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Abstract. In this paper we present LeGo, a generic framework that utilizes ex-
isting local pattern mining techniques for global modeling in a variety of diverse
data mining tasks. In the spirit of well known KDD process models, our work
identifies different phases within the data mining step, each of which is formu-
lated in terms of different formal constraints. It starts with a phase of mining pat-
terns that are individually promising. Later phases establish the context given by
the global data mining task by selecting groups of diverse and highly informative
patterns, which are finally combined to one or more global models that address
the overall data mining task(s). The paper discusses the connection to various
learning techniques, and illustrates that our framework is broad enough to cover
and leverage frequent pattern mining, subgroup discovery, pattern teams, multi-
view learning, and several other popular algorithms. The Safarii learning toolbox
serves as a proof-of-concept of its high potential for practical data mining ap-
plications. Finally, we point out several challenging open research questions that
naturally emerge in a constraint-based local-to-global pattern mining, selection,
and combination framework.

1 Introduction

Over the last decade, local pattern discovery has become a rapidly growing field [30],
and a range of techniques is available for producing extensive collections of patterns.
Because of the exhaustive nature of most such techniques, the pattern collections pro-
vide a fairly complete picture of the information content of the database. However,
in many cases this is where the process stops. The so-called local patterns represent
fragmented knowledge, and often it is not clear how the pieces of the puzzle can be
combined into a global model. Because a useful global model, such as a classifier or
regression model, is often the expected result of a Data Mining process, the question
of how to turn large collections of patterns into global models deserves attention. In
this paper, we provide an overview of what it takes to build global models from local
patterns. In our view, a common ground of all the local pattern mining techniques is
that they can be considered to be feature construction techniques that follow different
objectives (or constraints). We will see that the redundancy of these patterns and the
selection of suitable subsets of patterns are addressed in separate steps, so that each
resulting feature is highly informative in the context of the global data mining problem.



We define a framework, called From Local Patterns to Global Models (LeGo), con-
sisting of a number of steps. Each step can be implemented by a range of techniques
from the literature, making the framework general and of value to practitioners wishing
to apply their favorite algorithm in a wider context. Furthermore, it subsumes a number
of existing global methods based on pattern discovery. The framework helps analyzing
and improving such methods by relating it to other similar methods, and suggesting al-
ternative options for individual steps in the process. A general framework is important
to understand the common grounds of different methods, to discover potential syner-
gies, and to identify important fields of research.

This paper is organized as follows. Section 2 gives an overview of the LeGo frame-
work, and Section 3 describes its different steps and places them in context of the cur-
rent literature. Its motivation is discussed in Section 4. The Safarii learning toolbox,
a data mining system implementing the LeGo framework, is detailed in Section 5. In
Section 6, we discuss current works and research issues related to our framework before
we conclude in Section 7.

2 The LeGo framework

We present our framework by relating it to the conventional KDD process model. The
typical process model, as it has been sketched in similar ways in numerous publications,
going back to [11]. Essentially, the process starts with a data source (typically a rela-
tional database) that needs to be prepared for the mining process. The first phase, known
as feature construction, produces from the initial data source a so-called feature-base,
by means of some, typically manual or semi-automatic, transformation process. The
purpose of this transformation may be to extract specific, potentially useful informa-
tion that is only represented implicitly in the data source (e.g. translating purchase-date
into a weekend/weekday indicator). Alternatively, the feature construction step may be
performed in order to translate the original data format into a format the learning al-
gorithm of choice requires, such as strictly numeric or binary. Such features can be
attribute-value pairs (as in classification rule learning), items (as in association rule
discovery), word occurrences (as in text mining), or similar. Once the data source is
transformed into a feature base, the feature selection phase [16] is responsible for se-
lecting a subset of these features (the mining base). This is particularly important when
large numbers of features are generated. Typical problems with large feature spaces in-
clude text mining [12], propositionalization approaches to relational learning [25], and
others. Finally, a model construction phase involves applying one of the many available
inductive methods to produce a model from the mining base. In descriptive data mining,
the model itself is of primary interest. In predictive data mining, the model is used for
making predictions, basically treating it as a black box.

We now view the LeGo framework as an instance of this general process model
(see Figure 1), with local patterns, rather than features, being the prime subject. We
informally define local patterns as regularities that hold for a particular part of the
data. The term local refers to the fact that it captures some aspect of the data, without
providing a complete picture of the database (see Section 3.1). Local patterns do not



Fig. 1. The LeGo framework

necessarily represent exceptions in the data [18], but rather fragmented and incomplete
knowledge, which may be fairly general. We identify the following phases:

Local Pattern Discovery: This phase is responsible for producing a set of candidate
patterns by means of an exploratory analysis of a search-space of patterns, defined
by a set of inductive constraints provided by the user. As such, this phase can be
seen as an automated instance of the feature construction phase in the KDD pro-
cess. Patterns are typically judged on qualities such as their frequency or predictive
power with respect to some target concept.

Pattern Set Discovery: This phase considers the potentially large collection of pat-
terns produced in the preceding phase, and selects from those a compact set of
informative and relevant patterns that shows little redundancy. This phase is the
counterpart of the feature selection phase in the KDD process.

Global Modeling: This phase is responsible for turning the condensed set of rele-
vant patterns into a well-balanced global model. The Global Modeling phase either
treats each local pattern as a constructed feature, and applies an existing inductive
method, or applies some pattern combination strategy that is specific to the class of
patterns discovered.

A prototypical instantiation of this framework is classification by association, as
exemplified by the CBA rule learning algorithm [28]. This type of algorithm typically
uses a conventional association rule discovery algorithm, such as Apriori to discover
a large number of patterns. From these, all patterns that have the target class in the
head are selected, and only those are subsequently used for inducing a global theory.
The global theory is typically a disjunction of patterns, found by a simple set-covering
algorithm: patterns are sorted according to some heuristic function and the best one is
repeatedly added to the disjunction. Variations in the global model may use decision
lists or redundant rule sets. A variety of successor systems have been proposed that
follow the same principal architecture (e.g., [27, 49]).

Note that the separation of the phases does not have to be as clear as it is in these
algorithms. It is also useful to view conventional rule learning algorithms, such as those
of the covering family (also known as Separate & Conquer), within this framework [13].
In these algorithms, the Local Pattern Discovery phase focuses on finding a single best
global pattern, i.e., the next rule to add to the growing theory. The examples covered



by this rule are removed, and the process repeats until all examples have been covered.
The purpose of this covering loop is to find a good pattern set that collectively covers
all training examples. Finally, the found patterns are turned into a classifier by forming
a disjunction, a decision list, or an ensemble.

Thus, phases of Local Pattern Discovery, Pattern Set Discovery, and Global Mod-
eling are tightly interleaved in these families of algorithms, which makes it harder to
recognize these algorithms as instantiations of our framework. On the other hand, some
parts of the framework, like the dependency of the quality criteria that are used in the
Local Pattern Discovery phase on the Global Modeling task (cf. Section 6.1), become
much clearer in the light of this framework.

3 LeGo Phases

In this section, we give a more detailed description of the main phases in our framework
and put them into the context of the state-of-the-art in data mining.

3.1 Local Pattern Discovery

The most basic, and at the same time most popular, type of local pattern discovery is
the (unsupervised) discovery of frequent itemsets [15]. Clearly, a frequent itemset is an
incomplete representation of some aspect of the distribution of items, and of possible
co-occurrences among the items (associations). An itemset is local because it covers
only the part of the database for which its items are supported. A frequent itemset dis-
covery algorithm typically performs an exhaustive, top-down, level-wise search for the
frequent sets. In most cases, some condensed representation of the set of itemsets is
returned, rather than the complete set. The discovery of frequent patterns has been gen-
eralized into more elaborate structures such as sequences, trees and graphs, for example
with the aim of discovering frequent fragments in molecules [41, 33]. Another exten-
sion of this approach is to deal with various inductive constraints [32, 8, 43] and not
only with the frequency constraint.

Another important example of local pattern discovery is known as Subgroup Dis-
covery (sometimes referred to as Correlated Pattern Discovery). The main goal is to
identify patterns that are interesting, in the sense that they are well supported and that
the set of covered examples differs substantially from the overall population with re-
spect to the distribution of its boolean (or nominal) target attribute. The result of Sub-
group Discovery is a set of subsets of the data, usually characterized in the form of
classification rules. The construction of a global model for predictive purposes is not
the main focus of the techniques; in fact, the task can be rephrased as mining sets
of local patterns in supervised settings, with the objective function—typically a rule
interestingness measure—being a parameter of the task itself. A large variety of mea-
sures suitable for this task have been investigated [45], many of which are well-known
heuristics for inductive rule learning [14]. Important examples include the binomial test
function, χ2, or the Novelty function, which later has often been referred to as weighted
relative accuracy [26].



These two prototypical discovery methods demonstrate an important concept: local
patterns can be interpreted as features, in this case binary features. The set of conditions
represented by the pattern (subgroup, frequent itemset, . . . ) either does or does not hold
for a given example. Thus, any Data Mining operation that works on binary features
can be employed in the subsequent phases of Pattern Set Discovery and Global Mod-
eling. In many cases, these subsequent operations will simply ignore any information
concerning the structure of the patterns, and will focus only on the resulting feature.
This interpretation emphasizes the locality of patterns: each pattern helps to identify
some important subset of the database that exhibits some properties that distinguish it
from its complement.

3.2 Pattern Set Discovery

In the Local Pattern Discovery phase, patterns are discovered on the basis of their in-
dividual merits. In practice, this results in large sets of local patterns, with potentially
high levels of redundancy among the patterns. For manual inspection of the collection
of patterns, reporting more than a handful of patterns is clearly infeasible. Furthermore,
when inducing global models from the set of local patterns, machine learning proce-
dures tend to be hindered by the presence of many, often redundant, features. The goal
of the Pattern Set Discovery phase therefore, is to reduce the redundancy by selecting a
subset of patterns from the initial large set on the basis of their usefulness in the context
of other patterns selected.

Several approaches have been proposed to reduce the number of local patterns irre-
spective of their subsequent use. Examples include condensed representations [6], com-
pression of the dataset by exploiting the Minimum Description Length Principle [42]
or the constraint-based paradigm [32, 8]. Constraints provide a focus that allows to re-
duce the number of extracted patterns to those of a potential interest given by the user.
This paradigm may be strengthened by the exploitation of (partial) domain knowledge
to support knowledge discovery [44]. Unfortunately, even if these approaches enable
us to reduce the number of produced patterns, the output still remains too large for an
individual and global analysis performed by the end-user. The most significant patterns
are lost among too much trivial, noisy and redundant information.

Recently, two approaches to Pattern Set Discovery have appeared in the literature,
which explicitly represent the goal of combining and selecting patterns: constraint-
based pattern set mining [9], and pattern teams [24, 23]. In broad terms, these ap-
proaches are very similar. Both assume that the syntactic structure of the individual
patterns is irrelevant at this stage, and that patterns can be fully characterized by a bi-
nary feature that determines for each example whether it is covered by the pattern or
not. As the name suggests, constraint-based pattern set mining is based on the notion
of constraints defined on the level of pattern sets (rather than individual patterns). These
constraints can capture qualities of the set such as size or representativeness (a measure
for the predictiveness of the collective). More interestingly, [9] propose constraints on
the similarity between pairs of patterns in the set, such as a minimum symmetric differ-
ence, or a maximum redundancy (defined as the amount of overlap between patterns). A
defining characteristic of this approach is that all pattern sets that satisfy the constraints



are reported. This to some degree contradicts the goal of reducing the amount of infor-
mation reported to an end-user, as the amount of reported pattern sets may exceed the
number of patterns discovered initially, given too lenient constraints.

In the pattern team approach on the other hand, only a single optimal subset of
patterns is returned. Pattern sets are implicitly ranked on the basis of a quality measure,
and the best-performing set (the pattern team) is reported. Typically, the quality measure
promotes the utility (e.g. informativeness or predictiveness) of the set as a collective,
while at the same time reducing the amount of redundancy among elements of the team.
Often, selective pressure among patterns is enforced by requiring the pattern team to
have a fixed size k (typically a number well below 10). [24] suggest a number of quality
measures, both supervised and unsupervised, that promote different qualities of pattern
sets. Joint entropy (unsupervised), for example, captures the information content of
patterns involved, thus promoting independence of patterns. Supervised measures such
as DTM accuracy, on the other hand, select subsets that lead to accurate classifiers, for
a given target concept. The reduction of redundancy in this case is achieved implicitly
by limiting the size of the team. Section 5 comes back to this approach. A new measure
was recently introduced in [35], which tries to achieve class-correlation and feature
diversity simultaneously.

3.3 Global Modeling

Computing a global model from a set of local patterns (i.e. features) can be quite
straightforward; we may basically utilize any machine learning algorithm at this point,
most of which will clearly benefit from high quality features. It is well known that good
features often contribute more to data mining success than the selection of a specific
algorithm and the fine-tuning of its parameters. Although in LeGo, we clearly advo-
cate this generic use of learning techniques for global modeling, up to recently many
approaches employed fairly ad hoc techniques, or used methods that depend on the
specific nature of the local patterns (e.g. itemsets or clusters).

Especially in the discipline of (association) rule discovery, the problem of build-
ing a unified global classification model has been approached by so-called combination
strategies, an idea that goes back to the concept of ensembles (or Multiple Classifier
Systems). If we consider each local pattern as a weak classifier, we can (arguably) con-
struct our global model as an ensemble of patterns. We now have a range of proposed
combination strategies at our disposal that effectively assign a weight to each rule or
pattern [50]. Obvious candidates are Majority Voting, which essentially assigns equal
weights to each rule, and Linear Weight Voting, which gives precedence to rules that
rank higher with regards to the rule evaluation measure selected (e.g. χ2, weighted rel-
ative accuracy). Although these strategies are relevant and have been popular, they do
not take into account the level of locality of patterns and possible correlations among
patterns. More sophisticated combination strategies do consider these issues. An obvi-
ous example is the covering approach. This evolution of strategies naturally leads to
the final approach of applying arbitrary learning methods to combine sets of patterns,
assuming again that every pattern can be interpreted as a (binary) feature. The use of
generic induction methods is advocated for example in the recent Correlated Pattern
Mining approach [5] and the Safarii system [22] (cf. Section 5). Because of the nature



of the learning task (binary data, high-dimensional), Support Vector Machines form an
obvious and popular candidate.

In a clustering setting, several works aim at designing clustering methods based
on associations and frequent patterns [46]. Ecclat [10] is based on frequent closed
patterns and has the originality to enable a slight overlap between clusters. The potential
clusters are the frequent closed patterns because a closed pattern gathers a maximal set
of attributes shared by a set of objects, and thus allows to capture the maximum amount
of similarity. Then Ecclat evaluates and selects the most interesting clusters by using
an interestingness measure that forms a trade-off between two criteria, the homogeneity
(to favor clusters having many attributes shared by many objects) and the concentration
(to limit an excessive overlapping of objects between clusters). Co-classification is a
way of conceptual clustering that provides a limited collection of bi-clusters. These bi-
clusters are linked for both objects and attribute-value pairs. [34] proposes a framework
for co-classification. A limitation of this framework is that a distance between the bi-
sets which are at the origin of the bi-clusters has to be chosen

4 Advantages of LeGo

As building global models is clearly one of our goals, one might wonder why such a
global model cannot be induced directly, as is customary in traditional inductive meth-
ods. Why spend the extra time to search for an exhaustive collection of patterns, if most
of them are later discarded due to redundancy or irrelevancy?

A key motivation comes from the expected accuracy gains resulting from the more
exploratory or exhaustive nature of the initial pattern discovery step. Many successful
machine learning techniques implicitly include an automated pattern discovery phase.
For example, the nodes in the hidden layer of a multi-layer perceptron will typically
converge to several useful subconcepts, which may be important for some (but not nec-
essarily all) of the output nodes. Similarly, kernel methods perform an implicit feature
generation step. On the other hand, there are also widely used pre-processing techniques
like principal components analysis that perform feature generation with the goal of sup-
porting a subsequent modeling step. Further examples include text mining techniques
like probabilistic latent semantic analysis [19] and latent Dirichlet allocation [3], which
introduce a number of latent topics that serve as an intermediate semantic layer cap-
turing important regularities in the input space. For all these methods, the intermediate
layer allows to abstract the input features into more meaningful or more discriminative
local patterns.

Thus, it seems to be a good idea to adopt local pattern discovery techniques as a pre-
processing step for global modeling. In practice, globally useful features can usually be
assumed to also perform locally well to a certain degree, which means that they can be
detected by local pattern mining techniques. Moreover, the set of discovered patterns is
typically complete (within the inductive constraints), which means that in subsequent
phases, two patterns of moderate quality could be combined to form a perfect model.
Global modeling algorithms, on the other hand, often tend to be greedy, and are likely
to miss combinations of complex patterns (think of the XOR-problem).



Another key advantage of this approach is that the local pattern discovery can, to
some extent, be performed independently of subsequent global modeling steps. The
found patterns can be stored as an intermediate result that could be put to use for a vari-
ety of different global modeling tasks. Depending on the concrete implementation of the
LeGo framework, one can store individual patterns or entire pattern sets. One should,
however, keep in mind that in some cases it could be desirable to tailor the patterns or
pattern sets to the concrete global modeling task. It is an open research problem, how
constraints from the global task can be propagated back to the local pattern discovery
phase (cf. Section 6.1).

Finally, although we are promoting the construction of global models from local
patterns, the global models themselves may not necessarily be the desired end-product.
The local patterns could still be the prime subject, and global modeling could serve
as a means of validating candidate pattern sets. One could argue that a pattern team
that optimizes a certain classifier represents a set of patterns that are worth inspecting
manually, as relevancy and lack of redundancy are mostly guaranteed. Additionally,
going back from the Pattern Set Discovery phase to the Local Pattern Discovery phase,
it makes sense to see what patterns were accepted into a pattern team, and how they
relate to the remaining patterns. Potentially, pattern team members may be replaced
by alternative patterns with identical binary features. It is interesting to see why such
patterns are the same or similar, syntactically or semantically.

5 LeGo in the Safarii System

In this section, we describe some of the pattern discovery techniques implemented in
the Safarii system [22], with the aim of showing an example system that implements
the LeGo approach in practice. The Safarii system is an extensive knowledge discov-
ery environment for analyzing large data stored in relational databases. It was originally
designed with a specific focus on Multi-Relational Data Mining, but the majority of re-
cent developments in the system are based on the pattern discovery and combination
techniques described in this paper. These techniques are mostly independent of the spe-
cific pattern language selected, so a range of data formats can be considered, including
graphical, multi-relational or simply propositional.

The system provides a range of facilities for each of the three phases described in
Section 3.1 (along with other KDD-process related functions such as data pre-processing
and model deployment). In each phase, the desired operations can be selected indepen-
dently of the other phases. For the Local Pattern Discovery phase, Safarii provides a
generic Subgroup Discovery algorithm, which can be executed in a variety of ways,
depending on parameters concerning the nature of the patterns discovered, the pattern
language, the search strategy etc. Additionally, the algorithm offers a range of com-
mon inductive constraints on the patterns to be discovered, such as quality, support and
complexity. As the data that Safarii is designed to work with is typically complex in na-
ture (e.g. relational, numeric or high-dimensional), and implies extremely large search
spaces, exhaustive search is generally not an option. The algorithm therefore imple-
ments a beam search as its default search strategy, which is relatively efficient while
not being too sensitive to the normal pitfalls of hill-climbing methods. For reasons of



Fig. 2. The Safarii Multi-Relation Data Mining environment.

stability and scalability, all mining operations are expressed in terms of data mining
queries that are processed inside the database. This puts the bulk of the computational
burden on the RDBMS, which is optimized for such tasks, and potentially runs on a
large dedicated server.

For the Pattern Set Discovery phase, Safarii implements a Pattern Team approach,
providing a total of eight quality measures [24]. A few of these, including Joint Entropy,
can be computed efficiently, and therefore offer a reasonable and quick solution. Most
of the supervised measures, notably the wrapper-approaches which employ a separate
classification procedure to judge pattern sets, require exhaustive search, which limits
their applicability in the case of large pattern collections. Still, the supervised measures
are the method of choice if predictive power is the key objective for Global Modeling.
All classifiers that are available in the subsequent phase can be used in the Pattern Set
Discovery phase as part of a wrapper.

Finally, in the Global Modeling phase, Safarii offers two classification procedures
that combine patterns into predictive models. The user has the option of applying the
classifier to the original set of patterns or the selected subset. The two learning algo-
rithms available are Decision Table Majority (DTM) classifiers [24] and Support Vector
Machines (SVMs) using linear kernels. This allows for either high or low expressive
power of the classifier, respectively. This choice is related to the extent of the initial dis-
covery phase and the number of local patterns provided to the global modeling proce-
dure. With extensive search, already a large part of the complexities of the dataset have
been made explicit as patterns, suggesting a global model of low expressiveness (SVM).



Fig. 3. Constraints have to be propagated back through the different phases

On the other hand, with shallow patterns being discovered, more extensive modeling is
required (DTM) to capture possible complex interactions between patterns. As a third
Global Modeling method, a Bayesian network can be induced, where the patterns form
the nodes in the network. This method is typically applied to all patterns (thus skipping
the intermediate phase), although the pattern team can be indicated as specific nodes in
the network (see Figure 2, dark nodes). This pattern network thus conveys which are
the essential patterns to be considered, and how alternative patterns relate to these and
to other patterns.

6 Research Problems

In this section, we will discuss current research that is related to this framework. It is
meant to both give an overview of the problems that need to be solved, as well as current
work that addresses these issues.

6.1 Constraint Specification and Propagation

A key challenge is how to propagate back constraints that are imposed upon the global
model into the earlier phases, as illustrated in Figure 3. Typically, we will be given con-
straints on the global model. The constraints can come in various different forms. For
example, optimality constraints specify that the returned model should optimize some
quality criterion, such as predictive accuracy, the area under the ROC curve, a cluster
diversity measure, etc. Typically, one is only interested in the best global model, but in
some scenarios it could also be of interest to return the best k models (k-optimality) or
all models above a specified quality threshold (quality constraints).

In any case, the specified constraints can only be directly used in the Global Mod-
eling phase. However, it might be advisable to optimize the preceding phases of Local
Pattern Discovery and Pattern Set Discovery towards the particular global performance
goal. From the same set of local patterns, different pattern sets might be selected for dif-
ferent goals, such as classification and clustering. Likewise, different evaluation mea-
sures for local patterns might be relevant for obtaining optimal candidates for obtaining
different goals in pattern team discovery.



How global constraints can be propagated back into constraints on the local models
is largely an open research question. Consider, again, the case of inductive rule learn-
ing, where typically the goal is to maximize predictive accuracy on unseen data. The
heuristics that are used by conventional covering algorithms for local evaluation of the
rules have typically been derived from first principles. In one way or another, they mea-
sure the purity of the covered examples, but the optimization of their joint coverage is
entirely left to the covering loop and not addressed in the heuristic functions. The ques-
tion of the importance of coverage information in local heuristics has only recently been
addressed thoroughly. For example, [20] have systematically compared three types of
parameterized local rule learning heuristics which trade off precision and coverage in
different ways (the m-estimate, the F-measure, and the Klösgen measures) and found
that even though the heuristics have quite a different behavior, a global optimization of
their parameters results in very similar measures.

Alternatively, one may try to iteratively restart the search in order to detect local pat-
terns that are useful in the context of previously found patterns. The pruning phase of
the Ripper rule learning algorithm [7] implements a technique that repeatedly deletes
one rule and re-learns it in the context of all other previously found rules. Knowledge-
based sampling [39] is a technique that allows to mine subgroups that are interesting in
the context of other, previously discovered patterns or given predictive models. Trans-
forming the distribution underlying the data is a convenient way to direct the search for
subgroups towards novel patterns, and to increase the diversity of mined rule sets with-
out changing the underlying data mining algorithm. For the specific case of iteratively
optimizing weighted relative accuracy in each step, the Subgroup Discovery task has
been shown to coincide with a variant of AdaBoost [40]. By mining local subgroup
patterns, the learner minimizes the total example weight, a known upper-bound for er-
ror rate and the number of misranked pairs, closely related to the area under the ROC
curve. Hence, this strategy bridges the gap between the mainly descriptive nature of the
Subgroup Discovery task and predictive data analysis, and constitutes an example of
how to back-propagate global constraints into the local pattern mining phase.

Based on the above discussion, we can identify the following problems that need to
be addressed within our framework:

Specification of Constraints: What types of constraints can be used in each phase,
and how can they be specified? Evaluation metrics for local and global models
have been investigated in quite some depth. For the Pattern Set Discovery task,
however, it is still quite unclear what types of constraints can be defined and what
effects they will have.

Propagation of Constraints: How can global constraints be propagated back to local
constraints? What type of local patterns must be found in order to guarantee a high
performance on the global modeling task? Which local constraints optimize which
global constraints?

General-Purpose Constraints: A key advantage of the modular approach could be
that local patterns may be mined independently and can be re-used for several
Global Modeling tasks. Are there general local constraints that give a reasonable
performance on a wide variety of Global Modeling tasks?



6.2 Efficient Pattern Set Discovery

An important research question in the context of Pattern Set Discovery is concerned
with computational efficiency. As the number of possible subsets is exponential, ex-
haustive methods will only work for small pattern collections. For specific quality mea-
sures, such as joint entropy, relatively tight upper bounds can be given [23], that can
be used to discard directly the majority of candidate sets. Unfortunately, when many
(largely) identical patterns abound, such pruning methods break down. As an approxi-
mate solution, one can consider greedy selection methods, reminiscent of forward fea-
ture selection methods, that exhibit computation times quadratic in the number of pat-
terns involved. For certain classes of quality measures, such greedy search can provide
near-optimal solutions [29]. [23] argue that in the case of Joint Entropy, very good ap-
proximations can be achieved efficiently, particularly compared to the running times
of exact solutions. In a recent publication, [4] give a canonical forward selection algo-
rithm that linearly scans an ordered list of patterns, and for each pattern decides on the
added value of a new pattern given the currently selected patterns. Different measures
for this added value are presented. In a comparison, they demonstrate that their greedy
approach produces results similar in many respects to pattern teams using joint entropy
(exact solution).

6.3 Local Pattern Discovery

A particularly important difference between local pattern discovery and global model-
ing is that the former is traditionally framed as a descriptive induction task, whereas the
latter is predictive. Recently, several works have addressed this problem of the predic-
tive validity of local patterns [37, 31]. For example, [47] brought out-of-sample evalua-
tion, which is standardly used in global modeling, to the local pattern discovery phase
with the goal of ensuring the statistical validity of the discovered patterns. [21] tried to
model the predictive performance of individual rules by learning to predict the perfor-
mance of a rule on an independent test set.

Another important research issue is efficiency and scalability. Three types of search
strategies for Subgroup Discovery can be found in the literature: exhaustive, probabilis-
tic, and heuristic search. The multi-relational MIDOS algorithm [48] is an example of
an exhaustive search algorithm. It applies only safe pruning, and hence reliably iden-
tifies the best subgroups in terms of its objective function, the weighted relative accu-
racy. A concern with exhaustive search is its time complexity, so more recent work has
mainly focused on less expensive strategies. For example, the SD-Map algorithm [1]
utilizes the FP-growth data structure [17] to improve efficiency, while still searching
exhaustively. For most objective functions, the probabilistic search strategy of adaptive
sampling helps to speed up the pattern mining process considerably, while still allowing
for strong probabilistic guarantees when mining from large databases [38]. Unlike clas-
sical Subgroup Discovery, the theoretical framework of adaptive sampling implicitly
addresses the generalization performance of rules, even when optimizing criteria that
are traditionally used in the context of descriptive tasks. The results are sets of probably
approximately best subgroups. The Knowledge-Based Sampling technique described
above uses sampling or reweighting also to filter out previously found patterns [39].



Fig. 4. The Sequential Parallel Universes View

6.4 Parallel Universes

Recently the therm the term parallel universes has been introduced to denote any type
of multiple characterizations of the same objects that can be used in the learning process
[2]. Such a approaches can be naturally integrated into the LeGo framework. In each
of the three phases, we can have a m : n relationship, i.e., we can start with an arbitrary
number of inputs, and have an arbitrary number of results. This is illustrated in Figure 4.
For example, the data mining phase often starts with multiple aligned data sources. As
an example, consider multilingual text corpora, which contain multiple translations of
each document. These different versions of the same document could be merged into
the same set of documents, could be kept separately, or one could, e.g., consider to
merge the documents of the same language group.

Consequently, we can also have multiple types of local patterns. Each data source
can be mined separately for local patterns, or multiple types of local patterns can be
generated from a single data source. For example, we could use multiple local pattern
discovery algorithms, employ different quality criteria for the search, or generate mul-
tiple views on the data (e.g., via random sampling of the available data attributes). For
subsequent use in Pattern Set Discovery or Global Modeling, the multiple local pattern
sets can later be pooled together, or be kept separately as in multi-view learning [36].
Similarly, one may want to find a single good pattern team [24] or multiple pattern
teams [9] from single or multiple sources of local patterns.

Finally, single or multiple pattern teams may be used to form single or multiple
global models. In the realm of classification, ensemble techniques for forming and using
multiple models are quite commonly used, but multiple global models may also be of
interest to other learning tasks, such as clustering and descriptive modeling.

7 Concluding remarks

In this paper we proposed an abstract data mining framework based on the notion of
local patterns. The main characteristic of this locality is that patterns are computed with
respect to a given objective function, but without taking the context of other patterns into
consideration. In subsequent steps this context is established in terms of optimal pattern
subset selection and the computation of pattern combinations that result in one or more



well suited global models. The stepwise refinement of our proposed search strategy can
well be expressed in terms of different constraints, ranging from local pattern selection
strategies to the objective function we finally aim to optimize with our final global
model(s). These different constraints are interleaved in a non-trivial way, but allow to
guide and narrow down the search in each step so that the resulting partial optimization
problems become tractable in practice.

We believe that one of the main advantages of our frameworks lies in its generality.
It leverages a number of popular techniques in a natural way that are traditionally hosted
in different communities. In particular, our framework allows to utilize frequent item-
set mining and subgroup discovery, information-theoretic and other techniques known
from ensemble methods to select orthogonal, hence highly informative sets of features,
and a plethora of different model combination techniques on top of these highly valu-
able features. Referring to the notion of parallel universes we also illustrated connec-
tions to the relatively young field of multi-view learning.

A key challenge for future work is to understand the trade-off between exploratory
search and generalization power in the LeGo framework. Starting a global modeling
phase with a large number of local patterns comes, of course, also with increased com-
putational costs. In many applications, the costs for exhaustive approaches for both the
Local Pattern Discovery and Pattern Set Discovery phases may be prohibitive, while,
on the other hand, too greedy approaches may loose important information. A further
exploration of this trade-off seems to be a particularly promising research goal. A pos-
sible road to follow could be to propagate global constraints back to the pattern team
formation and local pattern discovery phases and use them there to focus the search.
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