3]. For instance, when we
have the earth’s continents as classes, a news article about the French and Amer-
ican intervention in Libya could be labeled with the Africa, Europe, and North
America classes. Originally, the main motivation for the multi-label approach
came from the fields of medical diagnosis and text categorization, but nowadays
multi-label methods are required by applications as diverse as music categoriza-
tion [4], semantic scene classification [5], and protein function classification [6].
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Many approaches to MLC take a decompositive approach, i.e., they decom-
pose the MLC problem into a series of ordinary classification problems. The
formulation of these problems often ignores interdependencies between labels,
implying that the predictive performance may improve if label dependencies are
taken into account. When, for instance, one considers a dataset where each label
details the presence or absence of one kind of species in a certain region, the food
chains between the species cause a plethora of strong correlations between labels.
But interplay between species is more subtle than just correlations between pairs
of species. It has, for instance, been shown [7] that a food chain between two
species (the sponge Haliclona and the nudibranch Anisodoris) may be displaced
depending on whether a third species is present (the starfish Pisaster ochraceus),
which is not directly related to the species in the food chain. Apparently, there
is some conditional dependence relation between these three species. The ability
to consider such interplay is an essential element of good multi-label classifiers.

In this paper we propose incorporating locally exceptional interactions be-
tween labels in MLC, as an instance of the LeGo framework [8,9]. In this frame-
work, the KDD process is split up in several phases: first local models are found
each representing only part of the data, then a subset of these models is selected,
and finally this subset is employed in constructing a global model. The crux is
that straight-forward classification methods can be used for building a global
classifier, if the locally exceptional interactions between labels are represented
by features constructed from patterns found in the local modeling phase.

We propose to find patterns representing these locally exceptional interac-
tions through an instance of Exceptional Model Mining [10, 11]; a framework
that can be seen as an extension of traditional Subgroup Discovery. The instance
we consider [12] models the conditional dependencies between the labels by a
Bayesian network, and strives to find patterns for which the learned network
has a substantially different structure than the network learned on the whole
dataset. These patterns can each be represented by a binary feature of the data.
The main contribution of this paper is a demonstration that the integration of
these features into the classification process improves classifier performance. On
the other hand, we expect the newly generated binary features to be expressive
enough to replace the original features, while maintaining classifier performance
and increasing efficiency.

2 Preliminaries

In this section, we recall the cornerstones of our work: the LeGo framework for
learning global models from local patterns (Section 2.1) and multi-label classifi-
cation (Section 2.2). We conclude with the problem formulation (Section 2.3).

2.1 The LeGo framework

As mentioned, the work in this paper relies heavily on the LeGo framework [8,9].
This framework assumes that the induction process is not executed by running a
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Fig. 1. The LeGo framework

single learning algorithm, but rather consists of a number of consecutive phases,
as illustrated in Figure 1. In the first phase a local pattern discovery algorithm is
employed in order to obtain a number of informative patterns, which can serve
as relevant features to be used in the subsequent phases. These patterns can
be considered partial solutions to local complexities in the data. In the second
and third phase, the patterns are filtered to reduce redundancy, and the selected
patterns are combined in a final global model, which is the outcome of the
process.

The main reason to invest the additional computational cost of a LeGo ap-
proach over a single-step algorithm, is the expected increase in accuracy of the
final model, caused by the higher level of exploration involved in the initial lo-
cal pattern discovery phase. Typically, global modeling techniques employ some
form of greedy search, and in complex tasks, subtle interactions between at-
tributes may be overlooked as a result of this. In most pattern mining methods
however, extensive consideration of combinations of attributes is quite common.
When employing such exploratory algorithms as a form of preprocessing, one
can think of the result (the patterns) as partial solutions to local complexities in
the data. The local patterns, which can be interpreted as new virtual features,
still need to be combined into a global model, but potentially hard aspects of the
original representation will have been accounted for. As a result, straightforward
methods such as Support Vector Machines with linear kernels can be used in the
global modeling phase.

The LeGo approach has shown its value in a range of settings [8], particularly
regular binary classification [13,14], but we have specific reasons for choosing this
approach in the context of multi-label classification (MLC). It is often mentioned
that in MLC, one needs to take into consideration potential interactions between
the labels, and that simultaneous classification of the labels may benefit from
knowledge about such interactions [15–18].

In [12], an algorithm was outlined finding local interactions amongst multiple
targets (labels) by means of an Exceptional Model Mining (EMM) instance. The
EMM framework [11] suggests a discovery approach involving multiple targets,
using local modeling over the targets in order to find subsets of the dataset
where unusual (joint) target distributions can be observed. In [12], we presented
one instance of EMM that deals with discrete targets, and employs Bayesian
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Fig. 2. Decomposition of multi-label training sets into binary (BR) or multiclass prob-
lems (LP). Yi = {yi1, . . . , yi|Yi|| y

i
j ∈ L} denotes the assigned labels {`j | `ij = 1}

to example xi. In LP the (single) target value of an instance xi is from the set
{Yi| i = 1 . . .m} ⊆ 2L of the different label subsets seen in the training data.

Networks in order to find patterns corresponding to unusual dependencies be-
tween targets. This Bayesian EMM instance provides MLC with representations
of locally unusual combinations of labels.

2.2 Multi-label classification

Throughout this paper we assume a dataset Ω. This is a bag of N elements (data
points) of the form x = {a1, . . . , ak, `1, . . . , `m}. We call a1, . . . , ak the attributes
of x, and `1, . . . , `m ∈ L the labels of x. Each label `i is assumed to be discrete,
and the vectors of attributes are taken from an unspecified domain A. Together
we call the attributes and labels of x the features of x. When necessary, we
distinguish the ith data point from other data points by adding a superscript i
to the relevant symbols.

The task of multi-label classification (MLC) is, given a training set E ⊂ Ω,
to learn a function f(a1, . . . , ak) → (`1, . . . , `m) which predicts the labels for
a given example. Many multi-label learning techniques reduce this problem to
ordinary classification.

The widely used binary relevance (BR) [2, 3] approach tackles a multi-label
problem by learning a separate classifier fi(a1, . . . , ak)→ `i for each label `i, as
illustrated in Figure 2d. At query time, each binary classifier predicts whether
its class is relevant for the query example or not, resulting in a set of relevant



labels. Obviously, BR ignores possible interdependencies between classes since it
learns the relevance of each class independently.

One way of addressing this problem is by using classifier chains (CC) [17],
which are able to model label dependencies since they stack the outputs of the
models: the prediction of the model for label `i depends on the predictions for
labels `1, . . . , `i−1. Hence, CC caters for dependencies of labels on multiple other
labels, but these dependencies are one-directional: if label `i depends on the
prediction for label `j , then `j does not depend on the prediction for `i.

An alternative approach is calibrated label ranking (CLR) [19], where the key
idea is to learn one classifier for each binary comparison of labels. CLR learns
binary classifiers fij(a1, . . . , ak) → (`i � `j), which predict for each label pair
(`i, `j) whether `i is more likely to be relevant than `j . Thus, CLR (implicitly)
takes correlations between pairs of labels into account. In addition, the decom-
position into pairs of classes has the advantage of simpler sub-problems and
hence commonly more accurately performing models [20]. Dependencies shared
between larger sets of labels are ignored by CLR.

Finally, a simple way to take label dependencies into account is the label
powerset (LP) approach [2], treating each combination of labels occuring in
the training data as a separate value of a multi-class single-label classification
problem (Figure 2c). Hence, LP caters for dependencies between larger sets of
labels as they appear in the dataset. However, LP disregards the inclusion lattice
that exists between label sets in MLC. If data point x1 has label set {`1, `2}, and
data point x2 has label set {`1, `2, `3}, then the label set for x1 is a subset of the
label set for x2. However, LP will represent these label sets as unrelated values
of a single-label. So even though LP can cater for subtle label dependencies, this
inclusion information is not preserved.

We will use each of these techniques for decomposing a multi-label problem
into an ordinary classification problem in the third LeGo phase (Section 5).

2.3 Problem statement

The main question this paper addresses is whether a LeGo approach can improve
multi-label classification, compared to existing methods that do not employ a
preliminary local pattern mining phase. Thus, our approach encompasses:

1. find a set P of patterns representing local anomalies in conditional depen-
dence relations between labels, using the method introduced in [12];

2. filter out a meaningful subset S ⊆ P ;
3. use the patterns in S as constructed attributes to enhance multi-label clas-

sification methods.

The following sections will explore what we do in each of these phases.

3 Local Pattern Discovery phase

To find the local patterns with which we will enhance the MLC attribute set,
we employ an instance of Exceptional Model Mining (EMM). This instance is



tailored to find subgroups in the data where the conditional dependence relations
between a set of target features (our labels) is significantly different from those
relations on the whole dataset. Before we recall the EMM instance in more detail,
we will outline the general EMM framework.

3.1 Exceptional Model Mining

Exceptional Model Mining is a framework that can be considered an extension
of the traditional Subgroup Discovery (SD) framework, a supervised learning
task which strives to find patterns (defined on the input variables) that satisfy
a number of user-defined constraints. A pattern is a function p : A → {0, 1},
which is said to cover a data point xi if and only if p

(
ai1, . . . , a

i
k

)
= 1. We refer

to the set of data points covered by a pattern p as the subgroup corresponding
to p. The size of a subgroup is the number of data points the corresponding
pattern covers. The user-defined constraints typically include lower bounds on
the subgroup size and on the quality of the pattern, which is usually defined on
the output variables. A run of an SD algorithm results in a quality-ranked list
of patterns satisfying the user-defined constraints.

In traditional SD, we have only a single target variable. The quality of a sub-
group is typically gauged by weighing two factors: the size of the subgroup, and
the degree to which the distribution of the target within the subgroup deviates
from the target distribution on the whole dataset. EMM extends SD by allowing
for more complex target concepts defined on multiple target variables. It par-
titions the features into two sets: the attributes and the labels. On the labels
a model class is defined, and an exceptionality measure ϕ for that model class
is selected. Such a measure assigns a quality value ϕ(p) to a candidate pattern
p, based on model characteristics. EMM algorithms traverse a search lattice of
candidate patterns, constructed on the attributes, in order to find patterns that
have exceptional values of ϕ on the labels.

3.2 Exceptional Model Mining meets Bayesian networks

As discussed in Section 2, we assume a partition of the k + m features in our
dataset into k attributes, which can be from any domain, and m labels, which
are assumed to be discrete. The EMM instance we employ [12] proposes to use
Bayesian networks (BNs) over those m labels as model class. These networks are
directed acyclic graphs (DAGs) that model the conditional dependence relations
between their nodes. A pattern has a model that is exceptional in this setting,
when the conditional dependence relations between the m labels are significantly
different on the data covered by the pattern than on the whole dataset. Hence
the exceptionality measure needs to measure this difference. We will employ the
Weighed Entropy and Edit Distance measure (denoted ϕweed), as introduced
in [12]. This measure indicates the extent to which the BNs differ in structure.
Because of the peculiarities of BNs, we cannot simply use traditional edit dis-
tance between graphs [21] here. Instead, a variant of edit distance for BNs was
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introduced, that basically counts the number of violations of the famous theorem
by Verma and Pearl on the conditions for equivalence of DAG models [22]:

Theorem 1 (Equivalent DAGs). Two DAGs are equivalent if and only if
they have the same skeleton and the same v-structures.

Since these two conditions determine whether two DAGs are equivalent, it
makes sense to consider the number of differences in skeletons and v-structures
as a measure of how different two DAGs are.

Definition 1 (Distance between BNs). Let two Bayesian networks BN1 and
BN2 be given with the same set of vertices whose size we denote by m. Denote
the edge set of their skeletons by S1 and S2, and the edge set of their moralized
graphs by M1 and M2. Let

` =
∣∣∣[S1 ⊕ S2] ∪ [M1 ⊕M2]

∣∣∣
The distance between BN1 and BN2 is defined as:

d(BN1, BN2) =
2`

m(m− 1)

As usual in set theory, ⊕ denotes an exclusive disjunction: X ⊕ Y = (X ∪
Y )−(X∩Y ). The factor 2

m(m−1) normalizes the distance to the range [0, 1]. The

moralized graph of a Bayesian network is constructed by drawing the missing
edge of every v-structure, i.e. by marrying all unmarried parents.

Notice that this distance only considers the network structures, not the un-
derlying probability distributions. Assigning exceptionality to a subgroup by
looking at those distributions had been done before by Leman et al. [11] in a
classification setting. As a consequence, our distance does not distinguish be-
tween e.g. different signs of correlation: if an edge corresponds to a positive
correlation in one network and to a negative correlation in another network,
then this edge does not contribute to the distance.

We illustrate the edit distance by computing the mutual distances between
the four networks a, b, c, and d shown in Figure 3. We find that d(a, b) = 0



and d(a, c) = d(a, d) = d(b, c) = d(b, d) = d(c, d) = 1/3. Only the two networks
that are equivalent have a distance of 0. If we compare the networks to the
independence model i which has no edges at all, we obtain d(a, i) = d(b, i) = 2/3,
and d(c, i) = d(d, i) = 1.

This distance can now be used to quantify the exceptionality of a pattern; we
define the quality measure edit distance (ϕed(p)) of pattern p to be the distance
between the Bayesian network we fit on Ω (BNΩ) and the Bayesian network we
fit on the subgroup corresponding to p (BNp), i.e. ϕed(p) = d(BNΩ , BNp).

Major changes in structure of the Bayesian networks are easily achieved in
a small subset of the data. To counter this effect, the exceptionality measure
we employ also contains a component indicating the number of data points the
pattern covers. We use the entropy (ϕent(p)) of the split between the pattern
and the rest of the dataset for this, capturing the information content of the
split. It favours balanced splits over skewed splits, and again ranges between 0
and 1, with the ends of the range reserved for the extreme cases (pattern being
empty or covering the whole dataset, and 50/50 splits, respectively).

Because we do not want to find patterns that have a low quality value on
either the edit distance or the entropy measure, we combine them into a weighed
measure:

ϕweed(p) =
√
ϕent(p) · ϕed(p)

The original components ranged from 0 to 1, hence the Weighed Entropy and
Edit Distance does so too. We take the square root of the entropy, reducing its
bias towards 50/50 splits, since we are primarily interested in a subgroup with
large edit distance, while mediocre entropy is acceptable.

Notice that the EMM algorithm takes quite some time to complete: for each
candidate pattern a Bayesian network is built over the labels, which can be done
in O

(
m2.376

)
time [12]. Since many candidate patterns are considered, this is

a high price to pay, even with a relatively small number of labels. However,
as stated in Section 2, in the LeGo approach the patterns resulting from the
EMM algorithm can be considered partial solutions to local complexities in the
data. These solutions do not need to be recomputed every time a classifier is
built. Hence, the EMM algorithm needs to be executed only once, and we can
afford to invest quite some computation time for this single run. Additionally,
the investment needed to compare Bayesian networks as opposed to, for instance,
comparing pairwise dependencies between labels, allows us to find anomalies in
non-trivial interplay between variables. Such non-trivial modeling has proven its
worth in such diverse fields as marine biology [7], traffic accident reconstruction
[23], medical expert systems [24], and financial operational risk [25].

After running the EMM algorithm, we obtain a set P of patterns each rep-
resenting a local exceptionality in the conditional dependence relations between
the m labels, hence completing the Local Pattern Discovery phase.



4 Pattern Subset Discovery phase

Having outlined the details of local pattern discovery in a multi-label context,
we now proceed to the second phase of the LeGo-framework: Pattern Subset
Discovery. A common approach for feature subset selection for regular classifica-
tion problems is to measure some type of correlation between a feature variable
and the class variable. A subset of the features S from the whole set P is then
determined either by selecting a predetermined number of best features or by
selecting all features whose value exceeds a predetermined threshold. Unfortu-
nately this approach is not directly applicable to multi-labeled data without
adaptation. We experimented with the following approaches.

A simple way is to convert the multi-label problem into a multiclass (MC)
classification problem, where each original instance is converted into several new
instances, one for each label `i assigned to the instance, using `i as the class
value (see Figure 2b). However, this transformation does explicitly model label
co-occurence for a data point.

An alternative approach is to measure the correlations on the decomposed
subproblems produced by the binary relevance (BR) decomposition (see Figure
2d). The m different correlation values for each feature are then aggregated. In
our experiments, we aggregated with the max operator, i.e., the overall relevancy
of a feature was determined by its maximum relevance in one of the training sets
of the binary relevance classifiers. The main drawback of this approach is that it
treats all labels independently and ignores that a feature might only be relevant
for a combination of class labels, but not for the individual labels.

The last approach employs the label powerset (LP) transformation (see Figure
2c) in order to also measure the correlation of a feature to the simultaneous
absence or occurrence of label sets. Hence, with the dataset transformed into a
multiclass problem, common features selection techniques can be applied. The
different decomposition approaches are depicted in Figure 2.

After the transformations, we can use common attribute correlation measures
for evaluating the importance of an attribute in each of the three approaches. In
particular, we used the information gain and the chi-squared statistics value of
an attribute with respect to the class variable resulting from the decomposition,
as shown in Figures 2b, 2d and 2c. Then we let each of the six feature selection
methods select the best patterns from P to form the subset S. The size |S| of
the subset is fixed in our experiments (see Section 5).

The approach adapted from multiclass classification of measuring the corre-
lation between each feature and the class variable has known weaknesses such as
being susceptible to redundancies within the features. Hence, in order to evaluate
the feature selection methods, we will compare them with the baseline method
that simply draws S as a random sample from P .

5 Global Modeling phase

For the learning of the global multi-label classification models in the Global Mod-
eling phase, we experiment with several standard approaches including binary
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Fig. 4. A multi-label classification problem (a), its representation in pattern space (b)
given the set of patterns p1, . . . , p|S|, and the LeGo combination (c)

relevance (BR) and label powerset (LP) decompositions [2,3], as well as a selec-
tion of effective recent state-of-the-art learners such as calibrated label ranking
(CLR) [19, 26], and classifier chains (CC) [17]. The chosen algorithms cover a
wide range of different approaches and techniques used for learning multi-label
problems (see Section 2.2), and are all included in Mulan, an excellent library
for multi-label classification algorithms [2, 27].

We combine the multi-label decomposition methods mentioned in Section 5
with several base learners: J48 with default settings [28], standard LibSVM [29],
and LibSVM with a grid search on the parameters. In this last approach, mul-
tiple values for the SVM kernel parameters are tried, and the one with the best
3-fold cross-validation accuracy is selected for learning on the training set (as
suggested by [29]). Both SVM methods are run once with the Gaussian Radial
Basis Function as kernel, and once with a linear kernel using the efficient Lib-
Linear implementation [30]. We will refer to LibSVM with the parameter grid
search as MetaLibSVM, and denote the used kernel by a superscript rbf or lin.

For each classifier configuration, we learn three classifiers based on different
attribute sets. The first classifier uses only the k attributes that make up the
original dataset, and is denoted CO (Figure 4a). The second classifier, denoted
CS , uses only attributes constructed from our pattern set S. Each of these pat-
terns by definition maps each record in the original dataset to either zero or one.
Hence they can be trivially transformed into binary attribute, that together make
up the attribute space for classifier CS (Figure 4b). The third classifier employs
both the k original and |S| constructed attributes, in the spirit of LeGo, and
is hence denoted CL (Figure 4c). Its attribute space consists of the k original



Table 1. Datasets used in the experiments, shown with the number of examples (N),
attributes (k), and labels (m), as well as the average number of labels per example

Dataset Domain N k m Cardinality

Emotions Music 593 72 6 1.87
Scene Vision 2407 294 6 1.07
Yeast Biology 2417 103 14 4.24

attributes, and |S| attributes constructed from the pattern set S for a grand
total of k + |S| attributes.

6 Experimental setup

To experimentally validate the outlined LeGo method, we will compare the per-
formance of the three classifiers based on different attribute sets CO, CS , and
CL. We will also investigate the relative performance of the different feature
selection methods, and the relative performance of classification approaches.

6.1 Experimental procedure

For the experiments we selected three multi-labeled datasets from different do-
mains. Statistics on these datasets can be found in Table 1. The column Cardi-
nality displays the average number of relevant labels for a data point.

The Emotions dataset [4] consists of 593 songs, from which 8 rhythmic
and 64 timbre attributes were extracted. Domain experts assigned the songs
to any number of six main emotional clusters: amazed-surprised, happy-pleased,
relaxing-calm, quiet-still, sad-lonely, and angry-fearful.

The Scene dataset [5] is from the semantic scene classification domain, in
which a photo can be classified into one or more of 6 classes. It contains 2407
photos, each of which is divided in 49 blocks using a 7× 7 grid. For each block
the first two spatial color moments of each band of the LUV color space are
computed. This space identifies a color by its lightness (the L* band) and two
chromatic valences (the u* and v* band). The photos can have the classes beach,
field, fall foliage, mountain, sunset, and urban.

From the biological field we consider the Yeast dataset [6]. It consists of
micro-array expression data and phylogenetic profiles with 2417 genes of the
yeast Saccharomyces cerevisiae. Each gene is annotated with any number of 14
functional classes.

All statistics on the classification processes are estimated via a 10-fold cross-
validation. To enable a fair comparison of the LeGo classifier with the other
classifiers, we let the entire learning process consider only the training set for
each fold. This means that we have to run the Local Pattern Discovery and
Pattern Subset Discovery phase separately for each fold.



For every fold on every dataset, we determine the best 10,000 patterns, (if
no 10,000 patterns can be found, we report them all), measuring the exception-
ality with ϕweed as described in Section 3.2. The search space in EMM cannot
be explored exhaustively when there are numerical attributes and a nontrivial
quality measure, and both are the case here. Hence we resort to a beam search
strategy, configured with a beam width of w = 10 and a maximum search level
of 2 (for more details on beam search in EMM, see [12]). We specifically select
a search of modest depth, in order to prevent producing an abundance of highly
similar patterns. We further bound the search by setting the minimal coverage
of a pattern at 10% of the dataset.

Notice that the choice of search lattice traversal does not influence the way
the exceptionality measure determines the quality of a pattern. While setting
the search depth to 2 does influence the complexity of the pattern in attribute
space, this setting is independent from the complexity of the models we fit in label
space. Each candidate pattern will be evaluated by fitting a Bayesian network
to all its labels, regardless of search parameters such as the search depth.

For each dataset for each fold, we train classifiers from the three training
sets CO, CS , and CL for each combination of a decomposition approach and
base learner. We randomly select |S| = k patterns (cf. Section 5), i.e. exactly as
many pattern-based attributes for CS and CL as there are original attributes in
CO.

6.2 Evaluation measures

We evaluate the effectiveness of the three classifiers for each combination on the
respective test sets for each fold with five measures: Micro-Averaged Precision
and Recall, Subset Accuracy, Ranking Loss, and Average Precision (for details
on computation cf. [19] and [2]). We define Yi =

{
`j | `ij = 1

}
as the set of

assigned labels and Ŷi as the set of predicted labels for a test instance xi. We
find these five measures a well balanced selection from the vast set of multi-label
measures, evaluating different aspects of multi-label predictions such as good
ranking performance and correct bipartition.

From a confusion matrix aggregated over all labels and examples, Precision
(Prec) computes the percentage of predicted labels that are relevant, and Recall
(Rec) computes the percentage of relevant labels that are predicted. Recall
and precision allow a commensurate evaluation of an algorithm, in contrast to
Hamming loss, which is often used but unfortunately generally favors algorithms
with high precision and low recall.

Prec =

∑
i

∣∣∣Ŷi ∩ Yi∣∣∣∑
i

∣∣∣Ŷi∣∣∣ Rec =

∑
i

∣∣∣Ŷi ∩ Yi∣∣∣∑
i |Yi|



Subset Accuracy (Acc) denotes the percentage of perfectly predicted label
sets, basically forming a multi-label version of traditional accuracy.

Acc =

∑
i I
[
Ŷi = Yi

]
∑
i 1

, I[x] =

{
1 if x is true

0 otherwise

Since the classifiers we consider are able to return rankings on the labels, we
also computed the following rank-based loss measures, in which r(`) returning
the position of label `. Ranking Loss (Rank) returns the number of pairs of
labels which are not correctly ordered, normalized by the total number of pairs.

Rank =
|{(` ∈ Y, `′ /∈ Y) | r(`) < r(`′)}|

|Y| · (m− |Y|)

Average Precision (AvgP) computes the precision at each relevant label in
the ranking, and averages these percentages over all relevant labels.

AvgP =
1

|Y|
∑
`∈Y

|{`′ ∈ Y | r(`′) ≤ r(`)}|
r(`)

These two ranking measures are computed for each example and then averaged
over all examples.

All values for all settings are averaged over the folds of the cross-validation.
Thus we obtain 300 test cases (5 evaluation measures × 5 base learners × 4
decomposition approaches × 3 datasets).

6.3 Statistical testing

To draw conclusions from the long list of raw results we obtained, we use the
methodology for the comparison of multiple algorithms described by Demšar [31].
First, we perform a Friedman test [32,33] to determine whether the classifiers all
perform similarly. This is a non-parametric equivalent of the repeated-measures
ANOVA. For each test case we rank the classifiers by their performance. Let T
denote the number of test cases, and let rj be the average rank over all test cases
for classifier Cj , where j ∈ {O,S, L}. Whenever a tie occurs, average ranks are
assigned. The null hypothesis now states that all classifiers perform equivalently
and so their average ranks should be equal. Under this null hypothesis, the
Friedman statistic

χ2
F =

12T

g(g + 1)
·
∑
j

(
rj −

g + 1

2

)2

has a chi-squared distribution with g− 1 degrees of freedom, when N and k are
sufficiently large. Here, g denotes the number of classifiers we are comparing.3

3 notice that while Demšar gives a different equation for the Friedman statistic, this
is the equation given by Friedman himself. Equivalence can be shown in four lines of
math; the equation shown here is slightly easier to compute, and easier on the eye.



Table 2. Average ranks of different feature selection methods, with critical difference

Selection method BR LP MC Random CD
Evaluation method χ2 gain χ2 gain χ2 gain

Rank 4.445 3.932 3.507 4.263 3.707 4.490 3.657 0.520

If the null hypothesis is rejected, we can determine which classifiers are sig-
nificantly better than others with a post-hoc test. As proposed by Demšar, we
use the Nemenyi test [34], which is similar to the Tukey test for ANOVA. The
test entails that the performance of two classifiers is significantly different if the
difference between their average ranks is at least the critical difference:

CD = qα

√
g(g + 1)

6T

where qα are critical values based on the Studentized range statistic divided by√
2. Finally and quite obviously, if the Nemenyi test yields that two classifiers

have significantly different performance, the one with the better overall rank
performs significantly better.

7 Experimental evaluation

The following subsections are dedicated to different aspects such as as the eval-
uation of the different pattern subset discovery approaches, the employment of
the different attribute sets, the impact of the decomposition approaches, and
efficiency.

7.1 Feature selection methods

Before comparing the three classifiers, we take a look at the relative performance
of the different feature selection methods. When comparing the performance of
the classifier CL with different feature selection methods over all T = 300 test
cases, we find the average ranks in Table 2. We compared the Binary Relevance,
Label Powerset and MultiClass approach, each with evaluation measures chi-
squared and information gain, and the random baseline approach.

The results show that no classifier employing a sophisticated feature selection
method significantly4 outperforms the classifier with random feature selection.

4 Since we are comparing g = 7 different methods here, the critical value with sig-
nificance level α = 5% for the chi-squared distribution with g − 1 = 6 degrees of
freedom equals 12.592. The Friedman statistic for these ranks equals χ2

F = 61.678,
hence the Friedman test is passed. For the Nemenyi test, when comparing 7 meth-
ods, the critical value is q0.05 = 2.948. Hence the critical difference between average
ranks becomes CD = 0.520.



Conversely, this classifier does significantly outperform several classifiers em-
ploying sophisticated feature selection. For the binary relevance and multiclass
approaches this is reasonable, since the patterns are explicitly designed to con-
sider interdependencies between labels, while the BR and MC approaches select
features based on their correlation with single labels only and hence ignore in-
terdependencies. The label powerset approach should do better in this respect.
In fact, the best average rank featured in Table 2 belongs to LP with the chi-
squared evaluation measure. Since its improvement over the naive method is not
significant, we did not further explore its performance, but that does not mean
it is without merit.

Another reason for the bad performance of the feature selection methods is
that they evaluate each feature individually. One extreme use case will show the
problem: if we replicate each feature n times and we select the n best features
according to the presented methods, we will get n times the same (best) feature.
In the Local Pattern Mining phase, we produce a high number of additional
features, hence we can expect to obtain groups of similar additional features
where this problem may appear. The random feature selection does not suffer
from this problem. As a result of these experiments, we decided not to use any
sophisticated feature selection in the remaining experiments, and focus on the
results for random feature selection.

7.2 Evaluation of the LeGo approach

The first row in Table 3 compares the three different representations CO, CS ,
and CL over the grand total of 300 test cases in terms of average ranks. We
see that both CO and CL perform significantly (α = 5%)5 better than CS ,
i.e. the pattern-only classifier cannot compete with the original attributes or
the combined classifier. The difference in performance between CO and CL is
not significant. Although the average rank for the LeGo-based classifier is some-
what higher, we cannot claim that adding local patterns leads to a significant
improvement. The remainder of Table 3 is concerned with stratified results.

When stratifying the results by base learner (the second block in Table 3),
we notice a striking difference in average ranks between J48 and the rest. When
we restrict ourselves to the results obtained with J48, we find that rO = 1.433,
rS = 2.517, and rL = 2.050, with CD = 0.428. Here, the classifier built from
original attributes significantly (α = 5%) outperforms the LeGo classifier.

One reason for the performance gap between J48 and the SVM approach
lies in the way these approaches construct their decision boundary. The SVM
approaches draw one hyperplane through the attribute space, whereas J48 con-
structs a decision tree, which corresponds to a decision boundary consisting of

5 Since we are comparing three classifiers, the Friedman statistic equals χ2
F = 52.687.

With significance level α = 5%, the critical value for the chi-squared distribution
with 2 degrees of freedom equals 5.991, hence the null hypothesis of the Friedman
test is comfortably rejected. For the post-hoc Nemenyi test, when comparing three
classifiers the critical value is q0.05 = 2.344. Hence, the critical difference between
average ranks becomes CD = 0.191, with significance level α = 5%.



Table 3. Comparison of different attribute sets. Average ranks of the three classifiers
CO, CS , CL, with critical difference, over all 300 test cases, over all 240 test cases
barring J48, over all 60 test cases with a particular base learner, and over all 75 test
cases with a particular decomposition method. Bold numbers indicates the top rank in
the row, > or < indicate a significant difference to the direct neighbor classifier.

CO CL CS CD

Overall 1.863 = 1.797 > 2.340 0.191
Without J48 1.971 < 1.733 > 2.296 0.214

MetaLibSVMrbf 1.483 = 1.683 > 2.833 0.428

MetaLibSVMlin 1.900 = 1.800 > 2.300 ”

LibSVMrbf 2.633 < 1.683 = 1.683 ”

LibSVMlin 1.867 = 1.767 > 2.367 ”
J48 1.433 > 2.050 > 2.517 ”

Acc 1.850 = 1.800 > 2.350 ”
Prec 1.700 = 1.883 > 2.417 ”
Rec 1.983 = 1.700 > 2.317 ”
AvgP 1.850 = 1.833 > 2.317 0.428
Rank 1.933 = 1.767 > 2.300 ”

CLR 1.813 = 1.760 > 2.427 0.383
LP 1.773 = 1.827 > 2.400 ”
CC 1.947 = 1.720 > 2.333 ”
BR 1.920 = 1.880 = 2.200 ”

Emotions 2.510 < 1.860 = 1.630 0.331
Scene 1.480 = 1.640 > 2.880 ”
Yeast 1.600 = 1.890 > 2.510 ”

axis-parallel fragments. The patterns the EMM algorithm finds in the Local Pat-
tern Discovery phase are constructed by several conditions on single attributes.
Hence the domain of each pattern has a shape similar to a J48 decision boundary,
unlike a (non-degenerate) SVM decision boundary. Hence, the expected perfor-
mance gain when adding such local patterns to the attribute space is much higher
for the SVM approaches than for the J48 approach.

Using only the original attributes seems to be enough for the highly optimized
non-linear MetaLibSVMrbf method, though the difference to the combined at-
tributes is small and not statistically significant. The remaining base learners
benefit from the additional local patterns. Notably, when using LibSVMrbf, it is
even possible to rely only on the pattern-based attributes in order to outperform
the classifiers trained on the original attributes.

Because the J48 approach results in such deviating ranks, we investigate the
relative performance of the base learners. We compare their performance on the
three classifiers CO, CS , and CL, with decomposition methods BR, CC, CLR,
and LP, on the datasets from Table 1, evaluated with the measures introduced
in Section 6.1. The average ranks of the base learners over these 180 test cases
can be found in Table 4; Again, the Friedman test is easily passed. The Nemenyi
test shows that J48 performs significantly worse than all SVM methods and that



MetaLibSVMrbf clearly dominates the performance of the SVMs. This last point
is not surprising, since the three datasets are known to be difficult and hence
not linearly separable [19], which means that an advantage of the RBF-kernel
over the linear kernel can be expected. Moreover, the non expensively optimized
LibSVMrbf can be considered to be subsumed by the meta variant since the grid
search includes the default settings.

Having just established that J48 is the worst-performing base learner and,
additionally, that the similar decision patterns particularly damage the perfor-
mance of the LeGo classifier, we repeat our overall comparison considering only
the SVM variants. Moreover, SVMs are conceptually different from decision tree
learners, which additionally justifies the separate comparison. The average ranks
of the three classifiers CO, CS , and CL on the remaining 240 test cases can be
found in the second row of Table 3. This time, the Nemenyi test yields that on
the SVM methods the LeGo classifier is generally significantly better than the
classifier built from original attributes, even though for MetaLibSVMrbf this is
not the case.

When stratifying the results by quality measure (the third block in Table 3)
we find that the results are consistent over the chosen measures. For all measures
we find that CL significantly outperforms CS , and CO always outperforms CS
though not always significantly. Additionally, for all measures except precision,
CL outranks CO, albeit non-significantly. This consistency provides evidence for
robustness of the LeGo method.

The fourth block in Table 3 concerns the results stratified by transformation
technique. With the exception of the label powerset approach, which by itself
respects relatively complex label dependencies, all approaches benefit from the
combination with the constructed LeGo attributes, though the differences are
not statistically significant. Of peculiar interest is the benefit for the binary
relevance approach, which in its original form considers each label independently.
Though the Friedman test is not passed, the trend is confirmed by the results
of CC, which additionally include attributes from the preceding base classifiers’
predictions.

As stated in Section 2.2, to predict label `i the CC decomposition approach
allows using the predictions made for labels `1, . . . , `i−1. Hence we can view CC
as an attribute enriching approach, adding an attribute set C. The result com-
paring the performance of the different attribute sets arrives at O ∪S ∪C (rank
2.84) followed by O ∪ S (3.34), O ∪C (3.53), O (3.6), S (3.89) and S ∪C (3.97)
(significant difference only between first and both last combinations). Hence,
adding C has a similar effect on performance than adding S, and BR particu-
larly benefits if both are added, which demonstrates that the patterns based on
local exceptionalities provide additional information on the label dependencies
which is not covered by C.

In the last block of Table 3 we see that results vary wildly when stratified
by dataset. We see no immediate reason why this should be the case; perhaps a
study involving more datasets could be fruitful in this respect.



Table 4. Average ranks of the base learners, with critical difference CD

Approach MetaLibSVMrbf MetaLibSVMlin LibSVMlin LibSVMrbf J48 CD

Rank 1.489 2.972 3.228 3.417 3.894 0.455

Table 5. Comparison of the decomposition approaches. The first block compares the
approaches for all base learner combinations, the second one restricts on the usage of
MetaLibSVMrbf. The first row in each block indicates the average ranks with respect
to all evaluation metrics, whereas the following rows distinguish between the individual
measures.

Measure CLR LP CC BR CD

all & all BC 1.909 > 2.462 = 2.700 = 2.929 0.313
Acc 3.400 < 1.489 = 1.722 > 3.389 0.700
Prec 1.989 > 3.467 = 3.111 < 1.433 ”
Rec 2.156 = 1.956 = 2.422 > 3.467 ”
AvgP 1.000 > 2.778 = 3.111 = 3.111 ”
Rank 1.000 > 2.622 = 3.133 = 3.244 ”

all & MetaLibSVMrbf 2.111 = 1.911 > 2.911 = 3.067 0.700
Acc 3.667 < 1.000 = 2.000 = 3.333 1.563
Prec 2.111 = 3.444 = 3.444 < 1.000 ”
Rec 2.778 < 1.000 = 2.333 = 3.889 ”
AvgP 1.000 = 2.111 = 3.444 = 3.444 ”
Rank 1.000 = 2.000 = 3.333 = 3.667 ”

7.3 Evaluation of the decompositive approaches

We can learn more from Table 3 when more blocks are additionally stratified by
evaluation measure. Indeed, the decision of the feature base does not seem to
have a differing impact on the metrics (for the SVM learners, not shown in the
table). The only exception appears to be micro-averaged precision, for which CO
yields a small advantage over CL. But as Table 5 demonstrates, the situation
changes with respect to the decompositive approach used. As we can see in the
upper block, there are clear tendencies regarding the preference for a particular
metric.

For instance, LP has a clear advantage in terms of subset accuracy, which
only CC is able to approximate. This is natural, since both approaches are ded-
icated to the prediction of a correct labelset. In fact, LP only predicts labelsets
previously seen in the training data. CC behaves similarly, as is shown in the
following: if we consider only the additional attributes from the previous predic-
tions (i.e. attribute set C), then we found that CC behaves similar to a sequence
tagger. Hence, for a particular sequence of labels `1, . . . , `i−1 the i-th classifier
in the chain will tend to predict `i = 1 (or `i = 0 respectively) only if `1, . . . , `i
existed in the training data. The advantage of LP and CC is confirmed in the



bottom block, which restricts the comparison to the usage of the most accurate
base learner MetaLibSVMrbf.

Precision is dominated by BR, followed by CLR. This result is obtained
by being very cautious at prediction, as the values for recall show. Especially
the highly optimized SVM is apparently fitted towards predicting a label only
if it is very confident that the estimation is correct. It is not clear whether
this is due to the high imbalance of the binary subproblems, e.g. compared to
pairwise decomposition. CLR shows to be more robust, though a bias towards
underestimating the size of the label sets is visible. Especially in this case the
bias may originate from the conservative BR classifiers, which are included in the
calibrated ensemble, since the difference between precision and recall is clearly
higher for MetaLibSVMrbf.

A contrary behavior to BR is shown by LP, which dominates recall, espe-
cially for MetaLibSVMrbf, but completely neglects precision. This indicates a
preference for predicting the more rare large labelsets. The best balance between
precision and recall is shown by CLR. Even for MetaLibSVMrbf, for which the
underestimation leads to low recall, but for which the competing classifier chains
obtain the worst precision values together with LP.

The good balancing properties of CLR are confirmed by the results on the
ranking losses, which are clearly dominated by CLR’s good ability to produce a
high density of relevant labels at the top of the the rankings. The high recall of LP
corresponds with good ranking losses, but the low ranks of BR demonstrate that
its high precision is not due to a good ranking ability. This behavior was already
observed e.g. in [19] and [20] where BR often correctly pushed a relevant class
at the top, but obtained poor ranking losses. Similarly, CC’s base classifiers are
trained independently without a common basis for confidence scores and hence
achieve a low ranking quality.

If we give the same weight to the five selected measures, we observe that CLR
significantly outperforms the second placed LP if all base learner are considered,
and slightly loses against LP if MetaLibSVMrbf is used (top row in both blocks
in Table 3).

7.4 Efficiency

Apart from the unsatisfactory performance of the J48 approach compared to
SVM approaches, Table 4 also indicates that compared to the standard LibSVM
approach, the extra computation time invested in the MetaLibSVM parameter
grid search is rewarded with a significant increase in classifier performance. For
both the linear and the RBF kernel we see that the MetaLibSVM approach
outperforms the LibSVM approach, although this difference is only significant for
the RBF kernel. A more exhaustive parameter-optimizing search will probably
be beneficial, since the grid search considers arbitrary parameter values. Whether
the performance increase is worth the invested time is a question of preference.
In the case where time and computing power are not limited resources, the
increased performance is clearly worthwhile.



From a practical point of view, it is also interesting to analyze the efficiency
of using the original attributes in comparison to using the constructed attributes.
We expected an improvement in complexity just from the fact that the pattern
attributes are binary in contrast to the more complex nature of the original
attributes in the used datasets. In addition, it is well known that the possi-
bly resulting sparseness of the binary attributes may also boost algorithms like
SVMs.

For the comparison between training of CO and CS we focus on the Binary
Relevance decomposition setting in order to allow a balanced comparison over
the three datasets, since the complexity of BR scales linearly with respect to the
number of classes. For J48 as base learner, we observed a reduction of training
costs from 28% (Emotions) over 31% (Scene) to 47% for Yeast. For LibSVMrbf,
the difference was more pronounced, with a reduction of 60%, 52% and 50%,
resp. We obtained a similar picture for LibSVMlin, with a reduction of even 82%
(Emotions) and 65% (Scene), except for Yeast, where training CS surprisingly
takes almost 7 times longer than training CO. This case is very likely an exception
since comparing LibSVMlin and hence using different parameters shows again
a clear reduction. The numbers for MetaLibSVMlin and MetaLibSVMrbf are
omitted since they show a similar picture but are more difficult to compare
directly since they always also include testing time.

Note that training CL of course takes more computation time since we employ
both attribute sets, but the overhead of using the constructed attributes from
the patterns is clearly relatively small. Also, notice that the overhead needs to
be invested only once for training the classifier, possibly off-line, and that the
resulting trained classifier can then be used again and again for classifying data;
if one wants to classify more than once, the added complexity diminishes.

8 Discussion and related work

In traditional subgroup discovery, it is common to traverse the search space ex-
haustively [35, 36]. Usually the assumption is made that all attributes of the
dataset are nominal. Most current work on subgroup discovery still incorpo-
rates this restriction [37], but recently subgroup discovery on numeric domains
has received more attention [38]. In this work the search space is traversed ex-
haustively even though it contains numeric attributes. However, this can only
be done under the restriction that the employed quality measure has a certain
anti-monotonic property: if one could compute an optimistic estimate for the
quality of any refinement of a given candidate pattern, the search space can be
significantly pruned.

Conversely, we choose to let our work be free from the restrictions of nomi-
nality of the datasets and anti-monotonicity of the quality measure, since many
real-life datasets contain numeric attributes and we expect to benefit from using
a more complex quality measure. We also expect little disadvantage from using
heuristic rather than exhaustive search in the Local Pattern Discovery phase.
The found patterns are afterwards put through the Pattern Subset Discovery



phase, where they are subjected to feature selection which is heuristic by def-
inition, hence there is really no point in enforcing an exhaustive search in the
Local Pattern Discovery phase.

The applied Local Pattern Discovery algorithm was created to find patterns
that are interesting by themselves. The output of the algorithm is therefore
not specifically tailored to be useful in a classification setting; this is not a
guiding principle in the Exceptional Model Mining process. To the best of our
knowledge, this work is a first shot at testing the utility for classification of the
result of such a stand-alone multi-label pattern discovery process. Some recent
sophisticated classifiers, for instance the multi-label lazy associative classifiers
[39], are also based on local patterns. However, these patterns serve only the
classifier, hence the different phases, as present in the LeGo framework, are not
as separated as they are in our work. Similarly, Cheng and Hüllermeier [15]
incorporate additional attributes that encode the label distribution in the direct
neighborhood by, in effect, stacking the output of a k-Nearest Neighbor classifier.
However, this has to be done at (training and testing) runtime and cannot be
done separately and beforehand.

Other known stacking approaches include the outcome of global classifiers.
Godbole and Sarawagi [40] use the outputs of a BR-SVM classifier as addi-
tional input attributes for second-level SVMs. Similarly, Tsoumakas et al. [41]
replace all original attributes by the predicted scores of a BR. The scores are
additionally filtered according to their correlation to each other. The employed
classifier chains [17] rely on stacking the outcomes of the predetermined sequence
of previous binary relevance classifiers, which permits to model conditional de-
pendencies, but it does not rely on locality. Zhang and Zhang [18] also try to
model label dependencies and start from the premise of eliminating the condi-
tional dependency between the input attributes a1, . . . , ak and the individual
labels by computing the errors ei as difference between true label `i and the pre-
diction. The isolated dependencies between labels are then approximated by the
result of building a Bayesian network on these errors. A new BR classifier is then
learned for each class with the set of alleged parents as additional attributes.
The very recent LIFT algorithm selects particularly representative centroids in
the positive and negative examples of a class by k-means clustering and then
replaces the original attributes of an instance by the distances to these repre-
sentatives [42]. One may also interpret this approach as a different, pragmatic
way of computing new suitable principal components and hence dimensionality
reduction, which apparently works quite well.

9 Conclusions

We have proposed enhancing multi-label classification methods with local pat-
terns in a LeGo setting. These patterns are found through an instance of Ex-
ceptional Model Mining, a generalization of Subgroup Discovery striving to find
subsets of the data with aberrant conditional dependence relations between tar-
get features. Hence each pattern delivered represents a local anomaly in con-



ditional dependence relations between targets. Each pattern corresponds to a
binary attribute which we add to the dataset, to improve classifier performance.

Experiments on three datasets show that for multi-label SVM classifiers the
performance of the LeGo approach is significantly better than the traditional
classification performance: investing extra time in running the EMM algorithm
pays off when the resulting patterns are used as constructed attributes. The
J48 classifier does not benefit from the local pattern addition, which can be at-
tributed to the similarity of the local decision boundaries produced by the EMM
algorithm to those produced by the decision tree learner. Hence the expected
performance gain when adding local patterns is lower for J48 than for approaches
that learn different types of decision boundaries, such as SVM approaches.

The Friedman-Nemenyi analysis also shows that the constructed attributes
generally cannot replace the original attributes without significant loss in clas-
sification performance. We find this reasonable, since these attributes are con-
structed from patterns found by a search process that is not at all concerned
with the potential of the patterns for classification, but is focused on exception-
ality. In fact, the pattern set may be highly redundant. Additionally it is likely
that the less exceptional part of the data, which by definition is the majority of
the dataset, is underrepresented by the constructed attributes.

To the best of our knowledge, this is a first shot at discovering multi-label
patterns and testing their utility for classification in a LeGo setting. Therefore
this work can be extended in various ways. It might be interesting to develop
more efficient techniques without losing performance. One could also explore
other quality measures, such as the plain edit distance measure from [12], or
other search strategies. In particular, optimizing the beam-search in order to
properly balance its levels of exploration and exploitation, could fruitfully pro-
duce a more diverse set of attributes [43] in the Local Pattern Discovery phase.
Alternatively, pattern diversity could be addressed in the Pattern Subset Selec-
tion phase, ensuring diversity within the subset S rather than enforcing diversity
over the whole pattern set P .

As future work, we would like to expand our evaluation of these methods.
Recently, it has been suggested that for multi-label classification, it is better to
use stratified sampling than random sampling when cross-validating [44]. Also,
experimentation on more datasets seems prudent. In this paper, we have exper-
imented on merely three datasets, selected for having a relatively low number of
labels. As stated in Section 3.2, we have to fit a Bayesian network on the labels
for each subgroup under consideration, which is a computationally expensive op-
eration. The availability of more datasets with not too many labels (say, m < 50)
would allow for more thorough empirical evaluation, especially since it would al-
low us to draw potentially significant conclusions from Friedman and Nemenyi
tests per evaluation measure per base classifier per decomposition scheme. With
three datasets this would be impossible, so we elected to aggregate all these
test cases in one big test. The observed consistent results over all evaluation
measures provide evidence that this aggregation is not completely wrong, but
theoretically this violates the assumption of the tests that all test cases are inde-



pendent. Therefore, the empirically drawn conclusions in this paper should not
be taken as irrefutable proof, but more as evidence contributing to our beliefs.
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