GPU-accelerated Learning of
Gradient Boosted Multi-label
Classification Rules

GPU-beschleunigtes Lernen von Gradient Boosted Multi-label Klassifikationsregeln
Master thesis by Dennis DroRler
Date of submission: March 29, 2021

1. Review: Dr. Eneldo Loza Mencia
2. Review: M.Sc. Michael Rapp
Darmstadt

Computer Science
Department

Knowledge Engineering
Group




Erklarung zur Abschlussarbeit gemaf
§22 Abs. 7 APB TU Darmstadt

Hiermit versichere ich, Dennis DroRler, die vorliegende Masterarbeit gemaf3 §22 Abs. 7 APB
der TU Darmstadt ohne Hilfe Dritter und nur mit den angegebenen Quellen und Hilfsmit-
teln angefertigt zu haben. Alle Stellen, die Quellen entnommen wurden, sind als solche
kenntlich gemacht worden. Diese Arbeit hat in gleicher oder dhnlicher Form noch keiner
Priifungsbehorde vorgelegen.

Mir ist bekannt, dass im Falle eines Plagiats (§38 Abs. 2 APB) ein Tduschungsversuch
vorliegt, der dazu fiihrt, dass die Arbeit mit 5,0 bewertet und damit ein Priifungsversuch
verbraucht wird. Abschlussarbeiten diirfen nur einmal wiederholt werden.

Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische
Fassung dem vorgestellten Modell und den vorgelegten Planen.

Darmstadt, 29. Mirz 2021

Dennis Drol3ler




Abstract

Multi-label classification is the task of predicting a set of labels for an entity. For example,
an image can contain multiple objects that are all relevant for the image. One way
to deal with multi-label classification problems are multi-label rules. In this master
thesis, an existing algorithm for learning multi-label classification rules — the BOOMER
algorithm - is analysed regarding its potential to utilize the massively parallel execution
capabilities of Graphics Processing Units (GPUs). This work presents a parallel CUDA-
based implementation of the rule learning process consisting of three massively parallel
compute steps compared to the nested loops of the reference CPU implementation. The
GPU implementation is evaluated against the reference implementation on synthetic and
real-world datasets and achieves an up to 47 times higher performance regarding execution
time, while maintaining the same model quality. The potential speedup depends on the
characteristic of the dataset, with the number of examples in the dataset being the most
important factor. The GPU implementation is best suited for datasets with dense numeric
features and a high number of examples, but also performs well on datasets with nominal
features and a sufficient amount of examples. Switching to single precision, the GPU
implementation reaches speedups of up to 336 compared to the reference implementation
with reduced quality on some models.

Keywords: GPU, CUDA, Multi-label classification, Rule learning




Zusammenfassung

Bei der Multi-label-Klassifizierung geht es darum, einen Satz von Labels fiir eine Entitat
vorherzusagen. Zum Beispiel kann ein Bild mehrere Objekte enthalten, die alle fiir das Bild
relevant sind. Eine Moglichkeit, mit Multi-label-Klassifikationsproblemen umzugehen, sind
Multi-label-Regeln. In dieser Masterarbeit wird ein bestehender Algorithmus zum Lernen
von Multi-Label-Klassifikationsregeln — der BOOMER-Algorithmus - auf sein Potential zur
Nutzung von massiv-parallelen Berechnungen auf Grafikkarten (GPUs) analysiert. Eine
parallele CUDA-basierte Implementierung des Regellernprozesses wird vorgestellt, die
aus drei massiv parallelen Rechenschritten im Vergleich zu den geschachtelten Schleifen
der CPU-basierten Referenzimplementierung besteht. Die GPU Implementierung wird
mit der Referenzimplementierung auf synthetischen und realen Datensétzen evaluiert.
Dabei erreicht die GPU-Implementierung eine bis zu 47-fach hohere Leistung hinsichtlich
der Ausfiihrungszeit bei gleichbleibender Qualitat der gelernten Modelle. Die mogliche
Beschleunigung héangt von der Charakteristik des Datensatzes ab, wobei die Anzahl
der Beispiele im Datensatz der wichtigste Faktor ist. Die GPU-Implementierung ist am
besten fiir Datensdtze mit dichten numerischen Merkmalen und einer hohen Anzahl von
Beispielen geeignet, zeigt aber auch bei Datensidtzen mit nominalen Merkmalen und einer
ausreichenden Anzahl von Beispielen eine gute Leistung. Mit einfacher Genauigkeit bei
Gleitkommaberechnungen steigt der Beschleunigungsfaktor der GPU-Implementierung
auf bis zu 336, wenn auch mit reduzierter Qualitét bei einigen Modellen.

Schlagworter: GPU, CUDA, Multi-label Klassifikation, Regellernen
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1 Introduction

In the last ten years, Graphics Processing Units (GPUs) have been widely established to
train machine learning models. Neural Networks have greatly profited from the processing
power of modern GPUs with highly parallel implementations of learning algorithms.
Parallel GPU implementations have been proposed also for other classes of machine
learning algorithms. One example is the popular gradient boosting library XGBoost, which
was extended to utilize GPUs for decision tree training.

In the meantime, the field of interpretable artificial intelligence has gained increased atten-
tion. One example for algorithms with interpretable models are rule learning algorithms
which infer decision rules from training data. Based on the success of GPU-acceleration for
gradient boosted decision trees, rule learning algorithms that are also based on gradient
boosting, could benefit in a similar way. The goal of this thesis is to examine an existing
rule learning algorithm, the BOOMER algorithm, and to identify the potential to utilize
GPUs to accelerate the rule learning process. The BOOMER algorithm was published by
Rapp et al. (2021) and is a stagewise algorithm to learn ensembles of gradient boosted
multi-label classification rules.

A GPU-based implementation of the BOOMER algorithm using NVIDIA Compute Unified
Device Architecture (CUDA) and C+ + is developed in this thesis. Using a three step
process consisting of a parallel prefix sum, a custom CUDA kernel and a parallel reduction,
the GPU implementation is able to evaluate all condition candidates for a rule in parallel.
The parallel implementation is compared to the CPU-based reference implementation on
synthetic and real-world datasets and achieves a solid speedup on most datasets and a
very high speedup on a few large datasets.

Chapter 2 briefly introduces the BOOMER algorithm and provides an introduction to
multi-label classification and the GPU programming model as well as some notation
used throughout the thesis. Chapter 3 references related work in accelerating machine
learning algorithms with GPUs and the achieved speedups. Chapter 4 outlines the relevant
segments of the BOOMER algorithm and the approaches to parallelize these segments.




Chapter 5 discusses the options for a parallel GPU implementation and highlights important
parts of the parallel implementation. The parallel GPU implementation is evaluated and
compared to the original CPU implementation in Chapter 6 on both real-world and
synthetic datasets. Chapter 7 provides directions for future work to improve the parallel
algorithm implemented in this thesis and possible optimizations for special cases. The
thesis is concluded with a brief recap in Chapter 8.




2 Foundations

This chapter first briefly introduces the BOOMER algorithm, which is the subject of analysis
and parallelization for this thesis. A short section on multi-label classification follows, as
well as some definitions of frequently used terms and notations. The chapter also provides
a short introduction to GPU-programming with CUDA C/C+ + and closes with a discussion
of possible differences between numerical results calculated on a CPU compared to a GPU.

2.1 The BOOMER Algorithm

The BOOMER algorithm was first presented by Rapp et al. in Rapp et al. (2021). It is
described as a "stagewise algorithm for learning an ensemble of gradient boosted single-
or multi-label rules F' = {fi,..., fr} that minimizes a given loss function in expectation”
(Rapp et al. 2021, Chapter 4).

The algorithm iteratively adds rules to an ensemble and recalculates the gradients and
Hessians each time a rule has been added successfully (gradient-boosting). The individual
rules make a prediction for either a single label or for all labels, depending on the specified
hyper-parameter. The algorithm starts by adding the default rule, which covers all
examples. All following rules are learned using a greedy top-down approach. At each
greedy-iteration, the condition that improves the quality score of the current rule the most
is added to the body of the rule and the rule head is adjusted accordingly. New conditions
are added until no further improvement of the quality score is possible.

The possible conditions that may be added to a rule body are obtained by averaging
adjacent feature values. Nominal attributes are converted to numerical ones using one-hot
encoding before the learning procedure starts. When using single-label rules, the label
a rule predicts for is determined when searching for the first condition and remains the
same when new conditions are added.




To predict for an example z,,, the individual scores provided by all covering rules are
summed up into a vector of scores p,,. The vector p,, is then transformed into a binary
label vector using the sign-function y,, = (sgn(p,, ), ---, sg0(p,, ) in case of the label-wise
logistic loss. This binary label vector indicates which labels are predicted as relevant (1)
or irrelevant (0) by the model.

2.2 Multi-label Classification

The rules that are learned by the BOOMER algorithm are multi-label classification rules.
In general, a classification rule is of the form f : b — p where b is the body of the rule and
p is the head. The body b is a conjunction of conditions ¢; A ¢3 A ... A ¢, Where each
condition ¢; is a comparison c¢; : a; < v that compares the value of an attribute a; of an
example to a constant v using a relational operator like =, #, <, or >. If all conditions in
the body of a rule are satisfied for a given example, that example is covered by the rule
and the head p is predicted. In single-label classification, p is a scalar numerical score.
In multi-label classification, the prediction p = (p1, pa, ..., px) is a vector that contains a
numerical score for each label. If an example is not covered by a rule, the null vector is
predicted. For further information on multi-label learning and an overview of relevant
metrics and algorithmic approaches, see for example M. Zhang and Zhou (2014), Zheng
et al. (2020), and Tsoumakas et al. (2010)

2.3 Terms and Notations

This chapter introduces terms and notations that are frequently used in this work. In
formulas, m is used for the number of features or attributes of a dataset. The number of
examples is referred to as n, while k is used for the number of labels. A ¢ stands for the
number of split points for which conditions are tested.

Feature matrix: The x-array is a two-dimensional array of size m x n and contains the
feature values for each example in the dataset.

Sorted_indices: The array sorted_indices is also of size m x n and contains the index
permutation of the x-array such that the feature values are sorted in ascending order.

Gradients: A single gradient calculates as the first derivative of the loss function with
respect to the model prediction for a certain example and label. The gradient vector of an
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example is an n-dimensional vector where n is the number of labels. Gradients refers to a
two-dimensional array of size n x k that contains the gradient vector for each example
and is updated every time a new rule has been learned.

Hessians: A single Hessian calculates as the second derivative of the loss function with
respect to the model prediction for a certain example and label. Considering only decom-
posable loss functions, the Hessian matrix contains non-zero elements only on the diagonal.
Therefore the Hessian of an example can also be represented by an n-dimensional vector
where n is the number of labels. Similar to gradients, Hessians refers to a two-dimensional
array of size n x k that contains the Hessian vector for each example and is updated
together with the gradients every time a new rule has been learned.

Condition: A condition is a comparison of an attribute value of an example and a fixed
value. For example, temperature could be an attribute and 21 might be the attribute
value of an example for that particular attribute. A condition could be temperature
<= 18, which would not be satisfied by the given example. For numeric attributes like
temperature, the comparison operators <= and > are used. Nominal attributes (e.g.,
male, female, diverse) are one-hot encoded so that again the operator <= and > can be
used. A condition is stored as a 3-tuple of feature index, whether the condition uses the
<= or the > operator and the threshold.

Split Point: A split point between examples is calculated by averaging the feature values
of the current example and the previous example (after the examples have been sorted
by that feature). A condition based on a split point always covers all examples up to
the previous one in case the operator <= is used or all examples from the current one
onwards in case the operator > is used. The number of split points depends on the number
of different feature values present in each feature of a dataset. A binary feature results in
only one split point, namely (0 + 1)/2 = 0.5, while a feature with n distinct values results
in n — 1 split points. For each split point, two condition candidates are evaluated. The
first condition candidate that is tested is attribute <= threshold, then attribute > threshold
is tested.

1
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2.4 GPU-Programming Model with CUDA C/C++

CUDA is an Application Programming Interface (API) to communicate with and instruct
CUDA-enabled NVIDIA GPUs as well as a parallel computing platform. CUDA programs
can be created using the programming languages C, C++ or Fortran. Language specific
extensions and specialized compilers exist for these languages.

CUDA code is executed on the GPU by launching a so-called kernel. A kernel is launched
as a special kind of function call using a syntax with triple angle brackets between the
function name and the function parameters.

Listing 2.1: Exemplary CUDA kernel definition and kernel call in CUDA C++

__global _ void vecAdd(float* a, float+ b, float* c, int n) {
tid = threadldx.x + blocklIdx.x * blockDim.x;

c[tid] = a[tid] + b[tid];

b

int main() {

dim3 blockSize (256);
dim3 gridSize(n / blockSize.x);
vecAdd kernel<<<blockSize , gridSize>>>(a,b,c,n);

Listing 2.1 shows an example of a simple CUDA kernel with corresponding kernel call.
The kernel is defined using the keyword __global _ before the return type of the function
in line 1. The kernel adds two vectors a and b of size n element-wise and returns the result
in the vector c. Inside the kernel, the built-in variables threadldx, blockIdx and blockDim
are available that uniquely identify each CUDA thread. CUDA threads are grouped into
blocks of up to a total of 1024 threads per block. The kernel is then executed by a grid of
multiple thread blocks of the same shape and size. Both blocks and grids can have up to
three dimensions. The kernel parameters specify the number of threads with which the
kernel will be executed and how they are distributed (e.g., 1024x1x1 or 16x8x4). Usually,
the dimension of the thread blocks is fixed and the number of blocks is calculated before
the kernel launch depending on the problem size. In this example, the number of threads
per block is 256 and the kernel uses only one dimension. The size of the grid is calculated
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by dividing the parameter n by the block size. This example assumes that the parameter
n is divisible by 256 without remainder. If this is not the case, additional measures have
to be taken to ensure correct program behaviour. For further information see NVIDIA
Corporation (2021a) or NVIDIA Corporation (2020a).

The GPU used for the experiments in this work, a NVIDIA RTX 2080 Ti, features 4352 CUDA
cores (NVIDIA Corporation 2021b) for parallel execution and can have up to 139 264
threads ready for execution (68 Streaming Multiprocessors (SMs) x 2048 resident threads
/ SM) (NVIDIA Corporation 2021a, Appendix I). The RTX 2080 Ti has a theoretical
performance of 13.45 TFLOPS for 32 bit floating point calculations. For comparison, the
installed CPU, an AMD Ryzen 7 3800X, features 8 cores with Hyper-Threading and has a
32 bit floating point performance of 1.728 TFLOPS.

The Thrust library (NVIDIA Corporation 2020b) is a C+ + template library that exposes a
C+ + standard library compatible API and provides highly parallel implementations for
common algorithms. Similar to the std::vector, Thrust provides a thrust::device_vector. The
device vector typically resides in GPU memory and Thrust functions (e.g., thrust::sort or
thrust::transform) automatically execute on the GPU via a CUDA kernel if they are called
with a device vector.

The Thrust library also provides so-called fancy iterators, that enable the fusion of multiple
operations into one function call. For example, the calculation of the euclidian norm of a
vector requires three steps:

1. Squaring each element of the vector
2. Computing the sum over all squared values

3. Applying the square root to the sum

Implementing this without fancy iterators in Thrust would require a thrust::transform to
square the elements, a thrust::reduce to compute the sum and then the application of sqrt().
Using fancy iterator, one can define a thrust::transform_iterator that computes the square
of an element as input to the reduction. This fuses the square operation with the reduction
and eliminates one memory read and write operation compared to the non-fused version.
The full list of functions and iterators can be found in NVIDIA Corporation (2021c).
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2.5 Floating Point Accuracy on GPUs

The BOOMER algorithm is a numerical algorithm, therefore the floating point accuracy
of the calculation may heavily influence the results of the learning process. The current
implementation uses the data type float64 (IEEE-754 64 bit floating point type) to store
the gradients and Hessians as well as the predicted and quality scores. The computations
are therefore carried out in double precision.

An implementation of a numerical algorithm for GPUs is likely to produce at least slightly
different results when compared to the original implementation. These numerical differ-
ences originate from multiple reasons which are described in the following and explained
thoroughly in Whitehead and Fit-Florea (2020).

This section introduces the underlying reasons for these differences and why they may
appear. Beforehand, a short introduction to floating point numbers in IEEE-754 format is
given. A floating point number z = s - m - 2¢ consists of a sign bit s € {0, 1}, a mantissa
m € {0,1}' and an exponent e € {0,1}. The bit length of m and e depends on the
representation. Most common are 32 and 64 bits total length which correspond to 23 and
8 bits for mantissa and exponent or 52 and 11 bits respectively.

Due to the fixed number of bits for the mantissa and exponent, floating point numbers
only have a limited maximum precision. Adding two floating points numbers may lead
to a situation where the exact result cannot be represented in the same floating point
format as the summands. A rounding procedure towards the closest number that can be
represented is required. Therefore, floating point arithmetic is not associative, as different
operation order might lead to different intermediate results that are rounded differently,
resulting in slightly different final results.

The example in Table 2.1 demonstrates this behaviour. The binary values for a, b and ¢
are taken from Whitehead and Fit-Florea (2020, Chapter 2.2). All calculations for this
example have been executed with Python 3.7.6 using the numpy data type float32. This
example shows that for computations in 32 bit floating point, (a 4+ b) + ¢ does not always
equal a + (b + ¢). Therefore, associativity does not hold for floating point computations.

Any variation in the sequence of floating point operations may lead to a different result.
The parallelization of the BOOMER algorithm with GPUs will lead to significant changes
in the execution order of floating point operations. The results of the parallel GPU
implementation are therefore likely to differ slightly from the results of the existing CPU
implementation.
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Table 2.1: Example of the non-associativity of floating point addition when using 32 bit
IEEE 754 floating point representation
Variable Decimal value Binary value

a 2.00000023841857910156250 01000000000000000000000000000001

b 1.00000011920928955078125 00111111100000000000000000000001

¢ 8.00000095367431640625000 01000001000000000000000000000001

a+b 3.00000047683715820312500 01000000010000000000000000000010
b+c 9.00000095367431640625000 01000001000100000000000000000001
(@+b)+c 11.00000190734863281250000 01000001001100000000000000000010
a+(b+c) 11.00000095367431640625000 01000001001100000000000000000001

First of all, a different compiler with a very different target architecture (GPU vs. CPU)
is used. The CUDA compiler could choose other optimizations and therefore generate a
different sequence of floating point operations.

The CPU implementation of the algorithm is currently executed sequentially. A parallel
execution usually requires work to be divided among the available computing resources
and may use a specialized parallel implementation with a vastly different execution order
(e.g., sequential sum of n elements compared to parallel reduction). Additionally, the
number of threads used by a parallel algorithm may influence the order of execution. The
thread scheduler may also change the order in which the threads are executed arbitrarily
and is therefore another possible source of changes in the execution order.

A second source is the presence of the Fused Multiply-Add (FMA) operation and the
corresponding specialized execution units on the GPU. The FMA operation combines
a multiplication and an addition into one operation and eliminates the intermediate
rounding step, resulting in a higher precision compared to the non-fused operations.
Instead of r = rd(a + rd(b - ¢)), the FMA execution unit calculates r = rd(a + b - ¢).

The last source of different floating point results is the availability of x87 extended precision
registers and calculations on x86 CPUs. These feature the capability to calculate floating
point operations in an extended 80 bit format, keep them in a specialized 80 bit floating
point register and only round to the lower precision of 64 or 32 bit when storing the result
to memory.
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2.6 Parallel Algorithms

The last section in this chapter defines some common parallel algorithms that are used
throughout this work and for the parallel implementation of the BOOMER algorithm.
These algorithms are implemented within the Thrust library (NVIDIA Corporation 2020b)
for parallel execution on GPUs.

Reduction A reduction takes a binary associative operator ¢ and a sequence of n elements
ag,ai,...,an—1 and returns ag ® a1 D --- D an_1.

Prefix Sum The all-prefix sums or scan operation takes a binary associative operator &
and a sequence of n elements ag, a1, ...,a,—1 and returns the sequence ag, ap ®
aiy...,a0Pa; B -Pap—1

Transformation The transform operation takes an unary operator f(-) and a sequence of

n elements ag, ay, ..., a,—1 and returns a sequence f(ao), f(a1),..., f(an—1)
Unique The unique operation takes a sequence of n elements ag, ay, . .., a,—1 and returns
the sequence ay, . .., a;,... of k < n elements for which a; was not equal to a; 1 in

the original sequence.
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3 Related Work

This chapter reviews literature and research related to parallelization techniques in ma-
chine learning and GPU-acceleration of classification algorithms. To the best knowledge of
the author, there is currently no published research on the topic of accelerating algorithms
for the task of learning classification rules using gradient boosting on GPUs. There is how-
ever research on GPU-accelerated decision tree learning, random forests and evolutionary
rule learning.

Fonseca et al. (2005) group possible parallelization techniques or strategies of Inductive
Logic Programming (ILP) algorithms in four categories. The most general strategy is
called data parallelism and describes the execution of a part of or a full ILP algorithm
on a portion of the training data. This form of parallel execution requires a mechanism
to broadcast locally optimal solutions to all other processors to identify globally optimal
solutions. A more specific strategy is the parallel exploration of independent hypotheses,
which requires each processor to have a local copy of the training data. The amount of
parallelism is dependent on the specifics of the learning task. A related strategy explores
the search space of a single hypotheses in parallel. The search space can be partitioned
and each processor explores one of the partitions. The amount of parallelism exposed by
this strategy is dependant on how the search space is divided. The last and most specific
parallelization strategy is called parallel coverage test. For each example, a coverage
test determines whether the example is covered by the current hypotheses or not. This
coverage test can be executed in parallel for all examples. The amount of parallelism
therefore depends on the number of examples in the training data and how many are
processed by each processor. A parallel implementation is not restricted to utilize only
a single one of the four strategies. Each of the more specific strategies can be used in
conjunction with the more general ones.

Besides the definition of these parallelization strategies, Fonseca et al. also summarize
speedups achieved in other works on shared and distributed memory machines. They
found speedups of 4x and 5x on 6 and 8 processors respectively using the parallel coverage
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test and linear speedups up to 16 processors for the parallel exploration of the search
space. For parallel exploration of independent hypotheses, they report a speedup of 2x on
6 processors, while data parallelism achieved speedups of 5x on 8 processors in one case
and linear to super-linear speedup in another.

Harris et al. used GPUs for an accelerated hyper-parameter search in a setting where
the optimal hyper-parameters to learn classification rules via beam search are identified
using grid search and cross-validation (Harris et al. 2016). They parallelized their search
algorithm so that each GPU-thread evaluates one rule candidate on all examples. After all
rule candidates have been evaluated on all examples, the results are copied back to the
CPU. The CPU then chooses the best rules and prepares new rule candidates for the next
iteration. With additional optimizations they achieved a total speedup of 28x compared
to a multi-threaded CPU implementation.

On the topic of GPU-accelerated rule-based classifiers, Cano and Krawczyk used GPUs to
apply evolutionary algorithms to high-speed data stream mining. They implemented GPU
algorithms that learn classification rules from data streams using differential evolution
(Cano and Krawczyk 2018) and genetic programming (Cano and Krawczyk 2019) that
outperformed other state-of-the-art rule-based classifiers.

Early works on accelerating the learning of decision trees and random forests with GPUs
include Grahn et al. (2011) and Van Essen et al. (2012). Grahn et al. implemented
a CUDA-based random forest algorithm for GPUs. Using one CUDA thread per tree in
the forest for the CUDA kernels, they achieved a speedup of 30x over a multi-core CPU
implementation (FastRF) and 50x over a sequential CPU implementation (libRF).

Van Essen et al. implemented a random forest classifier for multi-core CPU, GPU as well
as Field Programmable Gate Array (FPGA) and compared their performance. The FPGA
clearly outperformed both in total classification performance and performance per Watt.
The GPU had by far the best performance per cost, while still outperforming the multi-core
CPU by about 2x.

Jansson et al. also proposed a GPU implementation of a random forest algorithm called
gpuRF (Jansson et al. 2014). They achieved a much better performance on more recent
GPUs with a very high number of cores than Grahn et al. They used multiple CUDA
threads for each tree instead of just one CUDA thread per tree. Their GPU implementation
outperformed both its multi-threaded CPU-based competitors, WekaRF and FastRF.

Mitchell and Frank (2017) implemented a GPU-based decision tree construction algorithm
for the gradient boosting library XGBoost. Their implementation is based on the libraries
CUB and Thrust and utilizes parallel algorithms like the prefix sum also used in this work.
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They achieve speedups of 2x to 6x compared to an existing CPU-algorithm in XGBoost by
adaptively switching between two approaches based on the tree depth.

H. Zhang et al. (2017) followed a different approach to implement gradient boosted
decision trees for the GPU. Instead of finding the best split point exactly, they approximate
the best split using histograms. Their algorithm is implemented in OpenCL in contrast
to the Mitchell and Frank (2017) and this work. It outperformed the existing histogram-
based CPU implementation in XGBoost by about 7 to 8 and was about 25 times faster
than the CPU-based exact-split algorithm in XGBoost, while maintaining similar accuracy.

Wen et al. (2018) used run-length-encoding and dynamic workload allocation to out-
perform the CPU-based exact-split algorithm in XGBoost by 2 to 3 in terms of price to
performance ratio. Their GPU implementation is also about 2 times faster than XGBoost
on a 20 core CPU.

An improved version with additional features is presented in (Wen et al. 2019). Their
algorithm now generates partial histograms on CUDA-block level and then aggregates
the partial histograms to global histograms. These histograms are used to find approx-
imate split points during decision tree training. They achieved a speedup of up to 60x
for approximate split finding compared to XGBoost and also outperform existing GPU
implementations.

Based on the GPU implementation for XGBoost by Mitchell and Frank (2017) and an
experimental support in XGBoost for datasets that are larger than the main memory, Ou
(2020) developed a new out-of-core GPU implementation. Previous GPU implementations
could not process arbitrarily large datasets due to the limited GPU memory. Using a special
sampling technique, the new implementation is able to process datasets with 500 features
and 85 million examples on a GPU with 16 GiB memory, without a significant decrease in
model accuracy or training performance.

Outside of neural networks, only Skryjomski et al. (2019) have used GPUs for multi-label
classification by implementing the multi-label k-nearest-neighbour (MLKNN) algorithm for
the GPU. They evaluated their implementation against a single-core CPU implementation
on both real-world and synthetic datasets and achieved speedups of up to 216x on the
real-world datasets with the same predictive accuracy. With the synthetic datasets, they
identified the minimum number of features or examples required for maximum occupancy
of the GPU and therefore the optimal speedup. Their implementation produced higher
speedups on datasets with nominal features compared to datasets with numeric features.
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4 Approach for Parallelization

In this chapter, the BOOMER algorithm is analysed regarding options for parallelization.
Before discussing the BOOMER algorithm, the applicability of the parallelization strategies
described by Fonseca et al. (2005) is reviewed with respect to the BOOMER algorithm.
The main aspects of the algorithm, gradient boosting and top down greedy rule induc-
tion, should remain conceptually the same to allow for a comparison with the original
implementation.

Fonseca et al. name four parallelization strategies on different levels of an ILP learning
algorithm. In the following, the four parallelization strategies as well as their counterpart
in the BOOMER algorithm are described. A profiling of the current implementation of the
BOOMER algorithm is used to determine the parts of the algorithm where most of the
execution time is spent.

The most high-level parallelization strategy involves the parallel execution of an algorithm
or major parts of an algorithm on parts of the training data and combining the partial
results. The current implementation of the BOOMER algorithm is capable of directly
executing the i-th fold of an n-fold cross-validation with the option --current-fold i. This
enables the execution of all n folds of an n-fold cross-validation in parallel. Executing the
BOOMER algorithm on parts of the data and combining the partial results is not possible
without major changes as gradient boosting is inherently sequential. This would require a
form of parallel boosting (see e.g., Lozano and Rangel 2005) and therefore change the
nature of the algorithm.

The next strategy described by Fonseca et al. is the parallel exploration of independent
hypotheses. This would correspond to the parallel induction of multiple rules in case of the
BOOMER algorithm. Inducing multiple rules in parallel would again violate the inherently
sequential boosting nature of the algorithm and is therefore also not considered.

The third strategy is named parallel exploration of the search space of a single hypotheses.
This corresponds to finding the best condition to add to a rule in parallel in case of the
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BOOMER algorithm. In the current implementation, the three-dimensional search space
of size m x n x k is traversed sequentially over labels, examples and features. Finding the
optimal condition in this search space can be parallelized with varying effort for the three
dimensions and is discussed in Sections 4.3.2 and 4.3.3 as well as 4.5.2 and 4.5.3.

The fourth strategy is the parallel coverage test on all examples of a dataset. A coverage
test is executed in the BOOMER algorithm each time a refinement has been completed.
A parallelization as proposed by Fonseca et al. is possible, but of lower priority than the
previous strategy, as the coverage test only takes about 8 % of the total runtime, while the
part targeted by the parallel exploration of the search space takes about 90 % of the total
execution time (compare Section 4.3).

Section 4.1 defines the configuration in which the BOOMER algorithm is used and analysed.
A more detailed description of the BOOMER algorithm in this configuration is provided
in Section 4.2. The major parts of the algorithm are explained and their importance
based on a runtime profiling is assessed in Section 4.3. In Section 4.4, the asymptotic
complexity of the BOOMER algorithm is analysed, while Section 4.5 describes the intended
parallelization on an abstract level.

4.1 Focus of this Work

This thesis concentrates on one specific configuration of the BOOMER algorithm. This
configuration aims to minimize the logistic loss function for each label independently
using single-label rules. As the loss function is label-wise decomposable, the predicted
scores and quality scores for each label of an example can be calculated independently.
The use of single-label rules restricts the search space for new conditions to a single label
after the first condition has been added to the body of a rule. Non-decomposable loss
functions are not part of the scope of this work, but are considered during design decisions
so that they can be supported in the future.

4.2 Structure of the BOOMER-Algorithm

This section describes the general structure of the BOOMER algorithm as presented in
Rapp et al. (2021). Algorithm 4.1 provides an overview of the BOOMER algorithm using a
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non-decomposable loss function and single label rules. Optional features like sub-sampling
of features, examples or labels, pruning of rules and shrinkage are omitted.

After reading the specified training data from the file system, the algorithm pre-processes
the data. One-hot encoding is used to convert nominal features into numerical ones. At
the start of the learning process, the algorithm generates a default rule that covers all
examples (line 2). Then the process to induce a single rule is repeated until the specified
number of rules has been reached.

Every rule starts with an empty body. In each iteration of the refinement loop in line 6, all
possible conditions are evaluated for a potential refinement of the rule (lines 12 - 15). The
calculations required for lines 14 and 15 are referred to as find head. After all conditions
have been tested for a refinement, the best refinement is used as the starting point for
a new refinement iteration (line 7). When no further refinement is possible, the rule is
added to the ensemble (line 21). During the refinement of a rule, the sums of gradients
and Hessians (g and H in Algorithm 4.1) are updated each time an example has been
processed (lines 18 and 19), regardless of whether a condition was tested for a refinement
or not. The sums of gradients and Hessians calculate as the sum of the gradient vectors
and Hessian matrices of the processed examples. They are required to find the best head
that corresponds to a potential refinement and to assess the quality of the refinement.

After a rule has been added to the ensemble, the gradients and Hessians of the examples
that are covered by the new rule are updated with respect to the scores that are predicted
by the new rule. After the specified number of rules has been reached, the final ensemble
is returned and evaluated on the test dataset.

22



Algorithm 4.1 : Pseudo code for the BOOMER algorithm when configured to use a
decomposable loss function and single-label rules. Adapted from Algorithms 1, 2 and
3 from Rapp et al. (2021).

Data : Training examples {(x,,y,,)}2_;, first and second derivative ¢’ and ¢” of the
loss function, number of rules T', /s regularization weight A
Result : Ensemble of rules F

1 G =1{g,N_1,H={H,}_, + calculate gradient and Hessians w.r.t. # and ¢”

2 f1: by — p) with by (z) = 1, Vz and pgl) = — 52 withg = 22[21 b(xy)g,, and
H=Nb(x,)H,

3 G, H < update gradients and Hessians of examples covered by f;

4 fort =2to T do

5 f*:b— p=newrule

6 do

7 f=r

8 for j =1to L do

9 g, H=0

10 foreach example e in ascending order of feature values do
11 foreach possible condition c on attribute A; and example e do
12 f' b — p = copy of f

13 add condition ¢ to body ¢’

14 pi = _hiff&-)\ Vi

15 p = best single label prediction p; € p

16 if f’ is better than f* then

17 L f* — fl

18 g=9+Ge

19 H=H+H.
20 while f* #£ f
21 | fi=["
22 G, H «+ update gradients and Hessians of examples covered by f;

23 return Ensemble of rules F' = {f1,..., fr}
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4.3 Computationally Relevant Parts of the BOOMER Algorithm

In this section, insights acquired by profiling the reference CPU implementation of the
BOOMER algorithm are discussed. The reference implementation is written in Python and
Cython. Python is used for data pre-processing and interfacing, while Cython is used for
the computations of the rule induction process. Table 4.1 shows how the overall execution
time is distributed across different code sections from the rule induction of the reference
implementation. The dataset corel5k is an image dataset that consists only of binary
features. Therefore, there is at most a single split point for each feature, regardless of the
number of examples. This reduces the number of calls to the function find_head drastically
compared to the total number of iterations of the enclosing loop. As a result, most of the
execution time is spent on updating the gradients and Hessians (update_search) as well as
determining which conditions need to be tested.

Table 4.1: Aggregated profiling results of the reference CPU implementation on dataset
corel5k, using 10 rules and 1 fold

Code Section #Executions Total Time Percent Total
while loop 127 155.55s 99.6 %
for loop features 126746 143.25s 91.7%
for loop examples 50943908 142.8s 91.7%
determine conditions 50943908 82.1s 52.8%
find head <= 49520 0.7s 0.0%
find_head > 49520 0.6s 0.0%
update best head 329 0.2s 0.0%
update_search 50943908 60.6s 38.9%
coverage test 118 12.3s 7.9%

To assess the importance of find_head for datasets with numeric features, the profiling was
extended to another dataset. The dataset scene consists exclusively of numeric features,
meaning that find head and the score calculation are executed in almost every loop
iteration. The results are shown in Table 4.2. The overall distribution of the execution
time changed significantly. The function find head and the update of the best head are
now responsible for over 35 % of the execution time. In exchange, the relative importance
of update_search decreased.

The following sections focus on the three parts of the algorithm where a parallelization
can improve the overall execution time of the algorithm the most. The first part is the
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Table 4.2: Aggregated profiling results of the reference CPU implementation on dataset
scene, using 10 rules and 1 fold

Code Section #Executions Total Time Percent Total
while loop 91 22.7s 99.9%
for loop features 26754 20.8s 91.7%
for loop examples 6287190 20.7s 91.5%
determine conditions 6287190 10.3s 45.3%

find head <= 6101879 2.8s 12.5%

find head > 6101879 3.1s 13.5%
update best head 2306 2.7s 11.8%
update search 6287190 1.9s 8.4%
coverage test 82 1.9s 8.2%

code that determines the conditions for which the function find_head is executed. Then,
within the function find_head, a score calculation is executed inside a loop. This part
is more relevant for datasets with numeric feature, as find_head is executed much more
often compared to datasets with nominal features. The third part of interest is the update
of gradients and Hessians (update_search). The fourth relevant code section identified
during profiling, the coverage test, could also be parallelized in a similar way as Algahtani
and Kazakov (2018) proposed for ILP algorithms. The coverage test is not considered in
the following as it is responsible for less than 10 % of the execution time in both profiling
scenarios.

4.3.1 Determining Conditions to Test

Before the rule induction starts, the reference implementation creates a view of the feature
values called sorted_indices where the entries for each feature are sorted in ascending
order. In this view, all examples that have the same feature value for an attribute are in a
sequence. For each split point between two consecutive examples with different feature
values of two consecutive examples, two conditions are tested for a refinement. One uses
the comparison operator <, the other uses >. If two examples have the same feature
value, no split point exists and no conditions can be tested.

Listing 4.1 shows the relevant code that determines which conditions should be tested
to find a refinement of the current rule. The variable x contains the feature values and
the variable sorted_indices holds the sorted view of x. In line 17, the feature value of
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Listing 4.1: Cython code to determine the split points for which find_head is executed

for ¢ in range(num features):
f = get index(c, feature indices)

# Reset the loss function when processing a new feature...
loss.begin search(label indices)

i = sorted _indices [0, f]

loss.update _search (i)

previous_threshold = x[i, f]

for r in range(r + 1, num_examples):
i = sorted indices[r, f]

current_threshold = x[i, f]

# Split points between examples with the same feature value
# must not be considered...

if previous threshold != current threshold:

# Find and evaluate the best head for the current refinement
current_head = find head (head, label indices, loss)

previous_threshold = current threshold
loss.update _search(i,...)

26




the example from the previous iteration is compared to the feature value of the current
example. If these two feature values are different, a split point exists between the previous
and the current example and a possible refinement could be found using find_head.

This procedure is implemented sequentially, but can be parallelized as follows. Using
one thread for each example except the first one, each thread can calculate in parallel its
index ¢ = sorted_indices|r, f] and the corresponding threshold z[i, f], as well as the index
i’ = sorted_indices[r — 1, f] of its predecessor and the corresponding threshold x[i’, f].
Then the threads can all compare their two thresholds in parallel and those with a split
point can calculate their refinement.

After all threads have finished calculating their refinement, the best refinement has to
be determined. In the sequential implementation, this is done by comparing the best
result of the current iteration with the best result from the previous iteration and then
keeping the better one. This can also be done in parallel with a reduction operation (see
for example Blelloch 1990, Chapter 1.2) using the same comparison operator.

A short analysis of the asymptotic complexity of the described part of the algorithm follows.
The number of features is denoted by m, the number of examples by n and the number of
processors for a parallel implementation by p.

For each feature, the full loop over n examples is executed. Each of these loop iterations
consists of one equality test, two executions of find_head (one for < and one for >) and two
comparisons of the previous best head with the calculated head. The complexity analysis
assumes the worst case, where all examples have different feature values. Dropping
constant terms, the asymptotic complexity of the sequential implementation can be
determined as O(m - n) equality tests + O(m - n) applications of find_head + O(m - n)
comparisons. The equality test as well as the comparison are in O(1), while find_head is
in O(k) (see asymptotic analysis in Section 4.3.2). As find_head is the dominant term, the
asymptotic complexity can be simplified to O(n) applications of find_head.

Considering a potential parallel implementation as mentioned above, two asymptotic
measures can be calculated. One is the amount of work that the parallel algorithm
performs and the other is the time the parallel algorithm requires. A parallel algorithm is
called work-efficient, “if it performs the same amount of work, to within a constant factor,
as the fastest known sequential algorithm” (Blelloch and Maggs 1996).

For the parallel algorithm, only the work for the comparisons changes. If a parallel
reduction as proposed by Blelloch (1990, Chapter 1.2) is used to compute the best
refinement, additional O(log(p)) comparisons are required. This increases the number of
comparisons to O(n + log(p)). If the number of processors is assumed as constant, as it is

27



the case for a single CPU or GPU, the number of comparisons can be simplified to O(n)
and the amount of work a parallel implementation must perform is asymptotically in the
same order of magnitude. Therefore, such a parallel implementation can be work-efficient.

Considering the asymptotic execution time, the time for the sequential algorithm is the
same as its work, O(n) executions of find_head. The parallel algorithm can execute
find_head p times in parallel. This results in an asymptotic execution time of O(n/p) times
the execution time for find_head.

4.3.2 Score Calculation

The algorithm to calculate the scores required by find_head depends on the type of the
loss function. For non-decomposable losses, the scores are obtained by solving a system of
linear equations. In the case of decomposable losses, the algorithm shown in Listing 4.2
is used to calculate the scores. The calculation of a single score for a combination of
feature, example and label is done in lines 14 to 23 and is completely independent from
results for other combinations of features, examples and labels. It only depends on the
sums of gradients and Hessians as well as the L2 regularization weight. In the case that
the condition to be added uses the operator >, the condition would cover all examples
from the current one onward instead of all examples up to but not including the current
one. The sums of gradients and Hessians would therefore need to be calculated over
all examples that are currently not included in the sum. This is achieved by subtracting
the current sums of gradients and Hessians from the total sums over all examples of the
current feature and label in lines 8 to 11.

The calculation is carried out in a loop over the labels. Each iteration depends on the
sums of gradients and Hessians, on the total sums of gradients and Hessians (if the
condition uses the > operator) and the L2 regularization weight. Therefore the loop
can be parallelized by having one thread per iteration execute the full iteration using
thread-local storage for intermediate variables. The two result arrays predicted_scores and
quality scores are then written to in parallel.

The asymptotic complexity can be calculated as O(k) arithmetic operations, where &
denotes the number of labels. A parallel implementation does not involve additional
work. The amount of work is therefore O(k) for both the sequential and the parallel
implementation. Considering the asymptotic execution time, the sequential algorithm
requires O(k) time, while the parallel algorithm requires only O(k/p) where p is the
number of processors.
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Listing 4.2: Cython code for the calculation of predicted scores and quality scores, which
are required for find_head. The calculation of the scores accounts for most
of the execution time of find_head

# For each label, calculate the score to be predicted,
as well as a quality score...

for ¢ in range(num labels):

sum_of gradients = sums_of gradients[c]

sum_of hessians = sums_of hessians[c]

if uncovered:

1 = get index(c, label indices)
sum_of gradients = total sums_of gradients[1] \\
— sum_of gradients
sum_of hessians = total sums_of hessians[1] — sum_ of hessians

# Calculate score to be predicted for the current label...
score = —sum_of gradients / (sum_of hessians

+ 12 regularization _weight)
predicted _scores[c] = score

# Calculate the quality score for the current label...
score_pow = pow(score, 2)

score = (sum_of gradients * score)
+ (0.5 % score_pow * sum_of hessians)
quality scores[c] = score

+ (0.5 % 12 regularization_weight * score_pow)
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Listing 4.3: Cython code for the update of the sums of gradients and Hessians

# For each label, add the gradient and hessian of the example
# at the given index to the current sum

for ¢ in range(num labels):

1 = get index(c, label indices)

sums_of gradients[c] += gradients[example index, 1]

sums_of hessians[c] += hessians[example index, 1]

4.3.3 Update of Gradients and Hessians

The code to update the sums of gradients and Hessians after an example has been processed
is shown in Listing 4.3. The values of the gradients and the Hessians for the processed
example are added to the current sums of gradients and Hessians for each label individually.
This loop over the labels can be parallelized in the same way as the loop in Section 4.3.2
as each iteration is independent from the others.

One difficulty remains as the implementation of the loss function is stateful. The state is
reset on calling reset_search() before the first example of a feature is processed. In each
iteration the state is accumulated with a call to update_search() before the next example
is processed. The update is independent of whether a refinement was calculated in this
iteration or not. The state of the loss function is required during the calculation of the
refinement and is held in the two fields sums_of gradients and sums_of hessians. These
two arrays accumulate the sum of the gradients and Hessians of each example in the order
in which they are processed. As the state is reset before processing the first example of a
feature, the state accumulates only while processing examples of the same feature. This
allows for a parallelization over the features by having one thread per feature execute the
loop over the examples. Each thread then executes the inner loop iterations sequentially,
while the outer loop is executed in parallel.

Further parallelization is possible, as the order in which the examples are processed is
known upfront. Therefore, the values of the arrays sums_of gradients and sums_of hessians
can be computed for all iterations of a feature before the refinements are calculated.
This requires additional memory to store the values of the two arrays for each iteration
and breaks the data dependency between the iterations. The refinements are no longer
dependant on the updates of the sums in the previous iterations. Therefore, all refinements
of a feature can be calculated in parallel, in addition to the refinements for different
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features. The amount of additional memory per feature is O(n - k) in the worst case, as for
each of the up to n examples, for which a refinement has to be calculated, 2k entries of
the sums of gradients and Hessians must be stored. The worst case here is the case where
all examples have unique feature values because then the sums of gradients and Hessians
need to be stored for all examples.

The problem of computing the values of sums_of gradients and sums_of hessians for all
iterations of a feature is of the following form:

Yo = To
Y, =xot+x
Yy = %o+ x1 + X2

The z; are the individual gradient or Hessian vectors of an example and the y; are the sums
of gradients or Hessians corresponding to iteration 7. This problem structure matches the
one of the general prefix sum where the x; and y; are vectors of length n that are summed
up element wise by the prefix sum. Blelloch describes an efficient parallel algorithm for
the calculation of prefix sums (Blelloch 1990). The described algorithm produces the
prefix sum of a single vector of length n using p processors. It has a time complexity
of O(n/p + log(p)). Extending this formulation to a second dimension, the individual
elements become vectors of length £ and the + operator becomes the element-wise vector
addition. This can be interpreted as the k-times application of the basic prefix sum on the
respective elements of the vectors. The time complexity is then O(k - (n/p + log(n))).

4.4 Asymptotic Complexity

This section summarizes the asymptotic complexity of the individual steps from the
previous three sections. These three parts are the dominating parts of the algorithm in
terms of execution time. The parts of the implementation that are associated with reading
input files and writing output files, as well as statistics and logging are not considered
here. There are datasets where the set-up process takes a few minutes, but it is constant
per dataset and negligible compared to the total execution time if the number of rules
to be learned is large. Another part that is not considered is the sorting of the feature
values at the start of the learning process, as the required execution time is also negligible
compared to the time required to learn the rules.
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The following abbreviations are used: number of features m, number of examples n,
number of labels k, number of rules r. For the number of split points, the worst case n is
assumed. The number of conditions per rule ¢, is dependant on the characteristics of the
dataset but usually limited to a certain value to maintain interpretability of the learned
rules. It is therefore treated as constant and does not appear in the asymptotic complexity.

Under these assumptions, the asymptotic work and time complexity of the rule induction
process of the BOOMER algorithm is:

O(r) rule inductions
= O(r-m-n)-find_head
= O(r-m-n-k)

The cost for one evaluation of find_head is O(k) and the cost for one rule induction is one
find_head for each combination of feature and example, so O(m - n) - find_head.

The parallelization of the main loop as described in Section 4.3.3 requires additional
O(n - k) memory per feature. The sequential implementation currently requires O(m - n)
memory for the feature matrix x and the sorted_indices, O(n - k) for the gradients and
Hessians and O(k) for the sums of gradients and Hessians during an iteration. In total,
the sequential rule induction process requires O(n - (m + k)) memory.

The parallel algorithm also requires O(n - (m + k)) to store the feature values, sorted
indices, gradient and Hessians. Depending on the degree of parallelism, additional O(n - k)
to O(m - n - k) memory is required to store the prefix sums of gradients and Hessians.
The memory requirement depends on how many times find_head shall be executed in
parallel. If all refinements for all features, examples and labels of a rule shall be calculated
in parallel, O(m - n - k) memory is required as the sums of gradients and Hessians need to
be stored for each label, example and feature. If only the refinements of a single feature
(or any fixed number of features) shall be calculated in parallel, only O(n - k) memory is
required to store the sums of gradients and Hessians for each label and example.

The time complexity of the parallel algorithm is dependant on the available number of
processors p. If a sufficiently large number of processors is assumed (p > m - n - k), all
refinements can be calculated in parallel and the prefix sum over gradients and Hessians
can also be calculated fully in parallel. The time complexity for one rule would reduce
to O(log(n) + log(p)). The log(n) term comes from the prefix sum of Section 4.3.3 and
the log(p) term from the reduction of Section 4.3.1. Assuming only a constant number of
processors p < m - n - k, the complexity can be given as O(m - n - k/p) (the logarithmic
terms are left out as they are dominated by the linear terms).
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4.5 Parallel Transformation

The reference implementation of the BOOMER algorithm is sequential and uses only a
single thread on a single CPU core. As explained in Section 4.3.3, there are no data
dependencies between iterations of different features. A parallelization solely over the
features could be implemented. This approach is probably suited for a parallel CPU
implementation, but not for a GPU implementation. During the execution of a CUDA
kernel, all 32 threads of each warp in the kernel execute the same instructions or are
predicated off. Threads can be predicated off when the execution branches have diverged,
e.g., after an if statement. Only some of the threads execute one branch while the other
threads execute another branch. For example, a warp executes an if statement and 24
threads execute the then branch and 8 threads the else branch. This is called branch-
divergence (NVIDIA Corporation 2020a, Chapter 12). All threads of the warp must execute
the same instructions, so the then and the else branch are both executed after each other.
The 8 threads of the else branch are predicated off during the execution of the then branch
and vice versa.

The if statements to determine which conditions need to be tested combined with the
surrounding loop could produce significant divergence inside a warp. For a GPU imple-
mentation, high parallelism and low control flow are well suited. This would be the case
if the calculation of all scores for each feature, example and label could be executed in
parallel.

The calculations of the scores for find_head themselves have no dependencies on other
iterations, meaning that they can be executed in parallel if all inputs can be provided.
Providing the inputs to all iterations is the main problem for a parallelization over examples
and labels. The loss function holds a state via the sums of gradients and Hessians which
are updated at the end of each iteration. In order to calculate multiple examples in parallel,
the corresponding sums of gradients and Hessians are required for each example. As the
order in which the examples are processed is known upfront, the solution used in this
work is to compute all sums of gradients and Hessians before computing the scores. This
results in a trade-off between exploitable parallelism and required memory to store the
intermediate sums of gradients and Hessians.
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4.5.1 Determining Conditions to Test

Before any split point can be tested for a refinement, a parallel implementation must first
determine all split-points that will eventually be tested for the current refinement. The
sequential implementation executes a check at each iteration before executing find_head
to determine whether the current example provides a split point or not. Depending on
the type of the dataset, any number from one example to all examples of a feature can
provide a split point. For example, a binary feature yields only a single split point between
0 and 1, as all examples have either O or 1 as their feature value.

Algorithm 4.2 : Algorithm to determine all conditions to test in parallel

Data : Feature values X € F*" Permutation 7% € {0,...,n}™*"

Result: r = (ry,...,r,) ", with r; € {0,n}¢

parallel for fin0,...,m —1do
g < starting indices of consecutive groups of identical elements in 7 (X [f][:])
parallel for i in 0, ... length(g) do

| vy =nf(gli)

Algorithm 4.2 shows pseudocode that, given a matrix of feature values X and a permutation
7% that sorts the rows of X in ascending order, returns for each feature the indices of the
examples with a different feature value than their predecessor. In an implementation, the
starting indices of consecutive groups of identical elements can be found using functions
like std::unique from the C++ Standard Library or numpy.unique from the NumPy library
for Python. The Thrust library also provides a parallel implementation with thrust::unique.

Table 4.3: Example for Algorithm 4.2 to determine the conditions to test using m = 1
feature and n = 4 examples.

X = [1,3,2,2]

X = [0,2,3,1]

™X(X) = [1,2,2,3]

g «— [0,1,3]

r = [#X(00),7X(1),7X(3)] = [0,2,1]

The example in Table 4.3 shows which values the variables and sequences would hold for
the given X and 7. For simplicity, only a single feature and four examples are used.
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4.5.2 Parallel Score Calculation

The scores required for find_head are calculated in a loop over the labels as described
in Section 4.3.2. Only the case of a decomposable loss function is considered here. The
calculations that are performed at each iteration are independent of the other iterations.
The calculations can therefore be parallelized by executing each iteration in a separate
thread. Algorithm 4.3 shows the corresponding pseudo code. The individual steps of the
computation are replaced by a call to a function scores, which takes as arguments the
sums of gradients and Hessians for a label as well as the ¢, regularization weight. The
function scores returns a predicted score and a quality score.

Algorithm 4.3 : Parallel calculation of the predicted and quality scores over labels

Data : g, H,X,, ¥y — prefix sums of the gradients and Hessians up to an example
and the total sums of gradients and Hessians over all examples, A\ € R — The
L2 regularization weight and d € {<, >} — The comparison operator of the
condition for which the scores are calculated

Result : Predicted and quality scores p, g € R*

if d == > then

g9=%—g
H=%,-H
parallel foriin0,...,k — 1 do
| pi, i = scores(gi, Hyi, l)

With this formulation of the loss function, it is also possible to parallelize the score
calculation over the examples, if the sums of gradients and Hessians are known for each
example. This is shown in Algorithm 4.4. The sums of gradients and Hessians are now
required for each example and label. The returned scores are two-dimensional and contain
one score for each combination of example and label. This can be extended in the same
way for the features. This would result in three-dimensional gradient and Hessian inputs
as well as score outputs. Depending on the size of the dataset, this extension to the third
dimension may exceed the available memory. Therefore, the amount of parallelism on the
feature level could be a tunable parameter that depends on the number of execution units
and the available memory. The efficient calculation of the required sums of gradients and
Hessians is discussed in the following section.
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Algorithm 4.4 : Parallel calculation of the predicted and quality scores over examples

and labels

Data: g,, H,,%,, X — prefix sums of the gradients and Hessians over all examples
and the total sums of gradients and Hessians over all examples, lo € R — The [,
regularization weight and d € {<, >} — The comparison operator of the
condition for which the scores are calculated

Result : Predicted and quality scores p, g € R™**

parallel for jin1,...,n—1do

g=4g;

H = H;

if d == > then

g=%,—g
H=Y,—-H
parallel foriin0,...,k — 1 do
| pi, i = scores(gi, Hy, lo)

4.5.3 Parallel Update of Gradients and Hessians with Prefix Sums

To parallelize the score calculation over the examples, the respective sums of gradients
and Hessians are required. This section provides two approaches to compute the sums
of gradients and Hessians for all examples and labels of a single feature. The algorithms
in this section are described for a single feature only for readability. As explained in the
previous section, the calculations for each feature can be executed in parallel, so the
algorithms in this section could be executed inside a parallel loop over the features.

A first approach to calculate the required elements could be to execute the original loop
without executing find _head and store the intermediate values during each iteration.
Considering only the update of gradients and Hessians in each step of the rule induction,
the implementation looks like Algorithm 4.5. The notation G[i][:] selects all elements of
the i-th row of the matrix G.

All operations that are not associated with the computations of the sums of gradients and
Hessians are hidden behind the compute(...) function call. During each iteration of the
inner for loop, the value of g and h could be stored to a data structure. The outer loop as
well as the vector additions in the last two lines could be parallelized. After a value for g
and h has been calculated, the remaining computations based on these values can also
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Algorithm 4.5 : Schematic description of the rule induction. All computations that
are not relevant for the update of the sums of gradients and Hessians have been
summarized as a compute function call.

Data : G, H € R™* — gradients and Hessians, I € R - The [, regularization weight
Result : Predicted and quality scores p, g € R"*F

for fin0,...,m —1do

i =sorted_indices[f][0]

g9 = G[i[]
h = Hi][:]
foreinl,...,n—1do

i =sorted_indices[f][e]
compute(...)

g9 =g+ Gli[:]

h =h+ HJi[]

be executed in parallel. Another approach is to parallelize the calculation also over the
examples, which is described in the following.

With ¢ =sorted_indices[f][k], the variable g holds the following values during the inner
loop for a feature f:

Before the first iteration: g = G[i"][:]

Iteration 1: g' = G[i"][:] + G[i!][}]

Iteration 2: g? = G[i'][:] + G[i!][]] +
Iteration 3: g° = G[i°][:] + G[i!][:] +

o ) o
Iteration n-1: g"~! = > j=0 GI71[]
Iteration n: ¢" = Y%, G[i/][:]

If the G[i¥][:] are defined as the input sequence, then the g* are the output sequence of
the all-prefix sums (also called scan) operation on the input sequence G[i*][:]. This output
sequence ¢* at index k contains exactly the values that the gradient vector contains at
the end of the k-th iteration. The same can be applied to the Hessians. Applying the scan
operation on the input sequence H[i*][;] returns the output sequence h*. Using the two
sequences g* and k¥, the loss function can be executed for each example independently.
The sequences were specific for feature f, but as the features are independent, sequences
gé? and h"; can be generated for each feature j. The search space for the best condition can
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therefore be searched fully in parallel, if sufficient resources (processing cores, memory)
are available.

Algorithm 4.6 : Parallel calculation of the prefix sum over gradients and Hessians.

Data : G, H € R"** — gradient and Hessian, 7 - permutation of the feature values
so that they are sorted in ascending order (per feature)
Result : Prefix sums of the gradients and Hessians ©¢, ©.H ¢ Rmxnxk
1 parallel foriin0,...,m — 1 do
parallel for jin0,...,k — 1 do
pe; = m(G[)
pf; = m(H[[5))
[i][:][j] = parallel prefix_sum(p{;)
[i][:][j] = parallel prefix_sum(p;’)

A 1 A W N

EG
EH

Algorithm 4.6 shows a formalization of the above, where the vector of gradient entries for
all examples of a specific label j is selected with G[:][]. This vector is then reordered by
the permutation so that the examples are sorted in ascending order by their corresponding
feature values. A parallel prefix sum algorithm is applied and the result is stored in the
corresponding slice of the three-dimensional result data structure. The computation of
the two prefix sums can also be done in parallel.
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5 Implementation

After the previous chapter covered the theoretical possibilities how the BOOMER algorithm
can be parallelized, this chapter describes the implementation of the parallel GPU version.
Table 5.1 provides an overview of the process to calculate the best refinement for a feature.
The reference implementation uses a loop over the examples and executes find _head and
update (sums of gradients and Hessians) alternately. After each application of find head,
the new head is compared with the current best head and the better one is stored. After
all examples have been processed, the best head found during the loop is returned. The
intended parallelization as elaborated in Chapter 4 only executes a single prepare step,
then executes find_head in parallel on all examples and applies a reduction to find the
best head afterwards. The prepare step calculates all results of the original update step
using a parallel prefix sum.

Table 5.1: Abstract view on the sequential and parallel version of the refinement process
for one feature in the BOOMER algorithm

Sequential implementation Intended parallelization

for each example prepare()
find_head() find_heads()
update() reduce() — Optimum
find_head()
update()

find head()
update()
— Optimum

Depending on the memory constraints, there are three levels of parallelism available to
handle multiple features. If all sums of gradients and Hessians fit into GPU memory, the
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prepare step can calculate the sums of gradients and Hessians for all features in parallel.
The find_heads and reduce steps can then also be executed for all features.

A less memory intensive level executes the prepare step only for a fixed number of features
(at least one) in a loop. Each time the prefix sums for a feature have been calculated, only
a subset of the calculated elements is required (not all examples provide a split point).
For datasets with a low number of distinct feature values per feature, this can result in
a significant reduction in memory usage. By calculating the prefix sums only for a fixed
number of features, this reduction can be applied each time a block of features has been
processed instead of after all features have been processed. The steps find_head and reduce
can still be executed fully in parallel.

The third level would be to execute prepare, find_heads and reduce in a loop over the
features. This way, the prefix sums of gradients and Hessians only need to be stored for a
single feature.

Before the actual implementation, Section 5.1 explains why CUDA was chosen for the
GPU implementation and which other options to utilize GPUs exist. Section 5.2 provides
an overview of the internal data structure of the CUDA implementation. After the data
structure has been explained, Section 5.3 discusses the topic of slicing to enable the
GPU implementation to process larger datasets. Section 5.4 follows the same structure
as Sections 4.3 and 4.5 and showcases the implementation of the three major parts of
the BOOMER algorithm using CUDA C/C++ and the Thrust library. Each of the three
algorithms is followed by a short example to illustrate the parallel implementation. After
the implementation, Section 5.5 describes two tunable aspects of the GPU implementation
and Section 5.6 describes the limitations of the GPU implementation regarding processable
datasets.

5.1 Evaluation of Options for Implementation

There are many options to write code for GPUs. One category are language extensions
and libraries like CUDA C/C++ and the Thrust library from NVIDIA as well as their AMD
counterparts HIP/ROCm' and rocThrust?. There are also bindings for other languages,
for example PyCUDA (Klockner et al. 2012b; Klockner et al. 2012a) for Python, which
are also relevant to this work. Finally there are pragma or directive based extensions like

! Advanced Micro Devices, Inc 2021a.
2Advanced Micro Devices, Inc 2021b.
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OpenACC2 and OpenMP (Dagum and Menon 1998) which both use C/C++ or FORTRAN
as base language and can offload parts of code onto a GPU.

The reference implementation of the BOOMER algorithm is written in Python and Cython,
so interfacing with other Python or C/C++ code is already possible and straightforward.
The compute cluster at the Knowledge Engineering Group provides only NVIDIA GPUs
and the NVIDIA CUDA Toolkit. The AMD equivalents of CUDA and Thrust are therefore
not considered in this work.

The Thrust library offers parallel (CPU and GPU) implementations of algorithms like the
prefix sum. Availability of highly optimized implementations of such algorithms like with
the Thrust library is therefore preferred for the implementation. This excludes OpenACC
and OpenMP, as they focus mostly on accelerating loops via directives, but do not provide
implementations of more complex algorithms.

PyCUDA provides Python wrappers for the CUDA API. It is also possible to write custom
CUDA kernels as Python strings, which are then compiled Just-In-Time during execution.
Using the Boost* C+ + library and CodePy® there is also the option to use Thrust algorithms
with PyCUDA by specifying the function calls as Python strings. But this was not tested
during evaluation. The high dependence on other libraries and the fact that CUDA kernel
code and Thrust function calls need to be specified as Python strings are considered as
disadvantages considering readability and maintenance.

As functions written in C+ + can be called directly from within Cython code, CUDA C/C+ +
with Thrust is chosen for the GPU implementation in this work. The accelerated parts of
the code are compiled as a static library and linked together with the Cython code. They
only depend on the NVIDIA CUDA Toolkit and the NVIDIA driver.

In case the algorithm should later be used on AMD GPUs, the tool hipify which is part of
AMD ROCm, can be used to translate the CUDA C/C+ + code to HIP C+ +. The translated
HIP C+ + code can then be run on both AMD and NVIDIA GPUs.

30penACC Organization 2021.
*https://www.boost.org/
*https://documen.tician.de/codepy/
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5.2 Memory Layout

The algorithms in Chapter 4 use vectors and lists of vectors to store the gradients and
Hessians as well as all intermediate results. An implementation in CUDA C/C+ + should
have all data reside in plain one-dimensional arrays for maximal performance. This
requires a 2D-interpretation of the memory layout and a corresponding indexing schema.
To access the element at the i-th row and j-th column of a two-dimensional matrix of size
m x n, the index is calculated as idx(i,j) = i *n + j. As C/C++ uses row-major order,
the rows of a matrix are stored contiguously. The following arrays are used in the CUDA
implementation to store the gradients, Hessians, sums of gradients and Hessians, as well
as intermediate results:

d_gradient_matrix Array of size (n x k) that holds the gradient vector for each example.
All label entries for one example are contiguous in memory.

d_hessian_matrix Array of size (n x k) that holds the diagonal of the Hessian matrix for
each example. All label entries for one example are contiguous in memory.

d_x_matrix Array of size (m x n) that holds the feature values for each example. The
features values for one feature are contiguous in memory.

d_sorted_indices Array of size (m x n) that holds the permutation that sorts each row
of d x_matrix in ascending order. Same memory layout as d_x_matrix.

d_features Array of size c that holds the index of the feature to which a split point belongs
to.

d_examples Array of size ¢ that holds the index of the example to which a split point
belongs to.

d_labels Array that holds the indices of the labels. Either of size & in case the condition
that is computed is the first condition for the current rule, or of size 1 in case the
condition is not the first condition for the current rule (due to the use of single-label
rules).

d_sums_of_gradients Array of size (¢ x k) that holds the element of the prefix sum of
the gradient matrix that corresponds to a split point. The entries for all labels of an
example are stored contiguously in memory.
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d_sums_of_hessians Array of size (¢ x k) that holds the element of the prefix sum of
the Hessian matrix that corresponds to a split point. The entries for all labels of an
example are stored contiguously in memory.

d_total_sums_of_gradients Array of size k that holds the sum over the gradient vectors
for all examples.

d_total_sums_of_hessians Array of size k that holds the sum over the diagonals of the
Hessians matrix for all examples.

d_predicted_scores Array of size (¢ x k) that holds the predicted scores of the evaluated
conditions.

d_quality_scores Array of size (¢ x k) that holds the quality scores of the evaluated
conditions.

Additional vectors are used to store intermediate results and are mentioned in the respec-
tive chapters in which they are used. Some of these vectors are used in more than one
part of the algorithm to decrease the memory footprint. This is omitted in the following
chapters for clarity.

Due to the use of functions like thrust::transform and thrust::exclusive_scan from the
Thrust library, thrust::device vectors are used as containers for raw GPU memory. A
thrust::device_vector contains iterators to the beginning and the end of the contiguous
memory location as well as the information for the Thrust library that the function shall
be executed on the device (which is the GPU in this case).

5.3 Slicing

The maximum amount of GPU memory is typically much less than the possible main
memory of a CPU (compare 11 GiB of the NVIDIA RTX 2080 Ti with 128 GiB main memory
on the cluster node in Table 6.1). Together with the increased memory footprint of the
parallel algorithm to store the prefix sums of gradients and Hessians, additional measures
are required to process larger datasets. For example, using the values of the dataset
bookmarks, which has 4300 features after one-hot encoding, 87856 examples and 208
labels, the prefix sums for gradients and Hessians would require 4300 - 87856 - 208 ~
585 GiB memory each when stored in double precision. Such a dataset could therefore not
be processed without further measures. A solution to this problem is to split the required
data into chunks of a maximal size that fits in GPU memory and process all chunks
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sequentially. For example, chunks of 10 features could be processed (10 - 87856 - 208 ~
1.36 GiB for the prefix sum of the gradients). The search space can theoretically be split
on each of the three dimensions (features, examples or labels) or any combination of
them. This process is also called slicing.

When splitting the search space into chunks, it becomes necessary to compute the optimal
results for each chunk and compare these partial results to choose the optimal result of
the whole dataset. This adds a small computational overhead, as there are only O(k)
comparisons required, where k is the number of chunks the data is split in.

A short discussion is held in the following to decide on which dimensions to slice. Besides
the three basic slicing options over features, examples and labels, also all combinations of
the three are possible.

Slicing over labels is theoretically possible regarding the configuration considered in this
work (label-wise loss function with single-label rules). The computations for each label
are independent of the other labels, which would allow for a slicing over labels. But
considering possible future extensions with example-wise loss function and multi-label
rules, slicing over labels is not applicable. For example-wise losses with multi-label rules,
all labels of a single example are required to solve a system of linear equations. Slicing
over labels is therefore discarded both as a single measure as well as in combination with
other slicing options as it would complicate extending this work.

Slicing over examples would require bookkeeping of the last values of the prefix sums
of gradients and Hessians (O(n) memory with n being the number of labels) of the last
example of each chunk to start computation of the next chunk based on the stored values.
As slicing over examples is also possible considering other loss functions and multi-label
rules, it is a candidate for implementation.

The third option is slicing over features which does not require to store additional informa-
tion like slicing over examples. As the implementation of the prefix sum over gradients and
Hessians is sequential in features (the prefix sum is calculated in parallel over examples
and labels, but not over features), slicing over the features is very straightforward to
implement.

For this work, only a slicing over features is implemented as it suffices for all datasets
on which the implementation is evaluated. For future work, an additional slicing over
examples could be implemented to process datasets with a higher amount of examples
and labels for which the required memory for a single feature exceeds the available GPU
memory.
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5.4 Parallel Implementation with CUDA C/C++ and Thrust

This section presents an implementation of the parallel algorithms developed in Chapter 4.
It follows the same structure as Sections 4.3 and 4.5. Due to the limited amount of GPU
memory (11 GiB on the cluster node and 8 GiB on the development PC), this implementa-
tion computes the prefix sums over gradients and Hessian only for one feature in parallel.
The sums of gradients and Hessians are stored in the corresponding arrays of the data
structure (see Section 5.2) for as many features as there is GPU memory available (slicing
over features). The score calculation is then executed with a CUDA kernel in parallel for
all entries of these arrays. If feature slicing is required, the prefix sum calculation and the
kernel execution are executed sequentially for each slice.

5.4.1 Determining Conditions to Test

The Thrust library provides powerful algorithms for stream compaction (removing elements
from a data stream). Determining the conditions to test comes down to finding and
removing sequences of identical values for each feature. The function thrust::unique
removes all but the first element of groups of consecutive elements with identical value.
Considering only a single feature, applying thrust::unique once on the sorted feature
values would remove all duplicate feature values as required. There remain two problems
to solve: The BOOMER-algorithm requires the array of example indices and not the array
of feature values, so the elements must be removed from the sorted_indices array. Another
problem concerns the bounds between features. As all example indices for all features are
stored contiguously in a single array, applying thrust::unique could identify a group of
consecutive elements with identical values that span across two features and therefore
belong to two separate groups, even though they are contiguous in memory.

Visualization:
feature values: 0135 | 561214 | 141415 ...

Above visualization shows two possibly problematic situations. The third situation, where
the last element of the previous feature is different from the first element of the current
feature, is not shown, as the unique operation does not apply a modification here. The
visualization shows the array of feature values, where the symbol ”|” denotes the boundary
between two features.
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The first situation is the one, where the element 5 is present as the last element of the
first feature and also as the first element of the second feature. In this case the unique
operation removes the second 5 instance, as it is part of a consecutive group and not
the first element of that group. Comparing to the original CPU implementation, this is
not a wrong behaviour. The CPU implementation only updates the loss function for the
first example of each feature and does not execute find_head (the gradients and Hessians
are zero at this point, because the loss function is updated after an example has been
processed). Therefore, this 5 instance has to be removed later regardless and is not an
error.

The second situation is the one, where the element 14 is present as the last element of
second feature and also as the first and second element of the third feature. The unique
operation removes both 14 instances in the third feature. With the same argument as
for the first situation, the removal of the first element of the third feature is not an error.
The removal of the last 14 instance is also not an error, as it would have been removed
regardless of whether the unique operation restarts at a feature boundary or not.

In summary, applying the unique operation on the array where all features are stored
contiguously is not a problem, as at most elements around the feature boundaries are
removed which would have to be removed later regardless. The other problem is concerned
with the removal of elements from another array during the application of the unique
operation on an array.

This is solved by using the generalized version, thrust::unique by key. The generalized
function takes an array of keys and an array of values as arguments and searches the
key-array for groups of consecutive elements with identical value and then removes all
except the first element of each group in the key and the value array. The usage of the
function thrust::unique_by key copy is shown in Listing 5.1. The _copy version acts similar
to the normal thrust::unique by key, but instead of modifying the source arrays, it copies
the unique values to a specified array. The array d x_values contains the entries of the
feature matrix x, reordered according to the sorted indices (sorted in ascending order per
feature). The first two arguments to thrust::unique by key copy are the beginning and
the end of the source key array. This array determines which elements are copied and
which are not. The third argument is the source value array, from which the determined
elements are also copied. The listing uses a thrust::counting iterator to generate the
example indices with unique feature values. The fourth argument is the target key array,
where the unique elements are copied to. As the actual feature values are not of interest,
the listing uses a thrust::discard_iterator. The discard_iterator simply discards all values
that are written to it. This reduces the number of memory writes and therefore saves
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Listing 5.1: Thrust implementation to determine in parallel which conditions to test

thrust::unique by key copy/(
d x values.begin (),
d x values.end(),
thrust:: make counting iterator (0),
thrust :: make discard iterator (),
d examples.begin ());
thrust:: transform (
d examples.begin (),
d _examples.end (),
d features.begin(),
get row_index (num_examples));
thrust:: transform (
d examples.begin (),
d examples.end (),
d examples.begin (),
get remainder (num_examples));

memory bandwidth compared to the non-copy version of thrust::unique by key, as the
entries of d x_values are not modified. The fifth argument is the target value array, called
d_examples. The indices of examples with unique feature values are stored in this array
after the function has been executed. It is important to note that the indices do not
represent the actual examples in their original order, as the array d_x_values contained
the sorted feature values. Furthermore, the examples indices are strictly increasing and
do not reset for a new feature. This is corrected in the following steps.

First, the example indices are mapped to their corresponding feature index by dividing
by the number of examples. This is done by applying thrust::transform with d_examples
as source and d_features as target array. The struct get row_index applies the division
by num_examples to each element of d_examples. After that, each example index can be
replaced by the remainder of its value modulo the number of examples. This transformation
is applied in-place, with d_examples as source and target array.

After this procedure, the array d_features contains the information, to which feature the
examples in d_examples belong. The array d_examples contains the indices of the examples
with unique feature values when sorted by feature value. The array d_examples therefore
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contains the information, for which examples the sums of gradients and Hessians are
required for to calculate a refinement with find head.

Example

Figure 5.1 shows a short example of the algorithm to determine the conditions to test in
parallel (compare Listing 5.1). The inputs are the feature matrix = (1) and the sorted
indices (2). Both are displayed as matrices of size (m x n) in the figure for clarity.
The implementation uses linear arrays where the rows are stored consecutively. This
example uses the dataset weather-numerical as input data. Only the feature with index 3
(corresponds to the attribute temperature) is considered for this example. (1) shows the
feature values of the 14 examples in the datset. (2) shows the content of the sorted indices
for the feature with index 3. Using the sorted indices, the array d_x values (3) receives
the feature values in ascending order. Now the function thrust::unique by key copy is
applied to copy the indices of the unique feature values to the array d_examples (4). In
this example, only the second occurrence of the feature value 72 is removed. After that,
the two transformations from Listing 5.1 are applied to convert the entries of d_examples
into feature-example index combinations. The entries for d_features are calculated by
dividing (without remainder) the entries of d_examples by the number of examples, which
is 14 in this case. Finally, the entries of d_examples are transformed by applying the
modulo operation, so that the entries are now the indices of the examples of the feature
in d_features at the same index.
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Figure 5.1: Visualization of the values in memory for the algorithm to determine the
conditions to test in parallel. The input data of the fourth feature (index 3) of
the dataset weather-numerical during the induction of the first condition of
the first non-default rule are used.
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5.4.2 Parallel Score Calculation in CUDA

The custom CUDA kernel to calculate the scores required for find_head in CUDA is fairly
straight-forward as the data structure has been set up for Single Instruction Multiple
Data (SIMD) processing. The examples for which the scores need to be computed are
determined with the algorithm described inSection 5.4.1. The data structure uses two
arrays, sums_of gradients and sums_of hessians to provide the input data for the score
calculation in this kernel. The two arrays have the same layout. For each example, for
which the scores need to be calculated, the sum of gradients and Hessians is stored
label-consecutive in the respective array. With this layout, the CUDA kernel can access
the elements via a 2D indexing scheme. The dimension x is used to index the example
and the dimension y indexes the label of that example. The output arrays predicted_scores
and quality scores have the same layout. Therefore, the same index can be used to index
all four arrays.

Listing 5.2 shows the implemented CUDA kernel. The function parameters are omitted
for readability. The keyword __global__ in line 1 tells the compiler to compile the
function for the GPU. Lines 3 and 4 contain the usual index calculation that each CUDA
thread executes at the beginning of a kernel. This kernel is a two-dimensional kernel,
therefore the index calculation is done for both x- and y-dimensions but not for the z-
dimension. CUDA kernels can be one-, two-, or three-dimensional using the built-ins
threadlIdx, blockldx and blockDim. Algorithms that operate on higher-dimensional data
can either organize the data linearly and use a one-dimensional kernel or calculate all
required indices inside the kernel for each thread.

In the case that, e.g, the number of labels is not a multiple of the number of threads in
the y-dimension, the index calculation in lines 3 and 4 would produce an index that is
not valid or out of bounds. Lines 6 to 8 therefore ensure that a thread that calculated
an invalid index immediately returns and cannot produce an illegal memory access or
overwrite data of another thread. In line 9, the final index to access the arrays of the data
structure is calculated.

The remaining lines from 11 to 27 correspond to the implementation in Cython and
calculate the predicted and quality scores. First, the sum of gradients and Hessians up
to the current example are read and stored thread-locally (lines 11 and 12). In case the
comparison operator ”>" is used in the condition that corresponds to the current example,
the sum of gradients and Hessians must be calculated from this example until the end
and therefore the current sums are subtracted from the total sums over all gradients and
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Listing 5.2: CUDA code of to calculate the score for find_head

__global  void calculate scores _kernel (...) {

threadIdx.x + blockIdx.x % blockDim.x;
threadldx.y + blockldx.y * blockDim.y;

size t tidx
size t tidy

if (tidx >= num_conditions || tidy >= num labels) {
return;

¥

size_t index = (tidx % num labels + tidy);

double sum_ of gradients = sums_of gradients[index];
double sum of hessians = sums_of hessians[index];

if (uncovered) {
size t 1 = label indices[tidy];
sum_of gradients = total sums_ of gradients[l] —
sum_of gradients;
sum_of hessians = total sums_of hessians[1] —
sum_of hessians;

}

// Calculate score to be predicted for the current label...
double score = divide or zero(—sum_of gradients,

sum_of hessians + 12 regularization _weight);
predicted scores[index] = score;

// Calculate the quality score for the current label...
double score pow = pow(score, 2.0);

score = (sum_of gradients * score) + (0.5 * score_pow =
sum_of hessians);
quality scores[index] = score + (0.5 =

12 regularization _weight * score pow);
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Listing 5.3: Definition of thread and block dimensions and the CUDA kernel call

size_t dimX = 16;

size t dimY = 8;

dim3 threadsPerBlock (dimX,dimY) ;

size _t blockX = num conditions / threadsPerBlock.x + 1;
size_t blockY = num labels / threadsPerBlock.y + 1;

dim3 numBlocks (blockX, blockY);

calculate scores kernel <<<numBlocks, threadsPerBlock >>>(;

Hessians (lines 14 to 18). From line 20 until 27, the predicted and quality scores are
calculated and stored at their index in the corresponding arrays.

The kernel call as well as the specification of the kernel dimensions are shown in Listing 5.3.
Lines 1 to 3 define the dimensions of a block of threads. The type dim3 is CUDA-specific
and is used to specify kernel launch parameters of two or three dimensions. Line 3
specifies that each block shall use 16 threads in x-dimension and 8 threads in y-dimension.
In order to launch enough blocks so that all elements are processed, the number of blocks
in x- and y-dimension is calculated by dividing the number of conditions and labels by
the corresponding block-dimension. The kernel launch itself is specified with triple angle
brackets <<< ... >>> in line 7. This is a CUDA-specific syntax only used for kernel
launches. The kernel launch parameters are specified between the triple angle brackets.

Example

Figure 5.2 shows an example of the parallel score calculation. This example continues the
previous example in Figure 5.1. The arrays d_features and d_examples were calculated in
the previous example. Furthermore, this example assumes that the sums of gradients and
Hessians already exist (they are calculated in Figure 5.3). The dataset weather-numerical
contains 3 labels and the algorithm is configured to use an L2 regularization weight of 1.0.
For each pair of entries from the sums of gradients and Hessians, two scores are calculated
for two conditions each. The predicted scores p are calculated as p; = ﬁ;‘f/\, where g; is
the i-th entry of sums_of gradients, h; is the i-th entry of sums_of hessians and X is the
L2 regularization weight. The quality scores g are calculated as ¢; = g;p; + %pQ(hi +A).
These formulas are specific to the configuration using a decomposable loss function and
single-label rules. The CUDA kernel computes the predicted and quality scores for all
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indices in parallel. Then, the best quality score is selected with thrust::min_element, which
returns an iterator to the best quality score (index 11 for the values shown in the example).
Dereferencing this iterator yields the corresponding quality score. Finally, the arrays
d_features and d_examples are used to identify the feature and example, to which the best
quality score belongs to. The sums of gradients and Hessians, as well as the predicted
and quality scores, contain one entry for each label of an example that provides a split
point. The arrays d_features and d_examples contain only one entry for each example that
provides a split point. The index of the example with the best quality score is therefore
calculated by dividing the index for the quality scores (11) by the number of labels (3).
This yields index 3 for the arrays d_features and d_examples and a remainder of 2, which
is the index of the label. Therefore the best condition for this selection is the condition
with operator < on feature 3, example 1 predicting for label 2. The same calculations are
also executed for the operator >. In this case, the entries of the sums of gradients and
Hessians are subtracted from the total sums of gradients and Hessians first.
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num_labels 3

L2 regularization weight 1.0

index 9 10 11 12 13 14
sums_of gradients ... |-0.361| 0.361]-0.702] 0.278(-0.278 [ -0.404
sums_of hessians 0.231( 0.231| 0.209| 0.461| 0.461| 0.418
index 9 10 11 12 13 14
predicted scores < 0.293(-0.293| 0.581(-0.190( 0.190| 0.285
quality scores < ... |-0.053-0.053]-0.204]-0.026 [ -0.026 [ -0.058
thrust::min_element returns $

index of min element 11 E(?()Srtqu)?’l{[tﬁ/is

. selection
value of min element -0.204

11 / 3 = 3 with remainder 2

* condition “<” for feature 3, example 1, label 2 is optimal

index 3 4 5 6 7 8 9 10 11 12 13
3 3 3 3 3 3 3 3 3
3 4 5 6 8 10 11 12 13

w

d_features

—
N

d_examples

Figure 5.2: Visualization of the values in memory for the algorithm to calculate the pre-
dicted and quality scores in parallel. This example is a continuation of the
examples in Figures 5.1 and 5.3 and uses the same entries of the feature with
index 3 from the dataset weather-numerical for the computed arrays d_fea-
tures and d_examples. The sums of gradients and Hessians are assumed to
have already been calculated (e.g., with Figure 5.3).
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5.4.3 Prefix Sums over Gradients and Hessians with Thrust

The calculation of the prefix sums over gradients and Hessians is implemented fully with
Thrust routines. The main routine is thrust::exclusive_scan, which executes the prefix
sum. After the prefix sum has been computed, all elements that are not required for
the score calculation can be discarded. This is done by using the function thrust::gather,
which copies elements specified by a map from a source array to a destination array. The
array d_examples from Section 5.4.1 is used as the map. The gather operation selects
the elements of the prefix sums specified in d_examples, which are exactly the sums of
gradients and Hessians required for the score calculation.

The implementation of the prefix sum and the selection of the required elements of the
prefix sum itself are rather short and concise, as each of them corresponds to a single Thrust
function call. In contrast, preparing the input data requires complicated permutation and
transpose operations. There exists a special case where the transpose operations are not
required. This section starts with this special case to showcase the parallel implementation
and to introduce the general idea. The differences for the general case are then shown
separately.

The special case is the situation when the prefix sum has to be calculated for one label
only. This is the case for single-label datasets and when using single-label rules after the
first condition has been added to a rule (see Section 2.1).

Listing 5.4: Prefix sum over gradients and gathering of required elements in the special
case where the number of labels is 1

thrust:: exclusive scan (
d gradient buffer.begin (),
d_gradient buffer.end(),
d gradient buffer.begin ()
)3

thrust:: gather (
d _examples.begin (O)+i,
d _examples.begin ()+i+end,
d_gradient buffer.begin(),
d sums_of gradients.begin ()+i

);
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Listing 5.4 shows the prefix sum over the gradients and the selection of the required sums of
gradients with the gather operation. This listing assumes that the array d_gradient buffer
contains the entries of a single label of the gradient matrix for all examples, reordered
so that the examples are in ascending order of feature value. The arguments to the two
function calls are placed on a new line each for better readability. Lines 1-5 show the
prefix sum operation as an exclusive scan on the gradient buffer. The scan is executed
in-place, meaning that the source and target arrays are the same. After the scan, the
gather operation is executed in lines 7-11. The first two arguments specify the beginning
and end of the map, which is the part of the array d_examples from Section 5.4.1 that
corresponds to the current feature. The offset i is the offset to the start of the current
feature, while end is the number of elements to select for this feature. The third argument
is the source array, the gradient buffer after the scan operation has been applied. The
fourth element is the target array, which contains the sums of gradients for each selected
example. It is also indexed with the offset i.

The code to prepare the gradient buffer is shown in Listing 5.5. On a high-level view, the
code selects all entries of a column of the gradient matrix (all examples for 1 label) and
reorders the entries according to sorted_indices. These reordered entries are then stored
in the gradient buffer for the prefix sum.

On a detailed level, an iterator that contains the indices of the entries of a column of the
gradient matrix is created first. This iterator uses a counting iterator beginning at 0. The
counting iterator is modified with a transform iterator by multiplying with the number of
labels and adding an offset corresponding to the required label. The resulting iterator
returns the indices of the gradient entries of the label with number offset for all examples
in their natural order (lines 14-17). Then, this iterator is transformed further to reorder
its elements according to the array sorted_indices. The reordering is done with the struct
copy _idx_func (The code for the struct is adapted from Robert Crovella®). The function
operator() is executed on each element of the iterator, calculates the corresponding row
and column from the linear index (lines 8 and 10), computes the new row according
to sorted_indices (line 9) and returns the corresponding linear index. The offset for
sorted_indices, offset2 consists of the index of the current feature multiplied with the
number of examples. This indexes the sorted indices corresponding to the example of the
current feature. Finally, a permutation iterator is created on the gradient matrix with the
previously created iterator (lines 25-28). The permutation iterator returns the gradient
entries of the column specified by offset reordered according to sorted_indices. The content
of this permutation iterator is then copied to the gradient buffer (lines 30-34).

®https://stackoverflow.com/a/35121077
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Listing 5.5: Preparation of the gradient buffer for Listing 5.4 for a single label

struct copy_idx func
{
size_t c;
size t *p;
copy_idx func(const size t ¢, size t %x p) : c(_c),p(_p) {};
__host _ _device _
size _t operator () (size t idx){
size t myrow = idx/c;
size t newrow = p[myrow];
size _t mycol = idx%c;
return newrow#*c+mycol;
by
¥
auto index = thrust:: make transform iterator(
thrust :: make counting iterator<size t >(0),
1 % num_labels + offset
)3
auto permutation = thrust:: make transform_iterator(
index,
copy_idx func(
num_labels,
thrust::raw_pointer cast(&d_sorted indices[offset2])

)

);

auto p_gradients = thrust:: make permutation_iterator (
d gradient matrix.begin(),
permutation

);

thrust::copy n(
p_gradients,
num_examples,

d gradient buffer.begin ()

) J
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Listing 5.6: Transposing the gradient buffer with cuBLAS<t>geam()

doublex A = thrust::raw_pointer_cast(d_gradient buffer.data());
doublex C = thrust::raw_pointer cast(d _gradients T.data());
double alpha = 1.0;

double beta = 0.0;

size_t m = num_examples;

size_t n = num_labels;

cublasDgeam (
cublasHandle ,
CUBLAS_OP T, CUBLAS OP T,
m, n,
&alpha,
A, n,
&beta ,
A, n,
C, m

)

In the case that the number of labels is not equal to 1, the full rows of the gradient
matrix are required. In this case, the iterator described in lines 14-17 is not required
any more. But after the row permutation step (lines 18-28), an additional step has to
be executed due to the memory layout of the gradient matrix. The gradient matrix is
stored label-contiguous, but the prefix sum requires the input data example-contiguous.
Therefore, the permuted gradient matrix is transposed before applying the prefix sum.

Listing 5.6 shows the usage of the function Dgeam from the cuBLAS library to transpose
the gradient buffer. The cuBLAS library does not support transposing a matrix in-place, so
a second bulffer called d_gradients T is used to store the transposed matrix. The function
geam() performs the matrix addition C' = « * op(A) + (3 % op(B) where op(4) = A if
CUBLAS_OP_N is used and op(A) = AT if CUBLAS_OP_T is used. Specifying o = 1 and
B = 0 transposes the matrix A. Further information can be found in the CUDA Toolkit
Documentation’.

"https://docs.nvidia.com/cuda/cublas/index.html#cublas-1t-t-gt-geam
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Listing 5.7: Prefix sum over the permuted and transposed gradients in the general case
with more than one label

auto start = thrust:: make transform iterator(
thrust:: make counting iterator(size t(0)),
1 / num_examples
)3
auto end = thrust:: make transform iterator (
thrust :: make counting iterator (num_labels * num_examples),
1 / num_examples
)3
thrust:: exclusive _scan_ by key(
start ,
end,
d gradients T.begin(),
d gradients T .begin ()
)3

Now the gradients are in the right order to calculate the prefix sum for each row. To
apply the exclusive scan to each row in parallel, the generalized version thrust::exclu-
sive_scan_by key is used. It calculates a segmented prefix sum®, where all elements that
belong to the same segment participate in the same prefix sum. The segments are de-
termined by the sequence specified with the first two arguments. For the indices of all
elements of this sequence that are equal, the prefix sum is applied to the array specified
as the third argument. In other words, every time the value of the key sequence changes,
the prefix sum for the value sequence restarts. The result of the segmented prefix sum
is written to the fourth argument. Listing 5.7 shows the implementation of the prefix
sum in the general case. Instead of the gradient buffer, two iterators named start and
end now determine the number of elements in the prefix sum (lines 10 and 11). The
two iterators generate the key sequence that determines the segments of the prefix sum.
A counting iterator starting at O is divided by the number of examples (lines 2 and 3),
which is exactly the length of the rows of the transposed gradient matrix. The iterator
start therefore contains num_examples long sequences of identical values that increase by
1 each sequence. This sequence instructs the segmented prefix sum to compute the prefix

8https://thrust.github.io/doc/group__segmentedprefixsums.html
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sum over each row of the transposed gradient matrix in parallel. The iterator end marks
the end of the sequence at num_labels X num_examples.

One more change is required for the gather operation. As more than one gradient entry
must be extracted for each example, an indexing scheme is necessary to translate example
j, label k to the memory location of the (num_labels x num_examples) gradient prefix sum
matrix. The code for the general gather operation is shown in Listing 5.8. The iterator
it_start is created by transforming a counting iterator beginning at O with the structure
calc_index (lines 14-22). The structure is initialized with four values. The example indices
for the current feature (line 17, similar to the single label case, except that i is now a
multiple of num_labels and therefore divided to get the same index). The label indices
are now also required (line 18). The last two parameters are the number of examples
and labels (lines 19 and 20). The operator() function of the structure then calculates the
required index to the transposed gradient matrix. The iterator it_end again marks the
end of the sequence, the variable end contains the number of gradient entries to gather
multiplied with the number of labels. The gather operation copies the required entries to
the sums of gradients array with the corresponding offset i.

This whole procedure is then also applied to the Hessian matrix. This is a point where
a second GPU could be used very naturally without major changes to the code. As the
cluster machines only have a single GPU, the prefix sums over gradients and Hessians are
calculated one after the other.

In summary, this step takes the gradient and Hessian arrays, calculates the prefix sums over
these arrays in a specified order and returns a specified selection or subset of the results.
The implementation only processes one feature at a time, as calculating the gradient
prefix sums over all features in parallel would increase the GPU memory footprint by O(m)
where m is the number of features in the dataset. Furthermore, the complexity of the
index calculation for the permutation and gather operation would increase significantly.

Example

One execution of the prefix sum calculation for the feature with index 3 of the dataset
weather-numerical is shown in Figure 5.3. The array sorted_indices from Figure 5.1 is
reused, as well as the array d_examples. The first step is the permutation of the row of
the input matrix (2) according to the sorted indices (1). The input matrix can be either
the gradient or the Hessians matrix. This example uses the gradient matrix of the first
execution calculated according to the label-wise logistic loss function. The rows of the
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Listing 5.8: Generalized gather for more than one label

struct calc_index
{
size tx e;
size tx 1;

size t m;

size_t n;

calc_index(size t* e, size t* 1, size t m, size t n)
e(_e), 1(_1), m(_m), n(_n) {};

__host___device_

size _t operator () (size t idx){
return 1[idx%n] * m + e[idx/n];
by
3
auto it_start = thrust::make transform iterator(
thrust:: make counting iterator(size t(0)),
calc_index(
thrust::raw_pointer_cast(&d _examples[0]+i/num labels),
thrust:: raw_pointer cast(&d labels[0]+ i%num labels),
num_examples,
num_labels
)
)3
auto it _end = thrust:: make transform iterator(
thrust:: make counting iterator(end),
calc_index(
thrust:: raw_pointer_cast(&d examples[0]+i/num labels),
thrust:: raw_pointer_cast(&d labels[0]+ i%num labels),
num_examples,
num_labels
)
)3
thrust:: gather (
it_start,
it_end,
d gradients T.begin(),
d sums_of gradients.begin ()+i

)
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gradient matrix are reordered so that the corresponding example would be in ascending
order of feature value for feature 3. Then, the permuted gradient matrix (3) is transposed.
The transposed matrix (4) is then scanned (or prefix summed) row-wise (5). An exclusive
scan is used to avoid static offsets. The columns of the prefix summed matrix are then
gathered via the indices of d_examples for the current feature and stored label-consecutive
in d_sums_of gradients. The same operations are then also applied to the Hessian matrix.
The results are stored in d_sums_of hessians. After that, the scores are calculated as shown
in Figure 5.2.

62



sorted_indices[S]|6|5|4|8|3|13|7|11|9|10|1|12|2|0|

permutation of the rows of the gradient / Hessian matrix

according to the sorted_indices

(2) index 0 1 2 index 0 1 2
0 0.63909275 | -0.63909275( 0.29793663 6 -0.36090725| 0.36090725 | -0.70206337
1 0.63909275 [ -0.63909275 [ 0.29793663 5 0.63909275 | -0.63909275 [ 0.29793663
2 -0.36090725 [ 0.36090725 | -0.70206337 4 -0.36090725( 0.36090725 | -0.70206337
6 -0.36090725 [ 0.36090725 | -0.70206337 1 0.63909275 | -0.63909275( 0.29793663
(C)]
index 0 1
0 [-0.36090725| 0.63909275 | -0.36090725
1 0.36090725 [ -0.63909275 | 0.36090725
2 [-0.70206337| 0.29793663 | -0.70206337
prefix sum
5)
index 0 1 2
0 0]-0.36090725| 0.2781855
1 0] 0.36090725| -0.2781855
2 0]-0.70206337| -0.4041267
|d_examples | |1|2|3|4|5|6|8|10|11|12|13|..A|

®

| d_sums_of gradients |

. | -0.361 | 0.361 | -0.702 | 0.278 | -0.278 | -0.404 | |

(3)

Figure 5.3: Visualization of the values in memory for the algorithm to compute the prefix
sum of gradients and Hessians in parallel. This example continues the exam-
ple in Figure 5.1 and produces the sums of gradients required in Figure 5.2.
The arrays sorted_indices and d_examples are the same as in Figure 5.1.
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5.5 CUDA-Parameter and Thrust Tuning

This section revisits two parts of the implementation in CUDA C/C+ + and Thrust. The first
part in Section 5.5.1 is concerned with a tunable parameter, the CUDA kernel dimensions.
The second part in Section 5.5.2 showcases the usage of the NVIDIA Visual Profiler to
determine which of two possible implementations in Thrust is faster.

5.5.1 CUDA Kernel Launch Parameters

The CUDA kernel implemented in Section 5.4.2 is configured to use 16 threads in di-
mension = and 8 threads in dimension y as default launch parameters. Depending on
the number of conditions that are tested for a refinement and the number of labels, this
default configuration might not be optimal.

For example, a dataset with only 2 labels is expected to perform worse when the kernel is
configured with 8 threads in dimension y (label dimension) than when configured with
2 threads in dimension y. Assuming a total of 128 threads per block, the configurations
would be 16x8 and 64x2. In case the dataset has more than 64 condition candidates
(which is very likely), the first configuration (16x8) would waste 6 - 16 = 96 threads per
block, requiring a total of 4 blocks with 128 threads each to cover all condition candidates.
The second configuration (64x2) would require only a single block of 128 threads.

Table 5.2: Number of conditions and labels in selected datasets

Dataset Conditions | Labels Ratio
scene 344452 6 | 57408.67
yeast 153992 14 | 10999.43
emotions 26865 6 | 4477.50
birds 47361 19 | 2492.68
bibtex 3672 159 23.09
corel5k 998 374 2.67

It is therefore expected that the execution time of the kernel is dependant on the configura-
tion of the kernel dimension and that the same kernel configuration performs differently on
datasets with varying ratios of the number of conditions to the number of labels. Table 5.2
lists the number of condition candidates that are tested during the calculation of the first
condition, the number of labels and the ratio of the two for a selection of the real-world
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datasets. The datasets are described in Section 6.2.2. The selection contains the datasets
with the highest and the lowest ratio as well as some intermediate datasets.

Figure 5.4 shows the execution times for the CUDA kernel for multiple kernel dimensions.
The times contain the time for the kernel execution and an immediate CUDADeviceSynchro-
nize(). The device synchronize is required as kernel launches are asynchronous in CUDA
and return control immediately back to the CPU. A device synchronize blocks the CPU
until all kernels have finished. The kernel execution times are logged during an execution
of the GPU implementation with a total of 10 rules and a single fold. Then the median
over the execution times of the kernel executions that correspond to the first condition of
each rule is calculated and displayed in the heatmap. As the maximum number of threads
per block is 1024 in CUDA, the heatmaps have a triangular form where the number of
threads is constant on the diagonals.

The heatmaps are sorted in ascending order by the ratio of condition candidates to labels.
For the first two datasets, corel5k (a) and bibtex (b), the ratio of threads in dimension
x to threads in dimension y does not influence the execution time, as long as the total
number of threads per block is between 32 and 512. The low performance for less than
32 threads per block is expected, as the size of a warp is always 32. This means that the
warps are not utilized properly with less than 32 threads per block and the performance
drops. The CUDA C+ + Best Practices Guide (NVIDIA Corporation 2020a, Chapter 10.3)
recommends at least 64 threads per block and suggests that 128 to 256 is usually a good
starting point for the number of threads per block.

The other four datasets (c) to (f) exhibit better performance when the ratio of z/y is
greater than 1 compared to when the ratio is less than 1. The best performance is achieved
with a total number of threads per block of 32 to 256 and at least 16 threads in dimension
x. Dataset birds (c) shows a special behaviour in the sense that using only 1 thread in
dimension y results in less performance than using 2 or more. This is not the case for the
other datasets.

In the case of single-label rules, one special case has to be addressed separately. After
the first condition has been added to a rule, the following condition candidates are only
evaluated on the single label that yielded the best value for the first condition. This
changes the ratio of the number of condition candidates to labels, as the denominator is
now equal to 1. Moreover, the number of condition candidates also changes because the
number of covered examples strictly decreases as more conditions are added to a rule. The
heatmaps for kernel executions with only one label are shown in Figure 5.5. As expected,
their characteristic is similar to the ones with a high ratio from Figure 5.4, but with an
even stronger focus on the lower middle to lower right part of the triangle.
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Kernel Execution Times for Dataset corel5k [s]
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(e) Dataset yeast, ratio = 10999.43
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(b) Dataset bibtex, ratio = 23.09
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Figure 5.4: Kernel execution times for various kernel launch parameters and selected
real-world datasets
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Figure 5.5: Kernel execution times for the same parameters and datasets as Figure 5.4
but for conditions where the number of labels equals 1
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The importance of the kernel dimension parameter for the case where only a single label
is processed is difficult to asses. The kernel execution time for a single label is usually
much smaller than the kernel execution time for all labels of the dataset. The reduction in
execution time depends on the number of labels in the dataset and how many examples
are covered by the rule after the first condition has been added. The third component is
the number of average number of conditions for a rule. If only very few conditions are
added to each rule, the kernel execution time for single label executions (conditions after
the first one) is probably much less relevant than the kernel execution time for full label
executions. On the other hand, if many conditions (e.g., more than 20) are added to each
rule, the kernel execution time for the single label case might even be more important
than the kernel execution time for the full label case.

Based on the tested configurations, the default kernel parameters were set to 16x8. The
execution time for this configuration is near the lowest or the lowest on almost all examined
datasets. The parameters for x- and y- dimension of the CUDA kernel can be configured
via environment variables. For long running learning task, a short evaluation of various
configurations with a total of 64-256 threads using the desired dataset is recommended
for optimal performance. The Best Practices Guide recommends to choose a multiple of
32 for the total number of threads per block to fully utilize all allocated warps (NVIDIA
Corporation 2020a, Chapter 10.3).

5.5.2 Thrust ZIP-Iterator

The calculation of the prefix-sum over gradients and Hessians consists of the operations
permute, transpose, exclusive_scan and gather. These operations are applied to both
gradients and Hessians.

The permute operation is implemented using a thrust:permutation_iterator and a copy
operation. The operations exclusive scan and gather are implemented with the respective
Thrust functions, while the transpose operation is implemented using cublasDgeam (com-
pare Sections 5.4.2 and 5.4.3). The Thrust library provides so-called zip-iterators, which
allow a function to operate on multiple iterators or arrays at once. With such a zip-iterator,
it is possible to execute the operations copy, exclusive scan and gather on both gradients
and Hessians with one function call for each operation instead of two. This would half the
number of required kernel launches and index calculations, but approximately double the
number of memory accesses per call. A zip-iterator is created with thrust::make zip_itera-
tor from a tuple of two or more regular iterators, in this case the pointers to the gradient
and Hessian arrays. This zip-iterator is then given as an argument to the respective Thrust
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Table 5.3: Execution times of the kernels to compute the prefix sums over gradients and
Hessians for regular implementation and using zip-iterators. Measured using
the NVIDIA Visual Profiler on the dataset emotions.

Operation Execution time separate Execution time zip

permute 11.0ps 1.5ps
scan 38.9ps 11.0ps
gather 10.6 s 1.4ps

function call. The results are written to another zip-iterator of two pointers to the output
arrays.

This section provides profiling results of the Thrust operations mentioned above both with
and without zip-iterators executed on the development PC with a NVIDIA GeForce GTX
1070 (see Section 6.1 for full specification). The dataset emotions was used as a small
dataset and mediamill as a large dataset to identify potential differences regarding the
size of the dataset. For the execution times with the zip-iterator, the kernel execution time
reported by the NVIDIA Visual Profiler is used. For the regular version, the execution time
from the start of the first kernel until the end of the second kernel is measured with the
Visual Profiler.

The profile timings for the small dataset are listed in Table 5.3. For all three operations,
the version with the zip-iterator is 3 to 8 times faster. From the visual representation given
by the Visual Profiler, most of the difference in execution time comes from the additional
launch overhead for the second kernel launch in the regular case. For small datasets,
using the zip-iterator versions for the three Thrust operations is therefore beneficial.

The profiling results for the large dataset are provided in Table 5.4. As the dataset is much
larger, the execution times for the three operations are up to 3 orders of magnitude higher.
As a result, the kernel launch overhead is negligible compared to the execution time of the
kernels. For the permute operation, the zip-iterator version is still faster, but only by a few
percent. The exclusive scan is now about 30 % slower using the zip-iterators compared
to the regular version with two separate kernel launches. The gather operation is about
11 % slower with zip-iterators.

The permute operation is faster using zip-iterators for both the small and the large dataset.
Therefore, the zip-iterator version is used for the permute operation. The scan operation is
significantly slower in the zip-iterator version on the large dataset. As the GPU primarily
targets larger datasets, the regular version with two separate function calls is used for the
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Table 5.4: Execution times of the kernels to compute the prefix sums over gradients and
Hessians for regular implementation and using zip-iterators. Measured using
the NVIDIA Visual Profiler on the dataset mediamill.

Operation Execution time separate Execution time zip

permute 751.3 us 731.8us
scan 830.411s 11799 s
gather 1027.9 s 1144.4ps

scan. For the gather operations, the execution times on the large datasets do not differ
significantly, but the zip-iterator version is much faster on the smaller dataset. The gather
operation is therefore implemented with a zip-iterator.

5.6 Limitations

This section briefly describes the limits of the GPU implementation described in Section 5.4
regarding processable datasets and available GPU memory. An example for a dataset that
is too large for the GPU implementation is the dataset tmc2007. It contains 97990 features
after one-hot encoding, 28596 examples and 22 labels. This dataset cannot be processed
with the GPU implementation on the NVIDIA RTX 2080 Ti installed in the cluster nodes
(11 GiB of GPU memory). The algorithm would require over 30 GiB of GPU memory to
execute a 5 fold run.

A formula to calculate the required amount of GPU memory in Byte depending on the
dataset configuration can be derived from the size of all arrays allocated in GPU memory
during execution. The formula for the expected memory requirements depending on the
number of features m, the number of example n and the number of labels & is as follows:

mem(m,n,k,c) =8-((6-n-k+m-n+2-k)+(m-n+k+2-(c+m)))
+56-c-k+16-n+8-(c-k+n)

The variable c is the number of split points that are tested during execution and can be
approximated by the number of different feature values. For the dataset tmc2007, using
22876 examples (28596 total, with 4/5 participating in the training set each fold) and
assuming c as 97990, the above formula yields mem(m,n, k, c¢) ~ 33.15 GiB.
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6 Evaluation

In this chapter, the implemented GPU version of the BOOMER algorithm is compared
with the reference CPU implementation. The main focus of this evaluation is on the
performance of the two implementations regarding execution time. Section 2.5 provided
several reasons why the two implementations are likely to return different models with
different classification performances. These differences are reported and interpreted
where applicable, but are not the main focus of the evaluation. For the comparison of
execution times, two different types of datasets are used. The first type are synthetic
datasets that are generated to compare the scaling of the two implementations along the
three dimensions features, examples and labels. The second type are real-world datasets
from multiple online repositories described in Section 6.2.2.

6.1 Experimental Setup

This section provides a brief overview of the experimental setup and other hardware
and software used in this work. A PC system with the specification given in the column
Development PC in Table 6.1 was used for development, as well as debugging and profiling
with the NVIDIA Visual Profiler. The experimental results in this chapter were obtained on
cluster nodes of a compute cluster at the Knowledge Engineering Group at Technische Uni-
versitat Darmstadt. The used cluster nodes are all configured identically, the specification
is given in the column Cluster Node in Table 6.1.

To estimate the speedup that can be expected from the GPU implementation of the
BOOMER algorithm, two properties of a CPU and a GPU can be compared. First, the
total number of Floating Point Operations Per Second (FLOPS) is used to compare the
computing power that is available to process data. Second, the memory bandwidth
between CPU and main memory as well as between GPU and GPU memory defines how
fast data can be moved to and from the processor.
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Table 6.1: Hardware and software configuration of the development PC and the cluster

node

Development PC Cluster Node

CPU Intel(R) Core(TM) i7-6700K AMD Ryzen 7 3800X 8-Core
CPU @ 4.20GHz Processor @ 3.9GHz

GPU NVIDIA Corporation GP104 NVIDIA Corporation TU102
[GeForce GTX 1070] [GeForce RTX 2080 Ti]

RAM 16 GiB DDR4-2133 128 GiB

GPU RAM 8 GiB GDDR5X 11 GiB GDDR6

oS openSUSE Leap 15.1 Debian Buster

C/C++ GCC 7.3.0 by Anaconda 4.8.4 GCC 8.3.0

Compiler (Cython) & GCC 7.5.0 (CUDA)

NVIDIA Driver Version: 455.45.01 Driver Version: 418.152.00

Toolkit CUDA Version: 11.1 Cuda CUDA Version: 10.1 Cuda

Version compilation tools, release 11.1, compilation tools, release 9.2,
V11.1.105 V9.2.148

Python Python 3.7.6 Python 3.7.3

Version
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Assuming the highest memory bandwidth supported by the AMD Ryzen 7 3800X (DDR4-
3200, PC4-25600), the memory bandwidth per memory channel is 25.6 GB/s. With
two memory channels, the peak memory bandwidth is therefore 51.2 GB/s. The GPU, a
NVIDIA RTX 2080 Ti is specified with a peak bandwidth of 616 GB/s'. From the memory
bandwidth perspective, a speedup of up to 12x can be expected, if the algorithm is memory
bound.

The number of FLOPS for the CPU is calculated with the formula #cores X clock speed X
16 (Hirsch 2020) and was verified by benchmarking. The reference implementation uses
only a single core, the double-precision FLOPS for a single core are therefore calculated
with the maximum single-core clock speed of 4.5 GHz? as 1 core-4.5 GHz-16 = 72 GFLOPS.
During a short single-core floating point benchmark, 71.232 GFLOPS were measured for
the CPU, which supports the calculated number. The GPU is listed with a double preci-
sion performance of 420.2 GFLOPS?3, which is about 6 times higher. Considering single
precision, the GPU is listed with 13.45 TFLOPS, compared to the doubled 144 GFLOPS of
the CPU. The GPU therefore has about 95 times more single precision computing power
than the CPU. The reason for this is that the floating point execution units of the CPU can
do two single precision operations or one double precision operation. The GPU has 32
times more execution units for single precision than for double precision (4352 compared
to 136 for the RTX 2080 Ti) (NVIDIA Corporation 2018). It is therefore interesting to also
evaluate the GPU implementation when using single instead of double precision.

'https://www.nvidia.com/en-gb/geforce/graphics-cards/rtx-2080-ti/

2https://www.amd.com/en/products/cpu/amd-ryzen-7-38080x#product-specs

*https://www.techpowerup.com/gpu-specs/geforce-rtx-2080-ti.c3305
(each accessed on 13.03.2021)
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Table 6.2: Hyper-Parameter configuration of the BOOMER algorithm used for both syn-
thetic and real-world experiments

Hyper-Parameter Algorithm Parameter Setting
Loss function --loss macro-logistic-loss
Head refinement --head-refinement single-label
Feature sub-sampling  --feature-sub-sampling none
Instance sub-sampling --instance-sub-sampling none
Label sub-sampling --label-sub-sampling none
Shrinkage --shrinkage 0.3
L2 regularization --12-regularization-weight 1.0
Cross-validation --folds 5
Number of rules --num-rules 100

6.2 Experiments

To compare the GPU implementation with the original CPU-implementation, the exper-
iments described in this section were carried out on the compute cluster specified in
Table 6.1. For all experiments, the same algorithm configuration as listed in Table 6.2 was
used. The setting macro-logistic-loss stands for the label-wise logistic loss function. To
ensure that the GPU is initialized and ready for execution, the whole algorithm is executed
once on a very small dataset before each test run. After a longer time of inactivity, the
first algorithm execution on the GPU can take an extra one or two seconds. To prevent
this from influencing the measurements, the initial warm-up run is executed before the
measurement starts. The following two sections describe the types of experiments with
synthetic and real-world datasets.

6.2.1 Synthetic Datasets

The experiments with synthetic datasets are used to measure the scaling of both the CPU
and the GPU implementation in the three dimensions features, examples and labels. The
models that are learned by the algorithms on these synthetic datasets are part of the
scope of this work. Therefore, the synthetic datasets are generated using random values
drawn from a standard normal distribution for the feature values and from a binomial
distribution for the labels.
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The synthetic datasets are grouped in three scenarios with increasing amounts of features
and labels. Each of the scenarios contains a base dataset with 10, 100 and 1000 features
and labels respectively, as well as 1000 examples. For each of the base datasets, a set of
variants with increased features, a set with increased examples and a set with increased
labels is created. The scaling steps are 10, 100, 1000, 2000, . .., 10000, 20000, . . . 50000 for
features and labels. For the examples, the scaling step 10 has been left out. In total, 129
distinct synthetic datasets are used (some configurations like 1000/1000/1000 appear
in all three scaling variants). The datasets are not scaled to more than 50000 features,
examples or labels to allow for a comparison to the reference CPU implementation, as
the CPU implementation could not finish all five folds on synthetic datasets with 50000
features, examples or labels.

6.2.2 Real-World Datasets

The motivation for the experiments with real-world datasets is twofold. First, the real-
world datasets provide a meaningful statement on the performance improvements that
are achieved by the GPU implementation on commonly used datasets. They also serve as a
comparison for new datasets, so that one can get a rough idea of which implementation to
choose. Second, using real-world datasets allows for a comparison of the predictive perfor-
mance of the models learned by the CPU and GPU implementation. Table 6.3 lists all 20
datasets that were used for the experiments with real-world datasets. The datasets are from
multiple repositories, namely Mulan*, WEKA® and MEKA®. The datasets reuters-215787
and RCV1 (Lewis et al. 2004) are used in the word-embedded representation used by
Nam et al. (2017). The dataset genbase-without-useless-features is a version of the dataset
genbase, where all constant features have been removed (the filters weka.filters.unsuper-
vised.attribute.Remove-R1 and weka.filters.unsupervised.attribute.RemoveUseless-M100.0
were applied). This dataset will be called genbase-w/0 from now on for brevity.

*http://mulan.sourceforge.net/datasets-mlc.html

*https://github.com/Waikato/weka-trunk/tree/master/wekadocs/data

®https://sourceforge.net/projects/meka/files/Datasets/

“http://www.daviddlewis.com/resources/testcollections/reuters21578/
(each accessed on 17.03.2021)
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Table 6.3: Used real-world datasets and their number of nominal and numerical features,
examples and labels

Features

Dataset Total | Nominal | Numerical Examples | Labels
bibtex 1836 1836 0 7395 159
birds 260 2 258 645 19
bookmarks 2150 2150 0 87856 208
cal500 68 0 68 502 174
corel5k 499 499 0 5000 374
emotions 72 0 72 593 6
enron 1001 1001 0 1702 53
flags 19 9 10 194 7
genbase 1186 1186 0 662 27
genbase-
without- 112 112 0 662 27
useless-
features
llog 1004 0 1004 1460 75
mediamill 120 0 120 43907 101
medical 1909 1909 0 1954 45
reuters-21578 512 0 512 10789 90
RCV1 512 0 512 804410 103
scene 294 0 294 2407 6
slashdot 3125 0 3125 3782 20
weather 4 2 2 14 3
weather- 6 0 6 14 3
numerical
yeast 103 0 103 2417 14
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6.3 Results

The previous sections introduced the algorithm configuration, the underlying hardware
and the datasets. This section discusses the scaling and the achieved performance of the
GPU implementation compared to the reference CPU implementation. The scaling of the
two implementations on the synthetic datsets is analysed in Section 6.3.1. In Section 6.3.2,
the scaling on the synthetic datasets is compared to asymptotic complexity determined in
Section 4.4. The results using real-world datasets are discussed in Section 6.3.3. Finally,
this chapter briefly describes some of the differences between the models learned by the
CPU and the GPU implementation on the real-world datasets.

6.3.1 Performance - Synthetic Datasets

In this section, the scaling of the CPU and GPU implementation are analysed with respect
to the three dimensions features, examples and labels. For each dimension, both imple-
mentations are executed with the series of datasets described in Section 6.2.1. From the
asymptotic analysis of the two algorithms (compare Section 4.4), a linear scaling in all
three dimensions is expected.

Figure 6.1 shows the execution time of the CPU implementation on 100 to 50 000 features
for the three scenarios on the left. The execution times in this section are measured for
each of the five folds and then averaged. This removes the initial overhead of loading
and converting the datasets. As expected, all three scenarios show a linear increase in
execution time with the number of features. The slopes of the three scenarios show that
increasing the number of labels does not increase the execution time in the same way.
The difference between the first and the second scenario is a factor of 10 in the labels (10
to 100). The execution times for the second scenario are higher by a factor of only 2.7x.
The difference between the second and the third scenario is again factor 10 in the labels
(100 to 1000). This time, the execution times are on average 11.1x higher. This indicates,
that the CPU implementation is not able to utilize the hardware properly for a very low
number of labels, resulting in a sub-linear scaling for very small numbers of labels.

The right part of Figure 6.1 shows the same plot for the execution times of the GPU
implementation. The graphs are very similar, all three scenarios show the same linear
scaling with the number of features, but on a much smaller scale (6000 compared to
100000). Also, the execution times of the second scenario only differ by a factor of 1.1.
The third scenario shows a 3.9 times higher execution time than the second scenario. This
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Figure 6.1: Execution time for three different scenarios and increasing number of features.
The results for the CPU implementation are on the left plot, those for the GPU
are on the right. The blue graph shows the scenario with 10 labels, the red
graph the one with 100 labels and the orange graph shows the scenario with
1000 labels.

indicates that the GPU implementation has a scaling factor for the number of labels of
less than 1 for at least up to 1000 labels. Calculating the average speedup of the GPU
implementation compared to the CPU implementation yields 2.4x for the smallest scenario,
5.9x for the medium scenario and 16.5x for the large scenario. For each of the three
scenarios, the speedup is not dependant on the number of features except for less than
1000 features, where the speedup drops significantly.

From the theoretical difference in memory bandwidth and FLOPS, a speedup of up to
12 and 6 was expected. This expectation is surpassed significantly by the large scenario.
Possible reasons for this higher speedup are different compiler optimizations introduced by
the use of the NVIDIA CUDA compiler and improved cache efficiency due to the different
memory layout.

Figure 6.2 shows two similar plots for the labels. The general situation is the same, as
all three scenarios exhibit a linear scaling with the number of labels. The difference in
execution time between the first and the second scenario is on average 9.3. Therefore, no
inefficiency for a low number of features like for a low number of labels can be observed.
Between the second and the third scenario, the difference is a factor of 11.7.
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Figure 6.2: Execution time for three different scenarios and increasing number of labels.
The results for the CPU implementation are on the left plot, those for the GPU
are on the right. The blue graph shows the scenario with 10 features, the red
graph the one with 100 features and the orange graph shows the scenario
with 1000 features.

The plot for the GPU implementation on the right shows again a similar qualitative picture.
All three scenarios scale linearly with the number of labels. The average ratio between
the execution times of the second and the first scenario is 5.3, while the ratio between the
third and the second scenario is 9.1 on average. This indicates that the first scenario is
not able to utilize the GPU properly, while the second does. This is supported by the GPU
utilization logged during execution with nvidia-smi. For the first scenario, the highest GPU
utilization is on average 66.3 %. For the second scenario, 89.8 % was observed, increasing
to 92.4 % for the third scenario. Both larger scenarios were able to reach 100 % utilization
for 20 000 to 50 000 labels. The average speedup over the CPU implementation is 9.5 for
the first scenario, 16.2 for the second and 20.6 for the third.

Figure 6.3 shows the execution time of the CPU and GPU implementation for the smallest
example-scenario with 10 features and 10 labels. The blue graph in the CPU plot follows
an n-log(n) curve, which is unexpected. A linear correlation between number of examples
and execution time was expected from the asymptotic analysis. In contrast to the scaling of
features and labels, the number of conditions per rule increased significantly when scaling
the number of examples. This could explain the non-linear scaling. The average number
of conditions per rule increases from less than 3 to more than 11 when increasing the
number of examples from 100 to 50 000. To identify whether the increase in conditions
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Figure 6.3: Execution time for the first scenario with 10 features and labels and increasing
number of examples. The results for the CPU implementation are on the
left plot, those for the GPU are on the right. The plots in blue show the
regular scaling, the plots in red show the scaling when limiting the number of
conditions per rule to 5.

per rule alone explains the non-linear scaling, a second set of tests was executed with
the same datasets, but with an artificial limit of 5 on the number of conditions. The
algorithm now stops adding conditions to a rule after the rule has 5 conditions, even if a
further refinement was possible. The results of these tests are shown in red. The execution
times with a limit on the number of conditions exhibit a linear scaling with the number of
examples. Therefore, the increase in the number of conditions per rule for the unlimited
case explains the non-linear scaling.

The second plot in Figure 6.3 shows the execution times of the GPU implementation. The
variance in the blue graph is very high compared to the other plots. The execution time of
the GPU implementation is below 5 seconds. Both a linear as well as a n - log(n) scaling
could be possible. For the condition-limited graph in red, the same linear scaling as for
the CPU implementation can be observed.

The graphs for the second scenario (100 features and labels) are shown in Figure 6.4. The
graph for the CPU is very similar to the first scenario. The unlimited version shows an
n - log(n) scaling, while the condition-limited version shows a linear scaling. The increase
in conditions per rule now goes up to over 100 conditions pre rule for 50 000 examples.
This time, the GPU graph shows the same qualitative properties as the CPU graph. Without
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Figure 6.4: Execution time for the first scenario with 100 features and labels and increas-
ing number of examples. The results for the CPU implementation are on
the left plot, those for the GPU are on the right. The plots in blue show the
regular scaling, the plots in red show the scaling when limiting the number of
conditions per rule to 5.

the limit on the number of conditions per rule, the execution time scales with n - log(n).
Limiting the number of conditions to 5 per rule results in a linear scaling similar to the
CPU implementation.

The results for the third and largest example-scenario (1000 features and labels) are
shown in Figure 6.5. For the CPU results, the graphs for the unlimited and the limited
executions are nearly identical. The non-linear scaling of the unlimited version is much
weaker compared to the second scenario. A reason for this could be the lower impact of
the additional conditions on the total execution time of the algorithm. For the largest
dataset (1000 features and labels, 50 000 examples), finding the first condition of each
rule takes on average 1526.1 s, which is 875 times higher than the time to find each of
the following conditions with an average of 1.74s. For the largest medium dataset (100
features and labels, 50 000 examples), finding the first condition takes on average 14.6s,
while finding the following conditions requires only 0.2s. The ratio between the two is
only 73. For the largest scenario, the execution time is much more dominated by the time
required to find the first condition of each rule compared to the smaller scenarios. This
explains the reduced effect of limiting the number of conditions per rule.
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Figure 6.5: Execution time for the first scenario with 1000 features and labels and in-
creasing number of examples. The results for the CPU implementation are
on the left plot, those for the GPU are on the right. The plots in blue show the
regular scaling, the plots in red show the scaling when limiting the number of
conditions per rule to 5.

For the GPU plot, the difference between the unlimited and the limited graph are larger
than for the CPU plot. Also, the non-linear scaling of the unlimited version is more visible.
The ratio between the average time required to find the first condition per rule and the
average time to find the following conditions are smaller for GPU implementation. For the
medium scenario, the time for the first condition is 0.52 s, while the following conditions
require an average of 0.01 s (ratio = 52). For the largest scenario, the times are 52.03 s
for the first condition and 0.25 s for the following conditions (ratio = 208). While still
4 times higher, the difference is much lower than that of the CPU implementation. This
explains the stronger non-linear behaviour of the GPU implementation, as the number of
conditions per rule is more important than for the CPU implementation.

The 32-bit floating point version of the GPU implementation shows the same qualitative
behaviour as the 64-bit GPU version for the scaling with labels. For the scaling with
examples, the 32-bit version shows a linear scaling for the small and medium scenario
and a sub-linear scaling for the large scenario (compared to n - log(n) for the 64-bit
GPU version). The explanation for this behaviour is again the number of conditions per
rule, which now stays around the same or decreases slightly. Calculating the execution
time per condition yields a linear increase with the number of examples for all three
scenarios. Considering the scaling with features, the small and medium scenario show
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the same expected linear scaling as the 64-bit GPU implementation. The large scenario
scales sub-linearly with the number of features similar to the scaling with the number
of examples. The sub-linear scaling can not be explained by a change in the number of
conditions per rule. The time required to learn the conditions after the first one increases
linearly, but the time to learn the first condition increases sub-linearly. This behaviour is
not explainable, but not investigated further, as the 32-bit GPU implementation is not the
main focus of this work.

6.3.2 Comparison to Asymptotic Complexity

In this section, the scaling of the GPU algorithm is compared to the asymptotic complexity
as determined in Section 4.4. The theoretical analysis suggests a linear increase in
execution time when a dataset contains more features. This expected linear scaling is
supported by the experiments on synthetic datasets with varying numbers of features. All
three scenarios of different dataset sizes have exhibited a linear scaling when increasing
the number of features in the dataset. The same can be said about the scaling when
increasing the number of labels. From the theoretical analysis, a linear scaling is expected
and this is supported by the synthetic experiments, as all three scenarios exhibited linear
increase in execution time with increased number of labels in the dataset.

Concerning the number of examples in the dataset, the asymptotic complexity is more
complicated. First of all, the algorithm sorts the example values for each feature, which
has a lower bound of O(n-log(n)). Then, the parallel algorithm to compute the prefix sum
has at least a time complexity of O(n + log(p)). As the number of processors p is constant
in this case (although it may vary between GPUs), the log(p) term can be dropped. As the
examples are sorted only once at the start of a fold, the sorting is not relevant compared
to the time required to learn the rules of a fold. The experiments on synthetic datasets
support this, as all three scenarios showed a linear scaling with the number of examples
when limiting the number of conditions per rule.

6.3.3 Performance - Real-World Datasets

The previous sections analysed the performance of the GPU implementation on synthetic
datasets. In this section, the performance of the GPU implementation is compared with
the CPU implementation on the real-world datasets shown in Section 6.2.2. The GPU
implementation will likely not be faster on very small datasets like weather due to the
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Table 6.4: Execution times and calculated speedup of the CPU and the GPU implemen-
tation. All real-world datasets were executed with 5 folds and 100 rules per
fold, except for RCV1, which finished only 1 of 2 folds due to time and memory

limits.
Dataset Execution time CPU [s] | Execution time GPU [s] | Speedup
bibtex 10585.19 777.61 13.6
birds 86.2 29.98 2.9
bookmarks 274910.1 7740.65 35.5
cal500 78.56 13.77 5.7
corel5k 2720.48 217.87 12.5
emotions 22.84 14.57 1.6
enron 596.34 305.2 2.0
flags 0.88 6.08 0.1
genbase 84.71 39.7 2.1
genbase-w/o 9.58 10.99 0.9
llog 153.61 67.12 2.3
mediamill 12944.19 422.75 30.6
medical 418.77 151.43 2.8
revl 260962.72 5483.76 47.6
reuters21578 12794.82 423.97 30.2
scene 491.73 83.66 5.9
slashdot 6566.14 1805.53 3.6
weather 0.13 1.37 0.1
weather-numerical 0.12 1.3 0.1
yeast 254.88 44.37 5.7

inherent overhead for CUDA kernel launches and added latency for copying data from
host to device and back. The general expectation is that larger datasets result in a higher
speedup, as the GPU can be utilized more by larger datasets.

Table 6.4 shows the execution time for both CPU and GPU algorithm as well as the speedup
calculated by dividing the execution time of the CPU algorithm by the execution time
of the GPU algorithm. For the dataset RCV1, only the execution time for 1 of 2 folds is
available, as the GPU implementation ran out of memory for more than 2 folds, while the
CPU implementation could not finish more than 1 fold within the time limit of 100 hours
for jobs on the cluster nodes.
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From the achieved speedups on the synthetic datasets, a speedup of up to 20 was expected.
This expectation is surpassed significantly by some datasets. A possible reason for these
even higher speedups is that the configuration of these datasets concerning the number
of features, examples and labels is better suited for the GPU implementation than the
configuration of the three synthetic scenarios.

The speedup column is very heterogeneous with large speedups of over 30x for the
large datasets RCV1, mediamill, bookmarks and reuters-21578. The datsets with less
than 10000 examples (e.g., bibtex and corel5k) show medium speedups up to 14x. In
case of the four datasets flags, genbase-w/0, weather and weather-numerical, the GPU
implementation is slower than the reference CPU implementation. Two of the largest
speedups are achieved on the datsets RCV1 and reuters-21578, which are used in the
word-embedding representation used by Nam et al. (2017). Their high speedup is likely
due to the dense numeric features values produced by the embedding, which results in a
significantly higher number of conditions compared to other datasets.

In general, the GPU implementation is faster on larger datasets with more examples and
labels. Datasets with a very high number of features compared to the number of examples
(e.g., enron, genbase or medical) have a medium speedup of 2x to 4x. Figure 6.6 shows the
speedup column from Table 6.4 plotted against the number of features, examples and labels.
The plot shows a linear increase in speedup with a higher number of examples. For the
number of labels, the speedup increases in a conical form. The minimum observed speedup
increases linearly and the maximum observed speedup also increases approximately linear.
The variance of the speedup therefore increases with the number of labels, together with
the average speedup. For the number of features, no clear correlation is apparent. High
speedups were observed both for low and high numbers of features. A very low increase
of the minimum speedup with the number of features can be observed, similar to the plot
against the number of labels.

Considering how the GPU version is implemented and which parts are parallelized, these
results meet the expectation. One of the main computational parts, the calculation of the
prefix sum, is parallel for the examples and labels, but sequential for the features (due
to too high GPU memory requirements). The other computationally intensive part is the
computation of predicted and quality scores. This part scales with the number of condition
candidates and the number of labels. The number of conditions candidates depends
on the number of features and the number of examples with unique features values for
each feature. Assuming a fixed number of condition candidates, the implementation can
exploit more parallelism when there are only few features and a high number of examples
with unique feature values in the dataset compared to a high number of features and
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Figure 6.6: Speedup of the GPU over the CPU implementation on real-world datasets,
plotted against the number of features, examples and labels.

few examples with unique feature values. It is therefore expected that the speedup over
the CPU implementation is not dependent on the number of features in the dataset. A
higher number of examples or labels correlates with a higher speedup as expected, as
more examples and labels provide more exploitable parallelism. The speedup is expected
to reach its maximum when the GPU is fully utilized, at which point the speedup should
not increase further. This behaviour could be observed with the synthetic datasets at about
1000 features and labels as well as 10000 examples, where the speedup increased no
further when increasing the number of examples up to 50000. For the real-world datasets,
no such behaviour could be observed for the experiments that were made.
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When compiling the GPU implementation with single precision floating point accuracy, the
execution times listed in Table 6.5 were measured. First of all, for those datasets where
the double precision GPU implementation could not provide a speedup, the situation does
not change for the single precision implementation. The datasets flags, genbase, weather
and weather-numerical are still faster on the CPU. For some other datasets, like enron and
medical, no further speedup compared to the double precision implementation could be
observed. Some other datasets with an already medium speedup, like scene and yeast, gain
an additional speedup of 3 to 5 over the double precision implementation and reach the
range of a high speedup of over 20x compared to the CPU implementation. Considering
the column listing the speedup compared to the double precision implementation, it is
apparent that no dataset yields a speedup near the theoretical difference of 32 in FLOPS. It
is therefore likely that at least parts of the implementation (e.g., the prefix sum calculation)
are not bound by the floating point compute capability of the GPU. Instead, the limitation
could be the memory bandwidth (datasets with a speedup of about 2x) or the latency for
memory reads (datasets with a speedup of about 1x) .

The datasets bookmarks, mediamill, reuters-21578 and RCV1 also increase in speedup,
reaching a performance up to 336 higher than the CPU implementation. These very high
speedup numbers should be interpreted carefully, as they are higher than the theoretical
difference in floating point computing power between the CPU and GPU. For the dataset
RCV1, the total number of conditions learned for all 100 rules of the first fold, decreased by
30 %. This reduces the total amount of work and therefore also the execution time. It is
possible that the lower condition count is correlated to the reduced floating point precision.
An analysis of the influence of the floating point accuracy on the algorithm behaviour
and the model performance is left for future work. The differences between the models
learned by the CPU and GPU implementations are briefly reviewed in Section 6.3.4. All
datasets with a speedup over the double precision GPU implementation that is significantly
larger than 2x, also show a significant reduction model quality, which could be a reason
for the higher speedup.
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Table 6.5: Execution times of the single precision GPU implementation as well as cal-
culated speedup over CPU and double precision GPU implementation. All
real-world datasets were executed with 5 folds and 100 rules per fold except
for RCV1, which finished only 1 of 2 folds due to time and memory limits.

Dataset Runtime GPU-32 [s] | Speedup over CPU | Speedup over GPU
bibtex 589.34 18.0 1.3
birds 8.22 10.5 3.6
bookmarks 4543.45 60.5 1.7
cal500 7.19 10.9 1.9
corel5k 144.59 18.8 1.5
emotions 6.22 3.7 2.3
enron 305.36 2.0 1.0
flags 6.06 0.1 1.0
genbase 42.15 2.0 0.9
genbase-w/0 11.76 0.8 0.9
llog 69.48 2.2 1.0
mediamill 201.39 64.3 2.1
medical 158.58 2.6 1.0
revl 776.08 336.3 7.1
reuters21578 85.96 148.9 4.9
scene 23.3 21.1 3.6
slashdot 1770.34 3.7 1.0
weather 1.38 0.1 1.0
weather-numerical 1.33 0.1 1.0
yeast 9.52 26.8 4.7
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6.3.4 Differences in Learned Models

This section discusses differences in the models that are learned by the CPU and GPU
implementation. As explained in Section 2.5, the parallel GPU implementation is very
likely to produce at least slightly different numerical results when computing for example
the sums of gradients or the quality scores. This chapter looks at two metrics reported by
the BOOMER algorithm after a model has been learned. The first metric is called Subset
0/1 Accuracy and reports the percentage of examples in the test set that are correctly
classified. The second metric is the Hamming Accuracy which reports the percentage
of correctly predicted labels. For further information on the two metrics and a formal
definition of the corresponding loss function, see e.g., Tsoumakas et al. (2010), M. Zhang
and Zhou (2014), and Hiillermeier et al. (2020).

With both implementations, five folds with 100 rules each were learned using the hyper-
parameters given in Table 6.2. No experiments were made to find the optimal hyper-
parameters for the datasets. Therefore, the focus of this section is not on the actual values
for subset 0/1 and Hamming accuracy, but on the respective difference between the GPU
and the CPU implementation. Table 6.6 lists the differences in subset 0/1 and Hamming
accuracy for the real-world datasets. For each dataset and both implementations, the
number of correctly classified examples has been calculated by multiplying the subset 0/1
accuracy with the number of examples for which a prediction was made. Similarly, the
number of correct labels has been calculated by multiplying the number of examples for
which a prediction was made with the number of labels in the dataset and the Hamming
accuracy. Then, the number of examples that are correctly classified by the CPU imple-
mentation is subtracted from the number of examples that are correctly classified by the
GPU implementation. This value is the Difference Subset 0/1. The Difference Hamming is
calculated in the same way using the number of correct labels.

The table shows that there are no differences in model performance for 12 of the 20
datasets and some differences for the other 8 datasets. For the 8 datasets with differences,
neither implementation is always better than the other. There are 5 datasets where
the GPU implementation produced a better model with respect to subset 0/1 accuracy
(emotions), Hamming accuracy (birds and slashdot) or both (reuters21578 and scene). The
CPU implementation performed better on the datasets yeast and medical. The dataset
RCV1 shows an interesting result, as the model of the CPU implementation correctly
classified 1 example more, but in total 14 labels less.

Considering the same metrics for the 32-bit floating point GPU implementation, the same
12 datasets as before show no differences and the datasets slashdot and medical have the
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Table 6.6: Differences in subset 0/1 and Hamming accuracy between GPU and CPU
implementation on real-world datasets, multiplied with the number of examples
(subset) and the number of examples times the number of labels (Hamming).
Dataset Difference Subset 0/1 | Difference Hamming
bibtex 0
birds
bookmarks
cal500
corel5k
emotions
enron
flags
genbase
genbase-w/0
llog
mediamill
medical
RCV1
reuters21578
scene
slashdot
weather
weather-numerical
yeast
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Table 6.7: Differences in subset 0/1 and Hamming accuracy between GPU-fp32 and
CPU implementation on real-world datasets, multiplied with the number of
examples (subset) and the number of examples times the number of labels

(Hamming).

Dataset Difference Subset 0/1 | Difference Hamming
bibtex 0 0
birds -4 -7
bookmarks 0 0
cal500 0 0
corel5k 0 0
emotions -21 -53
enron 0 0
flags 0 0
genbase 0 0
genbase-w/0 0 0
llog 0 0
mediamill 0 0
medical -1 -1
RCV1 -9705 -116751
reuters21578 -809 -952
scene -183 -219
slashdot 0 1
weather 0 0
weather-numerical 0 0
yeast -23 -150

same differences as the 64-bit GPU implementation (compare Table 6.7). The other 6
datasets are influenced heavily by the decreased floating point precision. For example,
on the dataset RCV1, the model of the GPU-fp32 implementation does not classify a
single example correctly, but only 0.3 % less labels (116751 / 40253253 of the CPU
implementation).

Another metric to assess the differences in the learned models is the difference between
the rule sets induced by the CPU and GPU implementation. For the five folds executed for
the dataset birds, a total of 500 rules were induced, 100 for each fold. In total, 94 rules
are different. The number of different rules per fold is 21, 15, 27, 17, 14 for folds 1 to 5.
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On average, about 40 % of the rules in the induced rule sets of the 64-bit GPU implemen-
tation and about 66 % of the rules of the 32-bit GPU implementation differ from the rule
sets induced by the CPU implementation. For the 32-bit GPU implementation, there are
multiple datasets where all rules except for the default rule differ. This comparison does
not treat the rule sets as actual sets, but instead as lists. Each rule is compared for equality
with the rule that was learned at the same index in the other rule set. So if equal rules
were learned in a different order, they would count as different. Considering the rule sets
as actual sets and ignoring the order in which the rules were learned, on average only
24 % of the rules between the rule sets of CPU and 64-bit GPU implementation differ. For
the 32-bit GPU implementation, about 45 % of the rules differ from the CPU rule set.
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7 Future Work

In this chapter, multiple directions for future work based on the achievements and findings
of this work are discussed. Based on the results from Section 6.3.4, an interesting topic is
the influence of floating point accuracy during calculation on the quality and predictive
performance of the models. This work found a significant drop in predictive performance
on some datasets with numeric features when using only 32-bit floating point values instead
of 64-bit. But some minor differences between the predictive performance of models
learned with the CPU implementation and model learned with the GPU implementation
could already be observed when using 64-bit accuracy on the GPU. A future work could
extend the reference CPU implementation to work with arbitrary floating point accuracy
and identify the optimal hyper-parameter for various floating point accuracies, e.g., 32-
and 64-bit. With respect to GPU computing, 16-bit may also be of interest. On the other
side, it may also be of interest to look at 80- or even 128-bit floating point accuracy, as
it may improve the quality of learned models due to the higher floating point precision.
Another aspect could be the influence of different floating point precisions on the individual
parts of the rule learning process. If parts of the algorithm are less sensitive to a change
in floating point accuracy, a mixed precision implementation could yield improved model
performance (if higher precision is used in critical sections) or better execution time (if
lower precision can be used in non-critical sections).

Another topic for future work is the extension of this GPU implementation to multiple
GPUs and additional loss functions. There are multiple ways to use additional GPUs
without major changes to the implementation. First of all, the prefix sum over gradients
and Hessians is currently executed sequentially, as they both utilize the GPU up to 100 %.
These two prefix sums could very naturally be computed in parallel on two separate GPUs.
For an arbitrary number of GPUs, the same mechanism that is currently used for the
feature slicing on large datasets could distribute the individual slices to different GPUs.
Both extensions require the input data to be distributed over the available GPUs. The
partial results then need to be gathered after the GPU-parallel part has finished.
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The current GPU implementation supports only label-wise decomposable losses. For the
non-decomposable example-wise losses, systems of linear equations need to be solved for
each example in find _head. The reference CPU implementation uses Basic Linear Algebra
Subprograms (BLAS) routines to solve these linear equation systems. For NVIDIA GPUs,
an implementation of the BLAS routines is available with cuBLAS! and cuSOLVER?. Both
libraries support applying the same operation to an array of operands with the so-called
batched versions. Similar to the current GPU implementation, the prefix sum of gradients
and Hessians could be calculated. The linear equation systems could then potentially be
solved in parallel on a single or on multiple GPUs.

Another direction for future work is the optimization for sparse datasets. The current GPU
implementation stores the feature matrix as a plain array, even when most entries are
zero. In this scenario, using a format like Compressed Sparse Row (CSR) or Compressed
Sparse Column (CSC) could reduce the memory footprint of the application significantly.
In addition, due to the nature of a sparse feature matrix containing mostly zeros, an
algorithmic optimization is possible for the calculation of the prefix sum. In its current
implementation, the prefix sum operation sums up the gradients vectors in ascending
order of feature values of their corresponding examples (similar for the Hessians). In case
of a sparse dataset, most gradients correspond to an example with feature value zero.
All those elements with feature value zero (except the first one) do not provide a split
point. The prefix sum therefore does not need to be calculated for these entries, only for
those examples with non-zero feature values before and after the zero-block. The prefix
sum can be executed up to and including the gradient vector corresponding to the first
examples with feature values zero. Then, as the total sum over all gradient vectors is
already known, an inclusive scan can then be applied to the reverse of the last non-zero
block using subtraction instead of addition and the total sums as initial value.

'https://docs.nvidia.com/cuda/cublas/index.html
2https://docs.nvidia.com/cuda/cusolver/index.html
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8 Conclusion

In this work, an existing algorithm for learning gradient boosted multi-label classification
rules — the BOOMER algorithm — was analysed with respect to its parallelizability and
accelerated using GPUs. Three major parts — determining conditions to test, score calcula-
tion and update of gradients and Hessians — of the single-core reference implementation
were identified for a parallel implementation using CUDA C/C+ + and the Thrust library.
The proposed parallelization of the algorithm uses additional memory to remove a data
dependency in the main rule learning loop of the reference implementation. This algo-
rithmic transformation enables a massively parallel score calculation with a custom CUDA
kernel and the use of a parallel prefix sum function from the Thrust library to compute
the data required inside the kernel.

Randomly generated synthetic datasets were used to analyse the scaling of the new GPU
implementation in comparison to the reference CPU implementation and the expected
asymptotic complexity. The expected linear scaling was verified for all three dimensions —
features, examples and labels.

The GPU implementation is aimed at larger datasets and achieved speedups of up to 47x
on real-world datasets during the experimental evaluation. Only minor differences in the
learned models were found on some datasets. The learned rule sets differed between CPU
and GPU implementation due to changes in the floating point execution order introduced
by the parallel execution. More than half of the tested datasets showed equal model quality
with respect to subset 0/1 accuracy and Hamming accuracy, while the other datasets
showed that neither CPU or GPU consistently outperformed the other. When using single
precision floating point accuracy on the GPU, the performance increased up to a speedup
of 336x compared to the double precision CPU implementation, although at the cost of
reduced model quality on some datasets.

Based on the presented results, the goal of this work — to accelerate the existing rule
learning algorithm using GPUs — was achieved successfully. It can be concluded that the
use of GPUs for the learning of gradient boosted multi-label classification rules is a viable
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way forward to significantly reduce training times. With the possible future support of
multi-GPU computing and further optimizations, even larger datasets can be used to train
models within short amounts of time.
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