
Advances in Efficient Pairwise
Multilabel Classification
Technical Report TUD-KE-2008-06

Eneldo Loza Mencía,
Sang-Hyeun Park,
Johannes Fürnkranz

Knowledge Engineering Group,
Technische Universität Darmstadt
{eneldo,park,juffi}@ke.tu-darmstadt.de

Knowledge
Engineering

http://www.ke.informatik.tu-darmstadt.de
http://www.tu-darmstadt.de

Contents

1 Introduction 3

2 Multilabel Classification 4
2.1 Perceptrons . 4
2.2 Binary Relevance Ranking . 4
2.3 Multiclass Multilabel Perceptrons . 5
2.4 Multilabel Pairwise Perceptrons . 6
2.5 Calibrated Label Ranking . 7

3 Quick Weighted Voting 8
3.1 QWeighted for Multiclass Classification . 8
3.2 QWeighted for Multilabel Classification . 8

4 Dual Multilabel Pairwise Perceptrons 10

5 Computational Complexity 11

6 Experimental Setup 13
6.1 Multilabel Evaluation Measures . 13
6.2 Ranking Loss Functions . 14
6.3 Standard Benchmark Datasets . 14
6.4 The EUR-Lex Repository . 15
6.5 Algorithmic Setup . 16

7 Evaluation 18
7.1 Prediction Performance . 18
7.2 Computational Efficiency . 18

7.2.1 QWeighted . 18
7.2.2 Dual Representation . 20

7.3 Memory Requirements . 20

8 Conclusions 23

1

2

1 Introduction

Multilabel classification refers to the task of learning a function that maps instances x̄ ∈ X to label subsets λx̄ ⊂ L, where
L = {λ1, . . . ,λn} is a finite set of predefined labels, typically with a small to moderate number of alternatives. Thus, in
contrast to multiclass learning, alternatives are not assumed to be mutually exclusive, such that multiple labels may be
associated with a single instance.

A prototypical application scenario for multilabel classification is the assignment of a set of keywords to a document,
a frequently encountered problem in the text classification domain. With upcoming Web 2.0 technologies this domain
is extended by a wide range of tag suggestion tasks (e.g. Tsoumakas et al., 2008; Katakis et al., 2008). This kind of
problems are often associated with a large number of instances or classes which demand for an efficient processing. The
Reuters-2000 dataset for instance is composed of over 800,000 documents and 103 classes (cf. Section 6.3), a benchmark
extracted from the del.icio.us platform contains almost 1000 classes (Tsoumakas et al., 2008) and the EUR-Lex database
consists of almost 4000 classes (cf. Section 6.3). Other tasks include protein classification and semantic multimedia
annotation.

The predominant approach to multilabel classification is binary relevance learning (BR). In BR the problem is decom-
posed into several binary problems in the following way: for each class a binary classifier is trained to discriminate
between examples of the class and the examples of the remaining classes. A different approach is to have a classifier
for each possible pair of classes that is trained to distinguish only between these two classes. This approach is usually
denominated one-vs-one, round robin or pairwise classification and has shown to achieve better predictive performance
in the multiclass (Fürnkranz, 2002; Hsu and Lin, 2002) as well as in the multilabel case (Loza Mencía and Fürnkranz,
2008a; Fürnkranz et al., 2008).

While it has been shown that training a pairwise ensemble of classifiers is similarly efficient than training a BR ensem-
ble (Fürnkranz, 2002; Loza Mencía and Fürnkranz, 2008a), the problem of evaluating a quadratic number of classifiers to
produce a prediction remained. Our first attempts in efficient multilabel pairwise classification lead to the algorithm MLPP
which uses the fast perceptron algorithm as base classifier and was succesfull in efficiently processing an already men-
tioned large Reuters benchmark, despite evaluating all base classifiers (Loza Mencía and Fürnkranz, 2008a). Although
we were able to beat the competing fast MMP algorithm (Crammer and Singer, 2003) in terms of ranking performance
and were competitive in training, the costs for testing were not similarly satisfactory.

Park and Fürnkranz (2007a) recently introduced a method named QWeighted for multiclass problems that intelligently
selects only the base classifiers that are actually necessary to predict the top class. This reduced the evaluations needed
from n(n− 1)/2 to only n log (n) in practice, which is near the n evaluations processed by BR.

In this paper we introduce a novel algorithm which adapts the QWeighted method to the MLPP algorithm. In a nutshell,
the adaption works as follows: instead of stopping when the top class is determined, we repeatedly apply QWeighted to
the remaining classes until the final label set is predicted. In order to determine at which position to stop, we introduce
an artificial label that indicates the boundary between positive and negative classes (Fürnkranz et al., 2008). Our
experiments on a wide selection of multilabel datasets in terms of problem domain, number of classes and label density
demonstrate that by applying these extensions to MLPP we are able to process such data in comparable time to the
one-per-class approaches, while producing more accurate predictions.

Nevertheless, this novel algorithm still uses a quadratic number of base classifiers, i.e. the memory requirements grow
quadratically to the number of classes. In (Loza Mencía and Fürnkranz, 2007) we analyzed for the first time a multilabel
task with almost 4000 classes. Training MLPP for this problem would mean to maintain nearly 8,000,000 perceptrons in
memory, which is almost impossible even for present-day computer systems. In (Loza Mencía and Fürnkranz, 2008c,b)
we presented a modification of MLPP which represents the perceptrons as a linear combination of training examples and
is therefore able to virtually store the 8 mio. perceptrons in memory. It even decreases the computational costs for some
tasks. In this paper we compare the Dual MLPP algorithm to the previously mentioned QWeighted variant.

A related work on the issue of multilabel classification is the HOMER algorithm by Tsoumakas et al. (2008). The label
set is organized through clustering into a hierarchy of labels. A multilabel classifier is then trained at each inner node.
This reformulating leads to less complex problems at each inner node and hence allows to train the classifier ensemble
more efficiently in terms of computations and memory.

This work is organized as follows: Section 2 defines the problem and describes the basic algorithms such as percep-
trons, binary relevance and MLPP. Section 3 introduces QWeighted and the adaptation to multilabel, whereas DMLPP is
presented in Section 4. In Section 5 we compare the time and space complexity of the different algorithms. Section 6 is
dedicated to the experimental setup along with the used datasets and evaluation measures, the results are presented in
Section 7. Section 8 provides a final discussion and concludes this paper.

3

2 Multilabel Classification

We represent an instance or object as a vector x̄ = (x1, . . . , xm) in a feature space X ⊆Ra. Each instance x̄i is assigned to
a set of relevant labels Pi , a subset of the n possible classes L = {λ1, . . . ,λn}. For multilabel problems, the cardinality |Pi |
of the label sets is not restricted, whereas for binary problems |Pi | = 1. For the sake of simplicity we use the following
notation for the binary case: we define L = {1,−1} as the set of classes so that each object x̄i is assigned to a class
λi ∈ {1,−1} , Pi = {λi}.

2.1 Perceptrons

We use the simple but fast perceptrons as base classifiers (Rosenblatt, 1958). As Support Vector Machines (SVM), their
decision function describes a hyperplane that divides the a-dimensional space into two halves corresponding to positive
and negative examples. We use a version that works without learning rate and threshold:

o(x̄) = sgn(x̄ · w̄) (2.1)

with the internal weight vector w̄ and sgn(t) = 1 for t ≥ 0 and −1 otherwise. If there exists a separating hyperplane
between the two set of points, i.e. they are linearly separable, the following update rule provably finds it (cf., e.g.,
(Bishop, 1995)).

αi = (λi − o(x̄i)) w̄i+1 = w̄i +αi x̄i (2.2)

It is important to see that the final weight vector can also be represented as linear combination of the training examples:

w̄=
m
∑

i=1

αi x̄i o(x̄) = sgn(
m
∑

i=1

αi · x̄i x̄) (2.3)

assuming m to be the number of seen training examples and αi ∈ {−1,0, 1}. The perceptron can hence be coded implicitly
as a vector of instance weights α = (α1, . . . ,αm) instead of explicitly as a vector of feature weights. This representation
is denominated the dual form and is crucial for developing the memory efficient variant in Section 4. The main reason
for choosing the perceptrons as our base classifier is because, contrary to SVMs, they can be trained efficiently in an
incremental setting, which makes them particularly well-suited for large-scale classification problems such as the Reuters-
RCV1 benchmark (Lewis et al., 2004), without forfeiting too much accuracy though SVMs find the maximum-margin
hyperplane (Freund and Schapire, 1999; Crammer and Singer, 2003; Shalev-Shwartz and Singer, 2005).

In addition, important advancements were achieved in recent times trying to adapt the perceptron algorithm in order
to maximize the margin of the separating hyperplane, without losing the advantages of simplicity and efficiency that
characterize the perceptron algorithm (Li et al., 2002; Crammer et al., 2006; Khardon and Wachman, 2007; Tsampouka
and Shawe-Taylor, 2007). The presented algorithms can easily be adapted in order to use these variants if desired.

2.2 Binary Relevance Ranking

In order to provide a baseline and to show the efficiency of the pairwise approach, we compare our algorithms to the
binary relevance (BR) or one-against-all (OAA) variant with perceptrons as base classifier.

In the binary relevance method, a multilabel training set with n possible classes is decomposed into n binary training
sets of the same size that are then used to train n binary classifiers. So for each pair (x̄i ,Pi) in the original training set n
different pairs (x̄i ,λi j

) with j = 1 . . . n are generated as follows:

λi j
=

(

1 λ j ∈ Pi

−1 otherwise
(2.4)

A brief visual description of this technique is available in Figure 2.2.
Supposing we use perceptrons as base learners, n different o j classifiers are trained in order to determine the relevance

of λ j . In consequence, the combined prediction of the binary relevance classifier for an instance x̄ would be the set
{λ j | o j(x̄) = 1}. If, in contrast, we want to obtain a ranking of classes according to their relevance, we can simply use the
result of the internal computation of the perceptrons as a measure of relevance. According to Equation 2.1 the desired
linear combination is the inner product o′j(x̄) = x̄ · w̄ j . So the result of the prediction is a vector ō′(x̄) = (x̄w̄1, . . . , x̄w̄n)
where component j corresponds to the relevance of class λ j . Ties are broken randomly to not favor any particular class.

4

~

~
~

~~

~
~

~
~

~
~

~

~
~

-

-
-

-
-

-

--

-

-

-

-

-

-
-

-
-

-

#

#

#
#

#

#

#
#

##

o
o

o o
o

o
o

o
o

o

o
o

o

o

o
o

o
o

o

+

+
+

+

+

+
+

+
+

+
+

+
+

+
+

+

+

+

x

x
x

xx

x
x

x
x

x

x
x

x
x

(a) binary-relevance classification
n classifiers, each separates one class from all other

classes. Here: + against all other classes.

~

~
~

~~

~
~

~
~

~
~

~

~
~

+

+
+

+

+

+
+

+
+

+
+

+
+

+
+

+

+

+

(b) pairwise classification
n(n−1)

2
classifiers, one for each pair of classes.

Here: + against ∼.

Figure 2.1: One-against-all and pairwise binarization.

2.3 Multiclass Multilabel Perceptrons

The Multiclass Multilabel Perceptron algorithm (MMP) by (Crammer and Singer, 2003) represents an extension to the
simple BR approach. The difference is that the perceptrons ensemble training is done together, i.e. the perceptrons are
interconnected. The aim of this is to achieve an ordering of relevant over irrelevant classes instead of the simple approach
of a correct absolute ordering, i.e. relevant classes over a zero point and irrelevant classes below. However, the output
is not longer a set of labels but a class relevance ranking. Several thresholding and calibration techniques to transform
rankings into relevant label sets exist (Sebastiani, 2002), the method of Elisseeff and Weston (2001) being one of the
most cited. We will see an effective calibration technique in Section 2.5.

The MMP algorithm was successfully applied to the large Reuters-RCV1 benchmark (Lewis et al., 2004), outperforming
the simple BR approach. Refer to (Lewis et al., 2004) or (Loza Mencía and Fürnkranz, 2008a) for a more detailed
description of the algorithm and performance comparison.

Figure 2.2: Subproblems in binary relevance for multilabel classification: original three-class problem (green, blue and
black classes, shown as overlapping clouds in left picture) is divided into green vs. rest (second picture), black vs.
rest (third) and blue vs. rest two-class subproblems. Separating hyperplanes, denoted by red lines, have to respect all
examples (inside the clouds).

Figure 2.3: Subproblems in pairwise multilabel classification: original three-class problem is divided into green vs. blue
(second picture, black examples are ignored), green vs. black (blue is ignored) and blue vs. black two-class subproblems.
Separating hyperplanes have to respect only examples from two classes in contrast to BR in Figure 2.2.

5

Require: Training example pair (x̄, P), perceptrons {w̄u,v | u< v,λu,λv ∈ L}
1: for each (λu,λv) ∈ P × N do
2: if u< v then
3: w̄u,v ← TRAINPERCEPTRON(w̄u,v , (x̄, 1)) . train as positive example
4: else
5: w̄v,u← TRAINPERCEPTRON(w̄v,u, (x̄,−1)) . train as negative example

6: return {w̄u,v | u< v,λu,λv ∈ L} . updated perceptrons

Figure 2.4: Pseudocode of the training method of the MLPP algorithm.

2.4 Multilabel Pairwise Perceptrons

In the pairwise binarization method, one classifier is trained for each pair of classes, i.e., a problem with n different classes
is decomposed into n(n−1)

2
smaller subproblems. For each pair of classes (λu,λv), only examples belonging to either λu or

λv are used to train the corresponding classifier ou,v . All other examples are ignored. In the multilabel case, an example
is added to the training set for classifier ou,v if u is a relevant class and v is an irrelevant class, i.e., (u, v) ∈ P × N (cf.
Figure 2.3). We will typically assume u< v, and training examples of class u will receive a training signal of +1, whereas
training examples of class v will be classified with −1. Figure 2.4 shows the training algorithm in pseudocode. Of course
MLPPs can also be trained incrementally because it inherits this property from the perceptron.

In order to return a class ranking we use a simple voting strategy, known as max-wins. Given a test instance, each
perceptron delivers a prediction for one of its two classes. This prediction is decoded into a vote for this particular class.
After the evaluation of all n(n−1)

2
perceptrons the classes are ordered according to their sum of votes. Ties are broken

randomly in our case.

o1,2 = 1 o2,1 = -1 o3,1 = -1 o4,1 = -1 o5,1 = -1
o1,3 = 1 o2,3 = 1 o3,2 = -1 o4,2 = -1 o5,2 = -1
o1,4 = 1 o2,4 = 1 o3,4 = 1 o4,3 = -1 o5,3 = -1
o1,5 = 1 o2,5 = 1 o3,5 = 1 o4,5 = 1 o5,4 = -1

v1 = 4 v2 = 3 v3 = 2 v4 = 1 v5 = 0

Figure 2.5: MLPP voting: an example x̄ is classified by all 10 base perceptrons oi, j , i 6= j , λi ,λ j ∈ L. Note the redundancy
given by oi, j =−o′j,i . The last line counts the positive outcomes for each class.

Figure 2.5 shows a possible result of classifying the sample instance of Figure 2.6. Perceptron o1,5 predicts (correctly)
the first class, consequently λ1 receives one vote and class λ5 zero (denoted by o1,5 = 1 in the first and o5,1 = −1 in the
last row). All 10 perceptrons (the values in the upper right corner can be deduced due to the symmetry property of the
perceptrons) are evaluated though only six are ‘qualified’ since they were trained with the original example.

This may be disturbing at first sight since many ‘unqualified’ perceptrons are involved in the voting process: o1,2 is
asked though it cannot know anything relevant in order to determine if x̄ belongs to λ1 or λ2 since it was neither trained
on this example nor on other examples belonging simultaneously to both classes λ1 and λ2 (or to none of both). In the
worst case the noisy votes concentrate on a single negative class, which would lead to misclassifications. But note that
any class can at most receive n− 1 votes, so that in the extreme case when the qualified perceptrons all classify correctly
and the unqualified ones concentrate on a single class, a positive class would still receive at least n− |P| and a negative
at most n− |P| − 1 votes. Class λ3 in Figure 2.5 is an example for this: It receives all possible noisy votes but still loses
against the positive classes λ1 and λ2.

The pairwise binarization method is often regarded as superior to binary relevance because it profits from simpler
decision boundaries in the subproblems (Fürnkranz, 2002; Hsu and Lin, 2002). In the case of an equal class distribution,
the subproblems have 2

n
times the original size whereas binary relevance maintains the size. Typically, this goes hand

in hand with an increase of the space where a separating hyperplane can be found. An intuitive visualization of this
aspect can be found in Figure 2.1 for the multiclass case and in Figure 2.3 for the multilabel case, in contrast to the BR
binarization depicted in Figure 2.2. A simple example also illustrates this: imagine you repeatedly insert points around
two points on a line. The distance between the two sets will inevitably monotonically decrease with increasing number
of points. Thus it is very likely for a subproblem to have a larger margin than the full problem.

Particularly in the case of text classification the obtained benefit clearly exists. An evaluation of the pairwise approach
on the Reuters-RCV1 corpus (cf. Section 6.3), which contains over 100 classes and 800,000 documents, showed a
significant and substantial improvement over the MMP method (Loza Mencía and Fürnkranz, 2008a).

6

��

�� ���� ��

��
�

	

Figure 2.6: MLPP training: training example x̄ be-
longs to Px̄ = {λ1,λ2}, Nx̄ = {λ3,λ4,λ5} are the irrel-
evant classes, the arrows represent the trained per-
ceptrons w̄1,3, w̄1,4, w̄1,5, w̄2,3, w̄2,4, w̄2,5.

��

�� ���� ��

��

��

	

Figure 2.7: calibration: introducing virtual la-
bel λ0 that separates P an N . Perceptrons
w̄1,0, w̄2,0, w̄0,3, w̄0,4, w̄0,5 are additionally trained.

��

�� ���� ��

��

��

	

Figure 2.8: CMLPP training: the complete set of
trained perceptrons.

2.5 Calibrated Label Ranking

To convert the resulting ranking of labels into a multilabel prediction, we use the calibrated label ranking approach
(Brinker et al., 2006; Fürnkranz et al., 2008). This technique avoids the need for learning a threshold function for
separating relevant from irrelevant labels, which is often performed as a post-processing phase after computing a ranking
of all possible classes. The key idea is to introduce an artificial calibration label λ0, which represents the split-point
between relevant and irrelevant labels. Thus, it is assumed to be preferred over all irrelevant labels, but all relevant
labels are preferred over λ0. This introduction of an additional label during training is depicted in Figure 2.7, the
combination with the normal pairwise base classifiers is shown in Figure 2.8.

As it turns out, the resulting n additional binary classifiers { oi,0 | i = 1 . . . n} are identical to the classifiers that are
trained by the binary relevance approach. Thus, each classifier oi,0 is trained in a one-against-all fashion by using the
whole dataset with { x̄ | i ∈ Px̄} ⊆ X as positive examples and { x̄ | i ∈ Nx̄} ⊆ X as negative examples. At prediction time, we
will thus get a ranking over n+ 1 labels (the n original labels plus the calibration label). Then, the projection of voting
aggregation of pairwise perceptrons with a calibrated label to a multilabel output is quite straight-forward:

P̂ = {λ ∈ L | v(λ)> v(λ0)}

where v(c) is the amount of votes class c has received.
We denote the MLPP algorithm adapted in order to support the calibration technique as CMLPP. This algorithm was

again applied to the large Reuters-RCV1 corpus and to other smaller datasets presented also in Section 6.3, outperforming
the binary relevance and MMP approach. For further details please refer to Fürnkranz et al. (2008).

7

3 Quick Weighted Voting

As already seen, the quadratic number of base classifier does not seem to be a serious drawback for training MLPP
and also CMLPP. However, at prediction time it is still necessary to evaluate a quadratic number of base classifier. Two
approaches to overcome this problem for multiclass and for multilabel task are presented in the following.

3.1 QWeighted for Multiclass Classification

For the multiclass case, the simple voting strategy, which is applied often to combine the predictions of pairwise classifiers
to one multiclass classification result, can be computed efficiently with the Quick Weighted Voting algorithm (QWeighted)
(Park and Fürnkranz, 2007a). Instead of the evaluation of the quadratic number of all pairwise perceptrons, it is possible
to evaluate a smaller subset of it in order to compute the class with the highest accumulated voting mass.

During a voting procedure there exist many situations where particular classes can be excluded from the set of possible
top rank classes, even if they reach the maximal voting mass in the remaining evaluations. Its main idea can be described
in a simple example: Given n classes with n> j, if class λa has received more than n− j votes and class λb lost j votings, it
is impossible for λb to achieve a higher total voting mass than λa. Thus further evaluations with λb can be safely ignored.

Pairwise classifiers will be selected depending on a loss value, which is the amount of potential voting mass that a class
has not received. More precisely, the loss li of a class λi is defined as li := pi − vi , where pi is the number of evaluated
incident classifiers of λi and vi is the current vote amount of λi . Obviously, the loss will begin with a value of zero and is
monotonically increasing. The class with the current minimal loss is one of the top candidates for the top rank class.

Require: Testing example x̄, perceptrons {w̄u,v | u< v,λu,λv ∈ L}
1: while λtop not determined do
2: λa ← λi ∈ L with minimal li

3: λb ← λ j ∈ L\{λa} with minimal l j & w̄a,b not yet evaluated
4: if no λb exists then
5: λtop ← λa

6: else
7: vab ← EVALUATE(w̄a,b)
8: la ← la + (1− vab)
9: lb ← lb + vab

Figure 3.1: Pseudocode of the Quick Weighted Voting algorithm (Multiclass classification prediction).

First the pairwise classifier oa,b, in our case the perceptron w̄a,b, will be selected for which the losses la and lb of the
relevant classes λa and λb are minimal, provided that the classifier oa,b has not yet been evaluated. In the case of multiple
classes that have the same minimal loss, there exists no further distinction, and we select a class randomly from this set.
Then, the losses la and lb will be updated based on the evaluation returned by oa,b (recall that vab is interpreted as the
amount of the voting mass of the classifier oa,b that goes to class λa and 1− va,b is the amount that goes to class λb).
These two steps will be repeated until all classifiers for the class λm with the minimal loss has been evaluated. Thus the
current loss lm is the correct loss for this class. As all other classes already have a greater loss, λm is the correct top rank
class.

Theoretically, a minimal number of comparisons of n− 1 is possible (best case). The worst case, on the other hand, is
still n(n− 1)/2 comparisons, which can, e.g., occur if all pairwise classifiers classify randomly with a probability of 0.5.
In practice, the number of comparisons will be somewhere between these two extremes, depending on the nature of the
problem.

3.2 QWeighted for Multilabel Classification

A simple adaptation of QWeighted to multilabel classification is to repeat the process. We can compute the top class λtop

using QWeighted and remove this class from L and repeat this step, until the returned class is the artificial label λ0. This
adaptation uses two simple extensions of the original algorithm: (1) The information about which pairwise perceptrons
have been evaluated and their results are carried through the iterations so that no pairwise perceptron is evaluated more

8

than once. (2) By using the calibrated label ranking approach we know beforehand that at some point the vote amount
of the artificial label has to be computed. So, in hope for a better starting distribution of votes, all incident classifiers oi,0

respectively w̄i,0 of the artificial label are evaluated explicitly before employing iterated QWeighted.
Note that the effectiveness of this testing procedure is highly influenced by the relation of average number of relevant

labels to total number of labels. We can expect a high reduction of pairwise comparisons, if the above relation is relatively
small, which holds for the most real-world multilabel datasets. We will refer to this procedure in the following text as
QCMLPP1.

In addition to this straight-forward adaptation, we considered also an slightly improved variant (QCMLPP2). In
retrospect, QCMLPP1 computes a partial ranking of classes down to the calibrated label. That means, that for all relevant
labels all their incident classifiers are evaluated. It neglects the fact that for multilabel classification the information that
a particular class is ranked above the calibrated label is sufficient, rather than to which amount. QCMLPP2 works in the
same way as QCMLPP1 except that it stops the evaluation of the current top rank λt if it already received a higher voting
mass than the calibrated label. The class λt is not automatically removed from the set of labels as in QCMLPP1, since
further evaluations for the computation of other classes can occur, but it can not be selected as a new top rank candidate.

We are currently investigating further variants for improving the performance. For example, different search heuristics
based on other losses than the number of “lost games“ are imaginable. Furthermore, the selection of the two next classes
for evaluation can also be varied, i.e. by pairing the “best“ and the “worst“ class in the next iteration instead of the
two currently best classes. In addition, we are working on the derivation of formal complexity bounds to strengthen the
QWeighted approach.

9

4 Dual Multilabel Pairwise Perceptrons

Perhaps the hardest problem in the context of pairwise multilabel classification is that even if training and testing can be
performed efficiently, one still has to store a number of classifiers that is quadratic in the number of potential labels. Even
on modern computers with a large memory this problem becomes unsolvable for a high number of classes. Consider for
instance the EUR-Lex database introduced in Section 6.4. For its EUROVOC setting with almost 4000 classes the use of
MLPP would mean maintaining approximately 8,000,000 perceptrons in memory.

In order to circumvent this obstacle we reformulate the MLPP ensemble of perceptrons in dual form as we did with
one single perceptron in Equation 2.3. In contrast to MLPP, the training examples are thus required and have to be kept in
memory in addition to the associated weights, as a base perceptron is now represented as w̄u,v =

∑m
i=1α

t
u,v x̄i . This makes

an additional loop over the training examples inevitable every time a prediction is demanded. But fortunately it is not
necessary to recompute all x̄i x̄ for each base perceptron since we can reuse them by iterating over the training examples
in the outer loop, as can be seen in the following equations:

w̄1,2x̄= α1
1,2x̄1x̄+α2

1,2x̄2x̄+ . . .+αm
1,2x̄mx̄

w̄1,3x̄= α1
1,3x̄1x̄+α2

1,3x̄2x̄+ . . .+αm
1,3x̄mx̄

...

w̄1,nx̄= α1
1,nx̄1x̄+α2

1,nx̄2x̄+ . . .+αm
1,nx̄mx̄

w̄2,3x̄= α1
2,3x̄1x̄+α2

2,3x̄2x̄+ . . .+αm
2,3x̄mx̄

...

(4.1)

By advancing column by column it is not necessary to repeat the dot products computations, however it is necessary to
store the intermediate values, as can also be seen in the pseudocode of the training and prediction phases in Figures 5.1
and 5.2. Note also that the algorithm preserves the property of being incrementally trainable. We denote this variant of
training the pairwise perceptrons the dual multilabel pairwise perceptrons algorithm (DMLPP).

In addition to the savings in memory and run-time, analyzed in detail in Section 5, the dual representation allows
for using the kernel trick, i.e. to replace the dot product by a kernel function, in order to be able to solve originally
not linearly separable problems. However, this is not necessary in our case since text problems are in general linearly
separable.

Note also that the pseudocode needs to be slightly adapted when the DMLPP algorithm is trained in more than one
epoch, i.e. the training set is presented to the learning algorithm more than once. It is sufficient to modify the assignment
in line 8 in Figure 5.1 to an additive update αt

u,v = α
t
u,v+1 for a revisited example x̄t . This setting is particularly interesting

for the dual variant since, when the training set is not too big, memorizing the inner products can boost the subsequent
epochs in a substantial way, making the algorithm interesting even if the number of classes is small.

We are currently investigating hybrid variants to further reduce the computational complexity. The idea is to use a dif-
ferent formulation in training than in the prediction phase depending on the specific memory and runtime requirements
of the classification task. In order e.g. to combine the advantage of MLPP during training and DMLPP during predicting
on the subject matter subproblem, we could train the classifier as in the MLPP (with the difference of iterating over the
base classifier first and than over the instances instead of reversely so that only one perceptron has to remain in memory)
and than convert it by means of the collected information during training the perceptrons to the dual representation.

Other further steps include to adapt the algorithm in order to use the calibration technique described in Section 2.5
and to investigate the usage of QWeighted to further reduce computational costs.

10

5 Computational Complexity

The notation used in this section is the following: n denotes the number of possible classes, d the average number of
relevant classes per instance in the training set, a the number of attributes and a′ the average number of attributes not
zero (size of the sparse representation of an instance), and m denotes the size of the training set. For each complexity we
will give an upper bound O in Landau notation. We will indicate the runtime complexity in terms of real value additions
and multiplications ignoring operations that have to be performed by all algorithms such as sorting or internal real value
operations. Additionally, we will present the complexities per instance since all algorithms are incrementally trainable.

• Space Requirements
BR and MMP follow an one model per class approach, so they have to keep the same amount of perceptrons in
memory, leading to O(n · a) memory space. In contrast the non-dual pairwise approaches require one perceptron
for each of the n(n−1)

2
pairs of classes, hence we need O(n2a) memory. In addition, the calibrated versions require

an overhead of n perceptrons for the comparisons with the artificial label. The DMLPP algorithms keeps the whole
training set in memory, and additionally requires for each training example x̄ access to the weights of all class pairs
P ×N . Furthermore, it has to intermediately store the resulting scores for each base perceptron during prediction,
hence the complexity is O(mdn+ma′+n2) = O(m(dn+a′)+n2).1 We can see that (QC)MLPP is applicable especially
if the number of classes is low and the number of examples high, whereas DMLPP is suitable when the number of
classes is high, however it does not handle huge training sets very well.

• Training
For processing one training example, n dot product have to be computed by BR, plus at most the same amount if
there was a prediction error. The non-dual MLPPs require O(dn) dot products, one for each associated perceptron.
Assuming that a dot product computation costs O(a′), we obtain a complexity of O(dna′) per training example.
Thus, assuming similar loss rates, the pairwise training will be only on average d resp. d + 1 for the calibrated
version slower than the BR or MMP algorithm although training a quadratic number of base classifier.

DMLPP spends m dot product computations. In addition the summation of the scores costs O(dn) per training
instance, leading to O(m(dn+ a′)) operations. It is obvious that (QC)MLPP has a clear advantage over DMLPP in
terms of training time, unless n is of the order of magnitude of m or the model is trained over several epochs, as
already outlined in the previous Section 4

• Prediction
During prediction the one-per-class approaches achieve O(na′) computations for one instance. For the pairwise
approach without the usage of QWeighted all perceptrons have to be evaluated, leading to O(n2a′) computations.
The same upper bound holds analytically for QCMLPP, but as previous experiments have shown for the multiclass
case, QWeighted (QW) reduces the amount of required base classifier evaluations from n(n−1)

2
to n log (n) in practice

(Park and Fürnkranz, 2007a). It is easy to see that the multilabel adaptations of QWeighted are upper bounded
by n+ d ·O(QW), since n classifiers involving the calibrated class are always evaluated and QWeighted is applied
d times to compute the relevant labels in average. Assuming that the average runtime of QWeighted is n log (n),
we can expect an average runtime of n + dn log (n) for the adaption to the multilabel case. Our experimental
evaluations in Section 7 will confirm this observation.

The dual variant again iterates over all training examples and associated weights, hence the complexity is O(m(dn+
a′)). At this phase DMLPP benefits from the linear dependence of the number of classes in contrast to the quadratic
relationship of the MLPP. Roughly speaking the breaking point when DMLPP is faster in prediction is approximately
when the square of the number of classes is clearly greater than the number of training documents. Of course this
does not hold in the same degree for the comparison with the QWeighted variant. We can find a similar trade-off
for the memory requirements that holds in general for the comparison between dual and non-dual variants, with
the difference that the factor between sparse and total number of attributes becomes more important, leading
earlier to the breaking point when the sparseness is high.

1 Note that we do not estimate d as O(n) since both values are not of the same order of magnitude in practice. For the same reason we
distinguish between a and a′ since particularly in text classification both values are not linked: a text document often turns out to employ
around 100 different words whereas the size of the vocabulary of a the whole corpus can easily reach 100,000 words (although this number
is normally reduced by feature selection).

11

Table 5.1: Computational complexity given as upper bounds of number of addition and multiplication operations, for
each instance. n: #classes, d: avg. #labels per instance, m: #training examples, a: #attributes, a′: #attributes 6= 0.

training time prediction time memory requirement
MMP/ BR O(na′) O(na′) O(na)
MLPP O(dna′) O(n2a′) O(n2a)
QCMLPP O(dna′) ∼ na′ + dn log (n) a′ O(n2a)
DMLPP O(m(dn+ a′)) O(m(dn+ a′)) O(m(dn+ a′) + n2)

Require: New training example pair (x̄m, P),
training examples x̄1 . . . x̄m−1,
weights {αi

u,v | λu,λv ∈ L, 0< i < m}
1: for each x̄i ∈ x̄1 . . . x̄m−1 do
2: pi ← x̄i · x̄m

3: for each (λu,λv) ∈ P × N do
4: if αi

u,v 6= 0 then
5: su,v ← su,v +αi

u,v · pt . note that su,v =−sv,u

6: for each (λu,λv) ∈ P × N do
7: if su,v < 0 then
8: αm

u,v ← 1 . note that αu,v =−αv,u

9: return {αm
u,v | (λu,λv) ∈ P × N} . return new weights

Figure 5.1: Pseudocode of the training method of the
DMLPP algorithm.

Require: example x̄ for classification,
training examples x̄1 . . . x̄m−1,
weights {αi

u,v | λu,λv ∈ L, 0< i < m}
1: for each x̄i ∈ x̄1 . . . x̄m do
2: p← x̄i · x̄
3: for each (λu,λv) ∈ Pi × Nt do
4: if αi

u,v 6= 0 then
5: su,v ← su,v +αi

u,v · p

6: for each (λu,λv) ∈ L×L do
7: if u 6= v ∨ su,v > 0 then
8: vu← vu + 1

9: return voting v̄ = (v1, . . . , v|L|) . return voting

Figure 5.2: Pseudocode of the prediction phase of the
DMLPP algorithm.

A compilation of the analysis can be found in Table 5.1, together with the complexities of MMP and BR. A more
detailed comparison between MMP and MLPP is available from Loza Mencía and Fürnkranz (2008a). Note that the
stated prediction time for QCMLPP in the table is not an analytical complexity bound like the others, it is an empirically
estimated value.

In summary, it can be stated that the dual form of the MLPP balances the relationship between training and prediction
time by increasing training and decreasing prediction costs, and especially benefits from a decreased prediction time and
memory savings when the number of classes is large, which was the main obstacle to applying the pairwise approach to
large scale problems in terms of classes. In contrast, at first view QCMLPP does not benefit analytically from the QWeighted
voting, but there is empirical evidence for a clear improvement compared to the full voting. There is no disadvantage
of using QCMLPP instead of CMLPP unless a more fine-grained distinction between classes than relevant-irrelevant is
required.

12

6 Experimental Setup

6.1 Multilabel Evaluation Measures

There is no generally accepted procedure for evaluating multilabel classifications. Our approach is to consider a multilabel
classification problem as a meta-classification problem where the task is to separate the set of possible labels into relevant
labels and irrelevant labels. Let P̂x̄ denote the set of labels predicted by the multilabel classifier and N̂x̄ = L \ P̂x̄ the set
of labels that are not predicted by the classifier. Thus, we can, for each individual instance x̄, compute a two-by-two
confusion matrix Cx̄ of relevant/irrelevant vs. predicted/not predicted labels:

Cx̄ predicted not predicted
relevant |Px̄ ∩ P̂x̄| |Px̄ ∩ N̂x̄| |Px̄|

irrelevant |Nx̄ ∩ P̂x̄| |Nx̄ ∩ N̂x̄| |Nx̄|
|P̂x̄| |N̂x̄| |L|

From such a confusion matrix Cx̄, we can compute several well-known measures:

• The Hamming loss (HAMLOSS) computes the percentage of labels that are misclassified, i.e., relevant labels that are
not predicted or irrelevant labels that are predicted. This basically corresponds to the error in the confusion matrix.
In order to be consistent with the following measures, we report 1 minus the Hamming loss, which corresponds to
the accuracy on the predicted labels.

HAMLOSS(Cx̄)
def
= 1−

1

|L|
�

�P̂x̄4Px̄

�

� (6.1)

The operator 4 denotes the symmetric difference between two sets and is defined as A4B
def
= (A\ B)∪ (B \ A), i.e.

P̂x̄4Px̄ has all labels that only appear in one of the two sets.

• Precision (PREC) computes the percentage of predicted labels that are relevant, recall (REC) computes the percent-
age of relevant labels that are predicted, and the F1-measure is the harmonic mean between the two.

PREC(Cx̄)
def
=
|P̂x̄ ∩ Px̄|
|P̂x̄|

REC(Cx̄)
def
=
|P̂x̄ ∩ Px̄|
|Px̄|

(6.2)

F1(Cx̄)
def
=

2
1

REC(Cx̄)
+ 1

PREC(Cx̄)

=
2REC(Cx̄)PREC(Cx̄)
REC(Cx̄) + PREC(Cx̄)

(6.3)

To average these values, we compute a micro-average over all values in a test set, i.e., we add up the confusion matrices
Cx̄ for examples in the test set and compute the measure from the resulting confusion matrix. Thus, for any given measure
f , the average is computed as:

favg = f (
n
∑

i=1

Cx i
) (6.4)

If we use a cross-validation, the measures favgj
, j = 1 . . . q are averaged over all q folds.

13

1 .

2 .

3 .

4 .

5 .

6 .

7 .

 . . .

1 .

2 .

3 .

4 .

5 .

6 .

7 .

 . . .

p = 1 / 1

p = 2 / 4

p = 3 / 5

1 .

2 .

3 .

4 .

5 .

6 .

7 .

 . . .

Figure 6.1: Diagrams of predicted label rankings. Blue rectangles denote real positive classes, red ones negatives. First
ranking: perfect classification, all relevant classes are ranked over irrelevant ones, RANKLOSS = 0, AVGP = 1. Second and
third ranking: classes on position 4 and 6 are misplaced, thus 5 of 12 possible pairs of labels are not correctly ordered,
top class is correct, RANKLOSS = 5/12, AVGP= 21/30= 0.7.

6.2 Ranking Loss Functions

Some previous works on multilabel classification, in particular the work on MMPs to which we compare, evaluated
the ranking performance and neglected the calibration. For this reason, we also employ two previously used ranking
measures (Crammer and Singer, 2003). Using these measures allows us to compare the ranking performance of our
calibrated methods to previous methods that do not use calibration and can not be evaluated with the above multilabel
loss functions. The different losses we used are computed comparing the ranking with the true set of relevant classes,
each of them focusing on different aspects.

We use the following notational conventions: For a given instance x , let r(λi) denote the position of λi in the predicted
ranking (with the calibrating label λ0 being removed from the ranking) and r−1(i) the label λ that is assigned to the
position i.

• average precision (AVGP) computes for each relevant label the percentage of relevant labels among all labels that
are ranked before it, and averages these percentages over all relevant labels.

AVGP(Px̄, r)
def
=

1

|Px̄|

∑

λ∈Px̄

|{λ′ ∈ Px̄|r(λ′)≤ r(λ)}|
r(λ)

(6.5)

• The ranking loss (RANKLOSS) computes the average fraction of pairs of labels which are not correctly ordered:

RANKLOSS(Px̄, r)
def
=

�

�{(λ,λ′) ∈ Px̄ × Nx̄ | r(λ)> r(λ′)}
�

�

|Px̄||Nx̄|
(6.6)

These measures are computed for each example and then averaged over all examples. A visualization of some example
computations of the losses is shown in Figure 6.1.

6.3 Standard Benchmark Datasets

The datasets that were included in the experimental setup cover three application areas in which multilabeled data
are frequently observed: text categorization (the Reuters-RCV1 and Reuters-21578 datasets), image classification (the
scene dataset) and bioinformatics (the yeast dataset).1 The Reuters Corpus Volume I (Reuters-RCV1) is one of the most
widely used test collection for text categorization research. It contains 804,414 newswire documents, which we split
into 535,987 training documents (all documents before and including April 26th, 1999) and 268,427 test documents
(all documents after April 26th, 1999). We used the token files of Lewis et al. (2004), which are already word-stemmed
and stop word reduced. However we repeated the stop word reduction as we experienced that there were still a few

1 The Reuters-RCV1 dataset is available from http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004_rcv1v2_

README.htm (Lewis et al., 2004), the Reuters-21578 dataset from http://www.daviddlewis.com/resources/testcollections/

reuters21578/, and the yeast and scene datasets from http://mlkd.csd.auth.gr/multilabel.html.

14

http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm
http://www.ai.mit.edu/projects/jmlr/papers/volume5/lewis04a/lyrl2004_rcv1v2_README.htm
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://www.daviddlewis.com/resources/testcollections/reuters21578/
http://mlkd.csd.auth.gr/multilabel.html

Table 6.1: Statistics of datasets. The attribute number in parenthesis denotes the actual used number of features, i.e.
for scene and yeast the number of features after adding the pairwise products and for the text collections the amount
after feature selection. Label density indicates the average number of labels per instance d relative to the total number of
classes n, and distinct counts the distinct label-sets found in the dataset |{Pi | i = 0 . . . m}|.

dataset name domain #instances m #numeric attributes a #labels n avg. label-set size d density d
n

distinct
scene multimedia 2407 294 (86732) 6 1.074 17.9 % 15
yeast biology 2417 103 (10712) 14 4.237 30.3 % 198
reuters21578 text 11367 21474 (10000) 120 1.258 1.0 % 533
rcv1-v2 text 804414 231188 (25000) 101 2.880 2.9 % 1028
EUR-Lex subject matter text 19596 166448 (5000) 201 2.210 1.1 % 2540
EUR-Lex directory code text 19596 166448 (5000) 412 1.292 0.3 % 1648
EUR-Lex EUROVOC text 19596 166448 (5000) 3993 5.317 0.1 % 16871

occurrences. The 25,000 most frequent features on the training set were selected and weighted with TF-IDF weights
(Salton and Buckley, 1988). We did not restrict the set of 103 categories although one class does not contain any
examples in the training set.

We also experimented with the older Reuters-21578 corpus (Lewis, 1997), which has 11,367 examples and 120
possible labels. Through similar pre-processing as in the Reuters-RCV1 dataset, we obtained 10,000 features for this
dataset.

The learning task in the yeast gene functional multiclass classification problem is to associate genes with a subset
of 14 functional classes from the Comprehensive Yeast Genome Database of the Munich Information Center for Protein
Sequences2. Each of 2417 genes is represented with 103 features. In previous experiments (Loza Mencía and Fürnkranz,
2008a), we found that even the pairwise problems are hard to separate with a linear classifier (much more so in the
binary relevance setting). Thus, in this set of experiments, we added all pairwise feature products to the original feature
representation, in order to simulate a quadratic kernel function.

The task in the scene dataset (Boutell et al., 2004) is to recognize which of six possible scenes (beach, sunset, field, fall
foliage, mountain, urban) can be found in a 2407 pictures. Many pictures contain more than one scene. For each image,
spatial color moments are used as features. Each picture is divided into 49 blocks using a 7× 7 grid. A picture is then
represented using the mean and the variance of each color band of each block, i.e., using a total of 2× 3× 7× 7 = 294
features. Like in the Yeast dataset, we enriched the feature set with all pairwise feature products.

6.4 The EUR-Lex Repository

The DMLPP algorithm arose from the need to be able to process the EUR-Lex repository (Loza Mencía and Fürnkranz,
2007, 2008c,b). The EUR-Lex text collection is a collection of documents about European Union law. It contains many
several different types of documents, including treaties, legislation, case-law and legislative proposals, which are indexed
according to several orthogonal categorization schemes to allow for multiple search facilities. The most important cat-
egorization is provided by the EUROVOC descriptors, which is a topic hierarchy with almost 4000 categories regarding
different aspects of European law.

In addition to the challenging task of handling such great amount of classes, this document collection provides an
excellent opportunity to study text classification techniques for several reasons:

• it contains multiple classifications of the same documents, making it possible to analyze the effects of different
classification properties using the same underlying reference data without resorting to artificial or manipulated
classifications,

• the overwhelming number of produced documents make the legal domain a very attractive field for employing
supportive automated solutions and therefore a machine learning scenario in step with actual practice,

• the documents are available in several European languages and are hence very interesting e.g. for the wide field
of multi- and cross-lingual text classification,

• and, finally, the data is freely accessible (at http://eur-lex.europa.eu/)

2 http://mips.gsf.de/genre/proj/yeast/

15

http://eur-lex.europa.eu/
http://mips.gsf.de/genre/proj/yeast/

Title and reference
Council Directive 91/250/EEC of 14 May 1991 on the legal protection of computer programs

Classifications

EUROVOC descriptor

• data-processing law, computer piracy, copyright, software, approximation of laws

Directory code

• 17.20.00.00 Law relating to undertakings / Intellectual property law

Subject matter

• Internal market, Industrial and commercial property

Text
COUNCIL DIRECTIVE of 14 May 1991 on the legal protection of computer programs (91/250/EEC)

THE COUNCIL OF THE EUROPEAN COMMUNITIES,

Having regard to the Treaty establishing the European Economic Community and in particular Article 100a thereof, . . .

Figure 6.2: Excerpt of a EUR-Lex sample document with the CELEX ID 31991L0250. The original document contains
more meta-information. We trained our classifiers to predict the EUROVOC descriptors, the directory code and the subject
matters based on the text of the document.

We retrieved the HTML versions with bibliographic notes recursively from all (non empty) documents in the English
version of the Directory of Community legislation in force3, in total 19,596 documents. Only documents related to sec-
ondary law (in contrast to primary law, the constitutional treaties of the European Union) and international agreements
were included. The legal form of the included acts are mostly decisions (8,917 documents), regulations (5,706), directives
(1,898) and agreements (1,597). The bibliographic notes of the documents contain information such as dates of effect
and validity, authors, relationships to other documents and classifications. The classifications include the assignment
to several EUROVOC descriptors, directory codes and subject matters, hence all classifications are multilabel ones. EU-
ROVOC is a multilingual thesaurus providing a controlled vocabulary4. Documents in the documentation systems of the
EU are indexed using this thesaurus. The directory codes are classes of the official classification hierarchy of the Directory
of Community legislation in force. It contains 20 chapter headings with up to four sub-division levels. The high number
of 3,993 different EUROVOC descriptors were identified in the retrieved documents, each document is associated to 5.37
descriptors on average. In contrast there are only 201 different subject matters appearing in the dataset, with a mean of
2.23 labels per document, and 412 different directory codes, with a label set size of on average 1.29. Note that for the
directory codes we used only the assignment to the leaf category as the parent nodes can be deduced from the leaf node
assignment. For the document in Figure 6.2 this would mean a set of labels of {17.20} instead of {17, 17.20}.

Figure 6.2 shows an excerpt of a sample document with all information that has not been used removed. The full docu-
ment can be viewed at http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31991L0250:EN:NOT. We
extracted the text body from the HTML documents, excluding HTML tags, bibliographic notes or other additional infor-
mation that could distort the results. We conducted a similar text preprocessing as for the Reuters datasets, this time
selecting the 5,000 most frequent features.

6.5 Algorithmic Setup

All algorithms are trained incrementally. For the RCV1 dataset, a single, chronological pass through the data was
used (one epoch) because our previous results have shown that multiple iterations are not necessary (Loza Mencía
and Fürnkranz, 2008a). For the EUR-Lex datasets we report the results for one epoch, more results can be found in (Loza
Mencía and Fürnkranz, 2008b). On the other datasets, we trained for multiple epochs. We report the results for training
after 100 epochs for yeast ans scene and 10 epochs for the small Reuters-21578. However, in terms of the relative order
of the tested methods, we found that the results are quite insensitive to the exact numbers of epochs.

Except for the large Reuters RCV1 data, where we used the dedicated test set, all reported results are estimated
from 10-fold cross-validation. In order to ensure that no information from the test set enters the training phase for the

3 http://eur-lex.europa.eu/en/legis/index.htm
4 http://europa.eu/eurovoc/

16

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31991L0250:EN:NOT
http://eur-lex.europa.eu/en/legis/index.htm
http://europa.eu/eurovoc/

text datasets, the TF-IDF transformation and the feature selection were conducted only on the training sets of the ten
cross-validation splits.

For the MMP algorithm we used the ISERR loss function and the uniform penalty function. This setting showed the
best results in (Crammer and Singer, 2003) on the RCV1 data set. All the perceptrons of the different algorithms were
initialized with random values, except for DMLPP where the result of training a base classifier for the first time was
randomized. We used the first variant of the QCMLPP algorithm for the prediction performance results.

17

7 Evaluation

The following sections analyze, in short, the prediction performance and in a more extensive way the computational and
memory efficiency of the presented algorithms.

7.1 Prediction Performance

Table 7.1 shows the ranking prediction performance according to the evaluation measures presented in Section 6.2 and
Table 7.2 shows the label set predictions performance according to Section 6.1. The tables summarizes results from
previous experiments (Fürnkranz et al., 2008; Loza Mencía and Fürnkranz, 2008b,a) as well as new experiments with
QCMLPP on the several multilabel datasets. Note that no results were reported on the EUROVOC dataset for the non-dual
variants due to the overwhelming memory consumption.

The first remarkable observation is that the pairwise approaches dominate the one-per-class approaches for each
dataset and measure. The only exception is the QCMLPP1 algorithm for the ranking losses, since QCMLPP is not in-
terested in providing a good ranking: after it is clear which labels are at top of the calibrated label, no additional
computations are done in order to determine the remaining ordering. On the other hand note that the multilabel losses
of the QCMLPP are exactly equal to that of CMLPP since both compute for every instance the same partitioning into
relevant and irrelevant labels.

7.2 Computational Efficiency

We analyzed the computational efficiency in two settings. The first comparison concentrates on the savings in base
classifier evaluations using the QWeighted method on the different multilabel datasets. The second setting compares
the costs when the number of classes is becoming very high and using the dual variant becomes more important and
essential. For both settings we ignored minor operations that have to be performed by all algorithms, such as sorting or
internal operations in order to allow a comparison independent from external factors such as logging activities and the
run-time environment.

7.2.1 QWeighted

Table 7.3 depicts the gained reduction of prediction complexity of the QWeighted approach with respect to the classifier
evaluations for CMLPP. For each of the four listed methods the average number of base classifier evaluations is stated.
In addition, for QCMLPP1 and 2 the ratio of classifier evaluations to the complete set of pairwise classifiers, which are
typically evaluated in the CMLPP approach, are denoted within brackets, to emphasize the achieved reduction. Note that
the costs of DMLPP cannot be expressed by base classifier evaluations so that we left it out for this analysis.

The first remarkable observation is the clear improvement when using the QWeighted approach. Except for the yeast
and scene dataset, both variants of the QCMLPP use less than the tenth part of the classifier evaluations for CMLPP.

Table 7.1: Ranking performance of the different algorithms. For AVGP the higher values the better, for RANKLOSS low
values near zero are good. Bold values represent the best value for each dataset and measure combination.

AVGP RANKLOSS

dataset BR MMP (D)MLPP CMLPP QCMLPP BR MMP (D)MLPP CMLPP QCMLPP
scene 85.64 79.48 86.43 86.70 81.88 8.17 11.81 7.47 7.29 12.07
yeast 70.41 71.39 75.15 75.05 67.70 22.73 21.03 17.47 17.56 24.45
rcv1-v2 88.23 92.82 93.70 93.83 81.19 2.53 0.69 0.48 0.47 5.47
reuters21578 84.45 90.20 90.77 91.14 79.11 6.00 1.50 0.79 0.78 7.37
EUR-Lex subject matter 62.90 74.71 78.15 78.92 54.98 16.36 2.96 1.17 1.15 16.82
EUR-Lex directory code 57.10 70.00 76.42 76.95 41.19 19.30 2.75 1.14 1.14 23.49
EUR-Lex EUROVOC 26.90 29.28 46.67 — — 40.35 3.906 2.779 — —

18

Table 7.2: Multilabel performance of the different algorithms. For HAMLOSS low values are good, for F1 the higher the
better. Bold values represent the best value for each dataset and measure combination.

HAMLOSS F1
BR (Q)CMLPP BR (Q)CMLPP

scene 10.42 10.00 71.19 72.76
yeast 24.09 22.67 59.76 62.83
rcv1-v2 1.26 1.03 79.93 83.22
reuters21578 0.78 0.55 67.92 74.63
EUR-Lex subject matter 1.05 0.69 57.93 63.20
EUR-Lex directory code 0.42 0.23 46.91 50.81

Table 7.3: Computational costs at prediction in average number of predictions per instance. The italic values next to
the two multilabel adaptations of QWeighted show the ratio of predictions to CMLPP and the second rightmost column
describes the average number of relevant labels.

dataset n MMP, BR CMLPP QCMLPP1 QCMLPP2 n log (n) n+ dn log (n) d density d
n

scene 6 6 21 11.51 (54.8%) 11.46 (54.58%) 10.75 17.50 1.07 17.9 %
yeast 14 14 105 67.57 (64.4%) 64.99 (61.9%) 36.94 170.65 4.24 30.3 %
rcv1-v2 103 103 5356 485.23 (9.06%) 456.23 (8.52%) 477.38 1649.70 3.24 2.9 %
reuters21578 120 120 7260 378.45 (5.21%) 325.94 (4.49%) 574.50 843.87 1.26 1.0 %
EUR-Lex sj 201 201 20301 1144.2 (5.64%) 825.07 (4.06%) 1065.96 2556.78 2.21 1.1 %
EUR-Lex dc 412 412 85078 2610.76 (3.07%) 1288.22 (1.51%) 2480.66 3612.05 1.29 0.3 %

Another appreciable point, especially regarding the mentioned deviation, is the clearly visible correlation between the
gained reduction and the label density of the problem, i.e. the ratio of the average number of labels per instance to the
total number of labels. The dataset with the highest density, yeast, achieved the lowest reduction. Similarly both QCMLPP
variants evaluated the lowest ratio of classifiers for the dataset with the lowest density, the EUR-Lex directory code dataset.
This observation confirms the previously stated expectation that the reduction is highly influenced by the density. This
effect is not surprising, since roughly speaking QCMLPP employs iteratively QWeighted until the calibrated label is found,
and the number of iterations is obviously related to the density. Furthermore the results show that QCMLPP2 slightly
outperforms QCMLPP1, except for the last dataset, where QCMLPP2 performs half the operations than the naive variant.
Here again especially QCMLPP2 seems to benefit from the low label density of this dataset.

For estimating the average runtime in practice, two columns were included, which state the n log (n) and n+ dn log (n)
values for the corresponding datasets. We can clearly confirm that the number of classifier evaluations is for all considered
datasets smaller than the previously estimated upper bound of n + dn log (n). Note that the value for yeast 170.65 is
actually greater than the number of existing classifiers (105). This is due to the fact, that the values lie yet in a range
where lower order terms have still an impact in the equation.

Figure 7.1 visualizes the above results and allows again a comparison to different complexity values such as n, n log(n)
and n2. The upper figure is a recapitulation of the results from Park and Fürnkranz (2007a) extended with multiclass
classification performance results of the multilabel datasets considered in this paper: instead of evaluating until finding
the calibrating label, QWeighted was only applied once as if it was a multiclass problem. These results for the simulated
multiclass classification performance support additionally the statement that QWeighted achieves an n log(n) runtime
in practice. For better readability, a logarithmic scale for both axis is used. The lower figure is more interesting in this
context, where multilabel classification prediction complexity of QCMLPP is presented. Note that the y-axis now describes
the number of comparisons respectively classifier evaluations divided by the number of labels, which is graphically
motivated and allows a finer distinction of the different curves. Note that for the black curve (n+ dn log (n)), the actual
average number of labels from data was used for computing the values and are identical to the ones from table 7.3.
Though the figure may indicate that a runtime of n log (n) is still achievable for multilabel classification, especially for
QCMLPP2, we interpret the results more cautiously and conclude that the more sound n + dn log (n) runtime can be
expected in practice.

19

7.2.2 Dual Representation

As already analyzed in Section 5, the dual variant DMLPP not only allows to reduce the memory consumption on problem
with high class cardinality, but in the same manner allows to reduce computational costs for this type of large-scale
problems. We analyzed therefore the computational costs on the three different EUR-Lex datasets since they allow us
to observe the direct impact of a varying label set size. Table 7.2.2 is based on previous experiment (Loza Mencía and
Fürnkranz, 2008c,b) and was enriched by the results of the calibrated and QWeighted variants. It shows the amount of
real value addition and multiplication computations (measured on the first cross validation split, trained for one epoch).

We can observe a clear advantage of the non-pairwise approaches on the subject matter data especially for the pre-
diction phase, however the training costs are in the same order of magnitude.1 Between MLPP and DMLPP we can see
an antisymmetric behavior: while MLPP requires only almost half of the amount of the DMLPP operations for training,
DMLPP reduces the amount of prediction operations by a factor of more than 4. Nevertheless this value is beaten by
far by the QWeighted variants, repeating the previous observations on the number of base classifier evaluations. For the
directory code the rate for MMP and BR more than doubles in correspondence with the increase in number of classes,
additionally the MLPP testing time substantially increases due to the quadratic dependency, while DMLPP profits from
the decrease in the average number of classes per instance. It even causes less computations in the training phase than
MMP/BR. Again QCMLPP is faster in testing than DMLPP, but the distance is quite smaller. For training DMLPP is clearly
faster. Note that the calibrating variants need the sum of BR’s and MLPP’s computations for training. The reason for the
low number of computations for DMLPP is not only the reduced maximum amount of weights per instance (cf. Section
5), but particularly the decreased probability that a training example is relevant for a new training example (and conse-
quently that dot products and scores have to be computed) since it is less probable that both class assignments match,
i.e. that both examples have the same pair of positive and negative classes.

This becomes particularly clear if we observe the number of non-zero weights and actually used weights during training
for each new example. The classifier for subject matter has on average 21 weights set per instance out of 443 (= d(n−d))
in the worst case (a ratio of 4.47%), and on average 5.1% of them are required when a new training example arrives.
In other terms, this means that a training instance is only relevant to on average 4.47% of the base classifiers, and of
these base classifiers only 5.1% are affected when updating with a new training instance. For the directory code with a
smaller fraction d/n 35.5 weights are stored (3.96%), of which only 1.11% are used when updating. This also explains
the relatively small number of operations for training on EUROVOC, since from the 1,802 weights per instance (8.41%),
only 0.55% are relevant to a new training instance.

However DMLPP cannot benefit in the same manner from this point during the prediction phase on the EUROVOC as on
the directory code subset. Nevertheless it is still more efficient during training than the one-per-class variants. No results
could be retrieved for the non-dual pairwise variants on the EUR-Lex dataset due to the high memory requirements (cf.
Section 7.3), but we can try to estimate the expected number of computations.

Based on the estimation that MLPP requires d times computations than BR, we could expect around 175.000 M op.
for training on EUROVOC. (Q)CMLPP would require additionally the computations of BR. For testing, we estimate the
number of base classifier evaluations with n+dn log n (cf. Section 5) which seems to provide reliable results (cf. previous
setting). Under this assumption and using an average of 0.955 M op. per base classifier evaluation (for the whole test
set), we obtain approx. 88.000 M op. for QCMLPP, although computing the calibrated . This would mean again an
advantage over DMLPP, but a relatively small one compared to the previous datasets. However for training, DMLPP’s
costs are almost ten times smaller than the estimated MLPP costs. Note also that such experiment setting are (currently)
not possible due to the exponential memory requirements of the non-dual pairwise approaches (see next Section).

7.3 Memory Requirements

In order to compare the memory requirements, we measured the consumed memory on the EUR-Lex datasets. These
datasets allows us to compare directly the memory consumption in dependency of the number of classes since they share
the same instance set and only differ in the concrete labelling. In addition this dataset collection was the initial reason
for the development of a memory saving variant of the pairwise approach, as it was not possible to process in particular
the EUROVOC view with its almost 4000 classes.

The memory consumption provided by the Java Virtual Machine after training the several classifiers is depicted in Table
7.3. Note that these sizes include the overhead caused by the virtual machine and the machine learning framework.2

1 Note that MMP and BR compute the same amount of dot products, the computational costs only differ in the number of vector additions,
i.e. perceptron updates. A deeper analysis of the contrary behavior of both algorithms when the number of classes increases can be found in
(Loza Mencía and Fürnkranz, 2007).

2 We used the WEKA framework (http://www.cs.waikato.ac.nz/~ml/weka/), but we adapted it so that it only maintains a copy of an
instance in memory when necessary for the incremental updating.

20

http://www.cs.waikato.ac.nz/~ml/weka/

Table 7.4: Computational costs in millions of real value operations (M op.) for the EUR-Lex datasets.

subject matter training testing
BR 1,675 M op. 192 M op.
MMP 1,789 M op. 192 M op.
MLPP 3,870 M op. 19,210 M op.
CMLPP 5,545 M op. 19,402 M op.
QCMLPP1 5,545 M op. 977 M op.
QCMLPP2 5,545 M op. 729 M op.
DMLPP 6,089 M op. 4,628 M op.

directory code training testing
BR 3,410 M op. 394 M op.
MMP 3,579 M op. 394 M op.
MLPP 4,712 M op. 80,938 M op.
CMLPP 8,123 M op. 81,331 M op.
QCMLPP1 8,123 M op. 2,331 M op.
QCMLPP2 8,123 M op. 1,123 M op.
DMLPP 2,986 M op. 5,438 M op.

EUROVOC training testing
BR 32,975 M op. 3,817 M op.
MMP 40,510 M op. 3,817 M op.
DMLPP 17,719 M op. 127,912 M op.

Table 7.5: Memory requirements of the different classifiers for the EUR-Lex datasets.

dataset BR/MMP DMLPP MLPP
subject matter 151 MB 203 MB 539 MB
directory code 165 MB 217 MB 1825 MB
EUROVOC 1143 MB 2246 MB –

MLPP already consumes more memory than the dual variant for the first dataset with 200 classes. For the 400 classes
of the directory code view the algorithm requires almost 2 GB, while DMLPP is able to compress the same information
into slightly more than 200 MB. As expected and already mentioned in Section 7.1, MLPP is not applicable to EUROVOC.
A simple estimation based on the number of base classifier (almost eight mio.), number of features and bytes per float
results in 152 GB of memory.

Another remarkable fact is that the memory requirement of DMLPP is comparable to the one of the one-per-class
algorithms: for the smaller datasets we obtain an overhead of only 50 MB and for the bigger EUROVOC view it requires
only double of the memory, although representing a quadratic number of base classifiers.

21

2 5 10 20 50 100 200 500

1e
+

01
1e

+
02

1e
+

03
1e

+
04

1e
+

05

number of classes

nu
m

be
r

of
 c

om
pa

ris
on

s

vehicle

glass/image
yeast/vowel

soybean
letter

rcv1−v2

reuters21578

EUR−Lex subject matter

EUR−Lex directory code

●

●●

● ●

●

●

●
●

●

●

((n((n −− 1)))) 2

nlog((n))
QWeighted

n

0 100 200 300 400

1
2

5
10

20
50

10
0

20
0

number of labels

nu
m

be
r

of
 c

om
pa

ris
on

s/
nu

m
be

r
of

 la
be

ls

●

●

●

●

●

●

scene

yeast rcv1−v2

reuters21578

EUR−Lex subject matter

EUR−Lex directory code

●

(n(n+1))/2, CMLPP

nlog((n))
QCMLPP1

QCMLPP2
n + dn log(n)

n

Figure 7.1: Prediction complexity of QWeighted and QCMLPP: number of comparisons needed in dependancy of the
number of classes n for different multiclass and multilabel problems. Upper figure: Problems vehicle to letter in the
first figure are multiclass problems already analyzed by Park and Fürnkranz (2007a), while multiclass versions of the
multilabel datasets rcv1-v2, reuters21578, EUR-Lex subject matter and EUR-Lex directory code were evaluated within this
study. Lower figure: QCMLPP1/2 is compared to n(n+1)/2 as in CMLPP, n as in BR and n log (n) on 6 multilabel datasets.

22

8 Conclusions

Multilabel classification is becoming a more and more important task in machine learning due to the increasing amount
of application scenarios where it is necessary to not only predict one top class as in multiclass classification, but a set
of relevant classes. The common approach of training one classifier for each class that determines a binary relevance is
clearly outperformed by the approach of learning pairwise preferences between pairs of classes. The main disadvantage
of this approach was, until now, the quadratic number of base classifiers needed and hence the increased computational
costs for prediction and the increased memory requirements. We have presented in this paper one time efficient and one
memory space efficient algorithm based on the pairwise approach.

The first variant combines a technique that transforms a class ranking into a bipartite prediction by introducing an
artificial thresholding class, called calibration (Fürnkranz et al., 2008), with the QWeighted voting that stops the compu-
tation of the ranking when the bipartite separation is already determined (Park and Fürnkranz, 2007a). For the combined
QWeighted multilabel method the computational costs savings compared to the normal voting are especially important
with increasing number of classes. Though not analytically proven, our empirical results show that the complexity is up-
per bounded by n+ dn log (n), in comparison to the evaluation of n in the case of one-per-class approaches and O(n2) for
the unmodified pairwise approach. For the QWeighted multilabel approach, we see improvements in a more appropriate
integration of the QWeighted concept, namely to identify and exploit unnecessary classifier evaluations, to the multilabel
setting. In this context, QCMLPP2 was already a step forward. Additionally, we are currently investigating approaches in
order to reduce the number of computations needed for converge to the final ranking such as the swiss system used in
tournaments (Park and Fürnkranz, 2007b).

The second method emerged from the need to process a dataset with almost 4000 classes (Loza Mencía and Fürnkranz,
2008b). DMLPP takes advantage of the dual representation of the perceptrons in order to shift the main dependency
from the number of classes to the number of training instances. This enables to use the pairwise approach with a high
number of classes and, additionally reduces the computational costs for some datasets. The next step will be to combine
QWeighted and the dual approach, both in the sense of applying the intelligent mechanism to voting in DMLPP, as well
as in the sense of using a hybrid variant that switches between dual or QWeighted training or testing depending on the
characteristics of the dataset (cf. Section 4).

Acknowledgements

This work was supported by the EC 6th framework project ALIS (Automated Legal Information System) and by the German
Science Foundation (DFG).

23

Bibliography

C. M. Bishop. Neural Networks for Pattern Recognition. Oxford University Press, 1995. 4

M. R. Boutell, J. Luo, X. Shen, and C. M. Brown. Learning multi-label scene classification. Pattern Recognition, 37(9):
1757–1771, 2004. 15

K. Brinker, J. Fürnkranz, and E. Hüllermeier. A Unified Model for Multilabel Classification and Ranking. In Proceedings of
the 17th European Conference on Artificial Intelligence (ECAI-06), 2006. 7

K. Crammer and Y. Singer. A Family of Additive Online Algorithms for Category Ranking. Journal of Machine Learning
Research, 3(6):1025–1058, 2003. 3, 4, 5, 14, 17

K. Crammer, O. Dekel, J. Keshet, S. Shalev-Shwartz, and Y. Singer. Online passive-aggressive algorithms. Journal of
Machine Learning Research, 7:551–585, 2006. 4

A. Elisseeff and J. Weston. A kernel method for multi-labelled classification. In Advances in Neural Information Processing
Systems, volume 14, pages 681–687, 2001. 5

Y. Freund and R. E. Schapire. Large Margin Classification using the Perceptron Algorithm. Machine Learning, 37(3):
277–296, 1999. 4

J. Fürnkranz. Round Robin Classification. Journal of Machine Learning Research, 2:721–747, 2002. 3, 6

J. Fürnkranz, E. Hüllermeier, E. Loza Mencía, and K. Brinker. Multilabel classification via calibrated label ranking.
Machine Learning, 2008. In Press. 3, 7, 18, 23

C.-W. Hsu and C.-J. Lin. A Comparison of Methods for Multi-class Support Vector Machines. IEEE Transactions on Neural
Networks, 13(2):415–425, 2002. 3, 6

I. Katakis, G. Tsoumakas, and I. Vlahavas. Multilabel text classification for automated tag suggestion. In Proceedings of
the ECML/PKDD-08 Workshop on Discovery Challenge, Antwerp, Belgium, 2008. 3

R. Khardon and G. Wachman. Noise tolerant variants of the perceptron algorithm. Journal of Machine Learning Research,
8:227–248, 2007. 4

D. D. Lewis. Reuters-21578 text categorization test collection. README file (V 1.2), available from http://www.
research.att.com/~lewis/reuters21578/README.txt, September 1997. 15

D. D. Lewis, Y. Yang, T. G. Rose, and F. Li. Rcv1: A new benchmark collection for text categorization research. Journal of
Machine Learning Research, 5:361–397, 2004. 4, 5, 14

Y. Li, H. Zaragoza, R. Herbrich, J. Shawe-Taylor, and J. S. Kandola. The Perceptron Algorithm with Uneven Margins. In
Machine Learning, Proceedings of the Nineteenth International Conference (ICML 2002), pages 379–386, 2002. 4

E. Loza Mencía and J. Fürnkranz. An evaluation of efficient multilabel classification algorithms for large-scale problems
in the legal domain. In LWA 2007: Lernen - Wissen - Adaption, Workshop Proceedings, pages 126–132, 2007. 3, 15, 20

E. Loza Mencía and J. Fürnkranz. Pairwise learning of multilabel classifications with perceptrons. In Proceedings of the
2008 IEEE International Joint Conference on Neural Networks (IJCNN 08), pages 2900–2907, Hong Kong, 2008a. 3, 5,
6, 12, 15, 16, 18

E. Loza Mencía and J. Fürnkranz. Efficient pairwise multilabel classification for large-scale problems in the legal domain.
In W. Daelemans, B. Goethals, and K. Morik, editors, Proceedings of the European Conference on Machine Learning
and Principles and Practice of Knowledge Disocvery in Databases (ECML-PKDD-2008), Part II, pages 50–65, Antwerp,
Belgium, 2008b. Springer-Verlag. 3, 15, 16, 18, 20, 23

E. Loza Mencía and J. Fürnkranz. Efficient multilabel classification algorithms for large-scale problems in the legal
domain. In Proceedings of the Language Resources and Evaluation Conference (LREC) Workshop on Semantic Processing
of Legal Texts, pages 23–32, Marrakech, Morocco, 2008c. 3, 15, 20

24

http://www.research.att.com/~lewis/reuters21578/README.txt
http://www.research.att.com/~lewis/reuters21578/README.txt

S.-H. Park and J. Fürnkranz. Efficient pairwise classification. In J. N. Kok, J. Koronacki, R. Lopez de Mantaras, S. Matwin,
D. Mladenič, and A. Skowron, editors, Proceedings of 18th European Conference on Machine Learning (ECML-07), pages
658–665, Warsaw, Poland, 2007a. Springer-Verlag. 3, 8, 11, 19, 22, 23

S.-H. Park and J. Fürnkranz. Efficient pairwise classification and ranking. Technical Report TUD-KE-2007-03, TU Darm-
stadt, Knowledge Engineering Group, 2007b. 23

F. Rosenblatt. The perceptron: a probabilistic model for information storage and organization in the brain. Psychological
Review, 65(6):386–408, 1958. 4

G. Salton and C. Buckley. Term-weighting approaches in automatic text retrieval. Inf. Process. Manage., 24(5):513–523,
1988. 15

F. Sebastiani. Machine learning in automated text categorization. ACM Computing Surveys, 34(1):1–47, 2002. 5

S. Shalev-Shwartz and Y. Singer. A New Perspective on an Old Perceptron Algorithm. In Learning Theory, 18th Annual
Conference on Learning Theory (COLT 2005), pages 264–278. Springer, 2005. 4

P. Tsampouka and J. Shawe-Taylor. Approximate maximum margin algorithms with rules controlled by the number of
mistakes. In Machine Learning, Proceedings of the Twenty-Fourth International Conference on Machine Learning(ICML
2007), volume 227, pages 903–910, 2007. 4

G. Tsoumakas, I. Katakis, and I. Vlahavas. Effective and efficient multilabel classification in domains with large number of
labels. In Proceedings of the ECML/PKDD-08 Workshop on Mining Multidimensional Data (MMD-08), Antwerp, Belgium,
2008. 3

25

	1 Introduction
	2 Multilabel Classification
	2.1 Perceptrons
	2.2 Binary Relevance Ranking
	2.3 Multiclass Multilabel Perceptrons
	2.4 Multilabel Pairwise Perceptrons
	2.5 Calibrated Label Ranking

	3 Quick Weighted Voting
	3.1 QWeighted for Multiclass Classification
	3.2 QWeighted for Multilabel Classification

	4 Dual Multilabel Pairwise Perceptrons
	5 Computational Complexity
	6 Experimental Setup
	6.1 Multilabel Evaluation Measures
	6.2 Ranking Loss Functions
	6.3 Standard Benchmark Datasets
	6.4 The EUR-Lex Repository
	6.5 Algorithmic Setup

	7 Evaluation
	7.1 Prediction Performance
	7.2 Computational Efficiency
	7.2.1 QWeighted
	7.2.2 Dual Representation

	7.3 Memory Requirements

	8 Conclusions

