
Separate-and-conquer
Regression
Technical Report TUD–KE–2010–01

Frederik Janssen, Johannes Fürnkranz
Knowledge Engineering Group, Technische Universität Darmstadt

Knowledge
Engineering

Abstract

In this paper a rule learning algorithm for the prediction of numerical target variables is presented. It is based on the
separate-and-conquer strategy and the classification phase is done by a decision list. A new splitpoint generation method
is introduced for the efficient handling of numerical attributes. It is shown that the algorithm performs comparable to
other regression algorithms where some of them are based on rules and some are not. Additionally a novel heuristic for
evaluating the trade-off between consistency and generality of regression rules is introduced. This heuristic features a
parameter to directly trade off the rules consistency and its generality. We present an optimal setting for this parameter
based on optimizing it on several data sets. The algorithm features two additional parameters that are also tuned on the
same datasets as the heuristics parameter. The evaluation part of the paper gives insights on results obtained on tuning
datasets that were split into two folds of equal size. The algorithm was tuned on the first set of these split databases and
is evaluated on the hold-out folds and vice versa yielding two configurations of the rule learner. These are also evaluated
on 9 testing datasets that were not used during the optimization.

Contents

1 Introduction 3

2 Related work 4

3 Separate-and-conquer rule learning and Regression 5
3.1 Separate-and-conquer for regression . 6
3.2 Error measures for regression . 7
3.3 Splitpoint processing . 8
3.4 Parameters of the algorithm . 9

4 Experimental setup 10
4.1 Evaluation methods . 11

5 Optimizing parameters 12
5.1 Optimization of the splitpoint and the left-out parameter . 12
5.2 Optimization of the heuristics parameter . 13

6 Results 16
6.1 Splitpoint processing . 16
6.2 Comparison with other systems on the two folds of the tuning datasets . 17
6.3 Comparison with other algorithms on the test sets . 17
6.4 Comparison of the size of the theories . 18
6.5 Comparison with FRS and PCR . 19
6.6 Comparison with RegENDER . 20
6.7 Discussion . 21

7 Conclusion and further work 22

2

1 Introduction

The accurate prediction of a numerical target variable is an important task in machine learning. There are several
domains that can benefit from regression methods. For example, in the domain of financial data, it is a crucial issue to
predict the volume of a credit. Here, classification algorithms can only provide a decision whether or not a credit should
be given but they are not capable of predicting its size.

In the machine learning community the main task still is to predict a categorical outcome but through the last years the
task of regression has gained more and more interest. Regression has its roots in the statistical community from where
several algorithms were proposed over the years. The list includes the popular linear regression that is very efficient
but still shows a good performance. The main advantage in using means of machine learning to solve the regression
task lies in the comprehensibility of the models. Thus, a model that for example consists of simple IF-THEN rules is easy
to understand and well to interpret. It enables a data miner to directly analyze the theories that are the output of a
learning system. Furthermore, interpretable theories make it easier to find patterns in the data that were not obvious
beforehand. Rules and trees are the two variants of interpretable models used in machine learning. As rules are typically
more expressive because they are able to overlap, the goal of this work is the design of a rule learning system that on the
one hand has a performance that is comparable to state-of-the-art algorithms and that on the other hand yields models
that are still human-readable (assumed that the datasets are not too big).

There are several ways those rule may look like. The simplest type would be a rule that tests some attribute values and
predicts a single value. More expressive models may use rules that are not predicting a single value but a linear model
instead. Indeed, those are not as readable as the first alternative. In this paper we hence used the simpler model where
each rule predicts a single value.

Furthermore there are several strategies to induce a set of rules. Some of them rely on the gradient-descent algorithm
for finding a rule ensemble that optimizes some loss function. Others convert given trees into sets of rules. However,
one of the most popular strategy in classification is the so called separate-and-conquer paradigm. Here, a rule is built
by optimizing some heuristic criterion. Once an adequate rule is found it is added to the rule set, all examples that are
covered by the rule are removed and the process continues as long as uncovered examples are left in the dataset. Due to
its simplicity and its good performance in classification1, we decided to use this strategy to design the algorithm.

The paper is started with a brief recapitulation of related work. Here, the basic concepts of regression are introduced
and some existing mechanisms to deal with numerical target variables are described. It is followed by a short introduction
of separate-and-conquer rule learning for classification. As next step the adaption that is necessary to extent separate-and-
conquer rule learning to regression is specified. The error measures used in regression are introduced and the handling
of numerical attributes is described. The Section is finished with a description of the parameters of the algorithm. In the
next Section the experimental setup and the evaluation methods that are used during the experiments are specified. Then
the method for optimizing the parameters of the algorithm is described. In the following Section the results are shown.
Here, the splitpoint processing methods are evaluated. Then a comparison with existing methods on the two folds of the
tuning datasets is given. In the following the experimental results on the test datasets are shown. The Section is finished
with a comparison of the size of the theories and a brief discussion of the results. Then the paper is concluded.

1 The famous RIPPER algorithm [4], one of the most accurate rule learners for classification also uses this strategy.

3

2 Related work

The separate-and-conquer strategy is not used frequently for learning regression rules. Exceptions include predictive
clustering rules (PCR) [25], the FRS system [7], which is a reimplementation of the FORS system [16], and M5RULES

[12, 21, 26] which generates the regression rules from model trees and uses linear models in the head of the rules.
Predictive clustering rules are generated by modifying the search heuristic of CN2 [3, 2]. Instead of accuracy or weighted
relative accuracy that was proposed in [17], it uses a heuristic that is based on the dispersion of the data. This algorithm
also follows a different route by joining clustering approaches with predictive learning. The FORS system is able to handle
numerical target attributes in Inductive Logic Programming (ILP). Therefore its application is distinct from classification.

The R2 system [22] works to some extent analogously as other separate-and-conquer algorithms by selecting an un-
covered region of the input data. But this selection differs from the mechanism used in regular separate-and-conquer
learning. However, it also allows for rules to overlap and the rules predict linear models instead of a single target value.

Other mechanisms for learning regression rules are mainly based on ensemble techniques as used in the RULEFIT

learning algorithm [8] or in REGENDER [5]. The first algorithm performs a gradient descent optimization, allows the
rules to overlap, and the final prediction is calculated by the sum of all predicted values of the covering rules instead of
that of a single rule. The second one uses a forward stagewise additive modeling.

Another popular technique to deal with a continuous target attribute is to discretize the numeric values as a prepro-
cessing step and afterwards employ regular machine learning methods for classification. Research following this path can
be found in [23, 27]. The main problem hereby is that the number of bags for the discretization process is not known in
advance. For this reason the performance of this technique strongly depends on the choice of the number of classes.

4

Algorithm 1 SEPARATEANDCONQUER(Examples)

PROCEDURE SEPARATEANDCONQUER(Examples)
Theory← ;
Rule← INITIALIZERULE()
loop until all but n percent of the examples are covered
while COVERED(Examples) ≤ n · SIZE(Examples)

find the best rule
Rule← TOPDOWNBEAMSEARCH(Examples)
remember rule and remove covered examples
Theory← Theory ∪ Rule
Examples← Examples \ COVERED(Rule,Examples)

add the default rule
Theory← Theory ∪ DefaultRule
return Theory

3 Separate-and-conquer rule learning and Regression

Most inductive rule learning algorithms for classification employ a separate-and-conquer strategy for learning rules that
allow to map the examples to their respective classes. The origin of this strategy is the AQ-Algorithm [18] but still most
rule learning algorithms use this technique, most notably RIPPER [4], arguably one of the most accurate rule learning
algorithms for classification. The basic idea of the separate-and-conquer strategy [9] is to cover a part of the example
space that is not explained by any rule yet (the conquer step) as shown in Algorithm 1. This region is covered by searching
for a rule that fulfills some properties, i.e., has a low error on this partition of the input space (cf. Algorithm 2). After this
rule is found, it is added to a set of rules, and all examples that are covered by the rule are removed from the data set
(the separate step). Then, the next rule is searched on the remaining examples. This procedure lasts as long as (positive)
examples are left. The two constraints that all examples have to be covered (also called completeness) and that no
negative example has to be covered in the binary case (consistency) can be relaxed so that examples remain uncovered in
the data or negative examples are covered by the set of rules. This relaxation mostly is driven from preventing overfitting.
As depicted in Algorithm 1 the outer loop can be stopped before all examples are covered by setting the percentage of
covered examples (parameter n in Algorithm 1).

In the end, the algorithm returns a set of subsequently learnt rules. For classification, each of the rules in the list is
tested whether or not it covers the example. The first rule that covers the example (i.e., matches all the given attribute
values) “fires” and predicts the value of the example by using the head of the rule. If no rule in the (decision) list covers
the example the prediction is given by a special rule that usually predicts the majority class in the data. This default rule
is always included as last rule when all examples are covered.

In the following we will have a closer look at the main step of the algorithm, namely how to navigate through
the search space. Most of the algorithms build all possible candidate rules from the data by using all values for a
given attribute and include these attribute-value pairs as conditions in a candidate rule or a refinement (the set of
Refinements in Algorithm 2). For nominal attributes these values are given from the data itself but for numerical attributes
usually all possible splitpoints are used. These splitpoints are calculated as the mean between two adjacent (previously
sorted) values. For efficient computation of the new coverage statistics usually some properties of binary input data are
used. Thus, the positive and negative coverage of the two partitions of the data is stored and the statistics of the next
splitpoint can be computed easily by increasing the positive/negative coverage of the first fold and by decreasing the
positive/negative coverage of the second one depending on the target value of the example that moves from the first to
the second partition. The advantage here is that is is not necessary to iterate over all examples to compute an evaluation
for a new candidate rule.

Finally, when all candidates with one condition are generated a heuristic is used to determine the best one (the
EVALUATERULE method in Algorithm 2). Then, the best candidate rule is stored (BestRule in Algorithm 2) and refined by
adding all possible remaining attribute-value pairs to yield all refinements with two conditions. For nominal attributes
the used ones are stored (and not used any more) and for numerical ones the relations < and ≥ are evaluated. This
means that a numerical attribute may occur twice in one rule by using it for a test on < and on ≥. This procedure usually
proceeds as long as negative examples are covered. As mentioned before, mostly to prevent overfitting, the process can

5

Algorithm 2 TOPDOWNBEAMSEARCH(Examples)

PROCEDURE TOPDOWNBEAMSEARCH(Examples)
remember the rule with the best evaluation
BestRule← MaxRule← null
BestEval← EVALUATERULE(BestRule,Examples)
do

compute refinements of the best previous rule
Refinements← REFINEMENTS(MaxRule, Mode)
find the best refinement
MaxEval←−∞
for Rule ∈ Refinements

Eval← EVALUATERULE(Rule,Examples)
if Eval > MaxEval

MaxRule← Rule, MaxEval← Eval

store the rule if we have a new best and if it covers at least minCov examples
if MaxEval ≥ BestEval and COVERED (Rule) ≥ minCov

BestRule← MaxRule, BestEval← MaxEval

break loop when no more refinements
until Refinements = ;

return BestRule

also be stopped before so that there are still some negative examples covered. In this step the algorithm also ensures that
a minimum number of examples is covered. This is a user given value called minCov in Algorithm 2. For all experiments
(cf. Section 5 and 6) we fixed the minimum coverage to 3 examples.

Note that missing attribute values are treated as they are never covered. When the class of an instance is missing it is
removed from the dataset in a preprocessing step.

Another mechanism is to refine several candidate rules simultaneously. The idea of this strategy is to prevent the
algorithm from getting stuck in local optima. There may be situations where the current selection of the best candidate
rule may lead to a suboptimal path. Hence, the search returns a candidate rule that is not the best possible one. To
guarantee that always the best possible candidate rule is returned, an exhaustive search has to be performed where all
possible candidate rules are generated and the best one is selected. Usually this will be too costly. As a compromise the
best b rules are refined simultaneously. In this work we left the beam at b = 1, yielding standard hill-climbing search.

The motivation behind the usage of simple hill-climbing search is twofold: On the one hand it is more efficient
compared to a beam search. On the other hand there is some evidence that an increased beam size may lead to the
problem of over-searching [19, 20]. Despite these drawbacks, in [15] it was discovered that the requirements of the
heuristic drastically depend on the type of search method. Thus, a heuristic that works good in a hill-climbing scenario
may be suboptimal when it is used inside a beam search. To avoid these problems we decided to use the simple hill-
climbing search.

There are many different heuristics to navigate the search (for an overview see [10]) but all of them are trying to
maximize the coverage of positive examples (p) and to minimize the negative coverage (n). To reach this objective
different ways are employed but usually, in some way, there has to be a combination of consistency (i.e., the error or the
negative coverage) of the rule and its generality (i.e., the number of examples that are covered). Most of the heuristics
have a fixed trade-off but some of them feature a parameter to adjust it. In previous work the parameters of some of
these heuristics were tuned, so that they achieve the most accurate trade-off between consistency and coverage [14]. In
this work we follow the same path by defining a parametrized heuristic that trades-off error and generality of a rule and
by tuning its parameter to yield the best fit between these two objectives.

When dealing with numeric target variables the algorithm has to be adapted in several ways as shown in the next
Section.

3.1 Separate-and-conquer for regression

As noted above some of the features that come with categorical binary data do not apply for numerical target variables.
Thus the algorithm had to be adapted in several ways. First of all the efficient computation of the coverage statistics for
numeric input attributes can not be used any more. In regression there is no notion of positive and negative coverage.

6

Here, only the error of the rule on the covered data and the number of covered examples are available. For this reason
a novel splitpoint method had to be developed that allows using only a subset of all possible splitpoints to prevent the
algorithm from getting too inefficient (cf. Section 3.3). The heuristics that were introduced for the task of classification
are also not suited for regression. Hence, an alternative error measure has to be defined. The default rule also has to
be adapted because there is no majority class any more. A simple way to do this is to take the mean over all remaining
examples as prediction. Another way would be to take the mean of all examples. We experimented with both settings
(cf. Section 6). Finally, the methods for evaluating the final model had also to be adapted because using measures
like accuracy (the percentage of correctly predicted examples) is not practicable any more. A detailed description of the
evaluation measures is given in Section 4.1.

Finally the semantics of the rule itself had to be adapted. Thus, a regression rule now has as head a certain value
instead of a (nominal) class. The predicted value is calculated as the mean over all examples covered by the rule. A rule
consists of an antecedent where all attributes are tested and a consequent that predicts the value. An example for such a
rule may be

IF at t1 = value1 AND at t2 < value2 AND at t2 ≥ value3 THEN 3.125

3.2 Error measures for regression

There are several ways to compute the error of a rule or a model for regression tasks given in the literature. In this
Section the most important ones are described.

In the following m denotes the total number of examples in the (current) dataset, y is the value of the current example,
ȳ is the value predicted by the rule, y ′ is the mean over all examples, rmin is the lowest value in the data and rmax is the
highest value in the data (for the target attribute).

The mean absolute error is the mean of the sum of the absolute errors of all examples that are covered by the rule

LMAE =
1

m

m
∑

i=1

|yi − ȳi | (3.1)

The variance or mean squared error is the mean of the sum of the squared error of all examples that are covered by the
rule

LMSE =
1

m

m
∑

i=1

(yi − ȳi)
2 (3.2)

To get the root mean squared error the root of the LMSE is taken

LRMSE =
p

LMSE (3.3)

A problem with all of the above measures is that they are domain-dependent. As the amplitude of the values in the
domain is changing the amplitude in the error measures is changing as well. Thus, the errors are not comparable among
different datasets. For using these measures to compute the heuristic value this may not be a problem because only
candidate rules are compared to each other. But if a combination of the error and the coverage is taken this becomes
crucial due to normalization issues. If the coverage is expressed as normalized value the error measure has to be also
normalized.

Therefore, all values have to be normalized into the [0,1] interval. For the mean absolute error this can be done by
normalizing with the difference of the highest and lowest value in the data. Usually this should map the values in the
[0,1] interval but is is not guaranteed that this does always work. But for our purpose it seems to be sufficient to catch
the majority of the values. The normalized mean absolute error is defined as

Lnmae =

∑m
i=1 |yi − ȳi |

m · (rmax − rmin)
. (3.4)

For the normalization of the squared errors usually the normalization term is the deviation from the mean which is
given by

Lde f aul t =
m
∑

i=1

(yi − y ′)2. (3.5)

7

Thus, the relative root mean squared error1 becomes

LRRMSE =
LRMSE
Æ

1
m
· Lde f aul t

. (3.6)

All of the shown measures can be used for evaluating a single candidate rule but also for evaluating a whole theory
(an ordered set of rules). A detailed description of how the algorithm is evaluated follows in Section 4.1.

So far there is no measure for the coverage of a rule. This could easily be derived by taking the number of covered
examples. To map this in the interval [0,1] the term is normalized by the total number of examples yielding the relative
coverage

relCov =
1

m
· coverage(Rule). (3.7)

We decided to combine the error and the generality of a rule by using the relative root mean squared error and the
relative coverage by

hcm = α · (1− LRRMSE) + (1−α) · relCov. (3.8)

Here, the parameter α enables a trade-off between the error and the generality of the rule. For α = 1 the relative
coverage is ignored and thus the rules are evaluated solely by inspecting their error. This setting would yield a model
that consists only of rules that cover a single example in the data and thus clearly would lead to overfitting. The other
extreme is to set α = 0 which results in ignoring the error of the rule. A model built with this setting would only consist
of the default rule, because its coverage is the highest that could be achieved by any rule. The optimal trade-off lies
somewhere in between these two extremes. The method for finding an optimal setting is described in Section 5.

The heuristic hcm is an adaption of a previously introduced heuristic called relative cost measure [10]. Its formula is
given by

hcr = cr ·
p

P
− (1− cr) ·

n

N
. (3.9)

with p ≡ positive coverage of the rule, n ≡ negative coverage of the rule, P ≡ total number of positives and N ≡ total
number of negatives.

It was designed for evaluating classification rules thus relying on the positive and negative coverage of a rule. In
previous work [14] the optimal setting for the parameter of hcr = 0.342 was found. It encodes a clear favor of the
consistency (encoded by p

P
, the true positive rate of a rule) over the coverage (denoted by n

N
, the false positive rate of a

rule). It achieved good performance among different classification heuristics as shown in [14] as it was the second best
heuristic among all. Thus the motivation to modify exactly this heuristic was the good performance and that it is best
suited to be adapted to regression. For this purpose, the consistency was defined by taking the rrmse of a rule and the
coverage term was denoted by the relative coverage of the rule.

3.3 Splitpoint processing

As noted above, the generation of all possible splitpoints would be too costly. To avoid this a method for restricting the
splitpoints for an attribute was developed. The basic idea comes from supervised clustering. Thus, we try to identify
regions in the data of the current attribute that share a small (mean absolute) error computed on the target variable.
The aim of the clustering is to yield partitions of the attribute that share a low error in the hope that the error of a rule
that covers these regions will also be low. Clustering stems from the same motivation because it also guarantees that
each cluster has the lowest possible error. The user has to define how many clusters and hence how many splitpoints
are desired. We experimented with different settings but surprisingly a rather low number of splitpoints seemed to be
sufficient (cf. Section 5.1).

Figure 3.1 displays how the cluster algorithm works. In the example in Figure 3.1 the attribute has 10 values moving
equidistant from 1 to 10. The values depicted in blue are those of the target attribute of the respective example. In the
first step the attribute values are ordered ascending and each value becomes a cluster containing exactly this value. Then
two adjacent clusters are searched for which the error when using the mean of the two target values as prediction is the
lowest. In the example these are the clusters 2 and 3, 7 and 8, and 8 and 9. Though the objective in the first step is to
join two adjacent clusters both 2, 3 and 7, 8 are joined (its arbitrary whether to join 7 and 8 or 8 and 9). The mean of

1 In the remainder of the paper the relative root mean squared error is abbreviated with rrmse.

8

Figure 3.1: Example of the splitpoint clustering method

1 2 3 4 5 6 7 8 9 10
2 63211231.534

Attribute Value
Target Value

Step 1

Step 3

Step 2

3.5 5.5 6.5 9.5

3.5(0.5)

3 (0.67)

1.5(0.5)
2 (0.67)

2.25(0.75)

the first cluster is 3.5 = 4+3
2

and the second one has a mean of 1.5 (depicted in black in Figure 3.1 above the number
ray). If the mean absolute error is taken, both clusters have an error of 0.5, which is shown in brackets and in red in the
corresponding figure. An error of 0.5= |4−3.5|+|3−3.5|

2
is also the lowest error that can be achieved given the example data.

In the second step the function is executed recursively and again those clusters are joined that have the lowest error
among all possible clusters. So, in this step, cluster 1 is joined with the second cluster and the cluster with a value of
9 is joined with the third cluster. The error of both clusters grows to 0.67 because adding the respective example does
yield a raise of the error (i.e., LMAE =

|2−3|+|4−3|+|3−3|
3

= 0.67 for the first cluster). Joining any of the untouched clusters
leads to a higher error which means that the cluster with next lowest error is built in step 3. After the second step two
clusters containing at least 2 examples were built and therefore 5 splitpoints exist. In the example the user given number
of splitpoints is set to 4. Hence another cluster has to be built until the algorithm is finished. This last cluster is derived
by joining the clusters with the values 4 and 5 and it yields an error of 0.75.

After the third step 3 clusters are built and the splitpoints are simply derived by taking the mean between the values
of two adjacent clusters or two values if the cluster contains only one example. The 4 splitpoints are 3.5, 5.5, 6.5, and 9.5
(depicted in red in Figure 3.1 in the number ray).

We have evaluated the effectiveness of the splitpoint method by comparing it to the usage of another splitpoint method
where x splitpoints are selected equidistant. The results of this comparison are shown in Section 6.1.

For the computation of the error the mean absolute error was used. This choice is arbitrary but experiments with the
root mean squared error did not yield any performance difference. Thus we decided to use this type of error measure.

3.4 Parameters of the algorithm

There are 3 parameters the user has to specify.

• The parameter of the heuristic,

• the number of splitpoints, and

• the percentage of examples that are left uncovered.

The parameter of the heuristic is optimized with a greedy procedure that narrows down the region of interest. This
procedure is described in detail in Section 5.

The number of splitpoints is crucial for the runtime of the algorithm. Additionally, using all splitpoints may result in
even worse performance. This is due to some effects that come with the interplay of the different components of the
algorithm. Depending on the parameter of the heuristic, the number of splitpoints indirectly influences the partitioning
(i.e., the coverage of the rule) of the input space. Clearly, if all splitpoints are used, there is always a possibility to select
a single refinement that covers only one example (by using the test < on the second lowest attribute value or by using
≥ on the highest value). This is impossible when the only refinement is given by a splitpoint right in the middle of all
examples. For higher values of the heuristic’s parameter and therefore a higher weight on the error, the choice of the
number of splitpoints becomes more and more important. For a detailed description of this phenomenon see Section 6.7.

The last user-given parameter is the percentage of examples that are left uncovered by the outer loop of the algorithm.
This parameter clearly depends on the dataset. During the experiments there was some evidence that we had included
databases that basically encode randomness and for those learning anything results in worse performance (e.g. the
dataset quake). On those datasets the best model will be given by one that simply predicts the mean over all examples
like the default rule does (cf. Section 3.1).

9

Table 4.1: Overview of the databases used for optimization

name # nominal attributes # numeric attributes missing class values # instances
abalone 1 7 0 4177

auto-mpg 3 4 0 398
auto-price 1 14 0 159

breast-tumor 8 1 0 286
compressive 0 8 0 1030

concrete-slump 0 9 0 103
cpu 1 6 0 209

delta-ailerons 0 5 0 7129
echo-month 3 6 0 130
forest-fires 2 10 0 517

housing 1 12 0 506
machine 0 6 0 209

pbc 7 11 6 418
pyrim 0 27 0 74
quake 0 3 0 2178

sensory 11 0 0 576
servo 4 0 0 167
strike 1 5 0 625

triazines 0 60 0 186
winequality-white 0 11 0 4898

4 Experimental setup

This Section describes the experimental setup that was used during the tuning phase and the evaluation of the algorithms.
To optimize the 3 parameters of the algorithm all 20 datasets used for tuning were split into 2 folds of equal size. On
the first fold, all steps of the optimization procedure were done and afterwards the best model found on these folds
was evaluated on the second folds. This is also done vice versa. Hence, the experiments yield two configurations of
the same algorithm that only differ in the parametrizations of the 3 parameters used in the algorithm. A test of the
parametrizations on the hold-out folds of the tuning datasets is the first step of the evaluation. Additionally some insights
are gained by evaluating the parametrizations also on those datasets that were used during the optimization. To complete
the evaluation, the two resulting algorithms were also evaluated on 9 datasets that were not used for any optimization
purposes.

The aim of the experiments was to optimize the parameters of the algorithm on a set of diverse datasets to capture
characteristics of a wide variety of different datasets. Our hope was that by taking a set of datasets that are very different
the parameters would be more stable. For this reason, we selected 29 databases in total from the UCI-Repository [1] and
from Luis Torgos website1. After that the datasets are divided into 20 sets that were used during the tuning phase and
9 sets that were only used for evaluation purposes. Table 4.1 gives an overview of the tuning databases. As mentioned
above the main motivation to select these datasets was to capture a lot of different learning problems. Thus, the number
of nominal and numerical attributes should be different among the databases and the domains from which they origin
should be as diverse as possible.

The 9 datasets that were used to evaluate the resulting configurations of the algorithm are shown in Table 4.2. The
distribution among the 20 tuning databases in terms of nominal and numerical attributes as well as in terms of size
should be approximately the same as in those datasets that were used for testing. Therefore both bags of data should
contain some small, some medium and some big databases. The distribution in terms of attribute types should also be
comparable for both the tuning and the testing databases.

1 These databases can be downloaded at http://www.liaad.up.pt/~ltorgo/Regression/DataSets.html.

10

http://www.liaad.up.pt/~ltorgo/Regression/DataSets.html

Table 4.2: Overview of the databases used for evaluation only

name # nominal attributes # numeric attributes missing class values # instances
auto93 6 16 0 93

auto-horse 8 17 2 205
cloud 2 4 0 108

delta-elevators 0 6 0 9517
meta 2 19 0 528

r_wpbc 0 32 0 194
stock 0 9 0 950

veteran 4 3 0 137
winequality-red 0 11 0 1599

4.1 Evaluation methods

The primary method to evaluate the algorithm was the rrmse. The advantages of this evaluation measure clearly lie in
its domain-independency. As mentioned above it is mandatory to use a measure that does not differ among different
domains because the goal was to get results that can be averaged over various datasets. For some of the experiments
it would take too much space to include results on every single dataset. In those cases our means for evaluating the
different algorithms was to average the results over all datasets. We are aware of the problems that come with averaging
results over many different domains (i.e., some databases may be outliers with huge variance compared to the majority
of the other datasets) and hence include a Friedman-Test with a post-hoc Nemenyi-Test as suggested in [6]. The resulting
CD-charts give insights how good the algorithms perform by evaluating their ranking independently from using averages.

The second mean for determining the quality was the correlation coefficient (also referred to as Pearson’s correlation
coefficient). It computes the correlation of all predicted values with the true outcome of the target variable which is
equal to compute the covariance between two variables divided by the product of their variances. It is also domain-
independent and widely used for evaluating regression algorithms (e.g., in [25]). The problem when using it with the
kind of algorithm used in this work is that wide ranges of the examples are mapped onto the same value. In spite of
algorithms like M5Rules that predicts a linear model which nearly maps each example to a different value, the separate-
and-conquer based algorithm introduced in this paper only predicts one value for each rule. As rules typically cover more
than one example2 all examples covered by a rule are mapped to the same value. Furthermore, as a model that predicts
a constant value for all examples would have a correlation coefficient of 0 this type of measure is not well suited for the
kind of algorithm discussed here. Consequently, the values of the correlation coefficient for the separate-and-conquer
based algorithm are lower by a certain margin. Therefore, this evaluation measure is not as expressive as the rrmse and
only is included here for completeness.

2 In our algorithm a rule has to cover at least 3 examples.

11

Table 5.1: Results for different parametrizations of the splitpoint computation (average RRMSE over the 5 parametrizations
of the heuristic)

parameter 1 3 5 7 9 11 19
folds 1 1.0675 0.9929 1.0132 1.0067 0.9992 1.0126 1.0163
folds 2 1.0540 1.0256 1.0261 1.0245 1.0209 1.0427 1.0240

Table 5.2: Results for different parametrizations of the left-out-parameter (average RRMSE over the 5 parametrizations of
the heuristic)

parameter 0 0.01 0.02 0.03 0.05 0.1 0.2
folds 1 0.9929 0.9787 0.9776 0.9759 0.9739 0.9704 0.9736
folds 2 1.0209 1.0221 1.0182 1.0156 0.9940 0.9835 0.9701

5 Optimizing parameters

This section describes how the three parameters of the algorithm were optimized. It is started with the rather simple
identification of best values of the cluster-based splitpoint method and the percentage of examples that are left uncovered.
Then, a more detailed description about the parameter optimization method for determining an optimal trade-off for the
evaluation heuristic is given.

As mentioned in Section 4, for all parameter optimizations the datasets were split into 2 equal sized folds. Therefor, all
datasets were randomized in advance using the unsupervised randomize function of weka [28]. All evaluation measures
were computed using one run of a 10-fold cross validation. To make sure that the parameters are stable they were
optimized on the first folds of all datasets and were then evaluated on the second folds of all datasets and vice versa
which yields two configuration of the algorithm. If a single value becomes optimal on both folds, this would be great
evidence that this parameter is stable among many different learning problems.

5.1 Optimization of the splitpoint and the left-out parameter

Though these two parameters are likely to have a small deviation among different databases, we decided to optimize
them first and fix them until we start optimizing the parameter of the heuristic. We believe that the parameter of the
heuristic has a stronger influence on the performance of the algorithm than the other two parameters. This was the
reason to first focus on the less expressive parameters until starting to deal with the trade-off employed by the heuristic.
Through the whole step of optimizing the algorithm’s parameters an iterative optimization procedure that keeps one
parameter fixed and searches for an optimal value for the other one was used. After the first parameter can be fixed, the
search continues with the next one.

To start optimizing the splitpoint parameter the other two had to be fixed. In advance it is not known how to determine
these values. Thus, the left-out-parameter was fixed to 0, therefore all examples have to be covered. In this case the
default rule is built by using the mean of all examples. In other cases where not all examples have to be covered it is built
by using the mean of all uncovered examples. In contrary, it is not obvious what parameter value can be used for the
heuristic. For this reason, 5 different values were used during the optimization. To make a choice, the two extreme values
were included (namely α = 0, relying only on the coverage of the rule, and α = 1, now practically ignoring the coverage
and using only the relative root mean squared error of the rule, and some values in between, namely 0.4, 0.5, and 0.6).
These values were used to include different properties of the heuristic. Clearly, using only two parameters would be
suboptimal because there is some evidence that the optimal parameter rather would lie somewhere in the middle than
at the beginning or the end of the parameter curve induced by outline the parameter values over the error [14]. We
expected this parameter curve to be shaped like a U, where the two extreme values would yield a rather bad performance
and the optimal value lies somewhere around 0.5 (cf. Section 5.2). Thus we decided to include 2 values around 0.5

12

and 0.5 itself. To have a combined error measurement for the optimization procedure the mean over the rrmse of these
choices was chosen.

In the beginning, the left-out-parameter was fixed to a value of 0 yielding a starting point for the optimization of the
splitpoint-parameter. To find the best value some intuitive values (1, 3, 5, 7, 9, 11, and 19) were used. All values bigger
than 19 were skipped because a clear gain in runtime performance should be achieved. Using huge values would result
in practically using all possible splitpoints and thus would not improve the algorithm’s runtime1.

Table 5.1 shows the results for the two optimization procedures (for the two folds of the divided datasets). As can be
seen the best number of splitpoints was 3 on the first folds and 9 on the second folds (the error is depicted in bold in
the figure). On the first folds, however, using 9 splitpoints yields the second best rrmse which lacks only 0.0063 behind
the best performing number of splitpoints. On the second folds, using 9 splitpoints performed best followed by using 19
splitpoints. Interestingly, using 19 splitpoints could be seen as a very big number that was only tested to make sure that
the algorithm cannot benefit from taking so many splitpoints into account. However, on these folds it seems that far more
splitpoints are needed to yield an acceptable result. The best performing number of 3 from the first folds, lacks 0.0047
in terms of rrmse behind the best one and therefore is the third best method. Nevertheless, the gap between different
parametrizations seem to be bigger on the first folds than on the second ones. Regarding the split of all tuning datasets
into 2 folds of equal size, these results seem to reflect the randomness in splitting the datasets. An optimal result clearly
would be that on both folds the same number of splitpoints performs best, but when taking the random split into account
the results seem to be reasonable.

After the optimization of the splitpoint parameter the same procedure was employed to the left-out-parameter of the
algorithm. Here, the splitpoints were already fixed to 3 for the algorithm tuned on the first folds and to 9 for the variant
tuned on the second folds. To find the best value also some intuitive parameters were used. Thus, the values of 0, 0.01,
0.02, 0.03, 0.05, 0.1, and 0.2 were tested during this optimization. To cover all examples was included to make sure that
is more effective to leave some examples uncovered. Clearly, this depends on the given dataset. But it also depends on
the quality of the induced rules. For numerical target variables it can be useful to cover only those parts of the data that
share some common characteristics. For the remainder of the data it could be beneficial to treat them independently from
their characteristics, i.e., by assigning them the same target value. The basic idea here comes from separate-and-conquer
algorithms for classification. Those algorithms also have a default rule that covers some remaining examples. Here,
usually the biggest class in the data is taken which is possible because all other classes are covered by the rules that are
found before. In regression this biggest class can be seen as those parts of the data that do not share attribute values that
are correlated with the target value at all. Therefore, the usage of a default rule should be also beneficial when dealing
with regression tasks.

As can be seen in Table 5.2 two different parameters performed best on the two folds. Practically this can be attributed
to the same reasons that were already discussed during the optimization of the splitpoint parameter. Thus, on the one
hand the randomized split of the data into 2 folds of equal size could be manipulated the characteristics of the datasets.
On the other hand it could also be possible that there is no unique best value for leaving examples uncovered. This
becomes even more obvious when the results on the two folds are compared. Here, it becomes also clear that leaving
examples uncovered is mandatory for the performance of the algorithm.

On both folds covering all examples has the worst performance. On the other hand, it clearly is of interest that the
best settings are not leaving a few examples uncovered, but are only covering 90 % on the first folds and even only 80 %
on the second folds. The reasons of this are twofold: On the one hand, the setting of the left-out-parameter is influenced
by the number of splitpoints that is used. On the other hand it seems that great parts of the data do not share certain
characteristics and therefore it is beneficial to cover them with a constant target value. For example, on the dataset
quake, the induction of a single rule is always worse than using only the default rule2. The reason for this could be that
this dataset basically encodes randomness which implies that there are no patterns contained in the data. Thus, as an
observation of these results, one might say that it is better to find rules that are able to generalize those parts of the data
where a generalization is possible and to leave all other parts of the data untouched. The question of how the induced
rules look like and how much of them are found on all datasets in average is addressed in Section 6.4 in more detail.

5.2 Optimization of the heuristics parameter

For the optimization of the heuristics parameter a framework similar to the one introduced in [14] was used. It employs
a binary search to find the best parameter and was proven to yield stable parameters for classification heuristics as shown
in [14]. The heuristic used in this work is a direct adaption of a previously introduced heuristic for classification. There,
it was called relative cost measure and it directly trades off the true positive rate (tpr) and the false positive rate fpr of a

1 Note that the number of disjunct values for an attribute in the data is rather small.
2 The performance of a model that predicts the mean of all examples was superior to all other algorithms.

13

Table 5.3: A sample parameter search

Run set which has to be searched increment best parameter LRRMSE

1 {0.1, ..., 1.0} 0.1 0.4 0.852
2 {0.37, ..., 0.43} 0.01 0.42 0.833
3 {0.417, ..., 0.423} 0.001 0.418 0.815
4 {0.4177, ..., 0.4183} 0.0001 0.4178 0.805
5 {0.41757, ..., 0.41763} 0.00001 0.4178 0.805

Figure 5.1: Parameters over RRMSE for both folds of the tuning datasets

0.85
0.875

0.9
0.925
0.95

0.975
1

1.025
1.05

1.075
1.1

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Parameter α

R
R

M
SE

 (a) tuned on folds 1

0.885

0.91

0.935

0.96

0.985

1.01

1.035

1.06

1.085

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Parameter α

R
R

M
S

E

 (b) tuned on folds 2

rule. Due to the good results achieved with the abovementioned framework for this heuristic we decided to use the same
framework to optimize the parameter of the hcm metric.

The search is started with a range of intuitively appealing parameters. Thus, the two extremes of 0 and 1 are tested
together with some values in between (0.1,0.2, ..., 0.9). All settings are evaluated by taking the average of the rrmse on
the 20 datasets presented in Section 4. Then the best performing parameter is used for further inspection. Therefore, an
area around this parameter is inspected in more detail. There are several choices to do this, but we decided to evaluate
6 parameters around the best one. Those are distributed equidistant around the best parameter with decreasing the
step size from 0.1 to 0.01. This procedure is executed recursively, so in the next step the 6 parameters around the next
best value are tested. The search stops if the rrmse improvement falls below a threshold of t = 0.0005. This choice was
arbitrary but we believe that the effort that has to be made to narrow down the parameter for the next step of the search
procedure is too high compared to the performance gain the next execution of the procedure may yield.

An example for a parameter search is given in Table 5.3. Here, the first 10 parameters lie between 0 and 1. After the
first run 0.4 was the best parameter. Therefore the region around this parameter is refined further on. The procedure
stops when the error does not improve any more, yielding 0.4178 as best parameter. Clearly this procedure is greedy and
it is not guaranteed to find the best parameter. But for our purposes it was sufficient because we mainly wanted to find a
set of parameters in which it is likely that the best one would be. For a detailed description of the parameter search see
[14].

Figure 5.1 shows a graphical interpretation of the search for both of the split datasets. Our expectation was that the
curves are shaped like a U. This is because very low and very high parameter settings should not perform good whereas
some values in the middle should achieve the best performance. The pictures are similar to some extent. For both folds
of the datasets very low parameter settings do not achieve good performance. In these cases the algorithm mostly does
not learn anything on the datasets. It just returns a theory containing only the default rule which may be interpreted as
the base line in terms of performance. This is because it simply predicts the mean over all target values in the dataset.
Thus, for both settings this parameter setting lies clearly above a rrmse of 1. When the parameters are decreased the
performance becomes better as long as the optimal setting is reached. After that the theories become worse again.

In the scenario at hand it seems that learning only the default rule results in the worst theories whereas learning
a rule for each example (which corresponds to a parameter setting of 1) has at least a better rrmse than 1. For the
parameters that are optimized on the first folds of the split datasets (Figure 5.1 (a)) the curve shows some fluctuations in
the part located left of the best parameter. In spite of this behavior the curve depicted in (Figure 5.1 (b)) is monotonically
decreasing in this area. For parameter settings that are bigger than the best parameter the curve in the left figure is now

14

showing a monotone increase whereas it shows more fluctuations when the parameter is tuned on the second folds of
the partitioned datasets.

Interestingly, the best parameters are very similar on both folds of the divided datasets. This means that the parameters
are stable among different splits of the datasets. On the first folds of these datasets the best parameter lies at 0.59 and on
the second folds it was 0.591. For the first folds the parameter 0.591 lacks only behind 0.007 in terms of rrmse. For the
second folds the difference in performance between 0.591 and 0.59 was 0.001. Those results show that these parameters
are stable among the two randomized splits of the datasets used for tuning.

Assumed that the best parameter lies somewhere in the region of 0.6, consistency should be preferred over coverage
for regression rules. This also holds for classification rules where the preference of consistency is even stronger than in
regression. Nevertheless it is an interesting result that the evaluation of a rules quality follows similar standards both in
classification and in regression.

15

Table 6.1: Runtime of different splitpoint methods on the test set
method runtime (in sec.)

3 equidistant splitpoints 2625.4
3 clustered splitpoints 1234.3

6 Results

In this Section the results are presented. First a comparison about different mechanisms of splitpoint computing is given.
After that, a comparison of the algorithm in terms of rrmse and correlation coefficient with other rule-based and non
rule-based regression algorithms is conducted. In the next Section information about the size of the learned theories is
displayed. Since there was only one algorithm that is also based on rules (namely the M5Rules-system) that is freely
available, this comparison is focused on the three rule-based algorithms. Nevertheless, we included some previously
published results on PCR [24] and compare them to our implementation in terms of error and number of rules. The
Section is finished with a discussion about the properties of the algorithm specific to the learning of regression rules with
the separate-and-conquer strategy.

6.1 Splitpoint processing

Table 6.1 shows a comparison of the runtime of 2 different splitpoint methods. At first, 3 equidistant splitpoints per
attribute were used. Then, 3 clustered splitpoints were employed. Evaluating all splitpoint was too costly. All runtimes
depicted in Table 6.1 are the averages of 10 independent runs on a dual Pentium 4 2.8 GHz processor with 2 GB RAM on
the 9 datasets used for testing (cf. Section 4).

As can be seen in Table 6.1 the clustered splitpoint computation is more efficient than the equidistant method. At first
sight this may appear contrary to what could be expected. Due to the much more simpler computation of equidistant
splitpoints this method should be faster than the clustering method. But note that this evaluation was done by letting the
whole algorithm run on the 9 test datasets. Not surprisingly the quality of the equidistant splitpoints is worse compared
to the clustered splitpoints. This results in a significant higher number of candidate rules that have to be evaluated during
the search for the best rule. This is because a candidate rule has to be refined more often. Additionally, mostly for very
small or huge datasets, the theories induced by the rule learning algorithm are bigger in terms of conditions per rule
and the total number of rules for the splitpoints with lesser quality. On the dataset delta-elevators, which is a huge one
(containing 9517 instances and 6 numeric attributes), the modification of the algorithm that uses clustered splitpoints
found 356 rules that contain 3254 conditions. The algorithm with the equidistant splitpoint computation has found 755
rules with 8063 conditions instead. This is more than twice the size of the previous method in terms of number of rules
and conditions. Clearly, this results in longer runtimes. The same situation unfolds for small datasets. The algorithm
with clustered splitpoints needs 13 rules with 41 conditions to describe the dataset veteran that contains 137 instances
and 3 numeric as well as 4 nominal attributes. In contrary, the method with the equidistant splitpoint computation has
found a theory that contains of 17 rules with 55 conditions.

For the reasons mentioned above the splitpoint generation methods were additionally compared independently of
their usage inside the algorithm. Here, the time that was needed to generate the splitpoints in a clustered fashion do not
significantly differ from that which was needed when the equidistant method was used. It took 5.4 seconds to generate
the splitpoints in a clustered mode and 2.7 seconds in equidistant mode. Thus, the most time consuming step of the
algorithm is the evaluation of the candidate rules and not the generation of the splitpoints. Thus, the quality of the
splitpoints is crucial and not the runtime needed to generate them.

Du to this, the algorithm clearly benefits from the usage of the clustering mechanism. On the one hand, the theories
are smaller in terms of rules and conditions and on the other hand the algorithm can even benefit in terms of runtime.
Another important observation is that the runtime also strongly correlates with the number of splitpoints. Assuming a
dataset with 20 numerical attributes, 3 splitpoints and that only the first candidate rules are computed, this results in 60
candidate rules. Now if the splitpoints are increased to 10 we end up in 200 possible candidate rules that all have to be
evaluated.

16

Table 6.2: Results in terms of LRRMSE and correlation coefficient (CC) for different algorithms on the tuning datasets

M5Rules Linear Regression MLP
fold LRRMSE CC LRRMSE CC LRRMSE CC

1 0.7425 0.6498 0.8145 0.6325 1.0154 0.6232
2 0.8058 0.6623 0.9116 0.6414 1.3890 0.6192

SVMreg SeCoReg tuned on folds 1 SeCoReg tuned on folds 2
fold LRRMSE CC LRRMSE CC LRRMSE CC

1 0.7917 0.6281 0.8736 0.5392 0.8976 0.533
2 0.85 0.6363 0.9291 0.5393 0.8903 0.5301

6.2 Comparison with other systems on the two folds of the tuning datasets

The main focus of the comparison is how good the algorithm performs against other regression algorithms. Table 6.2
gives an overview of the different algorithms compared to each other on the two folds using the relative root mean
squared error (RRMSE) and the correlation coefficient (CC). The tuned algorithm is referred by the name SeCoReg in the
remainder of the paper.

There are 4 other algorithms that are all implemented in weka [28] which were used to compare our system with.
Clearly some of them are much more complex than our rather simple algorithm1. On the other hand most of them
employ more complex models, i.e., hyperplanes like the multilayer perceptron or support vectors like the SVMReg. The
linear regression is also a rather simple algorithm that nevertheless employs a quite trade-off between runtime and
accuracy. The M5Rules algorithm uses rules to explain the data as well. But it does not have a single output value in the
head of the rules like our algorithm. This rule learner predicts a linear model in each of the rules heads which makes it
much more flexible because it is able to map the examples covered by one rule on many different outcome values. This
is not possible when a single target value is predicted in the head of each rule. Therefore the goal of this algorithm is a
bit different from our implementation. Here, the goal is to search the input space for regions that are good suited to fit a
linear model, whereas our algorithm searches for partitions that share a target value with low variance.

All of the algorithms used for comparison are implemented in weka and all their parameters are left at default values.
The reasons to select these 4 algorithms were that our implementation had to prove that it is comparable in terms of error
to many other state-of-the-art systems. Another reason to select these particular algorithms for benchmark was the lack
of freely available regression rule learning algorithms. The only free system we found was REGENDER and a comparison
to this algorithm is given in Section 6.6.

We also had included a comparison with PCR [25, 24], but all displayed results are taken from the PhD-Thesis [24].
Therefore the comparison is only included to give insights how good the SeCoReg-algorithm may perform compared to
other separate-and-conquer rule learning algorithms. The results obtained with the FRS system [7] are also included.
Some of the datasets used in [24] were part of the tuning datasets of the experiments. Nevertheless, we think that it is
worth to include this comparison (cf. Section 6.5), even it lacks some validity.

In Table 6.2 the results of all algorithm on the two folds of the tuning datasets are displayed. Since there were 20
datasets we decided to display only averages (both the rrmse and the correlation coefficient). Results of both derived
SeCoReg-algorithms are shown together with their performance on the data sets on which they were tuned. First the
results in terms of rrmse are evaluated. Not surprisingly both variants of the algorithm that were tuned on the respective
folds are better than using them on the left-out folds. The ranking of the algorithms is similar on both experimental
variants. The best one was the M5Rules algorithms followed by the SVMreg. The next best performance was achieved by
the linear regression. The SeCoReg was ranked on the 4th place on both folds of the divided datasets, only slightly behind
the linear regression (lacking 0.0831 behind on the first folds and 0.0175 on the second folds). The Multilayer Perceptron
had the worst performance on both folds with a rather big gap between this algorithm and the next best one.

6.3 Comparison with other algorithms on the test sets

To validate the results on total different datasets the algorithm was also tested on 9 independent test sets (cf. Section 4)
that were never used for tuning purposes. This step is necessary to make sure that the tuning datasets, even though they
were split into two disjunct folds, were not overfitted during the parameter tuning phase. Table 6.3 displays the results

1 Note that the algorithm neither has a pruning functionality nor an optimization phase.

17

Figure 6.1: Comparison of all algorithms against each other with the Nemenyi test the first folds of the tuning data. Groups
of algorithms that are not significantly different (at p = 0.05) are connected.

SeCoReg
MLP SVMreg

Linear Reg.

Critical Difference
1.02.03.04.0

M5Rules

Figure 6.2: Comparison of all algorithms against each other with the Nemenyi test the second folds of the tuning data.
Groups of algorithms that are not significantly different (at p = 0.05) are connected.

SeCoReg
MLP

SVMreg
Linear Reg.

Critical Difference
1.02.03.04.0

M5Rules

in terms of rrmse on the test databases for all of the 4 weka algorithms and the two configurations of the SeCoReg-learner.
The ranking of the algorithms differs slightly compared to the results on the two folds of the partitioned tuning datasets.
Hence, on the test set the SVMreg performs best followed by the M5Rules-system. On the third place the SeCoReg-learner
that was tuned on the first folds of the tuning datasets appears. It was only slightly worse in performance compared to
the M5Rules-learner. The next best algorithm is the second SeCoReg-learner which has achieved a marginal better rrmse
than the linear regression. As in the previous experiments the multilayer perceptron was the worst algorithm among all of
the different learners.

Thus, on the test sets the tuned SeCoReg-algorithm achieved better results than in the previous experiment. Here,
the best configuration of the algorithm is ranked on the third place among the six algorithms. Note that the dataset
meta shows huge standard deviations for some algorithms (M5Rules, linear regression and MLP). We attribute this to the
separation of the data in the 10 folds of the cross validation.

But the results displayed in Table 6.3 are only averages. Therefore, a Friedman-Test was employed like in the previous
Section (cf. Section 6.2). Contrary to the prior results, the Friedman-Test was not rejected at a p-value of 0.05 (the
critical F-value was 2.196 but to reject the test it had to be bigger than 2.492). It would have be rejected at a p-level of 0.1
(where it was higher than 2.02 which was requested), but this was not significant enough to include these results in the
paper. For this reason the Nemenyi-Test could also not be done on the test sets. Practically, this means that the SeCoReg
algorithm does not differ significantly from the 4 weka algorithms at a significance level of 0.05. Thus, these algorithms
cannot be distinguished in terms of performance.

Altogether, both tuned variants of the presented algorithm are not able to beat state-of-the-art systems. They are rather
situated in between these algorithms (this holds at least for the test sets). Especially on these 9 sets it became clear that
the SeCoReg rule learners are able to achieve a performance comparable to the results of the 4 weka algorithms. Due
to the rather simple design of the SeCoReg-algorithm these results seem to be promising. In spite of the quality of the
algorithm in terms of error it clearly lacks behind in terms of theory size and runtime. A more detailed analyzation of the
model size is given in the next section (cf. Section 6.4).

6.4 Comparison of the size of the theories

In this Section an overview of the size of the learned theories is given. Note that the comparison of the SeCoReg-algorithm
and the M5Rules-system is not fair in advance. This is because the first algorithm predicts a single value in the head of
each rule whereas the latter predicts a linear model. The objective of the partitioning of the input space with each rule
follows different paths. The first algorithm tries to find regions in the input space that share more or less identical target
values. The latter one searches the data for regions in which a linear model could be fit best. For this reason the latter
algorithm should achieve a similar performance with smaller rules and also less of them at all. To incorporate the size of

18

Table 6.3: Results in terms of LRRMSE for different algorithms on the test set

dataset SVMreg M5Rules Linear Regression MLP SeCoReg tuned on folds 1 SeCoReg tuned on folds 2
auto-horse 0.32± 0.08 0.37± 0.14 0.32± 0.11 0.34± 0.10 0.52± 0.18 0.61± 0.11

auto93 0.66± 0.12 0.58± 0.19 0.67± 0.20 0.57± 0.19 0.65± 0.17 0.85± 0.29
cloud 0.39± 0.12 0.42± 0.16 0.40± 0.13 0.62± 0.33 0.61± 0.19 0.67± 0.15

delta-elevators 0.61± 0.01 0.60± 0.01 0.61± 0.01 0.63± 0.01 0.78± 0.03 0.77± 0.03
meta 0.92± 0.08 1.86± 1.58 2.33± 1.72 1.40± 0.90 1.00± 0.02 1.01± 0.03

r_wpbc 1.03± 0.16 1.14± 0.19 1.04± 0.13 2.20± 0.56 1.35± 0.20 1.27± 0.18
stock 0.37± 0.05 0.14± 0.03 0.36± 0.04 0.20± 0.04 0.25± 0.03 0.26± 0.04

veteran 0.93± 0.15 1.23± 0.61 1.07± 0.36 3.01± 1.78 1.09± 0.22 1.21± 0.33
winequality-red 0.82± 0.03 0.81± 0.03 0.81± 0.03 0.95± 0.08 0.98± 0.09 0.95± 0.04

averages 0.6739 0.7942 0.8456 1.1017 0.8040 0.8438

Table 6.4: Number of rules and conditions on the test sets

M5Rules SeCoReg from fold 1 SeCoReg from fold 2
dataset # rules # conditions # rules # conditions # rules # conditions

auto-horse 1 0 19 37 9 18
auto93 1 0 11 27 12 19
cloud 4 3 5 9 6 13

delta-elevators 4 5 356 3254 426 4705
meta 6 9 30 48 20 37

r_wpbc 3 2 36 193 8 32
stock 19 59 81 447 54 209

veteran 1 0 13 41 28 89
winequality-red 1 0 192 783 243 713

averages 4.44 8.67 82.56 537.67 89.56 648.33

the linear model in the comparison is infeasible in a straight-forward way. Hence, the size of the linear models is ignored
and the comparison centers only on the rules themselves.

Table 6.4 shows the number of rules and conditions for the two SeCoReg-algorithms and the M5Rules-system. As
expected the M5Rules-system always has a much lower number of rules and conditions. On 4 out of 9 datasets this
algorithm has not found any rule but just uses a linear model to fit the data. For all other datasets around 5 rules seem
to be sufficient to divide the data in regions where the linear models could be fit best with the only exception of the
dataset stock where 19 rules with 59 conditions are needed. But still, this algorithm needs a significant lower number of
rules than the SeCoReg-algorithm. As mentioned above the comparison is not fair due to the different objectives of the
algorithms and their different expressiveness of the single rules.

When comparing the two variants of the SeCoReg-algorithm it becomes obvious that the one that was tuned on the
second folds needs less rules in 4 of 9 cases. It is superior in terms of number of conditions in 6 of 9 cases. Hence, it
seems that using more splitpoints results in approximately the same number of rules but in a lower number of conditions.
Due to the wider range of possible splits for a candidate rule when using more splitpoints this makes sense. But still the
version tuned on the first folds of the tuning datasets is superior in terms of error. Thus, on the one hand it seems that
using more conditions in each rule results in a better performance. But on the other hand, for some datasets, it turned
out that the quality of each rule is also of great importance. Therefore, more rules are better for the datasets auto-horse,
meta, and stock whereas the sole quality of the rules is crucial for the datasets cloud and veteran where smaller theories
yield better performance.

6.5 Comparison with FRS and PCR

Table 6.5 gives an overview of the results taken from the PhD-Thesis [24] for FRS, PCR-ordered, PCR-unordered and the
two configurations of the SeCoReg rule learner. The two datasets from the test set are depicted in italics. All others were
taken from the tuning sets. Hence, the errors are given by using the model tuned on the first folds on the second folds
and vice versa. The Table gives an overview of the different algorithms in terms of rrmse (the lowest error is depicted in

19

Table 6.5: Comparison with FRS and PCR

FRS-ordered PCR-ordered PCR-unorderd SeCoReg from fold 1 SeCoReg from fold 2
dataset RRMSE # rules RRMSE # rules RRMSE # rules RRMSE # rules RRMSE # rules

auto-price 0.91± 0.01 19 0.52± 0.13 3 0.52± 0.15 3 0.71± 0.28 7 0.52± 0.17 7
cloud 0.94±0.03 1 0.72± 0.24 3 0.81± 0.25 3 0.61± 0.19 5 0.67± 0.15 6
cpu 0.88± 0.01 18 0.52± 0.29 3 0.65± 0.42 3 0.98± 0.56 4 0.48± 0.15 2

housing 0.80± 0.00 126 0.67± 0.12 7 0.67± 0.11 7 0.58± 0.18 30 0.66± 0.15 20
quake 1.00± 0.00 4 1.16± 0.05 129 1.02± 0.04 8 1.16± 0.04 15 1.13± 0.05 29

sensory 1.00± 0.00 1 1.07± 0.10 34 1.00± 0.10 10 1.06± 0.06 15 1.04± 0.05 0
servo 1.01± 0.02 1 0.61± 0.32 5 0.49± 0.20 3 0.77± 0.20 7 0.75± 0.94 6
strike 0.99± 0.01 19 1.26± 0.48 14 1.10± 0.41 13 0.84± 0.16 31 0.98± 0.09 50

veteran 1.02± 0.04 1 1.22± 0.48 8 1.09± 0.27 5 1.09± 0.22 13 1.21± 0.33 28
averages 0.95 21.11 0.86 22.89 0.82 6.11 0.86 14.11 0.83 16.44

average ranks 3.39 3.56 2.61 3.00 2.44

Table 6.6: Comparison with RegENDER

RegENDER-10 RegENDER-100 RegENDER-rules-folds1 RegENDER-rules-folds2 SeCoReg from fold 1 SeCoReg from fold 2
dataset RRMSE RRMSE RRMSE # rules RRMSE # rules RRMSE RRMSE
auto93 1.024 ± 0.49 1.012 ± 0.49 1.018 ± 0.52 11 1.011 ± 0.5 12 0.652 ± 0.17 0.854 ± 0.29
cloud 0.751 ± 0.25 0.779 ± 0.28 0.667 ± 0.21 5 0.676 ± 0.21 6 0.608 ± 0.19 0.670 ± 0.15

delta_elevators 0.660 ± 0.01 0.654 ± 0.01 0.716 ± 0.02 356 0.726 ± 0.02 426 0.782 ± 0.03 0.772 ± 0.03
meta 4.764 ± 4.74 4.853 ± 4.32 4.728 ± 4.2 30 4.738 ± 4.15 20 1.004 ± 0.02 1.008 ± 0.03

r_wpbc 1.321 ± 0.18 1.410 ± 0.21 1.414 ± 0.21 36 1.297 ± 0.19 8 1.348 ± 0.2 1.266 ± 0.18
stock 0.295 ± 0.03 0.240 ± 0.04 0.241 ± 0.04 81 0.241 ± 0.04 54 0.249 ± 0.03 0.263 ± 0.04

veteran 1.404 ± 0.77 1.509 ± 0.95 1.496 ± 0.82 13 1.472 ± 0.95 28 1.086 ± 0.22 1.207 ± 0.33
winequality_red 0.850 ± 0.03 0.899 ± 0.03 0.903 ± 0.04 192 0.901 ± 0.05 243 0.983 ± 0.09 0.946 ± 0.04

averages 1.38 1.42 1.4 90.5 1.38 99.63 0.84 0.87
average ranks 3.88 3.88 3.75 - 3.38 - 3.0 3.13

avg. without meta 0.9 0.93 0.92 99.14 0.9 111.0 0.82 0.85
avg. ranks without meta 3.71 3.57 3.86 - 3.29 - 3.29 3.29

bold) and the number of rules. The average ranks of the algorithms are also given. A Friedman-Test was employed on
these ranks, but it was not rejected which means that the algorithms are not significantly different.

As mentioned before this comparison is actually not suitable for several reasons: On the one hand the errors of FRS
and the two alternatives of PCR (one using an ordered set of rules and the other employing an unordered rule set) are
taken from the PhD-thesis of B. Ženko [24]. On the other hand most of the datasets were used during tuning of the
parameters. Indeed, the depicted errors were never computed on parts of the data where the parameter tuning took
place, but the characteristics of the datasets were changed anyhow. This also may result in smaller numbers of rules.

As can be seen in Table 6.5 PCR-unordered was the best algorithm closely followed by the SeCoReg tuned on the second
folds. But the first algorithm needs about 10 rules less in average to achieve this performance. This mostly could be
attributed to the different classification mechanisms (unordered list of rules vs. decision list). It seems that PCR-ordered
and SeCoReg from folds 1 are similar in terms of performance. The latter has a significantly lower number of rules. The
FRS system was inferior both in terms of error and in terms of number of rules.

6.6 Comparison with RegENDER

Table 6.6 shows a comparison to RegENDER [5]. The dataset auto-horse contains missing class values which cannot
be handled by RegENDER. Therefore, this dataset was left out. In addition the results on the dataset meta showed
strong fluctuations as mentioned before. For this reason results without this dataset are also included. RegENDER has a
parameter to specify the number of rules in the ensemble. To make a choice the algorithm was tested with 10 and 100
rules and with the same number of rules the two SeCoReg variants had found on the test sets. Clearly, using more rules
will result in a lower error as experiments in [5] show, but we think it is fair to run the algorithm with the same number
of rules as used in the SeCoReg-learner to get a good impression of the performance.

The SeCoReg-algorithm was slightly better in average rrmse and the average rank was also better for the experiments
including the dataset meta and for those where it was left out. Nevertheless, a Friedman Test was rejected (p = 0.05)
for the experiments inlcuding meta but the Nemenyi Test showed that all algorithms were in the same equivalence class
(the critical distance extends over all algorithms) and therefore do not differ statistically significant. For the experiments
without meta the Friedman Test was even not rejected.

20

6.7 Discussion

In Section 3.3 the generation of the splitpoints was discussed. Here, a problem was mentioned that the quality of the
rules directly depends on the number of splitpoints. This is because the number of splitpoints governs the possibilities
when refining a candidate rule. If all splitpoints are used, there will always be a candidate rule that uses the very first
or last value of the attribute and therefore covers only one example. The less splitpoints are used the higher is the
probability that the candidate rules are only able to select values situated in the middle of the attribute’s value range.

In general, the quality of the candidate rules depends on how many examples they have covered. Usually a rule that
covers only one example will have an error of 0 (independently from the measure used) but also very bad coverage
statistics. During the design of the algorithm it turned out that the error has a higher influence than the coverage (that
was also confirmed by the best value of the heuristic, cf. Section 5.2). Thus, our choice to constraint a rule by preventing
it from covering less than 3 examples somehow is a mean to prevent the rules from covering only single examples. The
design of the heuristic also can be seen as an attempt to find rules that guarantee a higher coverage. Additionally, as
mentioned above, the number of splitpoints is indirectly used to circumvent this problem. The observation that leaving
rather big parts of the data uncovered results in good performance (cf. Section 5.1) contributes also to receive rules of
higher quality. Thereby, the algorithm finds rules for those parts of the data where certain patterns are contained and
leaves the remainder of the examples untouched. If those parts of the data should be also explained by rules, these would
certainly be low coverage rules that only encode exceptions.

The abovementioned observations show that all parameters of the algorithm somehow contribute to the quality of the
rules and also that they are all interwove with each other. To modify one parameter could have great impact on all other
parameters. Due to the lack of knowledge of how they are interwoven the employed iterative optimization procedure
seems to be the most promising attempt to get stable parameters.

To inspect the abovementioned problems in more detail, the rules were studied more precisely. At first, the 7 rather
small datasets were inspected, followed by the 2 huge ones (delta-elevators and winequality-red). For the first configura-
tion of the algorithm the ratio of low coverage rules to the total number of rules was 0.44 for the small datasets and 0.49
for the huge ones. This means that nearly half of all found rules were low coverage rules. This number is even slightly
bigger for the huge datasets.

For the second configuration that was tuned on the second folds of the partitioned tuning datasets the ratio was 0.44.
This is exactly the same ratio as with the first configuration. For the two huge datasets the number was also bigger. Here,
54 % of all rules were covering 3 examples. Unfortunately, we have no clues about related values for classification rules.
Nevertheless there is some work about the so-called small disjuncts2 [13]. There, the authors claim that in spite of the
low quality of those rules they are nonetheless quite important for classification accuracy.

Inducing a set of rules that does not contains any low coverage rule is practically impossible. There are always
regions in the data that do not follow certain patterns. Perhaps those parts that encode randomness are more frequent
in regression databases than in classification datasets. However, the percentages of the small coverage rules are still
acceptable. For this reason we believe that the configuration for the SeCoReg rule learner found in this paper yields
interpretable theories that are comparable to state-of-the-art systems even if the introduced algorithm is rather simple.

2 Small Disjuncts are defined as rules that cover only one positive and no negative examples.

21

7 Conclusion and further work

In this paper a new rule learning algorithm for the task of regression was presented. It is based on the separate-and-
conquer strategy and uses a decision-list for classification of unseen examples. It was shown that the algorithm performs
comparable to different state-of-the-art algorithms implemented in weka and RegENDER, a rather new algorithm. Never-
theless, the new rule learner could not compete in terms of theory size. But here, the comparison is not fair due to the
more expressive language of the rules induced by M5Rules. For huge databases the rule sets lack interpretability but they
are of acceptable size for small to medium sized datasets.

A new splitpoint generation method was introduced based on a supervised clustering approach. This method proved to
support the quality of candidate rules and even results in lower runtime compared to naive methods like the generation
of equidistant splitpoints. Nevertheless, the number of generated candidate rules directly depends on the number of
splitpoints. But as shown in the experiments at least for one configuration of the algorithm a number of 3 splitpoints per
numerical attribute was enough.

At last, a novel rule learning heuristic was introduced that clearly improves the algorithms performance due to its
flexibility in weighting the error of a rule with its coverage. An optimal setting for this regression rule heuristic was
presented and it proved to be stable since the parameter values are nearly the same. An interesting observation is that,
as known from classification, in regression the rules consistency also should be preferred over its coverage.

As future work the runtime of the algorithm still needs a lot of improvement. For huge databases it clearly lacks
behind state-of-the-art algorithms. One way to do this could be to introduce error bounds that make a so-called forward
pruning possible. This method makes it possible to stop the refinement of a rule when it is clear that it could not beat the
virtual best refinement. In classification this could be easily computed by assuming that the best virtual rule covers the
same number of positive examples but no negative example. In regression however it is not clear how to define this best
possible refinement.

Another promising path to optimize the algorithm would be to adapt the advantages of algorithms like M5Rules which
predicts linear models in the head of each rule. On the one hand the performance of the algorithm should be drastically
improve when using linear models instead of single target values. On the other hand, much of the interpretability of the
rule set would be lost when doing so.

The last simple improvements would be to use some kind of pruning functionality to keep the theory size small.
Strategies like iterative reduced error pruning (cf. [11]) that is used in the famous RIPPER-algorithm [4] seem to be
promising possibilities to do so. The method for classification could also be altered by using an unordered mode of the
algorithm where rules are learned for all classes. For classification all rules that cover the example are used. Hereby, one
of the main challenges is the mechanism to solve conflicts in the predictions.

22

Bibliography

[1] A. Asuncion and D. Newman. UCI machine learning repository, 2007. 10

[2] P. Clark and R. Boswell. Rule induction with CN2: Some recent improvements. In Proceedings of the 5th European
Working Session on Learning (EWSL-91), pages 151–163, Porto, Portugal, 1991. Springer-Verlag. 4

[3] P. Clark and T. Niblett. The CN2 induction algorithm. Machine Learning, 3(4):261–283, 1989. 4

[4] W. W. Cohen. Fast effective rule induction. In ICML, pages 115–123, 1995. 3, 5, 22

[5] K. Dembczyński, W. Kotłowski, and R. Słowiński. Solving regression by learning an ensemble of decision rules. In
ICAISC ’08, pages 533–544, Berlin, Heidelberg, 2008. Springer-Verlag. 4, 20

[6] J. Demsar. Statistical comparisons of classifiers over multiple datasets. Machine Learning Research, 7:1–30, 2006.
11

[7] D. Demšar. Obravnavanje numericnih problemov z induktivnim logicnim programiranjem. Master’s thesis, Faculty
of Computer and Information Science, University of Ljubljana, Slovenia, 1999. In Slovene. 4, 17

[8] J. H. Friedman and B. E. Popescu. Predictive learning via rule ensembles. Annals Of Applied Statistics, 2:916, 2008.
4

[9] J. Fürnkranz. Separate-and-conquer rule learning. Artificial Intelligence Review, 13(1):3–54, February 1999. 5

[10] J. Fürnkranz and P. Flach. ROC ’n’ rule learning – Towards a better understanding of covering algorithms. Machine
Learning, 58(1):39–77, 2005. 6, 8

[11] J. Fürnkranz and G. Widmer. Incremental Reduced Error Pruning. In W. Cohen and H. Hirsh, editors, Proceedings of
the 11th International Conference on Machine Learning (ML-94), pages 70–77, New Brunswick, NJ, 1994. Morgan
Kaufmann. 22

[12] G. Holmes, M. Hall, and E. Frank. Generating rule sets from model trees. In Twelfth Australian Joint Conference on
Artificial Intelligence, pages 1–12. Springer, 1999. 4

[13] R. Holte, L. Acker, and B. Porter. Concept learning and the problem of small disjuncts. In IJCAI-89, pages 813–818,
IJCAI-89-address, 1989. Morgan Kaufmann. 21

[14] F. Janssen and J. Fürnkranz. An empirical investigation of the trade-off between consistency and coverage in rule
learning heuristics. In T. Horvath, J.-F. Boulicaut, and M. Berthold, editors, Proceedings of the 11th International
Conference on Discovery Science (DS-08), pages 40–51, Budapest, Hungary, 2008. Springer Verlag. 6, 8, 12, 13, 14

[15] F. Janssen and J. Fürnkranz. A re-evaluation of the over-searching phenomenon in inductive rule learning. In
Proceedings of the SIAM International Conference on Data Mining (SDM-09), pages 329–340, Sparks, Nevada, 2009.
6

[16] A. Karalič and I. Bratko. First order regression. Machine Learning, 26(2-3):147–176, 1997. 4

[17] N. Lavrač, B. Kavšek, P. Flach, and L. Todorovski. Subgroup discovery with CN2-SD. Journal of Machine Learning
Research, 5:153–188, 2004. 4

[18] R. S. Michalski. On the quasi-minimal solution of the covering problem. In Proceedings of the 5th International
Symposium on Information Processing (FCIP-69), volume A3 (Switching Circuits), pages 125–128, Bled, Yugoslavia,
1969. 5

[19] S. K. Murthy and S. Salzberg. Lookahead and pathology in decision tree induction. In Proceedings of the 14th Inter-
national Joint Conference on Artificial Intelligence (IJCAI-95), pages 1025–1031, Montreal, Canada, 1995. Morgan
Kaufmann. 6

23

[20] J. R. Quinlan and R. M. Cameron-Jones. Oversearching and layered search in empirical learning. In IJCAI, pages
1019–1024, 1995. 6

[21] R. J. Quinlan. Learning with continuous classes. In 5th Australian Joint Conference on Artificial Intelligence, pages
343–348, Singapore, 1992. World Scientific. 4

[22] L. Torgo. Data fitting with rule-based regression. In In Proceedings of the 2nd international workshop on Artificial
Intelligence Techniques (AIT’95, 1995. 4

[23] L. Torgo and J. Gama. Regression by classification. In In Proceedings of SBIAŠ96, Borges, pages 51–60. Springer-
Verlag, 1996. 4

[24] B. Ženko. Learning Predictive Clustering Rules. Phd-thesis, University of Lubljana, Slovenia, 2007. 16, 17, 19, 20

[25] B. Ženko, S. Džeroski, and J. Struyf. Learning predictive clustering rules. In In 4th IntŠl Workshop on Knowledge
Discovery in Inductive Databases: Revised Selected and Invited Papers, volume 3933 of LNCS, pages 234–250. Springer,
2005. 4, 11, 17

[26] Y. Wang and I. H. Witten. Induction of model trees for predicting continuous classes. In Poster papers of the 9th
European Conference on Machine Learning. Springer, 1997. 4

[27] S. M. Weiss and N. Indurkhya. Rule-based machine learning methods for functional prediction. Journal of Artificial
Intelligence Research, 3:383–403, 1995. 4

[28] I. H. Witten and E. Frank. Data Mining — Practical Machine Learning Tools and Techniques with Java Implementations.
Morgan Kaufmann Publishers, 2nd edition, 2005. 12, 17

24

	1 Introduction
	2 Related work
	3 Separate-and-conquer rule learning and Regression
	3.1 Separate-and-conquer for regression
	3.2 Error measures for regression
	3.3 Splitpoint processing
	3.4 Parameters of the algorithm

	4 Experimental setup
	4.1 Evaluation methods

	5 Optimizing parameters
	5.1 Optimization of the splitpoint and the left-out parameter
	5.2 Optimization of the heuristics parameter

	6 Results
	6.1 Splitpoint processing
	6.2 Comparison with other systems on the two folds of the tuning datasets
	6.3 Comparison with other algorithms on the test sets
	6.4 Comparison of the size of the theories
	6.5 Comparison with FRS and PCR
	6.6 Comparison with RegENDER
	6.7 Discussion

	7 Conclusion and further work

