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Abstract Dependencies between the labels are commonly regarded as the crucial
issue in multi-label classification. Rules provide a natural way for symbolically
describing such relationships. For instance, rules with label tests in the body allow
for representing directed dependencies like implications, subsumptions, or exclu-
sions. Moreover, rules naturally allow to jointly capture both local and global label
dependencies. In this paper, we introduce two approaches for learning such label-
dependent rules. Our first solution is a bootstrapped stacking approach which
can be built on top of a conventional rule learning algorithm. For this, we learn
for each label a separate ruleset, but we include the remaining labels as addi-
tional attributes in the training instances. The second approach goes one step
further by adapting the commonly used separate-and-conquer algorithm for learn-
ing multi-label rules. The main idea is to re-include the covered examples with
the predicted labels so that this information can be used for learning subsequent
rules. Both approaches allow for making label dependencies explicit in the rules.
In addition, the usage of standard rule learning techniques targeted at producing
accurate predictions ensures that the found rules are useful for actual classifica-
tion. Our experiments show a) that the discovered dependencies contribute to the
understanding and improve the analysis of multi-label datasets, and b) that the
found multi-label rules are crucial for the predictive performance as our proposed
approaches beat the baseline using conventional rules.
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1 Introduction

Rule learning has a very long history and is a well-known problem in the ma-
chine learning community. Over the years many different algorithms to learn a set
of rules were introduced. The main advantage of rule-based classifiers are inter-
pretable models as rules can often be easily comprehended by humans. Also, rules
form a structured hypothesis space which allows to easily generalize or special-
ize individual rules. Thus, rule models can be simply modified and processed as
opposed to most statistical models such as SVMs or neural networks.

Many problems involve assigning more than a single class to an object. Such
so-called multi-label problems can often be found when text is assigned with dif-
ferent topics or tagged with keywords, but there are also many examples from
other domains such as the identification of music instruments or emotions in au-
dio recordings or the classification of scenes in images [46].

It is widely accepted that one major issue in learning from such multi-label
data is the exploitation of label dependencies [53, 19]. Learning algorithms may
greatly benefit from considering label correlations, and we believe that rule in-
duction algorithms are best suited for exploiting these in a simple way. Firstly,
so called global dependencies between only labels can be explicitly modeled and
expressed in the form of rules. Moreover, and possibly more interestingly, depen-
dencies that include both label and regular features can be represented, which we
refer to as local dependencies [12]. Secondly, such rules are directly interpretable
and comprehensible for humans. Even if complex and long rules are generated, the
implication between labels can be grasped more easily than with other approaches
by focusing on the part of the rules that actually considers the labels. Hence, in
contrast to many other model types, which capture class dependencies implicitly,
an explicit notation allows to analyze and interpret them directly. Thirdly, the us-
age of rule induction algorithms particularly targeted at classification ensure that
effective predictive models are produced rather than only descriptive models.

We introduce a formalization of the different types of multi-label rules in which
we differentiate between the presence of label assignments and label tests in the
heads and bodies of the different types of multi-label rules. The type of rule a
learner can induce also determines the type of label dependencies which be can
discovered and hence exploited by the used method. In this work, we focus on
learning so called label-dependent single-label rules, which assign values only to a
single label but can include conditions on other labels in the body. We argue that
this simple type of rule allows for adequately expressing many different types of
label dependencies such as implications, subsumptions and exclusions.

We propose two different approaches in this work in order to learn such rules.
In the first one the true label information is directly provided to the rule learner.
This is done by stacking the label features as additional input instance features
[30]. The result is an independent ruleset for each label. Although the proposed
stacking method is not the first approach in making use of stacking in order to
consider label dependencies (cf. Section 3), it is to our knowledge the first time
rule induction was used in order to make label dependencies explicit. We show that
stacking, though conceptually very simple, is suitable in order to reveal global as
well as local label dependencies. Moreover, the induced models allow for a detailed
analysis of the datasets w.r.t. the contained dependencies. For instance, statistics
on the induced rulesets allow to (empirically) estimate the degree of dependencies.
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This may lead to a better understanding of the dataset at hand. We provide
an extensive analysis for eleven datasets commonly used by the community for
benchmarking.

Our second, much more versatile approach, is to integrate the label information
directly into a joint rule learning process. More precisely, we adapt the separate-
and-conquer learning procedure in an iterative and recursive manner: Whenever
the algorithm has learned a new rule for predicting a particular label, this rule is
directly applied to the set of training instances and therefore the prediction of the
rule becomes available for the following covering iterations. The result is a global
joint ruleset for all labels in which all necessary dependencies are integrated as
they are needed for the classification.

The resulting model is usually a much more compact representation of the
dataset than the one produced by our first approach. On the other hand, our second
proposition is less effective in revealing label dependencies since the necessary
information only becomes available piece by piece in the course of the learning
process.

Although we are interested in comprehensive and descriptive models for a
multi-label classification task at hand, an important requirement for such models
is still that they are accurate and hence effective for classification. Consequently,
both approaches primarily aim at producing high-quality classification models.
The objective of obtaining expressive rules is achieved only by extending the hy-
pothesis space to multi-label rules. In the experimental evaluation, we show that
the predictive performance does indeed not suffer from the additional objective.
On the contrary, the stacking approach is able to improve over the baseline rule
learner which is not able to induce multi-label rules.

In the following Section 2 we introduce multi-label classification and inductive
rule learning and provide a formal framework for their integration. Additionally,
we give a formal definition of different types of multi-label rules. Then, we explain
how stacking label features can be used in order to learn multi-label rules and
how these rules can be used for prediction (cf. Section 3). We introduce multi-label

iterative separate-and-conquer and multi-label decision lists in detail in Section 4. We
then discuss the most relevant related work in Section 5 before we continue with the
evaluation in Section 6 that focuses on inspecting and analyzing the rule models,
but also provides an extensive comparison of both approaches. First experiments
aiming to compare the two approaches to other rule-based methods for multi-label
classification are also shown. In Section 7 we conclude with a summarization and
directions for further work.

2 Multi-Label Classification and Inductive Rule Learning

For the sake of a successful combination of multi-label classification and inductive
rule learning, we briefly introduce both disciplines in this section. Starting with
a description of and a motivation for multi-label learning, we then relate our
approach to existing research. As a key advantage of multi-label rule learning is the
ability to find conditional dependencies, such local dependencies are introduced via
an example and their difference to global dependencies is sketched. Then, inductive
rule learning is introduced with a special focus on the different types of rules that
are necessary to generalize them for multi-label learning.
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2.1 Multi-label Classification

Multi-label classification (MLC) refers to the task of learning a function h(x)
that maps instances x = (x1, . . . , xa) ∈ X to label subsets or label vectors y =
(y1, . . . , yn) ∈ {0, 1}n, where L = {λ1, . . . , λn}, n = |L| is a finite set of predefined
labels and where each label attribute yi corresponds to the absence (0) or presence
(1) of label λi . Thus, in contrast to multiclass learning, alternatives are not as-
sumed to be mutually exclusive, such that multiple labels may be associated with
a single instance. This, and especially the resulting correlations and dependencies
between the labels in L, make the multi-label setting particularly challenging and
interesting compared to the classical field of binary and multiclass classification.

From a probabilistic point of view, this is one of the main differences. In binary
and multiclass problems the only observable probabilistic dependence is between
the input variables, i.e., the attributes xj , and the label variables yi. A learning
algorithm tries to learn exactly this dependence in form of a classifier function h.
In fact, if a classifier provides a score or confidence for its prediction ŷ = h(x), this
is often regarded as an approximation of P (y = ŷ

∣∣ x), i.e., the probability that ŷ

is true given a document x.
The predominant approach in multi-label classification is binary relevance (BR)

learning [cf., e.g., 48]. It tackles a multi-label problem by learning one classifier
for each label, using all objects of this label as positive examples and all other
objects as negative examples. There exists hence a strong connection to concept
learning, which is dedicated to infer a model or description of a target concept from
specific examples of it [see, e.g., 10]. When several target concepts are possible or
given for the same set of instances, we formally have a multi-label problem. The
problem of this approach is that each label is considered independently of each
other, and as we have seen by the example given before, this can lead to loss of
useful information for classification.

2.1.1 Label Dependencies

Therefore, from the early beginning of multi-label classification, there have been
attempts to exploit these types of label correlations [e.g. 34, 18, 54]. A middle way
is followed by Read et al. [40] and Dembczyński et al. [12] in their popular (prob-
abilistic) classifier chains by stacking the underlying binary relevance classifiers
with the predictions of the previous ones. However, only recently Dembczyński
et al. provided a clarification and formalization of label dependence in multi-label
classifications. Following their argumentation, one must distinguish between un-
conditional and conditional label dependence. Roughly speaking, the unconditional

dependence or independence between labels does not depend on a specific given in-
put instance (the condition) while conditional dependence does. We may also refer
to these as global and local dependencies, since they are revealed globally or only
in subspaces of the input space.

An example may illustrate this: Suppose a label space indicating topics from
news articles and a subtopic foreign affairs of the topic politics. Obviously, there
will be a dependency between both labels, since the presence of a subtopic im-
plies the presence of the super topic and the probability of foreign affairs would
be higher than average if politics is observed. These probabilities are unconditional

or global since they do not depend on a particular document. Suppose now that
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a particular news article is about the Euro crisis. Under this condition, the condi-

tional probabilities for both labels as well as the dependency between would likely
increase and hence be different from the unconditional ones. However, if an article
was about the cardiovascular problems of Ötzi, we would observe that both labels
are conditionally independent for this instance, since the probability for one label
would very likely not depend on the presence of the other label (both being very
low).

2.2 Inductive Rule Learning

As the goal of this paper is to make label dependencies explicit by using rules, we
will also shortly introduce inductive rule learning. This is one of the oldest and
therefore best researched fields in machine learning. A rule learning algorithm is
used to learn a set of classification rules R. These rules r are of the form

head← body

where the body consists of a number of conditions (attribute-value tests) and, in
the regular case, the head has only one single condition of the form yi = 0 or 1
(in our case). Similarly to the popular Ripper rule learner [9], which is still the
state-of-the-art for rule induction, we consider only conjunctive rules in this work.

Ripper uses the separate-and-conquer (SeCo) or covering approach [15] for in-
ducing a set of rules for concept learning problems, where instances belonging to a
certain concepts have to be differentiated against those that are not. Such separate-
and-conquer algorithms proceed by firstly learning a single rule on the data. Once
a rule is found, it is added to the ruleset and all examples covered by this rule
are removed. Then, the next rule is learned and the algorithm keeps inducing new
rules as long as (positive) examples are left in the dataset. How a single rule is
learned is described in detail in Section 4.4 and in Algorithm 4. In order to prevent
overfitting, the two constraints that all examples have to be covered (completeness)
and that negative examples must not be covered (consistency) can be relaxed so
that some positive examples may remain uncovered and/or some negative exam-
ples may be covered by the set of rules. In the following, we use p and n to denote
the covered positive and negative examples whereas P and N stand for the to-
tal number of positive and negative examples. The SeCo strategy only works for
binary datasets. Hence, a natural way of addressing multi-label problems is to
consider each label separately (cf. Section 2.1), resulting in a model consisting of
separate rulesets for each label.

A SeCo algorithm either returns an ordered or an unordered list of rules. The
former is a decision list where the rules are checked in order and whenever the
rule at hand covers an example it is used to predict the class of the example.
All subsequent rules are skipped for this example. In theses cases, we assume
an ordering on the rules in the ruleset and overload the notation so that R =
〈r1, r2, . . .〉.

Some algorithms process the dataset by ordering the classes by their frequency
and then start learning rules for the smallest class. In the end, rules for the largest
class are not learned and a default rule is added to the bottom of the list which
simply assigns all instances to the largest class. Then, for binary datasets, this
means that such a rule learner learns a concept only for the smaller class.
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In Section 4, we additionally introduce and make use of multi-label decision lists,
which are able to express MLC rule models in a single, joint decision list.

2.3 Different Types of Multi-label Rules

Table 1 gives an overview of the types of multi-label rules used in the remainder.
As mentioned above, we use conjunctive rules in this work. For each rule type,
example rules are shown which may contain hypothetical conditions c1, c2, and c3
and labels y1, y2 and y3. We concentrate on learning single-label head rules where
only one label appears in the head of the rule in contrast to multi-label head rules
(last two rows in Table 1), which contain several label assignments in their head.
Multi-label head rules conveniently allow to model co-occurrence dependencies be-
tween labels. Often, it is beneficial to omit the prediction for some of the labels
instead of predicting a full label combination, e.g., for postponing the prediction
for subsequent rules. In that case, we refer to them as sparse multi-label head rules
instead of dense ones.

Commonly, the conditions in the body are tests on attributes from the instance
space (cf. label-independent rules with conditions ci in Table 1). However, in order
to reflect label dependencies (e.g., implications, subsumptions, or exclusions), we
would need to have labels on both sides of the rule. Hence, if a rule may contain
conditions on the labels, we refer to it as a label-dependent rule (also called contex-

tual rule by D. Malerba and Esposito [10]), and label-independent if this is not the
case. Global dependencies are hence best reflected by fully label-dependent bodies,
whereas local dependencies can be described by partially label-dependent rules with
regular conditions and label tests in the body (cf. Table 1).

Another distinction of rules comes from whether the presence (yi = 1) or the
absence of a label (yi = 0) is used for prediction or in the body of the rule (in Table
1 denoted by yi and yi, respectively). Since multi-label datasets are usually very
asymmetric in the sense that labels appear relatively infrequently (see Section 4.4
for a discussion), it is common in MLC to focus on detecting the presence of labels.
Also, from the perspective of concept learning (cf. Section 2.1), it is reasonable
to learn a description of a label (in form of rules) for the case that the label is
present. Hence, multi-label rule learning approaches are often restricted to learning
only positive head rather than positive and negative head rules. However, in some
situations, it may be beneficial to leave it open whether the rule predicts the

Table 1 Different forms of multi-label rules. Let the number of labels be n = 3, yi denote
positive label assignments or positive label tests (yi = 1), over-lined yi denote negative assign-
ments or tests (yi = 0) , respectively, and let c1, c2, and c3 be some conditions on instance
features xi.

head body example rule

single-label
positive

label-independent
y1 ← c1, c2, c3

negative y1 ← c1, c2

single-label
positive

partially label-dependent
y3 ← c1, y1, y2

negative y3 ← c1, y1, y2

single-label
positive

fully label-dependent
y3 ← y1, y2

negative y3 ← y1, y2

multi-label
sparse

label-independent
y1, y2 ← c1, c2, c3

dense y1, y2, y3 ← c1, c2, c3
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Require: New training example pairs T = {(x1,y1), . . . , (xm,ym)},
targets B (either B = {1} or B = {0, 1})

1: for each label yi do
2: Ti ← ∅
3: for each (x,y) ∈ T , x = (x1, . . . , xa), y = (y1, . . . , yn) do
4: Ti ← Ti ∪ ((x1, . . . , xa, y1, . . . , yi−1, yi+1, . . . , yn), (yi))

5: R∗i ← findRules(yi,B, T ) . learn rule list for label yi

6: return R∗i . stacked rules

Fig. 1 Stacking algorithm for obtaining label-dependent single-label rules.

presence or the absence of a label. Note that in our approach either a positive
label can be predicted or it is dynamically decided whether the label is predicted
positive or negative.

Both, the extension of the head from single-label to multi-label assignments,
and the consideration of labels in the body, can facilitate rules and rule models
to represent dependencies between labels. However, there are two major reasons
why we focus on the induction of label-dependent rules. Firstly, from a conceptual
point of view, multi-label head rules can only comprehensively model co-occurrence
(or co-absence) dependency cases, whereas we are interested in a broader range
of dependency types. A consequence of this limitation is also the difficulty in
expressing global dependencies. Consider, e.g., the simple dependency y2 ← y1
often appearing in hierarchical structures. It is not possible to adequately express
this global relationship in form of a simple rule. Instead, a learner would have
to describe both cases y2 = 1, y1 = 0 and y2 = 1, y1 = 1 separately by different
rulesets, concealing the obvious connection between both labels and the global
character of it. The situation is similar for expressing local dependencies which
are not co-occurrences. For instance, representing the dependency y2 ← y1, c1 as
multi-label head rule with label-independent bodies would need to add all rules
for y1 again to the ruleset with c1 as additional condition.

The reason for the increased complexity is connected to a further disadvan-
tage, namely that representing a multi-label dataset with multi-label rules may
require to formulate separate rules for each distinct label combination present
in the dataset. The maximum number of distinct combinations grows exponen-
tially with the number of labels or linearly with the number of training examples
(O(min(2n,m)), Hence, the number of necessary rules can become very large for
datasets of medium size. We believe that single-label head rules, in contrast, can
be used to obtain more compact classification and descriptive rule models since
labels can be described independently from each other as well as by using the
shared descriptions of other labels, as needed. The full expressiveness is though
obtained by label-dependent multi-label rules, which we leave for further research.

In summary: We start from label-independent single-label rules and move towards
label-dependent single-label rules, which, as shown, are well suited for modeling and
expressing label dependencies. We present in the next sections two approaches
particularly suited in order to find such rules. Both approaches are able to find
positive as well as positive or negative single-label rules.
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Require: Text example x,
decision lists R∗i , decision functions h∗i based on R∗i ,
number of bootstrapping iterations m,
initialization ŷ0 = (ŷ0,1, ŷ0,2, . . . , ŷ0,n) (e.g., predictions from single-label models Ri)

1: for j in 1 . . .m do
2: for each label yi do
3: ŷj,i ← h∗i (x1, . . . , xa, ŷj−1,1, . . . , ŷj−1,i−1, ŷj−1,i+1, . . . , ŷj−1,n) . apply R∗i
4: return prediction ŷj = (ŷj,1, ŷj,2, . . . , ŷj,n)

Fig. 2 Stacking algorithm for obtaining label-dependent single-label rules.

3 Stacking of Label Features for Learning Label-Dependent Rules

The recently very popular classifier chains [40] were found to be an effective
approach for exploiting conditional label dependencies. Classifier chains (CC)
make use of stacking the previous BR classifiers’ predictions in order to im-
plement the chain rule P (y1, . . . , yn) = P (yn

∣∣ y1, . . . , yn−1) in probability the-
ory, since they learn the binary classifiers hi with training examples of the form
(x1, . . . , y1, . . . , yi−1) [cf. 12]. One drawback of CC is the (randomly chosen) prede-
termined, fixed order of the classifiers (and hence the labels) in the chain, which
makes it impossible to learn dependencies in the contrary direction. This was al-
ready recognized by D. Malerba and Esposito [10] in 1997, who built up a very
similar system in order to learn multiple dependent concepts. In this case, the
chain on the labels was determined beforehand by a statistical analysis of the
label dependencies. Still, using a rule learner for solving the resulting binary prob-
lems would only allow to induce rules between two labels in one direction. Real
world datasets do not have to comply with this restriction and hence we believe
that for many datasets there is no possible sequence which can capture all present
dependencies.

3.1 Stacked Binary Relevance

Thus, we propose to use a full stacking approach in order to overcome the main
disadvantage of CC, i.e., the fixed order [30]. Such as in binary relevance, we
learn one theory for each label, but we expand our training instances by the label
information of the other labels, i.e., the training examples vectors for learning label
yi are of the type (x1, . . . , y1, . . . , yi−1, yi+1, . . . , yn) for an instance x. Hence, we
may obtain theories with label attributes in the body, as it would be in CC. The
result of using this as training data is exactly what we are seeking for, namely label-
dependent single-label rules. The amount of label-features in the body additionally
allows us to determine the type of dependency. We refer to this technique as stacked

binary relevance (SBR) in contrast to plain, unstacked BR. The learning algorithm
for obtaining the stacked models R∗i is visualized in Figure 1.

As already mentioned, rule learners commonly learn only rules for the smaller
class. SBR would hence commonly only produce positive head rules. In addition
to our previous work [30], we also evaluate a variant which induces positive and
negative head rules (B = {0, 1}).

Stacked binary relevance is very similar to the approaches of Godbole and
Sarawagi [20], Tsoumakas et al. [47], Guo and Gu [21], and very recently, Montañés
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et al. [35]. They all have in common that they are using label presence informa-
tion (either directly from the training data, or from the outputs of underlying BR
classifiers) as (either sole or additional) features in order to learn an ensemble of
binary relevance classifiers on top. The closest related approaches to our propo-
sition are the conditionally dependency networks (CDN) [21] and the dependent
binary relevance (DBR) models [35]. Both learn their models as indicated before
but with one major difference: Since they are concerned with estimating proba-
bility distributions (especially joint distribution), they both use logistic regression
as their base classifier, which is particularly adequate for estimating probabilities.
This type of models are obviously much harder to comprehend than rules, espe-
cially for higher number of input features. Therefore, the label dependencies would
remain hidden somewhere in the model, even though they may have been taken
into account and accurate classifiers may have been obtained. To make the depen-
dencies explicit and at the same time keep a high prediction quality, we propose
to use rule-based models.

One additional difference between the approaches is how the prediction is con-
ducted, which is discussed next.

3.2 Classification by Bootstrapping

For the prediction we propose to use a bootstrapping approach in the sense that we
apply our models iteratively on our own previous predictions until the predictions
are stable or any other stopping criterium is met. More formally, we use the learned
models R∗i and their associated decision functions h∗i to produce predictions ŷj =
(ŷj,1, ŷj,2, . . .) where ŷj,i = h∗i (x, ŷj−1) is based on the predictions of the previous
iteration j − 1. The pseudocode of the approach in given is Figure 2.

One obvious issue with this approach is the initialization of ŷ0. A possible
option, also proposed by DBR, is to use the predictions of a BR ensemble, i.e.,
ŷ0,i = hi(x), which is the option we mainly use in this work. The BR rulesets Ri

are learned similarly to R∗i but without the expansion by label features (using only
((x1, . . . , xa), (yi)) in line 4 of Figure 1). Hence, each label will be characterized
by two sets of rule models, namely the rules Ri which depend only on instance
features, and a second set of rule models R∗i depending (possibly) also on other
labels, for which the rule models of the other labels provide predictions for.

It may happen during the classification process that no rule fired for a par-
ticular label and test instance. In that case, common rule learners would predict
the majority class (for multi-label datasets, hence, typically the absence of the
label). This may harm the stacking phase, since it may considerably influence the
prediction of the other labels even though the evidence of the decision was rather
low. Thus, we make use of the capability of abstaining from classifying if no ap-
propriate rule was found (instead of applying the default rule). The label attribute
may be then filled up in consequent iterations when more evidence exist for the
decision.

3.2.1 Gibbs Sampling

In previous work, we also evaluated the option of initializing with unknown label
information, i.e., ŷ0 = (?, ?, . . .), and to benefit from the natural support of sym-
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bolic approaches for such attribute states (missing, don’t care, etc.). On the other
hand, this approach only works if the rule learner found enough rulesets with label-
independent rules so that the bootstrapping can proceed and the label attributes
can be filled up subsequently. In fact, this approach severely faced cold-start and
deadlock problems, especially the more label-dependent rules were found by the
stacking approach.

An alternative to empty initialization is to randomly initialize the label fea-
tures for the bootstrapping phase, as proposed by Guo and Gu [21] and their
CDN. For each random initialization, the bootstrapping approach is applied a cer-
tain number of times or until convergence (burn-in phase). The resulting burnt-in
prediction vectors are then averaged (for binary targets voting can be used). The
expectation is that random initializations closer to the true label vector tend to
be corrected and converge towards the true labels vector while initializations more
distant result in noise, which is eventually dominated by the voting mass of the
more accurate prediction samples. Together with enough iterations (e.g., 1000) of
this Gibbs sampling, this approach was shown to be very effective when being used
with linear classifiers. We expect, however, a reduced performance for symbolic
approaches due to the higher sensibility to (massive) feature noise, given in this
case by the random initialization of the label features.

We had to slightly modify the original approach not only in order to support
discrete binary predictions, but also solely binary inputs for the label features.
In contrast to CDN which use uniform sampling out of [0, 1] ⊂ R, we randomly
initialize with 0 or 1 according to the prior label distribution.

3.3 Discussion and Limitations

Stacked binary relevance uses the real label information for training, although
during prediction we use the predictions from the base BR classifiers. This violates
to a certain degree the principle that the training data should be representative
for the test data, which is certainly not the case since input features y and ŷ are
drawn from different (but not independent) populations.

Hence, in classical stacking, the high-level classifier usually does not use the
true information y, but predictions ŷ′ obtained by applying the base ensemble
learners on the training data. Depending on the application and base learners
used, the predictions ŷ′ are obtained through a hold-out cross validation in order
to get more accurate estimations of ŷ (out-of-sample in contrast to within-sample
training). This is necessary since the main goal of a traditional stacking classifier
is to correct and combine the predictions of the underlying classifiers in order
to produce more accurate joint predictions. Certainly, the SBR learner could be
applied in such a way.

However, one of the reasons for stacking the label information in the proposed
algorithm is our interest in discovering and exploiting the true relationships and
interconnections between labels. We are particularly interested in modeling de-
pendencies yi ← yj , . . . and not yi ← ŷj , . . .. Hence, in contrast to the general
understanding in traditional stacking, we do not try to estimate the features ŷ′

of the training instances by the real y, but actually we try to estimate the real y

on the test instances by the predictions ŷ′ (a different option is, e.g., to randomly
guess, such as for Gibbs sampling). By doing so, the feature noise of the label



Learning Rules for Multi-label Classification 11

features, introduced by the estimations of the base classifiers, is transferred from
training to testing time. Hence, we also expect to obtain models which reflect the
relationships in a dataset more accurately and more compact than if trained on
noisy predicted features.

Senge et al. [42] analyzed the effect of error propagation for classifier chains.
They concluded that the problem increases the more labels are involved and lower
the (labe-wise) prediction accuracy. Hence, they proposed to use (within-sample)
predictions for training. On the other hand, the same authors also show that er-
ror propagation is not that severe for the dependent binary relevance algorithm,
which essentially corresponds to our stacked approach, since errors can only be
reinforced once (or number of bootstrapping iterations m in our case) instead of n
times as for CC [35]. In their extensive analysis, it was also observed that using the
real label information outperforms stacking the predictions especially for measures
such as F1 which are concerned with the correct prediction of relevant labels. It
became apparent that the positive effect of using the full, true and noiseless label
information and hence producing better models outbalances the harmful effect of
feature noise introduced by inaccurate base classifiers. This advantage is especially
clearly visible for the dependent binary relevance approach whose classifiers have
the full label information available rather than being restricted towards one direc-
tion of the chain. On the other hand, in their experiments the feature noise was
especially harmful for measures which do not distinct between relevant and irrele-
vant labels, such as Hamming loss. For this loss, the approaches using traditional
stacking dominated their counterparts using the true label information. Note that
logistic regression was used as base classifier in both studies.

A limitation of the stacking approach may appear when circular dependencies
exist between labels. A very simple example between only two labels is the rela-
tionship yi ← yj , yj ← yi, i.e., yi and yj excluding each other. We can assume that
the rule learner would perfectly induce these rules, which is what is desired from
the perspective of knowledge discovery. However, these rules do not provide any
additional value for actual classification since they would just copy the predictions
of other labels. In addition, such rules may cause endless circles or deadlocks. For
instance, if ŷ0,i and ŷ0,j are initialized to ŷ0,i = ŷ0,j , either by contradicting BR
classifiers or by random (Gibbs sampling), the predictions for yi and yj will flip in
each round of the bootstrapping. 1

Although we did not observe any harmful case of circular dependencies in our
classification experiments, it may still be desirable to obtain more coherent and
consistent models specifically for classification. Using classifier chains could solve
the problem for circular dependencies by imposing an ordering on the predictions
but with the already discussed disadvantages for detecting and exploiting the
remaining (non-circular) dependencies. The separate-and-conquer approach pro-
posed in the next section solves the issue by inducing an ordering on the predictions
of labels depending on the data at hand. Hence, whether making a prediction first
for either y0,i or y0,j depends on the data set (the ordering in the induced rule
list) and on the instance to be classified (the covering rules).

1 We chose a very simple global pairwise relationship for demonstrating the possible issues.
The same or similar effects could appear if the relationship would only exist in subspaces of
the input space (conditional dependencies), for relationships between more than two label or
more complex relationships such as hierarchical relationships.
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Independently of the issues originating from stacking and label dependencies,
the proposed approach inherits the limitations of the base rule induction algo-
rithm used. For example, we experienced scalability issues regarding an increasing
number of instance features when using Ripper (Sec. 4.4) as rule learner. On the
other hand, the additional label features did not affect the computational costs in
the same manner due to their binary and sparse nature.

4 Iterative Separate-and-Conquer for Learning Multi-label Decision Lists

The presented approaches for learning multi-label models, binary relevance and
the stacked variant, and also other approaches such as classifier chains, have one
aspect in common, namely that they transform the original problem into several
subproblems, which are then solved independently. This might be appropriate or
even advantageous for certain use cases, for instance, when the objective is to
obtain isolated theories representing each label (cf. concept learning), or when
we try to achieve a high efficiency. However, often it is more desirable to obtain
one global theory comprehensively explaining a particular multi-label dataset. The
induction of one global model may also allow a better control over the objective
loss, which is an important issue in multi-label classification due to the variety of
existing measures, resulting directly from the diversity of the real life scenarios. In
Section 4.1, we propose to use a single multi-label decision list as a global model.

Regarding the introduced stacked BR approach which we used for learning
label-dependent single-label rules, we propose to integrate the stacking of label
features directly into the SeCo rule induction process (Section 4.2). The idea is
to start with unknown label features, thus, only label-independent rules will be
learned in the beginning as unknown features are treated as never covered. How-
ever, the covered instances are not separated, but instead labeled accordingly and
re-added to the training set.

During prediction, the rules in the multi-label decision list are applied until
the first rule fires. But instead of continuing with the next test instance as for
traditional decision lists, the assignments in the head are executed (for each rule
a label is set in the test instances), and the process continues with the next rule
in the multi-label decision list (Section 4.2.2).

Despite its appealing simplicity at a first glance, many different aspects of this
approach have to be considered. As in traditional binary or multiclass problems,
we need an approach for finding and evaluating rules in the multi-label setting.
Basically, we use a modified version of Ripper [9] (cf. Section 4.4) which returns
us the best rule for each label and selects the best among them with a separate
selection heuristic (cf. Section 4.5) as proposed by Stecher et al. [43]. Selecting the
best rule is, however, not trivial, since the labels may have already been covered
to different degrees.

In the following, we start by introducing multi-label decision lists (Section 4.1,
a type of rule sets that are capable of classifying multiple labels. We then give
a more detailed description of the proposed approach including the learning and
classification phase and provide subsequently a discussion on the arising issues as
well as our ideas of how to deal with them in Section 4.2. Then, we present a toy
example that highlights how a multi-label decision list learned by the proposed
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iterative separate-and-conquer algorithm can be used to classify a multi-label in-
stance (Section 4.3. In the remainder of the section, we illustrate how a single
rule is learned (Section 4.4) and which kind of heuristic we used for doing so
(Section 4.5).

4.1 Multi-label Decision Lists

With the SBR approach in Section 3.1 we induce two sets of decision lists Ri

and R∗i , the first ones being only dependent on instance features and the second
ones possibly also use label features. However, in this section, we are interested
in obtaining one single condensed model R in form of an ordered decision list. As
already discussed in Section 3.3, having only one list, e.g., prevents circuits in the
classification and may provide an additional notion of the relevance of the labels
regarding the classification. However, the straight-forward approach of combining
induced single-label rules, such as those included in Ri and R∗i , into one single
classical decision list is not possible since the classification process would stop as
soon as the first label is set. Therefore, we propose an extension referred to as
multi-label decision lists.

Similarly as for classical decision lists, rules are organized in a sequence R =
〈r1, r2, . . .〉 reflecting the order in which they are checked. However, the difference
is that the classification process does not stop when a test instance is covered by
one of the rules but continues with the subsequent rule in the sequence. Exceptions
are if for all of the labels a rule was already found (all labels were classified) or the
rule covering the test instance is explicitly marked as a stopping rule, in which case
the classification process would immediately terminate. This mechanism allows to
assign several labels with a single multi-label decision list, but also to terminate
the classification if required. Stopping rules are necessary especially if only positive
head rules are induced in order to prevent a bias towards predicting too much
labels as true. In addition, they are reflected in the separate-and-conquer learning
process, as well as the whole classification process itself. These aspects as well as
more details on the classification process (Figure 7) are treated in Section 4.2.2.
An example of a multi-label decision list is given in Table 3.

A multi-label decision list could be considered as a generalization of a single-
label decision list as induced by regular covering algorithms. The stopping rule
annotation allows to enforce the same behavior when only one positive label is
allowed. On the other hand, it obviously also adopts characteristics from unordered
rulesets, where the predictions of all rules are combined.

4.2 Multi-label Iterative Separate-and-Conquer

We propose to adapt the classical separate-and-conquer, or, covering algorithm,
which was successfully applied for rule induction in many cases, in order to learn
rules for MLC classification problems. Our main motivation in the design of the
proposed algorithm was to keep the changes to the separate-and-conquer algorithm
as small as possible. However, the increase in the number of targets to be considered
imposes changes especially concerning the concept of the covering status and the
separate step, i.e., the removal of instances from the training set. For instance,
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Require: New training example pairs T = {(x1,y1), . . . , (xm,ym)},
parameters θ, τ , heuristic h, targets B (either B = {1} or B = {0, 1}),
whether using stopping rules, whether re-inserting fully covered examples

1: T = {(x1, ŷ1), . . . , (xm, ŷm)} with ŷi = (?, ?, . . . , ?), i = 1 . . .m
2: while |T |/m ≥ θ do . until, e.g., 95% of examples covered
3: r ← findBestGlobalRule(B, T ) . get best possible rule regardless the head
4: add r to decision list R
5: (T , Tpart, Tfull) = getCoveredSets(r, T ) . separate T according covering by r
6: Tadd ← getReAddSet(Tpart, Tfull) . depending on user parameters
7: if Tadd = ∅ then
8: mark r as stopping rule . only uncovered examples in T of next round
9: else

10: T ← T ∪ Tadd . add also some covered examples, do not remove them

11: return decision list R

Fig. 3 Training algorithm for the multi-label iterative separate-and-conquer algorithm

Require: Example pairs T , targets B
1: r ← ∅, r.h← −∞ . init best rule and its heuristic value
2: for each label yi and target t0/1 ∈ B do

3: T i ← T
4: remove all x where ŷi 6=? from T i . do not consider x if label already set
5: r′ ← findBestRule(yi, t0/1, T i) . find best body for target yi = t0/1
6: r′.h = h(r′, yi, T i) . heuristic value depends on target label and T i

7: if r′.h > r.h then
8: r ← r′ . replace by better rule

9: return best rule r

Fig. 4 Algorithm findBestGlobalRule for finding the best current rule on the training set for
any possible label in the head.

Require: Rule r, example pairs T
1: Tpart ← ∅, Tfull ← ∅
2: for each example (x, ŷ) ∈ T do . compute covering status for each example
3: if r covers x then
4: T ← T \x . remove since it may not be re-added
5: apply head of r on ŷ . replace corresponding value in ŷ if it was unset
6: if ŷ is fully set then . depending on B, consider also unset zeros
7: Tfull ← Tfull ∪ x
8: else
9: Tpart ← Tpart ∪ x

10: return uncovered (T ), partially (Tpart) and fully covered (Tfull) training examples

Fig. 5 Algorithm getCoveredSets for computing the covering status of examples for a given
rule.

the question arises whether covered instances are labeled and re-added to the
training set so that they may serve as an anchor point for following rules. The
main difference to the original version of the algorithm clearly lies in its iterative

nature. In addition, depending on whether we want to learn only positive heads
or also negative ones, the definition of whether a label or an instance is covered or
not changes.

The following subsections describes the training phase with its multiple aspects,
followed by the classification phase.
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Require: Partially and fully covered examples Tpart, Tfull,
parameter τ , whether using stopping rules, whether re-inserting fully covered examples

1: if use stopping rules then
2: if full coverage rate |Tfull|/(|Tfull|+ |Tpart|) ≥ τ then . e.g. 90%
3: Tadd ← ∅ . do not re-add any example although Tpart, Tfull non empty
4: else . too many partially covered examples
5: Tadd ← Tpart . re-add partially covered examples
6: if re-insert all covered examples then
7: Tadd ← Tadd ∪ Tfull . re-add also fully covered examples

8: else
9: Tadd ← Tpart . no stopping rules: re-add partially covered examples

10: return partially or fully covered examples Tadd to be added again to training set

Fig. 6 Algorithm getReAddSet deciding wether covered examples are re-added to the training
set.

Require: Test example x, multi-label decision list R
1: ŷ = (?, ?, . . . , ?)
2: for each rule r in rule list R do . in the order of insertion
3: if r covers x then
4: apply head of r on ŷ if corresponding value in ŷ is unset
5: if r marked as stopping rule or ŷ is complete then
6: assume all remaining labels in ŷ are negative
7: return ŷ

8: assume all remaining labels in ŷ are negative
9: return ŷ

Fig. 7 Application of a multi-label decision list to a test example.

4.2.1 Training

Figure 3 shows the pseudo-code for training a rule learner that is able to use
predicted labels already in the learning process. The algorithms keeps track of two
representations of the label vector:

– one for the original labels (y1, . . . ,ym) and
– one for the labels that are currently accessible by the learner (ŷ1, . . . , ŷm).

We initialize the label features ŷi with (?, ?, . . . , ?) since in the beginning no
label is predicted yet.

The outer loop of the learning algorithm runs until only θ examples are left
uncovered (Figure 3, line 2). It starts by searching for the best rule for each label
(Figure 4). We consider two types of rules, either positive (B = {1}) or positive
and negative (B = {0, 1}) head rules (cf. Section 2.3). Hence, for each label yi
the findBestRule (cf. Section 4.4) method is called with the current label yi, an
indication which type of head should be learned (either 0 or 1), and the current
set of examples T i. Note that previously all examples x are removed for which
the label at hand is already set by previous rules. The label is covered by now
and does not have to be covered again. Note also that if these examples are not
removed, findBestRule would often find the same rule again and again since the
set of instances in T will often not change from one iteration to the next.

Instead of having access to label features that are initialized by, e.g., a BR
approach as in the previous algorithm (cf. Section 3), we rely only on labels set by
previous rules. Hence, it may take some time until enough rules are learned and,
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consequently, enough labels are set so that they can be exploited in subsequent
rule bodies.

After the best label-specific rule is found, its heuristic value is computed by
using the coverage statistics derived on the original label at hand. Among these
rule candidates (one for each label and target combination), we select the best one
and add it to the decision list R. Then, the rule is used to predict and set the
i-th label feature ŷi for all covered examples (Figure 5). To do so, we first remove
the covered examples from T and for each example check whether all labels ŷ are
already set. Depending on whether positive and negative heads or only negative
heads are desired, we differentiate between checking if ŷi 6=? for i = 1, . . . , n or
only for positive labels yi = 1, respectively. If so, we store the example in Tfull. If
labels are still missing we store the example in Tpart.

Re-inclusion of covered examples and usage of stopping rules We propose three dif-
ferent ways of re-adding covered examples to T (Figure 6), namely to re-include
either

– only partially covered examples,
– partially and fully covered examples, or
– none (examples were almost fully covered).

In the first case, we remove all fully covered examples entirely from the training
process and only add the partially covered instances to T . However, this might
introduce inconsistencies, since if we re-classify Tfull with the final model, the
current rule would apply as desired, but also possibly any following rule in the
final decision list. These remaining rules are unlikely to be consistent with Tfull
since Tfull was not used anymore for learning them. Moreover, it may be desirable
to leave the fully covered examples in the training process since they may serve
as an anchor point for subsequent rules and facilitate in such a manner the rule
induction process.

Hence, we consider the option of marking rules as stopping rules (Section 4.1),
which means that whenever the rule fires during classification this should stop
the classification process since it is assumed that the prediction is already com-
plete. This is considered to be the case if the percentage of fully covered examples
among all covered examples is greater than a parameter τ (usually close to 1).
If this happens, getReAddSet returns an empty set and r is marked as stopping
rule (Figure 3, line 8). However, if the amount is below τ , the partially covered
examples are added to the training set. Furthermore, we can set another parame-
ter determining whether or not we would also like to re-include the fully covered
examples in order to benefit from the additional information as mentioned above.

4.2.2 Classification

Figure 7 shows the pseudo-code of the classification process. Essentially, a test
instance passes through the same steps as in the training process. We iterate over
each single rules in the multi-label decision list and determine if it fires, i.e., if
the rule covers the given test instance. Similarly as during training, we apply the
predicted head label of the rule so that it can be checked by subsequent rules in the
loop. However, if the rule was marked as stopping rule, the prediction is assumed
to be complete and the process comes to an end.
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Table 2 Extended multi-label weather dataset.

outlook temperature humidity windy play icecream tea lemonade dontplay

rainy 65 70 yes 0 0 1 0 1
rainy 71 91 yes 0 0 1 0 1
sunny 85 85 no 0 1 0 1 1
sunny 80 90 yes 0 1 0 1 1
sunny 72 95 no 0 1 0 1 1
sunny 69 70 no 1 0 0 1 0
sunny 75 70 yes 1 0 0 1 0

overcast 83 86 no 1 0 0 1 0
overcast 64 65 yes 1 0 0 1 0
overcast 72 90 yes 1 0 0 1 0
overcast 81 75 no 1 0 0 1 0

rainy 70 96 no 1 0 0 1 0
rainy 68 80 no 1 0 0 1 0
rainy 75 80 no 1 0 0 1 0

Table 3 Learned rules on the weather dataset with the proposed multi-label iterative
separate-and-conquer approach.

icecream ← outlook = sunny, humidity ≥ 85
icecream ← ∅
tea ← outlook=rainy, windy=yes
tea ← ∅
lemonade ← tea
play ← icecream, tea

dontplay* ← play

play ← ∅
dontplay ← ∅
lemonade* ← ∅

We make two important assumptions about the classification. Firstly, we as-
sume that the first prediction for a particular labels is the valid one and cannot be
revoked afterwards. This is also ultimately reflected in the training process. How-
ever, it makes the approach more sensitive to error propagation than the common
decision lists since rules may depend on the correct assignments of the previous
rules in the decision list. A possible alternative would be to consider several assign-
ments for the same label, e.g., increasing or decreasing the evidence or confidence
for a label decision. On the other hand, aggregating and weighting several decisions
is not trivial. We leave the analysis of the possible solutions for further work.

Secondly, it is common in MLC to assume that a label is irrelevant if not
determined otherwise. This assumption follows from the usual asymmetry of set
and unset labels in common multi-label problems. Hence, we predict a label as
irrelevant if it was not covered by any rule. Future versions of our approach could
consider to differentiate w.r.t. every label separately. However, in case of learning
positive and also negative head rules, the learning algorithm itself takes care of
considering the asymmetry by adding corresponding rules (see empty rules in
Table 3). Comparing to traditional decision lists, our assumption corresponds to
the default rule which usually predicts the majority class.
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4.3 Toy Example

The following toy example, which is based on the well known weather dataset,
illustrates the functioning of the proposed approach (Table 2). The dataset in-
dicates the decision whether to play tennis depending on the weather forecast.
Basically, we should play tennis if it is overcast, or if it is sunny and normally
humid, or if it is rainy but not windy. We introduce labels for indicating that
we should eat ice cream if it is sunny and too humid and drink tea if it is rainy
and windy. We should drink lemonade if it is warm enough. The label dontplay is
included for illustrative purposes. Obviously, several dependencies are introduced,
such as negation, mutual exclusion and subsumption.

In Table 3, the rules are shown as learned by the multi-label iterative separate-
and-conquer approach. They are represented in a multi-label decision list. Rules
that are marked with a “*” are stopping rules that terminate the classification.
The following test example might illustrate how the classification process works:
(rainy, 80, 75, no, ?, ?, ?, ?, ?).

As the first rule in the list does not cover the example, the second rule in the
list is checked. This rule always evaluates to true and hence icecream is set to 0.
As described in Section 4.2.2, the label of the instance is set accordingly, resulting
in (rainy, 80, 75, no, ?, 0, ?, ?, ?). Again, the third rule does not cover the example
and rule number four sets tea = 0. Then, rule number five changes the instance
to (rainy, 80, 75, no, ?, 0, 0, 1, ?). The sixth rule sets play = 1 since icecream = 0
and tea = 0. In the end, dontplay is then set to 0 by rule number seven and the
classification is terminated as this is a stopping rule.

4.4 Finding the Best Label-Specific Rule with Ripper

In preliminary evaluations, we used a simple SeCo algorithm which is based on a
top-down hill-climbing search. Albeit the heuristic of this algorithm is tuned to
be suited for a variety of different requirements [23], it turned out that without
proper rule pruning phase, this leads to a large set of rules. Moreover, our results on
the stacking approach suggest that explicit pruning is particularly useful in order
to emphasize on and make use of dependencies between labels (see Section 6.3).
Additional reasons for using the Ripper algorithm are the efficient implementation
available in Weka [51] and the better comparability to the stacking approaches
especially w.r.t. the found models. Hence, we provide in the next subsection a
brief description of the algorithms and our modifications.

Ripper is based on the IREP-strategy [17], hence, in the beginning the dataset
is divided into a growing and a pruning set where the first usually contains 2

3

of the training set and the rest of the instances are included in the latter set.
A rule is learned on the growing set by employing the FOIL-gain heuristic that
relates the quality of the current refinement of a rule to that of its predecessor.
By successively selecting the best possible condition in a greedy hill-climbing way,
the algorithm proceeds with refining a rule as long as it covers negative examples.
Hence, a rule learned by this procedure is consistent, i.e., it does not cover any
negative examples. That rule then is immediately pruned on the pruning set by
successively removing the last condition as long as the heuristic value p−n

p+n does
not decrease. In the basic version of how we used Ripper, findBestRule stops at
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this point and returns the pruned rule as we are only interested in the single best
rule per label.

However, this skips the special optimization phase of Ripper which revises the
found rules in the context of the remaining rules in the decision list after the
final ruleset is learned. Since subsequent rules are unknown during the learning
of a single rule, they may be suboptimal in the final decision list. Hence, after
finding the first best rule, the covered examples are removed from the training
set and the process is repeated until no positive examples are left or a minimum
description length (MDL) stopping criterion is met. Ripper then continues with
its post-optimization. Each rule in the resulting ruleset is inspected, and if the
MDL criterion is met, it is substituted by a replacement rule learned from scratch
or by a revision of the original rule.

Certainly, revising the ruleset in the context of all rules is one of the key rea-
sons for the good performance of Ripper apart from using IREP. In order to also
benefit from this optimization and in view of lacking a proper adaptation to multi-
label decision lists, we consider to simply adopt the first rule left after learning the
whole ruleset for the given label and after applying the optimization phase. The
assumption, that the same remaining ruleset may be learned again in the next
rounds (i.e., in the next execution of findBestRule for the current label), is admit-
tedly not often valid. In fact, it is only true in any case if we assume independent
labels, since then the multi-label SeCo algorithm would correspond to learning
separate rulesets for each label and then joining them. On the other hand, it may
also be valid to a certain degree when using the option of re-adding full covered
examples. And certainly, it is not less reasonable than learning rules independently
of any following rule when not using the post-optimization. However, we prefer to
consider the usage of the Ripper optimization as an additional pruning heuristic
and not as a substitution for a proper post-optimization of multi-label decision
lists. This step is left for future work.

4.5 Heuristic for Selecting the Best Rule

For selecting the final rule among all the best rules per label, we experimented
with different heuristics. The main trade-off comes from two objectives:

Coverage optimization: The more examples are covered, the more label features
are set and the better the subsequent rules may utilize these label features.

Consistency optimization: The covered examples should also be covered cor-
rectly as subsequent rules may rely on the classified feature labels.

Hence, we used heuristics that are able to trade off these two objectives. As
our main evaluation metrics are precision, recall, and their combination, the F-
measure, a natural choice was to also employ this heuristic for rule selection. The
F-measure is defined by

hF =

(
β2 + 1

)
· hprec · hrec

β2 · hprec + hrec
(1)

where hprec = p
p+n and hrec = p

P .
Note that in our setting, the compared rules usually have different P and N

due to the adapted training sets |Ti| = P + N . The F-measure takes this into
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consideration, e.g., by assigning a higher weight to rules which have the same
precision but apply to a higher number of instances. It is also ensured by this
computation that infrequent labels are not under-represented.

We experimented with the best parameter settings used by Janssen and Fürnkranz
[23] and also with different settings for β. Preliminary evaluations showed that
β = 1 was a reasonable choice for our purposes, also in consideration of our main
multi-label evaluation measure, so that we used this setting for all our subsequent
experiments. However, it seems worthwhile to take a closer look on the choice of
evaluation heuristics and our work can only be considered as a first step towards
understanding the usage of heuristics in the special case of multi-label classifica-
tion.

5 Related Work

In the following, we revise the most relevant literature on modeling and exploiting
label dependencies, making dependencies explicit and learning rules for multi-
label classification. Due to the vast amount of work on MLC, we refer the reader
to the excellent surveys available for a more complete overview [46, 48, 53, 19]. An
extensive comparative study of state-of-the-art approaches is provided by [33].

5.1 Label Dependencies and Stacking

Stacking label features and label predictions is an important technique in order to
exploit label dependencies, especially conditional dependencies, and was already
discussed together with the most relevant literature in Section 3 and 3.1. Further
works include probabilistic CCs [11], which uses probabilistic base classifiers in
CC for exhaustively explore the joint distribution. Read et al. [39] and Kumar
et al. [25] use Monte Carlo and beam search, respectively, in order to approximate
the joint mode. The latter work uses kernel target alignment to order the chain
according to the difficulty of the single-label problems. Sucar et al. [44] perform an
analysis of the global dependencies by using a Bayesian net in order to determine a
reasonable order of the labels. All these method have in common with the original
CC that they can only effectively exploit one direction of a dependency between
two labels. Li and Zhou [27] propose to filter the CCs of an ensemble of CCs [40] in
order to maximize F1. Unfortunately, no post-analysis is performed of the useful
pairing directions.

Stacking approaches not related to CC include the method by Cheng and
Hüllermeier [8], which uses k-NN in order to stack the number of occurrences of
labels in the neighborhood as new features. Li and Zhang [28] exclude certain
labels from the stacking if their respective base classifiers underperform on a val-
idation set. Similarly to Tsoumakas et al. [47], they then select a fixed number
m of useful labels for each respective label based on a features subset selection
approach. Subsequently, an ensemble of m classifiers are trained for each label
adding one respective stacked label feature to each of the binary datasets. In our
proposed stacking approach, noisy labels are implicitly excluded by the underlying
rule learning approach. However, explicit filtering techniques could support this
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selection process especially for small amounts of data. Madjarov et al. [31, 32] in-
troduce different methods of stacking predictions for the pairwise learners of a more
efficient two-stage variant of the calibrated label ranking approach of Fürnkranz
et al. [16]. Huang et al. [22] use a boosting approach which is modified so that the
models for each of the labels are allowed to use the decision stumps of the other
models. By measuring how often this happens, it is possible to also determine a
degree of relationship. Alessandro et al. [3] construct a Bayesian net by using a
similar approach to stacking, namely by learning a set of single-label Bayes nets
depending on all other labels and a set depending on all other labels and the fea-
tures. These nets are then concatenated so that one Bayes model for each of the
labels is obtained.

Stacking label features is a rather new direction for exploiting dependencies.
Early works on exploiting dependencies date back to 1999, when McCallum [34]
produced generative models for labelsets from mixtures of topic based word dis-
tributions. Ghamrawi and McCallum [18] used conditional random fields param-
eterized by label co-occurrences and Zhu et al. [54] proposed a label correlations
conditioned maximum entropy method. Usually, these approaches only considered
unconditional dependencies, or at least did not differentiate between them. An
exception is, e.g., Zhang and Zhang [52], who proposed to use a Bayesian net-
work where the nodes are conditioned on the instance features. In addition, they
proposed to categorize dependencies into first, second, and high-order degree ac-
cording to the number of labels involved.

Recently, Chekina et al. [7] analyzed the different types of dependencies be-
tween pairs of labels on the standard benchmark datasets. Unconditional depen-
dencies were analyzed by a simple χ2 test on the label co-occurrence matrix
whereas for detecting unconditional dependencies they compared the performance
of a classifier hi for a label yi trained on the instance features (x) to the same
learning algorithm being applied to the input space (x, yj) augmented by the label
feature of a second label yj . If the predictions differ statistically significantly, then
yi is assumed to be conditionally dependent on yj . Their evaluations show that
much more labels in common benchmark datasets are pairwise unconditionally de-
pendent than pairwise conditionally dependent, and that, surprisingly, modeling
global dependencies is more beneficial in terms of predictive performance. How-
ever, this statement is very specific to their setting. The dependency information
is basically used in order to guide a decomposition into smaller problems with less
labels which are either independent or dependent. In contrast to our methods, only
pairwise co-occurrence and pairwise exclusion can effectively be exploited by their
approach. Pairwise subset (implication) and exclusion constraints were already
discovered by the approach of Park and Fürnkranz [37] by using an association
rule miner (Apriori). These were later used in the classification process in order
to correct predicted label rankings which violated the globally found constraints.
Surprisingly, the correction did not reveal any significant impact on the ranking
performance.

Very recently, Papagiannopoulou et al. [36] proposed a method for discovering
deterministic positive entailment (implication) and exclusion relationships between
labels and sets of labels. The base relationships are extracted with an association
rule miner and represented in a deterministic Bayesian network with the help of
virtual leak nodes. The marginal probabilities produced by a base multi-label clas-
sifier are then corrected by probabilistic inference, improving ranking performance
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on a variety of datasets. More interestingly, the authors use their method to extract
and analyze relationships in the used benchmark datasets. Those relationships
are implicitly used in the inference process, in contrast to our approaches, which
produce actual classification rules. Moreover, their approach focuses on global de-
pendencies only. A further limitation is the sensitivity to the minimum support
parameter in the used association rule mining algorithm (Apriori) which leads to a
high variability in the number of discovered relationships. Nevertheless, especially
the explicit notation of sets of exclusive labels and the resolution of circular de-
pendencies (cf. Section 3.3) are advantages which reveal interesting lines of future
work for our proposed approaches.

5.2 Rule Learning for Multi-label Classification

Many rule-based approaches to multi-label learning rely on association rules. As
the goal is classification, usually classification association rules (CARs) are used,
which only have label features in the rule heads, instead of regular association
rules that would also find relations between instance features. Approaches using
CARs were already successfully used for multiclass classification. Liu et al. [29], for
instance, use classical association rule mining in order to obtain a candidate set of
CARs for their classification system based on associations (CBA). The candidates,
which are ordered according to their confidence, are then iteratively processed and
included in the final ruleset if they cover at least one of the remaining uncovered
training instances. Their system outperformed C4.5 decision trees and C4.5 gen-
erated decision rules.

Ávila et al. [5] adapted the idea to multi-label learning. The authors use a
genetic algorithm to induce single-label association rules. A multi-label prediction
is then built by using a combination of all covering rules of the BR rulesets. A
good distribution of the labels is also ensured by using a token-based re-calculation
of the fitness value of each rule. The approach of Li et al. [26] learn single-label
association rules as well. For prediction, exactly those labels are set that have a
probability greater than 0.5 in the covering rules.

A different idea is to introduce multi-label instead of single-label head rules.
Those are able to directly classify a multi-label instance without the need to
combine single-label rules [4]. However, the classification is then done by using
a weighted voting scheme as many multi-label rules may cover the example. An-
other associate multi-label rule learner with several possible labels in the head of
the rules was developed by Thabtah et al. [45]. The approach transforms all fre-
quent itemsets passing a certain minimum confidence threshold into single-label
head rules. Rules with the same body are merged into multi-label head rules.
The ruleset is extended in subsequent iterations by repeating the procedure on
uncovered examples. Ženko and Džeroski [50] present an approach for inducing
predictive clustering rules (PCR) for multi-target problems. Note that multi-label
classification can be considered as a special case of multi-target classification with
only binary targets. Their approach is based on the separate-and-conquer princi-
ple, but uses evaluation heuristics better known from clustering. More specifically,
a rule is evaluated according to the dispersion among the covered examples (the
cluster), which is the averaged deviance of their target attribute values from the
cluster prototype, i.e., from the multinomial attribute distribution vector. The
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heads of the rules are the associated cluster prototypes. Hence, applied on multi-
label data this approach would obtain (label-independent) multi-label head rules.
The approach was also extended to multi-target regression by generating ensem-
bles of multi-target head rules from learned predictive clustering regression trees
[2, 1].

The reviewed approaches induce classification rules from the whole training set
during the training phase. The multi-label lazy associative approach of Veloso et al.
[49] in contrast generates CARs from the neighborhood of a test instance during
prediction. The advantage is that fewer training instances are used to compute the
coverage statistics which is beneficial when small disjuncts are a problem as they
are often predicted wrongly due to whole training set statistics. Similarly to our
multi-label iterative separate-and-conquer approach, they propose a variant which
uses the prediction of a first classification iteration in order to enhance the second
iteration. The corresponding predicted label is used in order to filter a different
set of nearest neighbors.

The multi-label iterative separate-and-conquer approach adopt certain con-
cepts from self-training [6, 41, 14]. Here, we have a pool of labeled and unlabeled
data. A classifier is then learned on the labeled data and used to classify a num-
ber of instances of the unlabeled pool. After that, these instances are added to
the labeled data pool and the procedure is repeated. The unset feature labels in
our iterative approach can be seen as the unlabeled pool. As each learned rule is
used immediately after it was learned in order to label the covered instances and
these are re-included into the training set, the next training iteration relies on the
classification of the previous one just as in self-training.

6 Evaluation

In the evaluation, the main focus lies on the inspection and the analysis of the
induced rule models. Statistics about the revealed dependencies are discussed and
exemplary rule models are shown. The two proposed approaches are also com-
pared against each other and to a multi-target rule learner in terms of predictive
performance assessed by several multi-label measures.

6.1 Setup

An overview of the used datasets2 is given in Table 4. They are from different
domains and have varying properties. Details of the data are given in the analysis
when needed.

As a rule learner, we used the JRip implementation of Ripper [9] from Weka
[51] with default parameters except for the following settings. Depending on the
experiment, we turn pruning on or off and execute zero or two optimization phases.
Ripper usually produces rules only for the minority class(es). In order to obtain
positive and negative heads for the decomposition approaches, we basically applied
the iterative multi-label SeCo approach on the resulting binary subproblems. We

2 We refer to the MULAN repository for details and sources: http://mulan.sf.net/datasets.
html.

http://mulan.sf.net/datasets.html
http://mulan.sf.net/datasets.html
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Table 4 Statistics of the used datasets: name of the dataset, domain of the input instances,
number of instances, number of nominal/binary and numeric features, total number of unique
labels, average number of labels per instance (cardinality), average percentage of relevant labels
(label density), number of distinct labelsets in the data.

name domain instances nominal numeric labels cardinality density distinct
emotions music 593 0 72 6 1.869 0.311 27
scene image 2407 0 294 6 1.074 0.179 15
yeast biology 2417 0 103 14 4.237 0.303 198
genbase biology 662 1186 0 27 1.252 0.046 32
medical text 978 1449 0 45 1.245 0.028 94
enron text 1702 1001 0 53 3.378 0.064 753
mediamill video 43907 0 120 101 4.376 0.043 6555
corel16k (set 1) images 13766 500 0 153 2.859 0.019 4803
bibtex text 7395 1836 0 159 2.402 0.015 2856
CAL500 music 502 0 68 174 26.0 0.150 502
corel5k images 5000 499 0 374 3.522 0.009 3175

differentiate both variants with the symbols + and ±. As a basis for our framework,
we used the SeCo-framework for rule learning [24].

Further details on the employed algorithms, combinations of algorithms and
notations used are given in the following:

– We refer to the binary relevance decomposition as BR. It is either used with
the normal Ripper variant (BR+) or with the two-targets one (BR±). Except
for the model analysis experiments, pruning and optimization was turned on.

– The stacked variant of binary relevance (SBR) was either parameterized in or-
der to induce positive head rules (SBR+) or positive and negative ones (SBR±).
The same parameters were used for the underlying BR classifiers. For certain
analyses, we also employed a variant which only used label features y as in-
puts, referred to as SBRy, instead of training on x and y (SBRxy or without
subscripts). If not indicated otherwise, the latter variant is used. SBR? and
SBRd refer to whether predicting the default label is interpreted as abstention
or as negative prediction, respectively. The number of bootstrapping iterations
was set to m = 10.

– SBRGibbs denominates the approach without additional BR classifiers but with
sampling random initializations. We set the number of samples to 1000 and the
number of burn-in iterations to 100, as proposed by Guo and Gu [21]. However,
in our experiments the predictions always converged in less than 10 burn-in
iterations.

– Multi-label iterative separate-and-conquer is indicated with SeCo. Positive
head rules are learned by SeCo+, whereas SeCo± learns both types. Secoopt
indicated the usage of two optimization phases. Based on preliminary evalua-
tions on emotions, we set θ = 0.01, τ = 0.1 and the option of readding fully
covered examples for all datasets without further adaptations. SeCo did not
finish on time on the datasets with more than 5000 instance features due to the
sensitiveness of the used Ripper implementation regarding the dimensionality
of input features. Note that Ripper is executed each time a rule candidate is
generated. Therefore, we do not report results for these four datasets for SeCo.

– For comparison, we included results from the predictive clustering rules algo-
rithm (PCR), which learns dense multi-label head rules (cf. Section 5.2). We
used the standard covering approach producing ordered rulesets and the mul-
tiplicative version of the dispersion heuristic, which consistently gave the best
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results, is computed on the instance features only.3 Parameters not mentioned
were set to the default values.

6.2 Evaluation Measures

We use a wide range of different multi-label bipartition measures in order to eval-
uate our results, which we will introduce in the following. Note that the used
algorithm do not produce any label rankings.

For the evaluation with micro-averaged recall, precision and F1, we computed
a two-class confusion matrix for each label (yi = 1 vs. yi = 0) and eventually
aggregated the results by (component-wise) summing up all n matrices into one
global confusion matrix (cf. [48]). Recall and precision is computed based on this
global matrix in the usual way, F1 denotes the unweighted harmonic mean between
precision and recall (cf. Eq. 1). More formally, for predictions ŷi = (ŷi,1, . . . , ŷi,n)
and true label vectors yi = (yi,1, . . . , yi,n), i = 1 . . .m, micro recall and precision
are given by

Mi. Recall :

∑
i|yi ∩ ŷi|∑

i|yi|
Mi. Precision :

∑
i|yi ∩ ŷi|∑

i|ŷi|

where |yi ∩ ŷi| =
∑

j [[yi,j = ŷi,j = 1]], |yi| =
∑

j [[yi,j = 1]], j = 1 . . . n going over
the labels and [[z]] returns 1 if z is true, otherwise 0.

For the macro-averaged measures, recall and precision are computed on the
label-wise confusion matrices and these values are then averaged. More formally,
we compute the metrics by

Ma. Recall :
1

n

∑
j

∑
i [[yi,j = ŷi,j = 1]]∑

i [[yi,j = 1]]
Ma. Precision :

1

n

∑
j

∑
i [[yi,j = ŷi,j = 1]]∑

i [[ŷi,j = 1]]

Macro F1 uses the recall and precision values for each label (the fractions in the
equation before) to compute the harmonic means. These values are then averaged
over the labels.

In addition, we report the Hamming accuracy, which is essentially the average
accuracy of each label prediction, and subset accuracy, which is the rate of perfectly
classified instances:

Hamming Acc. :
1

m · d
∑
i

∑
j

[[yi,j = ŷi,j ]] Subset Acc. :
1

m

∑
i

[[yi = ŷi]]

The measures were averaged over the ten-fold cross validation results, which
we used for all the performance experiments.

For common multi-label problems, it is usually more interesting and important
to correctly classify relevant labels than irrelevant ones. This aspect is especially
reflected by the recall, precision and F1 measures, which completely ignore true
negatives. Table 2 may serve for further illustration. A classifier concerned with
maximizing F1 would especially try to match the 1’s in the label matrix on the
right. Roughly speaking, micro- and macro-averaging differ in that matching a 1 (a
relevant label) in a column (label) with only few 1’s becomes more important than

3 We use the implementation of CLUS, available at https://dtai.cs.kuleuven.be/clus/.

https://dtai.cs.kuleuven.be/clus/
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Table 5 Statistics of the non-stacked and stacked BR models with pruned or unpruned and
positive and positive or negative heads versions. From left to right, for the BR model: (1) avg.
# rules per label, (2) avg. # conditions per rule, (3) avg. # conditions per label. For the
stacked model: (4) avg. # rules per label, (5) avg. # conditions per rule, (6) avg. # conditions
per label, (7) percentage of conditions with label feature tests, perc. of rules depending (8) only
on label features, (9) partially, (10) only on instance features, perc. of label rulesets depending
(11) only on label features, (12) partially, (13) only on instance features.

dataset / BR: rules & cond. SBR: rules & cond. cond. rule stats label rulesets stats
approach (1) (2) (3) (4) (5) (6) (7) (8) (9) (10) (11) (12) (13)
emotions
pruned/+ 4.00 2.92 11.67 3.00 2.89 8.67 36.54% 5.56% 61.11% 33.33% 16.67% 83.33% 0.00%
unpruned/+ 12.00 4.11 49.33 12.33 4.30 53.00 16.98% 0.00% 48.65% 51.35% 0.00% 100.00% 0.00%
pruned/± 3.83 1.61 6.17 2.67 1.69 4.50 51.85% 37.50% 25.00% 37.50% 0.00% 100.00% 0.00%
unpruned/± 14.83 3.51 52.00 14.17 3.21 45.50 10.99% 0.00% 31.76% 68.24% 0.00% 100.00% 0.00%
scene
pruned/+ 7.33 4.39 32.17 5.00 4.83 24.17 17.93% 0.00% 46.67% 53.33% 0.00% 100.00% 0.00%
unpruned/+ 14.83 5.42 80.33 12.00 5.10 61.17 10.35% 0.00% 29.17% 70.83% 0.00% 100.00% 0.00%
pruned/± 8.00 2.27 18.17 7.67 2.59 19.83 22.69% 13.04% 28.26% 58.70% 0.00% 100.00% 0.00%
unpruned/± 21.33 4.04 86.17 13.83 3.72 51.50 12.94% 2.41% 26.51% 71.08% 0.00% 100.00% 0.00%
yeast
pruned/+ 3.29 4.00 13.14 4.14 2.71 11.21 55.41% 43.10% 50.00% 6.90% 14.29% 85.71% 0.00%
unpruned/+ 6.86 6.22 42.64 11.00 3.95 43.50 29.89% 14.29% 72.08% 13.64% 0.00% 100.00% 0.00%
pruned/± 5.21 1.95 10.14 3.71 1.54 5.71 75.00% 75.00% 3.85% 21.15% 57.14% 42.86% 0.00%
unpruned/± 43.86 4.96 217.57 11.29 3.43 38.71 22.69% 16.46% 33.54% 50.00% 7.14% 92.86% 0.00%
genbase
pruned/+ 0.93 1.08 1.00 0.93 1.04 0.96 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00%
unpruned/+ 1.04 1.29 1.33 1.04 1.29 1.33 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00%
pruned/± 1.04 1.07 1.11 1.04 1.07 1.11 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00%
unpruned/± 1.19 1.16 1.37 1.15 1.16 1.33 2.78% 3.23% 0.00% 96.77% 0.00% 3.70% 96.30%
medical
pruned/+ 1.07 1.73 1.84 1.07 1.88 2.00 17.78% 0.00% 27.08% 72.92% 0.00% 20.00% 80.00%
unpruned/+ 2.84 3.51 9.98 2.29 3.22 7.38 15.36% 0.00% 38.83% 61.17% 0.00% 28.89% 71.11%
pruned/± 1.16 1.40 1.62 1.24 1.34 1.67 17.33% 12.50% 7.14% 80.36% 0.00% 20.00% 80.00%
unpruned/± 2.82 2.67 7.53 2.38 2.19 5.20 11.11% 6.54% 14.95% 78.50% 0.00% 31.11% 68.89%
enron
pruned/+ 1.45 3.68 5.34 1.83 3.49 6.40 37.46% 15.46% 58.76% 25.77% 3.77% 54.72% 41.51%
unpruned/+ 5.77 5.21 30.06 7.32 4.77 34.91 26.32% 1.80% 77.32% 20.88% 0.00% 88.68% 11.32%
pruned/± 1.66 1.81 3.00 2.06 1.81 3.72 47.21% 34.86% 11.93% 53.21% 18.87% 37.74% 43.40%
unpruned/± 19.49 4.20 81.87 13.64 3.80 51.87 19.46% 4.15% 48.55% 47.30% 1.89% 90.57% 7.55%
CAL500
pruned/+ 0.44 2.32 1.01 1.34 1.98 2.65 63.34% 49.36% 43.78% 6.87% 31.03% 46.55% 22.41%
unpruned/+ 5.92 3.99 23.63 7.16 3.59 25.67 31.27% 2.89% 73.92% 23.19% 1.15% 97.70% 1.15%
pruned/± 0.99 1.35 1.34 1.87 1.23 2.30 68.75% 68.31% 7.69% 24.00% 48.28% 33.91% 17.82%
unpruned/± 11.34 3.14 35.64 8.68 2.88 25.02 26.60% 6.89% 46.29% 46.82% 2.87% 95.98% 1.15%
mediamill
pruned/+ 18.91 6.44 121.71 14.69 5.76 84.57 31.43% 5.53% 84.37% 10.11% 6.93% 93.07% 0.00%
unpruned/+ 37.05 6.83 252.95 29.49 6.83 201.33 29.02% 2.12% 91.27% 6.62% 3.96% 96.04% 0.00%
pruned/± 7.12 3.17 22.58 4.02 2.31 9.29 46.38% 44.83% 29.31% 25.86% 46.53% 51.49% 1.98%
unpruned/± 47.32 5.78 273.51 44.83 6.76 303.08 14.52% 3.60% 49.09% 47.31% 20.79% 78.22% 0.99%
corel16k
pruned/+ 2.44 2.14 5.22 4.33 2.82 12.22 64.37% 25.79% 72.10% 2.11% 11.76% 81.70% 6.54%
unpruned/+ 6.80 3.27 22.24 10.43 4.54 47.35 52.20% 3.82% 94.42% 1.75% 0.65% 97.39% 1.96%
pruned/± 1.13 8.50 9.61 1.58 2.00 3.17 88.87% 88.84% 10.33% 0.83% 73.20% 12.42% 14.38%
unpruned/± 34.34 5.43 186.47 32.73 7.10 232.22 44.28% 10.35% 80.65% 9.01% 7.19% 92.81% 0.00%
bibtex
pruned/+ 4.87 3.07 14.98 5.12 2.89 14.77 18.31% 5.65% 36.73% 57.62% 1.89% 81.76% 16.35%
unpruned/+ 16.40 3.98 65.30 16.64 3.83 63.66 11.61% 0.64% 36.03% 63.33% 0.00% 96.86% 3.14%
pruned/± 1.67 1.89 3.16 1.65 1.77 2.92 23.23% 14.45% 21.67% 63.88% 10.06% 34.59% 55.35%
unpruned/± 13.47 4.84 65.23 10.31 4.95 50.97 14.92% 1.59% 48.57% 49.85% 0.00% 91.19% 8.81%
corel5k
pruned/+ 1.15 2.09 2.41 1.83 2.34 4.27 64.33% 33.67% 60.32% 6.00% 12.03% 50.80% 37.17%
unpruned/+ 2.70 3.01 8.12 4.00 3.52 14.08 49.97% 8.09% 87.76% 4.15% 2.67% 72.19% 25.13%
pruned/± 2.70 3.01 8.12 0.99 1.77 1.76 83.92% 81.18% 14.78% 4.03% 53.21% 14.17% 32.62%
unpruned/± 9.39 7.26 68.17 7.33 5.01 36.74 46.94% 16.05% 71.26% 12.69% 20.05% 74.06% 5.88%

matching 1’s in more dense columns for macro-averaging, whereas micro-averaging
does not discriminate between the positive assignments.

We believe that our approaches do not make a special treatment to more or less
frequent labels. Therefore, we consider that the micro measures are more suited
in order to evaluate and compare our proposed methods to each other. Hence, our
analysis mainly focuses on this family of measures.
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6.3 Model and Data Analysis

The first block of columns (1-3) in Table 5 shows the statistics of the underlying
BR decision lists, whereas the following blocks provide statistics for the stacked
models on top. In contrast, Table 6 combines both models by grouping rules with
the same label in the head. This table also includes the statistics for the models
obtained by the multi-label iterative separate-and-conquer algorithm as well as the
stacked model only depending on label features (SBRy). For the model analyses,
we obtained the rule models on the whole training sets, respectively.

6.3.1 Label Conditions

Column (7) shows the percentage of conditions on labels w.r.t. to all conditions in
the model. We see that there is a great divergence between the datasets. E.g., the
models for genbase do not use label features at all (except for the unpruned ±
variant), i.e., their rules’ bodies are completely label-independent. This is a strong
indicator for only very weak dependencies in this dataset. This is remarkable, since
this breaks the main assumption of MLC, and yet this dataset may have often been
used in the literature to show the ability of a certain algorithm to exploit label
dependencies. In the case of only weak dependencies though, learning each la-
bel independently is already sufficient and exploiting (possibly non-existing) label
dependencies clearly will not yield much better performance. At least, our rule
learners were not able to make any use of the additional 26 features in order to
improve their performance. A view into columns (1)-(6), the prediction quality
(Table 8) and eventually into the models, reveals that the presence of one single
short amino acid chain (instance feature) is often enough to correctly predict a
particular functional family (label). If we forced the rule learner to use only the
label features (SBR+

y in Table 6), we could observe that a high number of label
features is needed in average in order to reconstruct a target label. As it can be
seen in the next section, this is reflected in a difference in the predictive per-
formance, although the margin is interestingly not very pronounced. Apparently,
the learner compensates missing low-level dependencies by a higher complexity of
the model and hence high-level relations. The same observation can be made for
medical. SBR+

y can only compensate the missing information by exploiting long
combinations among the 45 labels.

For the multi-label iterative separate-and-conquer models, we observed that
considerably less rules depend on labels than for the stacking approaches. The most
obvious explanation for this behavior is the iterative and recursive methodology of
the SeCo mechanism itself. Label features become available for subsequent rules
only after they were predicted before by one of the rules. In fact, the amount of
label-dependent rules and conditions is bounded by the number of rules of the
model itself. As column (4) reveals, the number is usually small. In contrast, SBR
disposes of the full label feature vector from the beginning. This is especially severe
for small and difficult to learn labels and for the SeCo+ variant. Due to the used
rule learning heuristic, rules covering small labels or rules covering only a smaller
subset of instances of labels that are hard to discriminate are more likely to be
selected lately in the process. However, especially small labels are potentially very
useful in order to predict other labels, since they tend to be more often enclosed
by them.
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Table 6 Combined statistics of the full models. Statistics for SBR include the statistics of
the BR models used for initialization. (4)-(11) as in Table 5.

dataset approach rules & cond. cond. rule stats label rulesets stats
(4) (5) (6) (7) (8) (9) (10) (11) (12) (13)

emotions SBR+
xy 7.00 2.90 20.33 15.57% 2.38% 26.19% 71.43% 0.00% 100.00% 0.00%

SBR±xy 6.50 1.64 10.67 21.88% 15.38% 10.26% 74.36% 0.00% 100.00% 0.00%

SBR+
y 5.33 2.88 15.33 23.91% 25.00% 0.00% 75.00% 0.00% 100.00% 0.00%

SeCo+ 3.67 2.36 8.67 1.92% 4.55% 0.00% 95.45% 0.00% 16.67% 83.33%

SeCo+opt 3.83 1.70 6.50 7.69% 8.70% 4.35% 86.96% 0.00% 50.00% 50.00%

SeCo± 4.00 1.71 6.83 7.32% 8.33% 4.17% 87.50% 0.00% 50.00% 50.00%

SeCo±opt 3.17 1.37 4.33 7.69% 0.00% 10.53% 89.47% 0.00% 33.33% 66.67%

scene SBR+
xy 12.33 4.57 56.33 7.69% 0.00% 18.92% 81.08% 0.00% 100.00% 0.00%

SBR±xy 15.67 2.43 38.00 11.84% 6.38% 13.83% 79.79% 0.00% 100.00% 0.00%

SBR+
y 8.33 4.46 37.17 13.45% 12.00% 0.00% 88.00% 0.00% 100.00% 0.00%

SeCo+ 7.83 3.04 23.83 1.40% 4.26% 0.00% 95.74% 0.00% 16.67% 83.33%

SeCo+opt 7.00 2.74 19.17 1.74% 2.38% 2.38% 95.24% 0.00% 33.33% 66.67%

SeCo± 8.50 2.22 18.83 1.77% 1.96% 1.96% 96.08% 0.00% 33.33% 66.67%

SeCo±opt 7.00 1.93 13.50 3.70% 4.76% 2.38% 92.86% 0.00% 33.33% 66.67%

yeast SBR+
xy 7.43 3.28 24.36 25.51% 24.04% 27.88% 48.08% 0.00% 100.00% 0.00%

SBR±xy 8.93 1.78 15.86 27.03% 31.20% 1.60% 67.20% 7.14% 92.86% 0.00%

SBR+
y 6.43 3.37 21.64 39.27% 48.89% 0.00% 51.11% 7.14% 85.71% 7.14%

SeCo+ 2.86 2.75 7.86 6.36% 7.50% 10.00% 82.50% 0.00% 42.86% 57.14%

SeCo+opt 3.36 2.43 8.14 7.89% 2.13% 17.02% 80.85% 0.00% 42.86% 57.14%

SeCo± 4.71 2.09 9.86 1.45% 0.00% 3.03% 96.97% 0.00% 14.29% 85.71%

SeCo±opt 2.86 1.75 5.00 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00%

genbase SBR+
xy 1.85 1.06 1.96 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00%

SBR±xy 2.07 1.07 2.22 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00%

SBR+
y 1.78 2.81 5.00 80.00% 47.92% 0.00% 52.08% 0.00% 62.96% 37.04%

SeCo+ 0.67 1.00 0.67 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00%

SeCo+opt 0.67 1.00 0.67 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00%

SeCo± 0.85 1.09 0.93 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00%

SeCo±opt 0.96 1.12 1.07 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00%

medical SBR+
xy 2.13 1.80 3.84 9.25% 0.00% 13.54% 86.46% 0.00% 20.00% 80.00%

SBR±xy 2.40 1.37 3.29 8.78% 6.48% 3.70% 89.81% 0.00% 20.00% 80.00%

SBR+
y 1.38 5.27 7.27 74.62% 22.58% 0.00% 77.42% 0.00% 22.22% 77.78%

SeCo+ 1.44 1.71 2.47 4.50% 3.08% 4.62% 92.31% 0.00% 11.11% 88.89%

SeCo+opt 1.27 1.63 2.07 3.23% 1.75% 3.51% 94.74% 2.22% 4.44% 93.33%

SeCo± 1.04 1.77 1.84 3.61% 2.13% 4.26% 93.62% 2.22% 4.44% 93.33%

SeCo±opt 1.00 1.44 1.44 3.08% 0.00% 4.44% 95.56% 0.00% 4.44% 95.56%

enron SBR+
xy 3.28 3.57 11.74 20.42% 8.62% 32.76% 58.62% 1.89% 56.60% 41.51%

SBR±xy 3.72 1.81 6.72 26.12% 19.29% 6.60% 74.11% 3.77% 52.83% 43.40%

SBR+
y 2.34 3.89 9.09 41.29% 37.90% 0.00% 62.10% 11.32% 39.62% 49.06%

SeCo+ 6.42 3.24 20.75 4.18% 0.59% 12.65% 86.76% 0.00% 41.51% 58.49%

SeCo+opt 6.62 2.98 19.72 4.78% 1.71% 12.25% 86.04% 0.00% 52.83% 47.17%

SeCo± 1.83 2.20 4.02 2.35% 0.00% 5.15% 94.85% 0.00% 7.55% 92.45%

SeCo±opt 0.91 1.63 1.47 1.28% 0.00% 2.08% 97.92% 0.00% 1.89% 98.11%

CAL500 SBR+
xy 1.78 2.06 3.66 45.84% 37.22% 33.01% 29.77% 19.54% 58.05% 22.41%

SBR±xy 2.86 1.27 3.64 43.44% 44.58% 5.02% 50.40% 20.11% 62.07% 17.82%

SBR+
y 2.59 2.45 6.36 81.93% 80.49% 2.22% 17.29% 54.02% 35.06% 10.92%

SeCo+ 4.49 2.98 13.38 9.06% 4.48% 21.64% 73.88% 0.57% 48.85% 50.57%

SeCo+opt 4.98 2.90 14.44 11.06% 6.00% 25.29% 68.71% 0.57% 56.90% 42.53%

SeCo± 0.19 1.30 0.25 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00%

SeCo±opt 0.07 1.15 0.09 0.00% 0.00% 0.00% 100.00% 0.00% 0.00% 100.00%

mediamill SBR+
xy 33.60 6.14 206.29 12.89% 2.42% 36.89% 60.70% 0.00% 100.00% 0.00%

SBR±xy 11.14 2.86 31.87 13.51% 16.18% 10.58% 73.24% 0.00% 98.02% 1.98%

SBR+
y 22.66 6.16 139.55 12.78% 16.56% 0.00% 83.44% 0.99% 88.12% 10.89%

corel16k SBR+
xy 6.77 2.57 17.43 45.11% 16.51% 46.14% 37.36% 4.58% 88.89% 6.54%

SBR±xy 2.71 4.71 12.78 22.05% 51.81% 6.02% 42.17% 21.57% 64.05% 14.38%

SBR+
y 4.25 3.13 13.31 58.94% 39.69% 2.62% 57.69% 17.65% 58.82% 23.53%

bibtex SBR+
xy 9.99 2.98 29.75 9.09% 2.89% 18.82% 78.29% 0.00% 83.65% 16.35%

SBR±xy 3.33 1.83 6.09 11.16% 7.18% 10.78% 82.04% 1.26% 43.40% 55.35%

SBR+
y 6.65 3.25 21.64 30.35% 26.28% 0.47% 73.25% 1.89% 75.47% 22.64%

corel5k SBR+
xy 2.98 2.24 6.68 41.14% 20.65% 36.98% 42.37% 5.08% 57.75% 37.17%

SBR±xy 1.61 2.59 4.17 35.43% 50.17% 9.14% 40.70% 23.26% 44.12% 32.62%

SBR+
y 2.12 2.49 5.28 52.15% 42.80% 2.53% 54.67% 13.90% 30.48% 55.61%
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approach emotions scene yeast genbase medical enron CAL500 mediamill corel16K bibtex corel5k

SBR+
xy 42 73 104 49 95 173 309 3393 1035 1588 1114

SBR±xy 39 94 125 55 108 197 497 1125 414 529 602

SBR+
y 31 49 90 48 62 124 450 2288 650 1057 792

PCR 197 784 724 48 304 553 167 1000 1000 1000 1000

Table 7 Total number of rules of the SBR and the PCR approaches. Note that the maximum
number of rules of PCR is 1000.

To illustrate this effect, imagine a hierarchical structure on the labels. A typi-
cal rule encountered which is certainly true would be parent←child for some pair
of parent and child label. In fact, it would not be surprising if it was possible to
define a parent label only by rules depending on the children labels, from which
the stacked approach would particularly benefit. In the other direction, it is not
possible to predict the child label only based on the presence of the parent label,
i.e., without additional information. Moreover, whereas the stacking approach may
reflect a strong pairwise relation between two labels twice, i.e., in both label mod-
els, SeCo is tailored towards only finding one direction of the relation, preferably
the one where the ”easier“ label is in the body. It may even appear that none
of such induction chains appear due to the particular order and covering of the
found rules although other approaches find relationships, as for SeCo±opt on yeast.
In such cases, the algorithm may still find a good solution.

For (7) it is also remarkable that pruning substantially increases the percent-
age of used label features (especially for the mixed head variants). Pruning tries
to remove conditions and rules which work good on a training set, but do not
generalize well on a separate validation set. Hence, this increase indicates that
label features are more useful for obtaining models that generalize better than
the original instance features. For the iterative separate-and-conquer approach,
post-optimization seems to help in order to reduce the size of the models, but
unfortunately the effect on the label conditions is not clear in contrast to usual
pruning.

6.3.2 Model Sizes

For the smaller datasets pruning on the positive head models decreases the number
of used conditions for SBR+ substantially so that in the end the models use less
conditions than BR+ for expressing the same concepts. This comes hand in hand
with a decrease in the size of the positive head models directly comparing BR and
stacked BR, as can be seen from the average size of the label rulesets (columns
(3) and (6)). For a higher number of labels the input feature space also increases.
Therefore, it becomes more likely that a higher number of features is used in order
to express a rule. For example, stacking increases the input space from 68 to 241
dimensions for CAL500.

Interestingly, for the mixed head models, SBR± produces more complex mod-
els than BR± even on the smallest dataset (pruned, as for the remainder of the
analysis). Still, the ± models are consistently more compact than the one-sided +
models (columns (3) and (6), except for BR on CAL500). This is somehow con-
tradictory to the intuition in rule learning that it should be much easier to cover
the smaller class since it contains less examples. However, as we will see further
on, BR± and SBR± are also almost always worse w.r.t. prediction quality than
their counterparts producing positive heads.
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This is not true for the SeCo approaches, for which using positive and negative
rules reduces the size of the models but usually also outperforms the positive
rules (except for the special case of CAL500). The iterative separate-and-conquer
approach also results in clearly smaller model sizes for the mixed heads variant
compared to the combined statistics of SBR. For the positive head variants, this
is only observable for the smaller datasets.

In Table 7 we include a comparison to the number of rules induced by the
predictive clustering rules approach. Unfortunately, PCR in the default settings
stops at the 1000th rule. However, we can still observe that the stacking approaches
(including the rules from the BR models) induce a lower number of rules with the
only clear exception of CAL500. As we will see further below, PCR does not benefit
from the increased number of rules regarding the classification performance.

Approach yeast medical enron

BR+ Class4 ← x23 > 0.08, x49 < -0.09 Cough ← “cough”, “lobe” Joke ← “mail”, “fw”,
Class4 ← x68 < 0.05, x33 > 0.00, x24 > 0.00, Cough ← “cough”, “atelectasis” ”didn”

x66 > 0.00, x88 > -0.06 Cough ← “cough”, opacity
Class4 ← x3 < -0.03, x71 > 0.03, x91 > -0.01 Cough ← “cough”, airways

Class4 ← x68 < 0.03, x83 > -0.00, Cough ← “cough” , “pneumonia”, “2”
x44> 0.029, x93 < 0.01 Cough ← “coughing”

Class4 ← x96 < -0.03, x10 > 0.01, x78< -0.07 Cough ← “cough”, “early”

SBR+ Class4 ← Class3, Class2 Cough ← “cough” , Pneumonia , Joke ← Personal,

Class4 ← Class5, Class6 Pulmonary collapse , Asthma “day”, “mail”
Class4 ← Class3, Class1, x22 > -0.02 Cough ← “coughing”

Cough ← Asthma, “mild”

SeCo+opt Class4 ← Class3, x91 > -0.02, x50 < -0.02, Cough ← “cough”, “lobe”, “asthma” Joke ← “didn”,

x68 < 0.03 Cough ← “cough”, “opacity” “wednesday”
Class4 ← Class3, x90 > -0.02, x77 < -0.04 Cough ← “cough”, “atelectasis” Joke ← Personal,
Class4 ← x60 < -0.03, x57 < -0.07, Cough ← “cough”, “airways” “forwarded”

x19 > -0.01 Cough ← “cough”, Fever

Fig. 8 Example rulesets for one exemplary label, respectively, learned by BR, SBR and SeCo.
Attribute names in italic denote label attributes, attributes with an overline denote negated
conditions.

6.3.3 Dependencies

Whereas (7) may serve as an indicator of general dependency between labels,
columns (8-10) and especially (11-13) in Table 5 allow to further differentiate. For
instance, the percentage of fully label-dependent rulesets in the model of SBR+ for
yeast shows that 14.29% of the labels can be induced only based on other labels
regardless of any instance feature. This is a strong indicator for a high degree of
unconditional label dependencies in the dataset. If we additionally consider the
absence of labels (±), we obtain in the stacked model a rate of 57.14% of labels
which are unconditionally dependent on other labels. For one of the labels the
learned label-dependent rule is even the only rule which can actually produce a
prediction except for the default rule (see column (11) in Table 6)4 From the
number of partial rulesets we can estimate a bound on the number of conditional
dependencies in the data. However, note that (11) as well as (13) substantially
suffers from a kind of feature flooding noise: The probability of selecting an instance
or label feature in the refinement step of a rule instead of an equally good feature

4 The rule improves the precision for that label from 74% to 99% at a recall of 100% on the
training data.
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or label feature, respectively, increases with growing number of total instance and
label features. This can also be seen to a certain degree for SBR± on the emotions

dataset, where the high number of full label-dependent rules does not lead to any
pure label-dependent ruleset.

The datasets with the highest observed degree of label dependency are yeast

for the small ones and CAL500, corel5k and corel16k for the larger ones. For
CAL500, this may be explained by the categorizations of songs into emotions,
which often come hand in hand or completely contradict, like Angry-Agressive

against Carefree-Lighthearted.
This can also be observed from Figures 9 and 10. The figures presents graph-

ically the label-dependent rules found by SBR± on the different datasets except
genbase. Labels are enumerated from 1 to the number of labels and the corre-
sponding label names are visible on the bottom of the coordinate system for the
smaller datasets. Blue boxes in the intersection square between a row label and a
column label depict fully label-dependent rules, green boxes show partially label-
dependent rules. A colored box at the top corners indicates a rule of the type
row label← . . . ,column label , . . ., whereas the bottom corners represent the opposite
column label← . . . ,row label , . . . rules. The intensity of the color depends on the
number of found rules normalized by the maximum number of rules found for any
pairwise label combination. Only blue boxes in an intersection square indicate that
only fully label-dependent rules were found between the respective two labels.

As an example, the blue box in the upper left corner of the square in the
second row and fourth column in Figure 9a indicates that the algorithm found a
rule of the type happy-pleased←, . . .quiet-still , . . .. However, it is not possible to find
out from the picture whether the head or conditions are positive or negative. The
emotions dataset is concerned with assigning moods to audio samples.

We can observe for scene that dependencies often also depend on some instance
features. This is reasonable, since the task in this dataset is to predict elements of
a scenery image, and although some label combinations may be more likely than
others, whether an element is present or not will still most certainly depend on the
content of the picture at hand. In yeast the labels seem to be organized in a special
way since we encounter the pattern that a label depends on its preceding and the
two succeeding labels. enron has a hierarchical structure on its labels, which can
be recognized from the vertical and horizontal patterns originating from parent
labels. The different clusters in CAL500 are due to the dataset containing labels of
different, orthogonal categories, e.g., emotions as well as genre labels. The stripes
results from sets of tightly coupled labels which in addition appear in succession
in the original ordering in the data. For instance, the long diagonal of around
10 squares on the bottom or right, respectively, originates from the connection
between the genres rock – best rock, r’n’b – best r’n’b, pop – best pop, etc.

The datasets in Figure 10 are more difficult to inspect due to the high num-
ber of labels, however, we can also observe some regularities. Datasets corel16k

and corel5k from image segment recognition are concerned with the tagging of
images. Long orthogonal stripes correspond to labels such as water (long stripe
on the right/bottom of Figure 10b), street or people. Tagging videos in mediamill

apparently involves many frequent and co-occurring labels. Unfortunately the la-
bels do not have any meaningful names. Figure 10c reveals relations between tags
such as semantic and web or knowledge and management in the social bookmarking
system of BibSonomy.
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Fig. 9 Graphical representation of the found label-dependent rules for SBR± on all datasets
except genbase, first part.
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Fig. 10 Graphical representation of the found label-dependent rules for SBR± on all datasets
except genbase, second part.

6.3.4 Exemplary Rule Models

Examples of learned rulesets for yeast are given in Figure 8. In this particular
case, we see a much more compact and less complex ruleset for Class4 for the
stacked model than for the independently learned BR classifier. The ruleset also
seems more appropriate for a domain expert to understand coherences between
proteins (instance features) and protein functions (labels). The SeCo model is less
explicit in this sense, but it shows that certainly Class3 is an important class for
expressing Class4.5 Remind that SeCo+ with positive heads is not able to express
dependencies on absent labels since this information is never added to the training
set.

Figure 8 also shows the models for the diagnosis Cough in the medical task.
This dataset is concerned with the assignment of international diseases codes (ICD)

5 For convenience, we only show the rules with this label in the head.
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to real, free text radiological reports.6 Interestingly, the stacked model reads very
well, and the found relationship seems to be even comprehensible by non-experts: If
the patient does not have Pneumonia, a Pulmonary collapse or Asthma and “cough”s
or is “coughing”, he just has a Cough. Otherwise, he may also have a “mild”
Asthma, in which case he is also considered to have a Cough. For SeCo, Cough

only depends on label Fever at the end. But note that from SBR’s model Cough

seems to be opposing to Pneumonia and Pulmonary collapse, a relationship which
cannot be modeled by SeCo+. SeCo± in contrast is able to find a rule Pneumonia

← Cough, “lobe”.
In enron, which is concerned with the categorization of emails during the

Enron scandal, the model is less comprehensible, as it is also for the BR model.
However, the relation between Personal and Joke can clearly be explained from
the hierarchical structure on the topics. This also shows the potential of using
rule learning, particularly with the stacking approach, in MLC for reconstructing
underlying hierarchies.

6.4 Predictive Performance

Until now, our analysis mainly focused on the inspection of the multi-label rules
as obtaining these is the main objective of this work. However, if the predictive
performance of the rulesets was far below compared to state-of-the-art methods,
the implications made based on the model analysis would also be questionable.
We will show in this section that the induced rules can indeed be used effectively
in order to produce accurate predictions.

Note that the different models shown in the previous sections can be used in
different ways in order to produce predictions. More specifically, we consider SBR
with abstaining (SBR?) and predicting the default label (SBRd) separately. The
results are shown in Tables 8 and 9 together with the performances of BR and SeCo
and in Table 10 excepting SeCo. Table 10 presents the result on the larger datasets,
on which SeCo did not finish. Since the outcomes on these datasets revealed more
extreme values, they are discussed separately in Section 6.4.1. Additional variants
such as learning only from the label features (SBRy), Gibbs sampling (SBRGibbs)
and the predictive clustering rules classifier (PCR) are shown in separate blocks
(Section 6.4.1). For the sake of clarity, we only report the results after the 10th

bootstrapping iteration in the case of SBR.7 All the different results for SBR were
obtained from only two models SBR+ and SBR±. Section 6.4.2 reveals statistically
significant differences.

Our first observation is that predicting only the presence of labels is almost
always better for BR on all measures on the smaller dataset except for some
cases, where the differences are small. This is remarkable, since the picture is not
that clear after the predictions of these classifiers are passed through the stacked
models, especially if we consider recall and precision separately. SBR+

? is the best
overall approach in terms of micro F1 on the first seven datasets, but for micro
precision, e.g., it is outperformed by its ± counterpart on four of the datasets of

6 We generated a special version of this dataset directly from the sources [38] for this figure,
since the label names in the publicly available dataset are incorrect.

7 We found that increasing number of iterations consistently decrease recall, but increases
precision and F1. However, the average absolute difference was consistently below 1%.
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Table 8 Experimental performance of all the approaches on the first seven datasets (part 1).
The methods are divided into two blocks. The small number after the metric indicates the
rank of the particular approach w.r.t the dataset.

Approach Hamming Acc. Subset Acc. Mi. Precision Mi. Recall Mi. F1 Ma. Precision Ma. Recall Ma. F1
emotions

BR+ 77.21% 5 23.60% 7 65.54% 2 57.23% 12 60.97% 9 65.61% 1 55.80% 10 57.54% 9

BR± 76.08% 7 19.22% 11 62.53% 7 58.16% 10 60.03% 10 62.74% 4 55.75% 11 55.17% 11

SBR+
? 77.32% 4 24.28% 6 64.02% 5 62.73% 7 63.24% 4 62.70% 5 61.30% 6 59.82% 5

SBR±? 77.20% 6 24.45% 5 63.53% 6 64.59% 5 63.78% 3 60.52% 7 62.80% 5 59.79% 6

SBR+
d 75.02% 9 24.96% 2 57.46% 9 75.54% 4 65.24% 1 57.99% 9 74.35% 4 63.96% 1

SBR±d 75.44% 8 24.95% 3 60.39% 8 63.15% 6 61.55% 8 63.45% 3 60.43% 7 59.29% 7

SeCo+ 63.92% 14 4.89% 14 46.09% 14 83.96% 1 59.30% 12 50.70% 14 83.11% 1 60.43% 3

SeCo+opt 66.20% 13 5.88% 13 47.78% 13 78.87% 3 59.33% 11 51.97% 13 78.25% 3 60.14% 4

SeCo± 77.48% 2 22.91% 9 65.23% 4 59.27% 8 61.93% 6 60.63% 6 56.12% 9 56.21% 10

SeCo±opt 78.61% 1 26.63% 1 68.80% 1 57.30% 11 62.42% 5 58.28% 8 54.06% 13 54.52% 12

SBR+
y/?

77.40% 3 24.62% 4 65.41% 3 58.93% 9 61.90% 7 65.08% 2 57.41% 8 58.51% 8

SBR+
y/d

72.91% 10 23.45% 8 54.47% 11 79.46% 2 64.59% 2 54.84% 11 78.28% 2 63.52% 2

SBR+
Gibbs 70.38% 12 18.03% 12 52.82% 12 54.74% 14 53.46% 14 53.23% 12 52.29% 14 49.12% 14

PCR 72.53% 11 20.39% 10 55.96% 10 55.77% 13 55.80% 13 55.26% 10 54.73% 12 54.13% 13

scene
BR+ 88.03% 3.5 46.24% 5 68.82% 3.5 60.94% 7.5 64.55% 3.5 69.01% 4.5 62.40% 7.5 64.95% 3.5

BR± 86.83% 7 41.72% 11 65.43% 7 58.88% 11 61.55% 9 69.96% 3 59.32% 11 62.44% 10

SBR+
? 87.66% 5 46.11% 7 65.56% 6 65.68% 5 65.58% 2 65.73% 7 67.36% 5 65.72% 2

SBR±? 88.20% 1 46.74% 3 70.37% 2 59.33% 10 64.27% 5 71.00% 2 60.69% 10 64.65% 5

SBR+
d 86.04% 9 45.32% 10 58.31% 10 77.79% 4 66.63% 1 60.07% 10 78.80% 4 67.82% 1

SBR±d 86.41% 8 48.40% 1 61.57% 8 64.48% 6 62.93% 7 64.85% 8 65.26% 6 64.39% 6

SeCo+ 78.15% 12 24.55% 13 44.47% 12 81.83% 2 57.46% 11 55.23% 12 81.64% 2 63.29% 9

SeCo+opt 79.73% 11 23.97% 14 46.41% 11 80.24% 3 58.73% 10 56.39% 11 79.97% 3 63.91% 7

SeCo± 87.58% 6 45.36% 9 67.39% 5 59.71% 9 63.12% 6 68.78% 6 61.41% 9 63.71% 8

SeCo±opt 88.06% 2 45.82% 8 71.71% 1 54.95% 12 62.16% 8 71.89% 1 56.58% 12 62.25% 11

SBR+
y/?

88.03% 3.5 46.24% 5 68.82% 3.5 60.94% 7.5 64.55% 3.5 69.01% 4.5 62.40% 7.5 64.95% 3.5

SBR+
y/d

73.34% 14 46.24% 5 38.78% 13 83.14% 1 52.85% 13 38.69% 13 84.04% 1 52.64% 13

SBR+
Gibbs 85.18% 10 48.15% 2 59.61% 9 53.80% 13 56.53% 12 60.56% 9 54.14% 13 54.86% 12

PCR 77.88% 13 33.90% 12 37.97% 14 37.13% 14 37.55% 14 38.48% 14 37.58% 14 37.72% 14

yeast
BR+ 78.77% 1 9.18% 6 68.47% 2 55.33% 8 61.19% 5 47.45% 1 32.48% 10 34.91% 7

BR± 68.11% 12 1.24% 11 46.42% 12 39.74% 13 42.25% 13 34.53% 8 34.11% 7 28.89% 11

SBR+
? 78.53% 4 10.18% 3 66.88% 4 57.63% 6 61.90% 2 47.25% 2 34.82% 6 36.83% 5

SBR±? 73.43% 8 2.15% 10 55.83% 7 62.37% 5 58.71% 7 35.57% 7 39.17% 5 33.54% 9

SBR+
d 75.41% 6 10.18% 4 58.31% 6 66.21% 4 61.98% 1 39.84% 4 43.53% 4 40.01% 4

SBR±d 72.84% 10 5.34% 8 55.62% 9 49.51% 12 52.03% 10 28.55% 14 30.30% 11 28.34% 12

SeCo+ 41.77% 13 0.00% 13.5 34.03% 13 98.18% 1 50.53% 11 30.42% 11 87.95% 1 42.02% 1

SeCo+opt 41.43% 14 0.00% 13.5 33.84% 14 97.71% 2 50.25% 12 30.42% 12 87.59% 2 41.80% 2

SeCo± 68.66% 11 0.95% 12 48.40% 11 31.71% 14 37.90% 14 31.35% 10 27.04% 14 24.25% 13

SeCo±opt 78.66% 2 8.85% 7 69.09% 1 53.41% 9 60.23% 6 33.44% 9 28.95% 12 29.31% 10

SBR+
y/?

78.61% 3 9.47% 5 67.28% 3 57.10% 7 61.76% 3 46.97% 3 34.07% 8 36.06% 6

SBR+
y/d

73.71% 7 10.80% 2 55.22% 10 69.97% 3 61.70% 4 38.75% 5 46.64% 3 40.08% 3

SBR+
Gibbs 75.94% 5 4.88% 9 62.28% 5 51.99% 10 56.64% 8 29.75% 13 27.05% 13 23.92% 14

PCR 72.88% 9 10.88% 1 55.62% 8 51.77% 11 53.60% 9 37.07% 6 33.90% 9 34.85% 8

genbase
BR+ 99.88% 2 96.83% 2 98.95% 8 98.42% 3.5 98.68% 2 95.19% 2 95.67% 2 95.33% 2

BR± 99.03% 12 83.24% 9 99.38% 4 80.11% 12 88.54% 12 72.21% 12 72.57% 11.5 72.36% 12

SBR+
? 99.88% 2 96.83% 2 98.95% 8 98.42% 3.5 98.68% 2 95.19% 2 95.67% 2 95.33% 2

SBR±? 99.04% 11 82.94% 11.5 99.55% 1 80.27% 11 88.68% 11 72.28% 11 72.57% 11.5 72.40% 11

SBR+
d 99.88% 2 96.83% 2 98.95% 8 98.42% 3.5 98.68% 2 95.19% 2 95.67% 2 95.33% 2

SBR±d 99.02% 13 82.94% 11.5 99.55% 2 79.66% 13 88.31% 13 71.17% 14 71.46% 14 71.29% 14

SeCo+ 99.18% 9.5 79.30% 13.5 87.19% 13.5 96.69% 6.5 91.67% 9.5 91.04% 9.5 92.31% 8.5 91.24% 9.5

SeCo+opt 99.18% 9.5 79.30% 13.5 87.19% 13.5 96.69% 6.5 91.67% 9.5 91.04% 9.5 92.31% 8.5 91.24% 9.5

SeCo± 99.72% 6 92.76% 8 99.26% 6 94.82% 10 96.98% 6 92.46% 6 92.51% 7 92.35% 7

SeCo±opt 99.76% 5 93.51% 7 99.29% 5 95.60% 9 97.39% 5 94.09% 4 93.70% 6 93.71% 5

SBR+
y/?

99.80% 4 95.32% 5.5 97.38% 10 98.42% 3.5 97.88% 4 93.37% 5 94.93% 5 93.86% 4

SBR+
y/d

99.64% 8 95.32% 5.5 94.45% 12 98.67% 1 96.38% 8 91.59% 8 94.95% 4 92.79% 6

SBR+
Gibbs 99.01% 14 83.09% 10 99.53% 3 79.51% 14 88.25% 14 71.56% 13 71.83% 13 71.67% 13

PCR 99.66% 7 95.77% 4 96.70% 11 96.16% 8 96.40% 7 92.25% 7 92.15% 10 91.78% 8

the smaller and on two of the bigger datasets. Also surprisingly, it seems to be
better for SBR± to abstain from classification if the prediction is negative even
though this approach explicitly also learns and applies rules with negative heads.
Regarding the relatively bad performance of the base BR±, this might indicate
that the mixed heads version of Ripper has an over-generalization problem when
learning negative heads.
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Table 9 Experimental performance of all the approaches on the first seven datasets (part 2).
The last block shows the average over the ranks on the first seven datasets.

Approach Hamming Acc. Subset Acc. Mi. Precision Mi. Recall Mi. F1 Ma. Precision Ma. Recall Ma. F1
medical

BR+ 98.99% 3 66.96% 3 80.26% 7 84.29% 7 82.19% 1 76.57% 1 79.39% 3 77.39% 1

BR± 98.51% 9 48.26% 11 84.61% 1 56.38% 13 67.58% 11 59.90% 13 59.67% 14 59.54% 14

SBR+
? 98.97% 4 66.86% 4 79.38% 8 84.78% 5 81.96% 3 75.28% 5 78.36% 6 76.21% 3

SBR±? 98.55% 8 51.22% 9 84.23% 3 58.97% 11 69.31% 9 60.21% 11 61.14% 12 60.45% 12

SBR+
d 98.95% 5 66.25% 5 78.21% 9 86.01% 2 81.89% 4 75.02% 6 78.51% 5 76.10% 4

SBR±d 98.58% 7 54.09% 8 82.10% 5 62.79% 10 71.09% 7 59.83% 14 61.77% 10 60.54% 11

SeCo+ 96.96% 14 19.23% 13 48.11% 14 85.69% 4 61.38% 13 74.09% 8 77.77% 7 74.24% 8

SeCo+opt 97.29% 13 10.94% 14 50.59% 13 87.76% 1 64.16% 12 74.42% 7 79.79% 1 75.47% 6

SeCo± 99.02% 2 68.20% 1 84.14% 4 79.73% 9 81.81% 5 75.77% 4 76.67% 8 75.55% 5

SeCo±opt 99.03% 1 67.99% 2 84.25% 2 80.13% 8 82.09% 2 75.79% 3 76.40% 9 75.47% 7

SBR+
y/?

98.90% 6 64.51% 6 77.72% 10 84.37% 6 80.87% 6 76.24% 2 79.40% 2 77.20% 2

SBR+
y/d

97.93% 11 62.36% 7 58.91% 11 85.94% 3 69.74% 8 69.71% 9 79.39% 4 72.44% 9

SBR+
Gibbs 98.46% 10 50.10% 10 80.45% 6 58.65% 12 67.73% 10 60.12% 12 60.45% 13 59.94% 13

PCR 97.44% 12 35.79% 12 54.43% 12 46.52% 14 50.12% 14 64.42% 10 61.38% 11 61.96% 10

enron
BR+ 94.90% 2 9.17% 3 62.75% 3 49.09% 9 55.03% 3 34.20% 1 28.53% 9 29.59% 3

BR± 94.66% 5 6.52% 10 61.48% 4 43.88% 11 51.16% 5 31.71% 4 28.41% 10 28.58% 5

SBR+
? 94.58% 6 9.17% 4 57.96% 6 55.09% 5 56.40% 2 32.74% 3 30.34% 5 30.15% 1

SBR±? 93.75% 8 1.76% 11 51.19% 8 50.99% 8 50.94% 7 28.76% 8 28.88% 8 27.83% 8

SBR+
d 92.33% 11 9.87% 2 43.13% 11 59.06% 3 49.71% 8 29.19% 7 32.85% 4 29.05% 4

SBR±d 92.66% 10 6.82% 9 44.31% 10 53.75% 6 48.37% 9 28.03% 10 29.89% 6 27.59% 10

SeCo+ 80.33% 14 0.00% 14 22.25% 14 82.83% 1 35.03% 14 23.79% 14 43.72% 2 26.69% 12

SeCo+opt 81.50% 13 0.12% 13 23.27% 13 82.02% 2 36.21% 13 25.13% 13 43.75% 1 27.75% 9

SeCo± 94.79% 3 9.05% 5 63.60% 2 43.10% 12 51.07% 6 30.96% 5 27.80% 11 28.13% 6

SeCo±opt 94.99% 1 10.05% 1 65.83% 1 44.47% 10 53.03% 4 28.74% 9 26.69% 12 27.06% 11

SBR+
y/?

94.78% 4 8.70% 6 60.41% 5 53.05% 7 56.41% 1 34.15% 2 29.28% 7 29.81% 2

SBR+
y/d

89.97% 12 8.11% 7 33.05% 12 55.71% 4 41.45% 11 27.89% 11 34.28% 3 28.08% 7

SBR+
Gibbs 94.12% 7 1.06% 12 57.82% 7 29.02% 14 38.29% 12 27.06% 12 24.71% 14 24.71% 14

PCR 93.66% 9 7.93% 8 50.43% 9 37.35% 13 42.90% 10 29.83% 6 25.29% 13 26.35% 13

CAL500
BR+ 85.39% 4 0.00% 7.5 52.73% 4 24.88% 10 33.76% 10 22.48% 7 19.29% 11 19.79% 10

BR± 83.93% 9 0.00% 7.5 44.57% 9 28.88% 8 34.84% 8 20.73% 8 22.46% 7 20.28% 9

SBR+
? 84.54% 7 0.00% 7.5 47.61% 7 30.90% 5 37.42% 4 24.88% 4 22.03% 8 22.26% 7

SBR±? 71.72% 12 0.00% 7.5 30.09% 12 67.11% 3 41.52% 1 23.99% 6 45.42% 3 28.19% 1

SBR+
d 83.95% 8 0.00% 7.5 44.76% 8 30.43% 7 36.20% 5 25.26% 3 22.78% 5 22.91% 6

SBR±d 85.71% 3 0.00% 7.5 56.44% 3 20.38% 14 29.89% 14 19.09% 12 17.77% 13 17.52% 12

SeCo+ 65.99% 14 0.00% 7.5 27.70% 13 78.75% 1 40.96% 2 19.96% 10 47.93% 1 25.23% 2

SeCo+opt 66.44% 13 0.00% 7.5 27.48% 14 75.49% 2 40.25% 3 19.15% 11 45.73% 2 24.23% 3

SeCo± 85.99% 2 0.00% 7.5 58.51% 2 22.36% 12 32.25% 11 16.79% 13 17.97% 12 17.04% 13

SeCo±opt 86.21% 1 0.00% 7.5 61.14% 1 21.55% 13 31.84% 12 16.28% 14 17.36% 14 16.58% 14

SBR+
y/?

84.99% 5 0.00% 7.5 49.93% 5 27.91% 9 35.72% 7 24.00% 5 20.75% 9 21.13% 8

SBR+
y/d

83.79% 10 0.00% 7.5 44.34% 10 30.71% 6 36.15% 6 26.10% 1 23.04% 4 23.26% 4

SBR+
Gibbs 84.81% 6 0.00% 7.5 48.62% 6 23.76% 11 31.83% 13 20.30% 9 19.76% 10 18.72% 11

PCR 82.52% 11 0.00% 7.5 39.33% 11 31.05% 4 34.67% 9 25.45% 2 22.77% 6 23.22% 5

Average ranks
BR+ 2.93 2 4.79 3 4.21 2 8.14 8 4.79 4 2.50 1 7.50 7 5.07 4

BR± 8.71 9 10.07 12 6.29 6.5 11.14 13 9.71 9.5 7.43 7.5 10.21 11 10.29 12.5

SBR+
? 4.57 4.5 4.79 3 6.29 6.5 5.21 5 2.71 1 4.00 3 5.43 5 3.57 2

SBR±? 7.71 7 8.14 10 5.57 4 7.57 7 6.14 6 7.43 7.5 7.79 8 7.43 8

SBR+
d 7.14 6 4.64 1 8.71 10 3.93 4 3.14 2 5.86 4 4.00 4 3.14 1

SBR±d 8.43 8 6.86 7 6.43 8 9.57 9 9.71 9.5 10.71 11 9.57 9 10.29 12.5

SeCo+ 12.93 14 12.64 13.5 13.36 14 2.36 1 10.36 12 11.21 13 3.21 3 6.36 7

SeCo+opt 12.36 13 12.64 13.5 13.07 13 2.79 2 10.07 11 10.93 12 2.93 1 5.79 5

SeCo± 4.57 4.5 7.36 8 4.86 3 10.57 11 7.71 8 7.14 6 10.00 10 8.86 9

SeCo±opt 1.86 1 4.79 3 1.71 1 10.29 10 6.00 5 6.86 5 11.14 13 10.00 10

SBR+
y/?

4.07 3 5.57 5 5.64 5 7.00 6 4.50 3 3.36 2 6.64 6 4.79 3

SBR+
y/d

10.29 11.5 6.00 6 11.29 12 2.86 3 7.43 7 8.29 10 3.00 2 6.29 6

SBR+
Gibbs 9.14 10 8.93 11 6.86 9 12.57 14 11.86 14 11.43 14 12.86 14 13.00 14

PCR 10.29 11.5 7.79 9 10.71 11 11.00 12 10.86 13 7.86 9 10.71 12 10.14 11

Comparing BR+ to its extensions SBR+
? and SBR+

d , BR+ is almost always bet-
ter on precision, but also always worse w.r.t. recall.8The stacked variants however
generally find the better trade-off between recall and precision, obtaining the best
average rank w.r.t. F1 over all approaches. Recall again that BR’s predictions are
the inputs for the stacked variants. Apparently, the additional iterations applying

8 Except for macro precision on corel16k, macro recall and precision on CAL500 and of
course for genbase, where all plain and stacked BR models are equal.
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Table 10 Experimental performance of all the approaches except SeCo on the remaining four
datasets. The last block shows the average over the ranks on all datasets (ranks excluding
SeCo).

Hamming Acc. Subset Acc. Mi. Precision Mi.Recall Mi. F1 Ma. Precision Ma. Recall Ma. F1
mediamill

BR+ 96.87% 1 8.50% 6 71.20% 1 46.44% 7 56.21% 3 30.94% 1 17.73% 5 20.48% 5

BR± 92.41% 10 0.13% 10 31.14% 10 61.44% 1 41.28% 10 13.47% 7 15.92% 6 9.78% 6

SBR+
? 96.77% 3 9.37% 3 67.28% 5 49.47% 5 57.01% 1 28.08% 3 20.76% 3 21.76% 1

SBR±? 94.98% 9 0.21% 9 43.83% 9 52.35% 2 47.55% 7 8.70% 8 7.66% 7 6.13% 7

SBR+
d 96.30% 6 9.91% 1 58.46% 7 50.41% 3 54.13% 4 23.12% 5 23.70% 1 21.58% 2

SBR±d 96.60% 4 8.98% 5 71.05% 2 36.23% 9 47.98% 6 8.04% 9 4.44% 9 5.07% 8

SBR+
y/?

96.83% 2 9.28% 4 69.48% 4 47.97% 6 56.75% 2 30.32% 2 18.93% 4 21.28% 3

SBR+
y/d

96.29% 7 9.54% 2 58.49% 6 49.49% 4 53.60% 5 25.52% 4 21.49% 2 21.02% 4

SBR+
Gibbs 95.53% 8 2.89% 8 48.71% 8 39.76% 8 43.54% 9 5.71% 10 5.58% 8 4.56% 9

PCR 96.51% 5 5.79% 7 70.57% 3 33.20% 10 45.16% 8 15.11% 6 3.05% 10 3.42% 10

corel16k
BR+ 98.10% 2 0.51% 6 39.31% 1 2.82% 7 5.26% 7 11.91% 3 2.24% 6 3.34% 5

BR± 97.97% 8 0.04% 8 32.64% 5 0.76% 9 1.17% 9 0.66% 9 0.57% 9 0.41% 9

SBR+
? 97.92% 9 0.06% 7 30.81% 7 1.81% 8 2.44% 8 0.72% 8 0.67% 8 0.48% 8

SBR±? 98.09% 4 0.67% 4 37.60% 3 3.15% 5 5.81% 4 11.99% 2 2.53% 4 3.73% 3

SBR+
d 98.07% 5 0.85% 3 34.41% 4 3.77% 3 6.79% 3 12.09% 1 2.99% 3 4.32% 1

SBR±d 98.13% 1 0.00% 10 3.33% 10 0.00% 10 0.01% 10 0.35% 10 0.33% 10 0.33% 10

SBR+
y/?

98.10% 3 0.57% 5 38.46% 2 2.96% 6 5.49% 6 11.86% 4 2.32% 5 3.45% 4

SBR+
y/d

97.99% 7 1.07% 1 31.32% 6 4.95% 2 8.18% 2 11.67% 5 3.04% 2 4.21% 2

SBR+
Gibbs 95.24% 10 0.02% 9 10.41% 9 20.16% 1 13.51% 1 1.17% 7 4.10% 1 1.18% 7

PCR 98.01% 6 1.04% 2 24.82% 8 3.18% 4 5.63% 5 7.72% 6 2.03% 7 2.79% 6

bibtex
BR+ 98.60% 1 15.92% 3 55.48% 5 37.34% 5 44.63% 4 38.05% 1 29.58% 5 30.85% 4

BR± 98.60% 3 3.58% 10 89.75% 2 8.53% 9 15.49% 9 2.18% 9 1.56% 9 1.71% 9

SBR+
? 98.41% 8 15.73% 5 47.10% 7 44.65% 2 45.83% 2 36.20% 3 37.25% 2 34.35% 2

SBR±? 98.54% 6 4.69% 8 80.82% 3 9.55% 8 16.55% 8 2.34% 8 1.88% 8 1.91% 8

SBR+
d 98.38% 9 15.74% 4 46.43% 8 45.38% 1 45.89% 1 35.84% 4 38.06% 1 34.56% 1

SBR±d 98.60% 2 3.76% 9 93.72% 1 8.01% 10 14.72% 10 1.75% 10 1.28% 10 1.39% 10

SBR+
y/?

98.56% 5 16.06% 1 53.19% 6 39.19% 4 45.12% 3 37.72% 2 31.25% 4 31.59% 3

SBR+
y/d

98.00% 10 15.96% 2 36.18% 10 42.42% 3 39.02% 5 34.31% 5 34.44% 3 30.34% 5

SBR+
Gibbs 98.59% 4 4.77% 7 74.09% 4 10.58% 7 18.48% 6 4.15% 7 2.71% 7 2.87% 7

PCR 98.44% 7 8.95% 6 44.24% 9 11.38% 6 18.09% 7 14.01% 6 6.92% 6 8.32% 6

corel5k
BR+ 99.03% 2 0.32% 6 38.31% 2 4.68% 8 8.34% 8 34.94% 2 31.59% 5 32.11% 4

BR± 98.63% 10 0.06% 8 16.12% 10 10.80% 1 12.39% 1 31.27% 7 31.74% 3 31.20% 7

SBR+
? 99.02% 5 0.72% 4 36.07% 3 6.00% 6 10.28% 6 34.80% 3 31.53% 6 32.10% 5

SBR±? 99.02% 4 0.00% 9.5 29.49% 6 1.55% 9 2.49% 9 30.94% 9 30.91% 9 30.88% 9

SBR+
d 98.99% 7 0.84% 3 32.23% 4 6.98% 4 11.47% 4 34.38% 5 31.39% 8 31.94% 6

SBR±d 99.04% 1 0.00% 9.5 18.63% 8 0.57% 10 0.90% 10 30.88% 10 30.86% 10 30.85% 10

SBR+
y/?

99.03% 3 0.56% 5 38.38% 1 5.41% 7 9.47% 7 35.06% 1 31.69% 4 32.25% 3

SBR+
y/d

98.99% 6 0.88% 2 32.13% 5 6.79% 5 11.19% 5 34.51% 4 31.77% 2 32.27% 2

SBR+
Gibbs 98.65% 9 0.08% 7 16.48% 9 10.12% 2 12.14% 3 31.18% 8 31.49% 7 31.11% 8

PCR 98.90% 8 0.98% 1 24.35% 7 8.17% 3 12.23% 2 33.84% 6 32.15% 1 32.57% 1

Average ranks
BR+ 1.68 1 4.41 5 2.50 1 6.36 6 4.68 4 2.14 1 5.59 5 4.32 5

BR± 6.91 7 8.50 10 5.55 6 6.91 7 7.36 8.5 6.82 8 7.14 8 7.64 8

SBR+
? 4.27 3 4.23 3 4.82 4 4.14 3 3.00 2 3.73 3 4.18 3 3.18 2

SBR±? 5.82 5 7.05 8 4.64 3 5.27 4 5.64 6 6.18 7 5.77 6 6.00 6

SBR+
d 6.00 6 3.23 1 6.45 8 2.50 2 2.64 1 4.45 4 2.73 2 2.55 1

SBR±d 4.73 4 6.50 7 5.00 5 7.73 10 8.00 10 8.73 10 7.91 9 8.45 9

SBR+
y/?

2.86 2 4.27 4 3.77 2 5.36 5 3.95 3 2.77 2 4.77 4 3.68 3

SBR+
y/d

7.91 10 3.82 2 8.27 10 2.36 1 5.18 5 5.64 5 2.00 1 3.91 4

SBR+
Gibbs 7.27 8 7.50 9 6.09 7 7.36 9 7.36 8.5 8.55 9 8.00 10 8.73 10

PCR 7.55 9 5.50 6 7.91 9 7.00 8 7.18 7 6.00 6 6.91 7 6.55 7

the stacked models allow labels which were initially missed to be found due to the
label context.

The SeCo± variants seem to be quite competitive, especially when the post-
optimization of Ripper is turned on. In addition, the performance appears to be
robust particularly regarding the balancing between recall and precision. CAL500

is a clear exception. As we already could observe in Table 6, SeCo± only learns
rules for a few of the labels. This could again stay in relation with inducing too
general negative head rules, i.e., in this case, the default rule. On the other hand,
also BR+ has problems on this dataset. Surprisingly, the second best performing
approach regarding micro F1 is SeCo+ (followed by SBR±? and SeCo+

opt) due to
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its high recall although it has the lowest overall rank on micro F1 of the main
approaches.

The high recall is inherent for the multi-label iterative separate-and-conquer
approach when learning positive head rules. The reason is that each additional
positive head rule in the decision lists can only increase the probability of predict-
ing an additional label as true. Remind that processing the list will only stop when
all labels were predicted or a rule marked as stopping rule applies. Increasing the
τ sensibility for the stopping rule criteria, as well as turning off the re-insertion
of full covered examples, may alleviate the problem. However, we did not try to
specifically tune the parameters for every variant in our evaluation since we were
more concerned with the produced models and the overall comparability of the
approaches. We believe that tuning could certainly further improve the scores
especially for the SeCo approaches.

Nevertheless, an informal comparison with the results published by [7] reveals
that our approaches are likely to be highly competitive to other state-of-the-art and
even more sophisticated multi-label approaches. We leave a thorough comparison
of multi-label rule learning approaches to existing approaches for further work.

6.4.1 Additional Comparisons

The separated blocks in the result tables allow additional interesting comparisons,
such as the comparison of SBR to its variant using only the label predictions as
inputs. The objective was to determine the regret of having to rely only on label
features, i.e., only on unconditional dependencies between the labels. From the
results, we can observe that, in terms of micro F1, SBR+ beats its counterpart
SBR+

y but only by a small gap. The margin is more pronounced for the non-
absenting variants on F1. W.r.t. the other measures, SBR+

y/d
has generally a high

micro recall and SBR+
y/?

usually wins at micro precision and the highly related

Hamming accuracy. Both approaches beat their counterparts, respectively.

It is made clear by the experiments, that Gibbs sampling does not work well
for rule models. This is most likely due to the higher sensibility of common rules to
noise in discrete features compared to statistical approaches. Hence, the approach
of Guo and Gu [21] may not work well for other symbolic approach, too.

Table 10 depicts results for the four larger datasets, namely mediamill, corel16k,
bibtex, and corel5k. We can observe in general a higher tendency towards ex-
treme results, especially regarding the trade-off between recall and precision, and
also in general higher discrepancies between micro- and macro-averaged measures,
such as for corel5k. We suspect that the comparably high difficulty of the clas-
sification tasks together with the relatively low number of relevant labels to be
matched compared to the high total amount of labels makes the outcome very
sensitive towards peculiarities and noise of the datasets, leading to the high vari-
ance observed in the results.

However, compared to the previous results on the smaller datasets (cf. Tables 8
and 9), the general trends remain. BR+ showed a small improvement for the seven
small datasets in Hamming accuracy but was worse in macro F1 while remaining
constant for all other measures. BR± was better for the small datasets in micro
and macro precision and in micro F1, but worse in micro recall. While SBR±? and
SBR+

d did not show noteworthy changes, SBR±d interestingly changed for all used
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measures. As it deteriorated only for Hamming and subset accuracy as well as
for micro precision but improved for all other measures, it seems that this variant
works better on smaller datasets. The reason presumably is that being able to also
predict negative labels is only advantageous when the total number of labels is
low. The more labels are contained in a dataset, the more these will be sparse,
and therefore focusing only on the positive labels pays off much more. Consistent
with this argument, we observed that for micro and macro F1, with only a few
exceptions, it is more beneficial to predict only positive labels.

PCR, the only algorithm not relying on single-label rules and Ripper as base
learner, can only reveal its advantages in few cases such as for yeast on subset
accuracy. These observations correspond to our expectation that single-label head
rules allow a more compact representation of multi-label datasets (cf. Section 2.3).
However, PCR improves compared to the other approaches for larger datasets
on the macro-averaged measures. A possible reason might be that overfitting has
been prevented implicitly due to the restriction of learning at most 1000 rules.
However, a more exhaustive analysis would be necessary in order to draw definite
conclusions due to the different problem domain for which PCR was designed and
the different learning approach and heuristics used.

6.4.2 Statistical Tests

We performed statistical tests for all the different multi-label measures and algo-
rithms shown in Tables 8 and 9. Following Demsar [13], first a Friedman test was
conducted and secondly a post-hoc Nemenyi test. The Friedman test was passed
for all measures (p = 0.01). The critical distance between average ranks, for which
we can find a significant difference for p = 0.01, is 8.54 according to the Nemenyi
test (14 algorithms on 7 datasets). The following significantly differing algorithm
pairs were found: for Hamming accuracy only SeCo±opt was significantly better

than SeCo+, while the other algorithms did not differ. For micro-averaged preci-
sion SeCo±opt turned out to be better than SBR+

y/d
, SeCo+

opt, and SeCo+. However,

for the macro-averaged variant of precision only BR+ outperformed SBR+
Gibbs.

The latter was significantly inferior for micro- and macro-averaged recall and F1-
measure. For micro-averaged recall SeCo+ also significantly outperformed PCR.
Both for micro- and macro-averaged F-Measure SBR+

? and SBR+
d were better than

SBR+
Gibbs.

We also briefly show the statistical significance tests of the approaches except
SeCo on all used datasets including the four larger ones. Again, the Friedman
test passed and the critical distance was found to be 4.71 (p = 0.01). Regarding
Hamming acccuracy, BR+ was significantly better than BR±, SBR+

Gibbs, PCR,

and SBR+
y/d

and SBR+
y/?

outperformed SBR+
y/d

. For subset accuracy we observed

that SBR+
d is better than BR±. BR+ outperformed PCR and SBR+

y/d
for micro

precision. For micro recall SBR+
y/d

and SBR+
d were superior to SBR+

Gibbs and

SBR±d . Micro F1 showed that SBR+
? significantly outperformed SBR±d while SBR+

d

in addition also was better than BR± and SBR+
Gibbs.



40 Eneldo Loza Menćıa, Frederik Janssen

7 Conclusions

In this work, we introduced two approaches for making label dependencies explicit
with the means of rules. Especially the proposed stacking approach is very effective
at inducing rules with labels as conditions in the bodies of the rules. In our analyses
on eleven multi-label datasets, the resulting models turned out to be indeed very
useful in order to discover interesting aspects a normal, single-label rule learner is
unable to uncover.

For instance, we found that the genbase dataset exhibits only very weak label
dependencies, which can hardly be exploited in order to improve the predictive
performance, despite the fact that this dataset is frequently used for evaluating
multi-label algorithms. In contrast to other approaches, the proposed method nat-
urally allows for discovering and expressing local as well as global label dependen-
cies.

The multi-label iterative separate-and-conquer approach straightforwardly ex-
tends the well-known separate-and-conquer technique from a single target label to
multiple labels. In contrast to applying separate-and-conquer separately for each
of the labels, as for traditional concept learning, this technique not only allows to
take dependencies into account, but also produces much more compact representa-
tions in form of multi-label decision lists, a generalization of common single-label
multiclass decision lists.

However, the extensive evaluation on eleven benchmark datasets revealed the
limitations of the integrated approach in discovering and exploiting label-dependent
rules. This is mainly because multi-label iterative separate-and-conquer has to pro-
duce itself the label features it can later use, whereas, e.g., the stacking approach
has all the needed label information available from the beginning. The experimen-
tal evaluation also showed that the stacking approach outperforms all remaining
approaches w.r.t. to F1-measure. We hence believe that using stacking is particu-
larly useful for exploiting global and local dependencies when using rule learners.

This work was limited to discovering label-dependent single-label head rules.
Both approaches can learn this kind of multi-label rules. In addition, they can
control to a certain degree the type of rule head and rule body. However, one of
our future goals has to be to extent our approaches in order to also induce label-
dependent multi-label head rules since only this kind of rules allows to express
all types of possible dependencies. Our proposed iterative separate-and-conquer
approach can be naturally extended in order to learn multiple labels in the heads.
However, further research is needed first on possible improvements in the iterative
algorithm as well as on the right selection of the heuristics for the local refinements.
This is especially important considering that a key issue of multi-label classification
are the different objective measures.
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50. Ženko, B., Džeroski, S.: Learning classification rules for multiple target at-
tributes. In: Proceedings of the 12th Pacific-Asia Conference on Knowledge
Discovery and Data Mining (PAKDD 2008). vol. 5012, pp. 454–465. Springer
(2008)

51. Witten, I.H., Frank, E.: Data Mining — Practical Machine Learning Tools
and Techniques with Java Implementations. Morgan Kaufmann Publishers,
2nd edn. (2005)

52. Zhang, M.L., Zhang, K.: Multi-label learning by exploiting label dependency.
In: Proceedings of the 16th ACM SIGKDD international conference on Knowl-
edge discovery and data mining. pp. 999–1008. ACM (2010)

53. Zhang, M.L., Zhou, Z.H.: A review on multi-label learning algorithms. Knowl-
edge and Data Engineering, IEEE Transactions on 26(8), 1819–1837 (Aug
2014)

54. Zhu, S., Ji, X., Xu, W., Gong, Y.: Multi-labelled classification using maximum
entropy method. In: SIGIR ’05: Proceedings of the 28th annual international
ACM SIGIR conference on Research and development in information retrieval.
pp. 274–281. ACM (2005)


	Introduction
	Multi-Label Classification and Inductive Rule Learning
	Stacking of Label Features for Learning Label-Dependent Rules
	Iterative Separate-and-Conquer for Learning Multi-label Decision Lists
	Related Work
	Evaluation
	Conclusions

