Scalable Histogram-based
Induction of Gradient Boosted
Multi-label Rules

Bachelor thesis by Lukas Johannes Eberle
Date of submission: April 6, 2021

1. Review: Michael Rapp
2. Review: Eneldo Loza Mencia
Darmstadt

5 TECHNISCHE
7=\ UNIVERSITAT
)= DARMSTADT

Computer Science
Department

FB20

Knowledge Engineering
Group

Erklarung zur Abschlussarbeit
gemal §22 Abs. 7 und §23 Abs. 7 APB der TU Darmstadt

Hiermit versichere ich, Lukas Johannes Eberle, die vorliegende Bachelorarbeit ohne Hilfe Dritter und nur
mit den angegebenen Quellen und Hilfsmitteln angefertigt zu haben. Alle Stellen, die Quellen entnommen
wurden, sind als solche kenntlich gemacht worden. Diese Arbeit hat in gleicher oder dhnlicher Form noch
keiner Priifungsbehorde vorgelegen.

Mir ist bekannt, dass im Fall eines Plagiats (§38 Abs. 2 APB) ein Tauschungsversuch vorliegt, der dazu fiihrt,
dass die Arbeit mit 5,0 bewertet und damit ein Priifungsversuch verbraucht wird. Abschlussarbeiten diirfen
nur einmal wiederholt werden.

Bei der abgegebenen Thesis stimmen die schriftliche und die zur Archivierung eingereichte elektronische
Fassung gemaél} §23 Abs. 7 APB iiberein.

Bei einer Thesis des Fachbereichs Architektur entspricht die eingereichte elektronische Fassung dem vorge-

stellten Modell und den vorgelegten Plénen.

L. Eberle

Darmstadt, 6. April 2021

Contents

Zusammenfassung

Abstract

1

Introduction
1.1 Motivation.
1.2 Structure of this The

Fundamentals

SIS v . e e e e e e e

2.1 Learning Gradient Boosted Multi-label Rules
2.1.1 Multi-label Classification e e e e
2.1.2 Rulesand Boosting i i e e e e e e

2.1.3 Thresholds

2.1.4 Filtering . .
2.2 Related Work . . .

2.2.1 Split Finding

2.2.2 Gradient One-Side Sampling i e
2.2.3 Exclusive Feature Bundling

2.2.4 Weighted Qu

antile Sketch e

Unsupervised Example Binning
3.1 Equal-Frequency Binning e e
3.2 Equal-Width Binning e e e e e e e

Implementation
4.1 Data Structures . .
4.1.1 Datatype Bin

4.1.2 Binning ObServer o o i e e e e e e

4.2 Binning Algorithms

4.2.1 Equal-Frequency Binning i e
4.2.2 Equal Width Binning e

4.3 Filtering

4.3.1 Dynamic and Static Filtering
4.3.2 Filter Functions o i i e e

Evaluation
5.1 DataSets
5.2 Experimental Setup

10

1
11
11
12
12
13
14
14
15
16
17

20
20
21

23
23
23
24
25
25
27
28
28
29

34
34
35

6

5.3 MetriCs o o e e e e e e e e e e 35
5.3.1 Relative Speed Up (RSU) it i e e e e e e e e 35
5.3.2 Relative Accuracy Improvement (RAI) i, 36

5.4 Analysisof the Results e e 38
5.4.1 Reduction of Possible Conditions 38
5.4.2 Comparing binning time and filtering time, 39
5.4.3 Tendencies from Scatter-Plots e 45
5.4.4 Comparison of Binning Methods 50
5.4.5 Comparison of Filtering Methods 52

Conclusion 54

6.1 DeduCtion i e e e e e e e e e 54
6.1.1 Summarizing the observations. e 54
6.1.2 Recommendations o it i e e e e e e e 54

6.2 Future Work e e e e e 55
6.2.1 Improving Implementation 55
6.2.2 Implementing more complex binning methods 57
6.2.3 Accounting for Sparsity e e e e e e e e 58

List of Figures

2.1 Image: Graphic Representationof Ranks 18
2.2 Image Graphic Representation of the Example 18
3.1 Equal-Frequency Binning: Bin placementexample 21
3.2 Equal-Width Examples e e e e e e e e 22
4.1 BIin StrUCLUTe o i it it e e e e e e e e e e e e e e e e e e e 24
4.2 Filter Example e e e e e 29
5.1 Table: Number of possible conditions, 38
5.2 Table: Yeast: Filter and Binning Timeinseconds 40
5.3 Table: Scene: Filter and Binning Time inseconds 41
5.4 Table: Mediamill: Filter and Binning Timeinseconds 42
5.5 Table: Number Filter Calls 43
5.6 Scatter-Plot: Trade-Off Yeast; Data: Table 5.7 45
5.7 Table: Trade-Off Yeast e 46
5.8 Scatter-Plot: Trade-Off Scene; Data: Table 5.9 47
5.9 Table: Trade-Off Scene e 47
5.10 Scatter-Plot: Trade-Off Mediamill; Data: Table 5.11 48
5.11 Table: Trade-Off Mediamill 49
5.12 Table: RAI and RSU comparison of binning methods 51
5.13 Table: RAI and RSU comparison of filtering methods 53
6.1 Table: RAI comparison with new filtermethod 56
6.2 Table: RSU comparison with new filter method 57

Liste der Algorithmen

1 Query Function g(D,d) oo i e e e 19
2 Bin Update fyin—update (index, exampleIndex, evampleValue) 24
3 Equal-Frequency Binning fe,— (7, D) . . o o o oo 25
4 Equal-Width Binning fe,— (7, D) . . . o o oo 27
5 filterAnyVector e e e 30
6 filterCurrentVector 32

Zusammenfassung

Klassifikation ist ein Gebiet von Machinellem Lernen, was zum Gebiet der kiinstlichen Intelligenz gehort.
In dieser Arbeit schauen wir uns das spezifische Gebiet der Multi-Label Klassifikation iiber Regellerner an.
Dabei werden historische Daten genutzt, um Modelle zu lernen, die Instanzen dhnlicher Daten mehrere Labels
korrekt zuordnen koénnen.

Dabei gibt es folgendes Problem: Mit vielen Daten nimmt die Zeit, die benétigt wird, um das Modell zu lernen,
drastisch zu. Wir untersuchen hier einen Ansatz, der versucht, unter der Verwendung von ,,Unsupervised
Binning“-Methoden, die Anzahl der vom Algorithmus untersuchten Bedingungen zu reduzieren und ihn damit
geeigneter fiir grofde Datensitze zu machen. Damit wollen wir die Trainingszeit reduzieren, aber geben dafiir
auch etwas Genauigkeit auf. Dazu gruppieren wir mehrere Beispiele aus einem Datensatz in einem Behalter,
genannt ,Bin“. Den gesamten Datensatz teilen wir damit auf mehrere solcher Bins auf.

Je nach Datensatz und verwendeten Methoden unterscheiden sich die Ergebnisse hierbei stark. Dabei zeichnet
sich ein Trend ab, auf dessen Basis explizite Empfehlungen moglich sind.

Abstract

Classification is an area of machine learning, which belongs to the area of artificial intelligence. In this thesis
we will look at the specific area of multi-label classification via rule learners. Historical data is used to train
models that can correctly assign multiple labels to instances of similar data correctly.

The problem with this family of algorithms is that with a lot of data, the time it takes to train the model
increases dramatically. We will look at an approach that tries to reduce the number of conditions examined
by the algorithm using “Unsupervised Binning” methods and thus make it more suitable for large data sets.
With this approach we want to reduce the training time by giving up accuracy. To do this, we group several
examples in a bin. The entire data set is therefore split into multiple bins.

The results differ greatly depending on the data set and the methods used. A trend is emerging on the basis
of which explicit recommendations can be made.

1 Introduction

Artificial Intelligence (AI) and Knowledge Engineering have become more important in recent years and
continue to do so, as computation power increases. They are versatile and can be used in many circumstances.
Al includes, among other methods, Machine Learning (ML), which itself is divided in supervised and unsuper-
vised ML. [Bro20] While Al is a broad umbrella term for any program, which mimics the cognitive functions
of the human brain[Rus10], ML has the more refined task, to learn and use models from data[Grul5] with
which it can then predict various outcomes.

ML is useful in modern computational problems, like Computer Vision[Seb05], which is for example used to
implement self-driving cars, and Natural Language Processing[Pow89], which is used to compute or produce
human speech or human-like speech respectively. These processes often use supervised learning. This means
the models are trained with data, which was recorded beforehand. [Rus10] This data is called historic data.
The fight against the Corona-Virus is fought with ML, as well[AAM20], which should stand as a testament for
how much perceived potential ML has right now.

Al and Machine Learning are enormous business opportunities, too. [Bro20] So it comes as no surprise, that
tech-giants like Google and Amazon produce a lot of Al services, like Google Cloud Services' and AWS 2.
Supervised Multi-Label Classification Algorithms take a special place in this development. As historic data
collection increases constantly, since we collect more data every day, they become more powerful. The second
reason is that these methods can assign multiple labels at once, like the name suggests, which can handle a
lot of problems. An example would be recognizing multiple street signs in one picture for a self driving car.
This class of algorithms can be used to label unseen data, which is similar to the training data, with multiple
labels. It can also predict labels for data, which were previously unknown.

We look at the two ensemble methods, which can be used to implement multi-label classification; decision
tree boosting, like XGBoost[Vis19] or LightGBM[Sha18], and rule learning, like BOOMER[Rap+20], where
our focus lies in this thesis.

1.1 Motivation

As we gather more structured information our data sets grow larger, as well. First and foremost, this is a great
benefit, as it makes ML algorithms more precise, but they also consume time and computational resources to
a greater extent as smaller ones. So we need to accelerate the process to compensate for slower hardware
improvement and increasing data points. [Lit20]

We want to find a way to benefit from the bigger data collections, while using less resources or reduce the
training time respectively. The initial question was; if we only consider a specific subset, can we still profit
from our larger data collection. In other words we want to make the induction of gradient boosted multi-label
rules more scalable by reducing the number of possible conditions induced.

'https://cloud.google.com/docs
2https://aws.amazon.com/

https://cloud.google.com/docs
https://aws.amazon.com/

In this approach we sacrifice some accuracy to reduce computation time or the required computational
resources respectively. We achieve this trade-off by summarizing similar values into a bin and the whole data
set in a set of these bins. We concentrate our efforts on non sparse feature values with unsupervised methods.
There are some approaches, which handle sparse data, and supervised methods, which consider different
scores that are calculated at run-time. We will look at those in the Section 2.2.

1.2 Structure of this Thesis

This thesis is structured as follows:

* Fundamentals: In Chapters 2 and 3 we look at all necessary details to understand what we are doing.
In Chapter 2 we look at the prerequisites for this work, including the BOOMER algorithm, which is our
baseline, and relevant related work. In Chapter 3 we look at Example Binning, which will be the focus
of this thesis.

* Implementation: In the Chapter by the same name, Chapter 4, we look at our implementation and
highlight some design decisions and unique pitfalls, which we will encounter by expanding on the
fundamentals.

* Discussion: In the third and final part of this thesis, we evaluate our solution by looking at some
experiments and their results in Chapter 5. We conclude in Chapter 6, if the approach works and sum
up what we learned by working with it, as well as a short outlook on possible future work.

10

2 Fundamentals

This chapter introduces all prerequisites, necessary for the approach discussed in this paper. This mainly
includes the underlying gradient boosted multi-label rule learning algorithm, called BOOMER as well as,
related work, which follows a similar approach of generalizing data.

2.1 Learning Gradient Boosted Multi-label Rules

The goal of rule learning is to generate a set of formal rules, which can be used to label a given example. This
form of labeling allows a human comprehension of what the algorithm does. [FGL12]

For this paper we have to develop a basic understanding of how boosted multi-label rule learning works. It is
a special case of rule learning, where we want to predict multiple labels at once. In addition gradient boosting
is used to improve our predictions. We look at the BOOMER algorithm described in source [Rap+20], as it is
used as a baseline for this project. Most of the information in this section is covered in the Source [Rap+20].

2.1.1 Multi-label Classification

When we speak of classification, we usually talk about assigning labels to given unseen examples. These
examples are also sometimes called instances. Let us look at a mathematical description of an example, before
describing it more informally:

Any given example can be represented as a vector x = (z1,...,xx) € X with X = A;, ..., Ax, 1 < K € Nand
x; is a value describing A;.

This mathematical concept is roughly described in natural language as follows: An example consists of a list
of values which represent an attribute. This could be for example the top speed, if we want to classify vehicles,
or temperature, if we want to classify weather. An attribute or feature is a data point we measured beforehand.
An example has multiple attributes and each attribute is resembled by a value. The last part is not necessarily
always the case, if our data is sparse. Sparse data means there is a default value, which is not explicitly stored.
An example for this is data, collected by a sensor, which only records data, if its state changes. [Sri18] This
way there is one value for each change but for each time there was no change the default value is set. But since
the binning would be a lot more complicated and would probably produce worse results, when accounting for
sparsity, it was not looked into further.

Now that we know what an example is, let us look at the classes or labels, we want to assign to them. We
want to assign several labels from a predefined set of labels £ = {1, ..., \.}. So we associate each example
with a label vector y = (y1,...,yz) € Y with) = {0,1}" and the interpretation: y; indicates, if label); is
assigned (1) or not (0). An example for labels would be genre classifications for movies. A movie could be
labeled “Action”, “Drama” or “Thriller” or any combination of them. We could also go back and look at the
example we introduced for attributes to differentiate between the multi-label and the single label approach:

1

When labeling vehicles we could have labels like “Truck”, “Sportscar” or “ATV”, but since we would only give
one label to one example, this is called a single-label approach, we would not need a vector in this case.
The task is to find a model which can assign the correct label vector to a previously unknown example vector.
To achieve this we train the model with a data set, where we know the correct labels for each example. This is
called a supervised process, since we use the labeled data as a “teacher” and do not let the algorithm figure
out patterns on its own.

2.1.2 Rules and Boosting

A rule consists of a head and a body. The body consists of a set of conditions, which are tested against attribute
values[LJ] and they evaluate to true, if all conditions are true, otherwise they evaluate to false. The head, in
our specific case, assigns a numerical score to each label. [Rap+20]

To produce a good model we obviously need to use a lot more rules than just one, since a single rule is rarely
a good classifier. If a condition is true, we add the heads to our current prediction. This method of combining
the results of a lot of weak classifiers, like our single rule, is an ensemble approach called boosting. [Zho12]
For binary or discrete labels the scores would be discrete, but since we use boosting, in this specific instance
of a rule learning algorithm, we use real numbers for our scores.

The conditions are of the form C; = A;Rc with A; like in the last section, is an attribute, R € {<, >} and
¢ € N. The body as a set of multiple conditions is written as {C1, ..., Cj }. The head is a vector with one entry
per label h = (I3, ...,11).

Let us look at an example. A typical rule looks like this:

{Ag7 < 0.2821 A Agy > 0.0402 A Ay7 < 0.8902} — (0.79, —0.35).

Examples which fulfill a rule are called covered by this rule.

Assuming there are only two labels, we would check the attributes Ag7, A22 and A;7 in their corresponding
condition. If all the conditions evaluate to true, we would add the head (0.79, —0.35) to our previous prediction.
This algorithm has an addition to deal with nominal values. We will look at it briefly, since our approach is not
fit for these. Nominal values are values which have no specific order. An example of nominal values in our
domain, would be values which represent weather, for example 0 = sunny, 1 = rainy, 2 = foggy and so on.
The values represent bigger concepts, which can not be sorted and with which we can not do any kind of
math. BOOMER uses these values to learn conditions, but only builds rules with the operators “=" or “#£”,
since checks for equality still work on numerical feature values.

There is still one detail missing: How can we generate an initial prediction to add to? The first rule we learn is
always the default rule, which has an empty set for its body. This means the body is true for every example. It
also includes a prediction for each label as its head. So we have at least a simple prediction for each label.
There are unavoidably some labels, which the default rule predicts correctly, but we want to approve upon it
to make predictions as accurate as possible for each example and label.

2.1.3 Thresholds

For constructing the conditions for a rule, several thresholds could be used. In order to learn a condition for a
rule we need to sort the features. In a sorted feature list the borders between two distinct values are called
thresholds. So the threshold ¢,, between x,, and z,+1 with x,,, ,,41 € x and x defined as in 2.1.1, would be
t, = % Each threshold t,, is always as far away from the two original values as possible, while still

12

fulfilling the condition x,, < t,, < x,1, since we only consider thresholds between distinct values, which by
definition cannot be equal.

We can continue our weather example. We used a sensor to record temperatures. It produced the following
array of temperatures:

| -1[4]8[9]12]19]21]26]

We can calculate the threshold between the first two values with the formula we introduced, by inserting the
corresponding values: ¢ty = %*4 = 1.5. We could calculate all other thresholds the same way.

To learn a rule we look at those thresholds. We check if it is more beneficial for our model to predict something,
when a given feature value is “less or equal” or “greater than” the threshold. This is done by determining the
optimal scores to be predicted by the resulting rule and assessing its quality according to the loss function.
In our example we would look at our threshold ¢y = 1.5, so we check the parameter temperature against it.
We will probably see that a temperature < 1.5 increases the chances of the label “snowy” significantly, so we
would chose it as a condition.

There are n — 1 thresholds, if n is the number of distinct examples. In our temperature list there would be 7
thresholds in total, since there are 8 examples. To confirm this intuition, we first look at one value. There
is no other value so we can not build a threshold, so there are 0 thresholds for n = 1. This was expected
since 1 — 1 = 0. If we add another distinct value so that n = 2, then we can build a threshold between them.
We would have 1 = 2 — 1 thresholds. This is true, whenever we add a distinct example, so there are n — 1
thresholds for n as the number of distinct feature values.

For each threshold there are two possible conditions and each new example introduces a new threshold to
each feature, as long as these values are not already in the feature list. If they were, the value in question
would not be distinct and would therefore not produce a new threshold. While scaling linearly with all those
factors, this can still introduce a problem, if we use a lot of examples with a lot of features, so our goal is to
reduce the number of possible conditions.

2.1.4 Filtering

After we learn a condition, the feature values, which fulfill the condition, are called covered by this condition.
We remove the examples, which belong to the corresponding feature values. After removing those values, the
environment has changed and we guarantee that the next condition, we learn, is a new one.

This sounds fairly simple, but if we look into the structures we described, this gets a lot more complex. In 2.1.3
we noted, that in order to function properly the feature vectors have to be sorted. So the feature values from
our original example z; are not in the position with index i of each feature vector. So to filter out a covered
example we have to iterate over each feature vector, to search the corresponding value form our example.
Even though this operation has a time complexity of O(instances * features) the first time around and
becomes faster with each already filtered example, it can use a lot of computation time, as this also becomes
slow with big data sets. So we have to be especially careful with the implementation of the filtering, since this
method has to be used for every condition in the resulting model.

Let us look at the weather example again. We recorded the humidity (feature1) and the wind speed (feature2),
as well and got this result:

ex0 | ex]l | ex2 | ex3 | ex4 | ex5 | ex6 | ex7
featureQ | —1 4 8 9 12 19 | 21 | 26
featurel | 60 10 90 | 45 25 20 10 5
feature2 | 10 0 5 15 20 5 10 20

13

The first step would be to sort the values, which means we lose the assignment to the examples. It would look
like this:

featureO | —1 | 4 | 8 | 9 | 12|19 |21 | 26
featurel | 5 | 10 | 10 | 20 | 25| 40 | 60 | 90
feature2 | 0 5 511011015 1] 20 | 20

We learn the same condition as before, so we learned a condition on the basis of featureO of example0. Now
we need to filter exampleO, so we need to find the rest of its feature values in the table. We need to find the
value 60 in featurel. We have to check six values until we find it in the seventh spot. In feature2 we need to
find the value 10, we find it on our fourth step and filter it. We do not care which 10 we filter as long as we
filter the value corresponding to the example. So we finished our filtering process.

featureO | X | 4 | 8 | 9 | 12|19 |21 | 26
featurel | 5|10 | 10 |20 | 25|40 | X | 90
feature2 | 0 | 5 5 1 X 1101520 20

2.2 Related Work

The reduction of possible conditions proved to be an effective method. It is not an uncommon field of study;,
since the number of possible conditions is one of the worst scaling parts in algorithms like BOOMER, which
build large ensembles. Furthermore this problem is not limited to rule learning algorithms, but also effects
tree boosting algorithms, like the popular XGBoost[Vis19] and LightGBM[Sha18], which makes research
in this area relevant. We will look at Split Finding, which inspired the idea of example binning, Weighted
Quantile Sketch and other supervised methods, which also take the quality of our prediction into account.

2.2.1 Split Finding

Split Finding is a part of decision tree learning. It is relevant here, because tree learning is comparable to rule
learning. To put it casually, rule learning is tree learning, if we only consider one branch of the tree. Each
node along this branch is one condition and we reach the leaf, if all notes in the branch evaluate to true.
Split Finding describes, how to find the cutoff between two branches. So we could compare the split point of
a tree to the threshold of a rule. This is one of the most time consuming tasks in tree boosting algorithms.
[Shal8]

We look at three methods for Split Finding[Yil19]:

* Pre-sorted: Every possible split point in a sorted feature list is evaluated
* Histogram-based: Continuous feature values are sorted into bins

* Entropy-based binning: Finds the most pure bins, which means that the majority of values in the bin
correspond to the same label.

14

The Pre-sorted algorithm is comparable to what we already have. The possible split points are the thresholds
of our implementation and we check each one. So this method is not especially interesting for our goal.
The Histogram-based Split-Finding is a little more complex as the Pre-sorted Split-Finding. We define a
maximum number of discrete values per feature we want to look at. Then the values are grouped together
into a number of bins, which is equal to the given maximum number. [Bah21] We will look at two possible
implementations of how we can handle this binning in more detail in Chapter 3.

These two approaches are called unsupervised methods. We call every method which has no clear target values
and uses no reward system unsupervised. The algorithm should find patterns by itself. [HS99]

A supervised approach would be Entropy-based binning, since we calculate a so called entropy based score
on each class label, which is information we have to reintroduce to the algorithm. This means we interfere,
which makes the algorithm supervised.[Say21a]

2.2.2 Gradient One-Side Sampling

The gradient of a given feature value gives us important information about how well we can already predict it.
A small gradient means we can make a good prediction for the associated value, on the other hand a large
gradient means we can not make a good prediction. This is where GOSS comes in, it uses four steps to find
better splits with this information[Yil19]:

1. Sort the data example-wise by the absolute value of their summed gradients in descending order
2. Select the top a * n examples

3. Select b x n’ random examples from the not selected examples

4. Multiply the sample from the examples with small gradients by PT“

The following conditions apply: 0 <z < 1:z € a,b: a,b € N, n is the total number of examples and »’ is the
total number of remaining examples. The relation n’ = n — (n x a) applies, as well.

This is a lot more complicated so we look into what happens here. In the first step we generate a list of our
examples. By sorting we guarantee that the first example in the list is the one where our prediction was
the worst, the last example is the one we can predict best and all other values are distrusted between them
accordingly.

In the second step we take a subset of all of our examples. By varying the a value, we can vary how much of
this set is considered bad enough to focus on.

In the third step we reintroduce some of the cut examples. We can already make better predictions for them,
but we should not just ignore them. To reduce focus on them we only put a random subset based on b of them
back in. By varying b we can change how much we want to put back in.

In the last step we introduce an additional weight to soften the impact of the previously cut examples. The
equation PT“ evaluates to a bigger value, if both values are small, since we do not have a lot of examples in
this case, we should not dilute them further. If both values are bigger the equation evaluates to a smaller
value, since the examples we cut previously do not matter as much. The equation is more sensitive to changes
of b than a.

So by manipulating the two values a and b we can vary the focus between well known examples and lesser
known examples. [Bah21]

15

2.2.3 Exclusive Feature Bundling

We looked at how we can summarize examples, but the number of features is also a deciding factor. [Shal8]
The basic idea of EFB is to reduce features by combining mutually exclusive features, which means they do
not have non-zero values at the same time. [Yil19]

Let us look at the following example, while explaining what EFB does:

featurel feature2 feature3 feature4 feature5
0 1 0 3 0
0 2 2 0 0
3 0 0 0 5
1 0 6 0 0

We see intuitively by the definition featurel and feature2 are mutually exclusive, as well as feature3 and
feature4.

EFB uses three steps to find these relations. First it calculates a conflict measure for each combination of
features or bundles. This is done be dividing features with overlapping non-zero values by the total number of
mutually exclusive features in the bundle. This measure gets bigger with the number of conflicts. Secondly
it sorts the features by the number of non-zero instances, beginning with the feature with the least zero
instances and going to the feature with the most zero instances. Lastly EFB loops over the generated list and
assigns features to existing bundles, if the conflict measure is small enough and it is put in a newly created
one, if the measure is too large. [Shal8]

The merging process is more intuitive. We calculate an offset, as the span of values in a bundle and add it to
the values, which we want to add. This is necessary since we want to bundle the features, but still differentiate
between them. [Shal8]

So let’s look at our example step by step. There is no need to sort them since they already are in our desired
order.

* Featurel creates a new bundle “bundlel”, since there is no bundle, yet. At this point bundlel looks like
this 0,0, 0, 0, so the span is 0, since we don’t have two distinct values. We don’t need to add anything to
the values of featurel and we merge it into the bundle. After this step the bundle is as follows: 0,0, 1, 3.

* We look at feature2 which has the conflict measure 0 to bundlel. This is small enough to add it. So we
calculate the span of the bundle 3 — 0 = 3 so our offset is 3. After adding feature2 with its modified
non-zero values, we get 4, 5, 3, 1 for our bundlel. Note that featurel and feature2 contained a 1, but
this feature value is now distinguishable through the addition of the offset.

* Now we check for feature3. It has a conflict measure of 0.5. This is not good enough and we create a
new bundle, “bundle2”, the same way we did for bundlel and get 0, 2,0, 6 as our new bundle.

* Feature4 has a conflict measure of 0.25 with our first bundle and 0 with our second bundle, so we add it
to bundle2. Our bundle2 has a span of 6 — 0 = 6 so we add 6 to all non-zero values and add those to our
bundle. This results in 9, 2, 0, 6 for bundle2.

* Feature5 has the same conflict measures as feature4, so we want to add it to bundle2, as well. This
time the offset is 9 since our span has increased. So the result for bundle2 is 9, 2, 14, 6.

This way we summarized five features into two bundles. The following table summarizes the results.

16

featurel | feature2 | feature3 | feature4 | feature5 bundlel bundle2
0 1 0 3 0 4 9
0 2 2 0 0 5 2
3 0 0 0 5 3 14
1 0 6 0 0 1 6

2.2.4 Weighted Quantile Sketch

Weighted Quantile Sketch (WQS) is a supervised method to speed up split-finding, while minimizing accuracy
loss. It was first introduced in the original XGBoost paper[CG16], the following information originates from
this paper.

WQS basically divides bins by combined weights instead of number of entries or value ranges. This section
gives a quick overview of this algorithm and focuses on the description of the core functionality.

In the following examples we will use the data set:

D = {(xo,wo), (x1,w1), (T2, w32), ...(Tn, w,) } with entries x and weights w.

Weights and Ranks

As a first step we need to give each entry in the data set a numerical value, called weight, which corresponds
to how good our prediction of this given value is. The weight has to be large for an entry, which has no good
prediction, and has to get smaller as the prediction gets better. A good example for a function which fulfills
these conditions is the loss function L.

Now that we have weights, we define ranks, which represent the combination of the weights of all previous
entries. WQS uses these ranks to divide the data set into quantiles.

TD(y) = E(z,w)GD,x<y w
Tg(y) = Z(z,w)G’D,xSy w

5 (y) is the rank of y without its own weight, r (y) is the rank of y with its own weight added. We also define
w(D) as the sum of all weights of D, as such

w(D) = Z(z,w)ED w.

A useful mental image for ranks is a stack of all previous weights with or without respectively the current
weight as seen in 2.1.
It also helps to look at an example. Let’s define a really simple example:

’DegC = ((:Co, 1), (3}1, 1), ($2, 1), (.753, 1), (:U4, 1), (1‘5, 1)) (21)

with data points z,, and weights w,, = 1. Note that you would not use WQS for such a small data set, because
Pre-sorted split finding would be fast enough and more precise. This example would produce the following
ranks as seen in 2.2:

17

Figure 2.1: Image: Graphic Representation of Ranks

T$ex (ZL'()) = Tl_)em 1'1) =1
raz (x1) =rp, (22) =2,
rh, (x2) =rp (23) =3,
b, (T3) = 5, (24) = 4,
rp,, (@1) = 1p, (25) =5,

Figure 2.2: Image Graphic Representation of the Example

Query Function

The Query Function g(D, d) (1) takes in the data set D and numerical parameter d. d is the weight increment,
we are searching for. The function returns the data point with the rank closest to d. To understand this
function it is useful to imagine a number line from 0 to w(D) with the weights as increments.

Algorithmus 1 : Query Function ¢(D, d)
Input: d: 0 < d < w(D)
Input: D = {(zg, wo), (x1,w1), (2, w2), ..., (Tn, wn)}
if d < 3(rp(z0) + 17 (20)) then
return x;
end
if d > L(rp(2,) + 75 (zy)) then
return z,;
end
Find i such that:
3 (rp (@) +rp (i) < d < 5(rp(zis) +rp(Tis1));
if 2d < r5(2;) + wp(zi) + 75 (vi41) — wp(wiy1) then
| retutn z;

else
| retutn z;.

end

We look at Algorithm 1. First the algorithm checks, if d is smaller than the first rank or larger than the largest
rank and returns one of them accordingly. These edge cases have to be dealt with first, because the following
code has no way of handling these due to a lack of predecessor or successor respectively. Then we search 4
such that the rank of z; is less or equal to d and such that the rank of its successor z;, is greater than d. In
the final step, we have to decide which of our candidates, x; and x;.1, is closer to d to return it.

For example if we want to find a data point in our simple example set D,, from 2.1 with a rank close to 3.2,
we would call g(D.,, 3.2). We walk through this example step by step:

1. We check if 3.2 is in the weight area of z¢: 3.2 < £(0 + 1) which is false, so we go to the next step.
* If it were true, we would return zy and terminate the algorithm

2. Now we check if 3.2 is in the weight area of z5: 3.2 > 1(5+ 6) which is also false and like before we go
to the next step.

* Also like in the last step, we would return the corresponding data point zs, if the check returns
true.

3. The algorithm searches for a data point, such that d is between its rank and the rank of its successor. In
our case this would be 5

* Proof: §(rp (z2)+75h (22)) = $(2+3)=2.5and %(r{)ez (z3) + 75, (23)) = 3(344) = 3.5, with
25<32<35

* This step is a black box were we could use any search algorithm

4. Now we check if 3.2 is in the weight range of x9: 2 x 3.2 < (24 1)+ (4 — 1) — 6.4 < 6 so this is also
false, so we return x3 as a result and terminate the algorithm.

* As before, if it were true, we would return zo

19

3 Unsupervised Example Binning

To improve the scalability of the algorithm, we want to group some examples into one bin. This way we expect
to reduce the number of possible conditions. So we try to find subsets of similar examples to group together.
If we group just any examples, we would not only lose a lot of precision, but we would have to change the
process with which the thresholds are calculated. The following two solutions are called unsupervised binning
methods [Say21b], the simplest approach to find similar values for each bin. Since they are only binning one
time and do not change the assignments afterwards, they should be more run-time efficient than the more
complicated algorithms introduced in the previous chapter.

In this chapter we look at everything we need to know for our implementation.

3.1 Equal-Frequency Binning

When we look at a sorted list of distinct numbers and pick any of them, the one which came before is always
the biggest value which is less than the picked one. In the same way the next value will be the smallest
value bigger than the current one. The Equal-Frequency approach uses this fact and looks at the number of
occurrences, to determine which values belong together. [Say21b; Pod20]
We group a specific amount of values z in each bin and create n bins with n, z € N. The idea is, when we
know z, we can just iterate over the sorted list and put = values together in one bin, = values in the next one
and so on. In theory we would get n bins with this approach. In reality there are less than n bins most of the
time, since we need natural numbers for x and n, and they can not be divided accurately enough.
With total for the total numbers of values in the feature list, we can apply the following equation to determine
the number of examples per bin z:

v {total—‘ 3.1)

n

Note that we are rounding the solution up. The first obvious reason is, we can only add a natural number
of examples to a bin. The second reason will get obvious, when we look at the implementation later on in
Chapter 4.

If we look at a feature value list: 23, —2,6,1,1,3,5,4,12,6,9, —1,0 and want to generate five bins we will get:

13
{J =2,6=3 (3.2)

So we get three examples per bin. Also we would get a result like shown in image 3.1.

Note that we sorted the list before grouping the values in bins. We also put equal values in the same bin,
even if we have to put more examples in one bin. Since we want to group similar values, we have to avoid
separating equal values, because they are so similar that they are indistinct.

20

-2

1 \

0 A -2,-1,0
! \
I AL
3 / 4,5,6,6
: /

5 9,12, 23
6

6

9

12

23

Figure 3.1: Equal-Frequency Binning: Bin placement example

As you can see we stop if there are no values left. In the example the last bin stays empty, because of that. In
practice this is no problem and it would be more complex to circumvent this phenomenon. Since we picked
this algorithm for its simplicity, we want it to stay as simple as possible, while guaranteeing its functionality. It
is also possible, that the last filled bin is not completely filled. If for example the 23 was missing here, the last
bin would only contain 9, 12, so two values instead of the expected three. This is also no problem in terms of
functionality, so we keep it as is, too.

3.2 Equal-Width Binning

We can get a lot more direct with the grouping of values with a common attribute. For the Equal-Width
Algorithm we define a span or range of values for each bin. Every example, which is covered by the range,
will be put in this bin. [Say21b; Pod20]
We do not need a sorted list of examples for this method, but we need to know the lowest and highest example
value. This can be found out easily by going through the list, while memorizing the smallest and biggest value.
This is a lot less complex than sorting the list. Finding the minimum and maximum has a time complexity of
O(n), since we have to look at each value exactly once, while the most efficient sorting algorithms have a time
complexity of O(n *logn). [Knu98]
First we determine the range of values over all examples, using the searched two values, then we can divide
that by the total number of bins we want n, with n defined as previously. The result is the range per bin.
Note that we do not even need to know, how much examples there are. This relation is represented by this
equation:

|maximum — minimum|

range = (3.3)
n

We need the absolute in the denominator, because, if all our values are negative, we would produce a negative
range, which would lead to false results. We would start to calculate the range for the first bin with the
smallest value and subtract from that. So there would be no value in this range expect the smallest one. All

21

23

-2

6

[-2, 3) !
y

[3, 8) 3
[8,13) 5
[13,18) 4
12

[18,23] 5
(a) Equal Width Binning: Span of the bins 9
-1

0

(b) Equal Width Binning: Bin placement example

Figure 3.2: Equal-Width Examples

other bins would be completely empty, since there are no values less than the smallest one, but we would only
consider such values.

If we look at the same list as before: 23, —2,6,1,1,3,5,4,12,6,9, —1,0 and want to generate the same amount
of bins. Our range would be:

23— (-2)] 25

5 5
We would generate bins with the spans shown in example 3.2a. Please note that we made the last border
inclusive to include the highest value of the example list. Of course we have to make this exception in our
implementation, as well.

We group the values like shown in example 3.2b. The number of examples per bin can vary a lot. For example
a feature list with 18 values between 0 and 1 exclusively and a single 0 and a single 10, would generate one
bin with 19 values, one with one value and 8 empty ones for n = 10. This example is a bit extreme, it is not
expected to occur often, but it is not impossible, so we need to consider it. And even in less extreme cases
there can be empty bins between filled bins, this is something we have to keep in mind for the implementation.
But as far as the binning itself is concerned, this is no problem.

In the implementation we obviously can not intuitively decide in which of the calculated ranges a given value
belongs. The following function returns the index of the bin 7 for a given feature value x with the span s and

the minimal value m:
i = V - mJ (3.5)
S

5 (3.4)

22

4 Implementation

In this chapter we go over the changes and additions, we made to the base algorithm, we described in Section
2.1. We start with the data structure, which will contain the bins, and the binning observer, which fills the
data structure while binning.

Then we will look into the practical implementation of the concepts, we depicted in Chapter 3. In other words
the actual binning.

This chapter concludes by showing the implementation of the filtering process for our new data structure. We
will focus on the two types of filtering, dynamic and static filtering, and the two actual filter functions.

4.1 Data Structures

To add the histogram-based approach to the existing algorithm without influencing other options, we need a
new data structure, which contains the bins and supplies the information, that existing functions need, as if
we had a normal data set.

Also there has to be an algorithm, which handles the creation of the bins, since we do not want to handle this
in the binning functions. When we learn in which bin a feature value belongs, we notify the binning observer.
The binning observer puts the value in the bin and updates the information in the bin to reflect the new value.

4.1.1 Datatype Bin

To store a bin, its structure does not actually need to access the values of all examples, which are assigned to
it, for most of the run-time. We only need to know all feature values when we filter the examples. Usually we
only have to access the smallest and the largest value, as well as the numbers of examples in each bin. The
reason for this is that we calculate the thresholds between two bins as the mean between the maximum value
of a bin and the minimum value of its successor. It can be noted as

. max(xy,) + min(rp41)
n — .
2

The two bins, we consider for a threshold, are always adjacent to each other. A bin z,, is therefore considered
for t,,_1 and t,,, as long as it is not the first or last bin for a given feature vector. In these cases we would only
consider them for ¢, or ¢,,_1 respectively. So we store the highest and lowest value separately in our data
structure to access them easily and quickly without having to look through the entire list of feature values.
The data structure Bin contains the maxValue, the minValue, which are stored as floating point numbers,
the numExamples, which is stored as an integer, and, for the sole purpose of filtering, a linked list containing
the examples, called Examples.

23

The Image 4.1 provides a graphical representation of two adjacent bins. If the number of examples is zero
after the binning, we ignore and remove the bin.

maxValue: highest value in the bin

numExamples: number of examples

Examples: list of examples in the bin

minValue: lowest value in the bin

Threshold

maxValue: highest value in the bin

numExamples: number of examples

Examples: list of examples in the bin

minValue: lowest value in the bin

Figure 4.1: Bin Structure

4.1.2 Binning Observer

To fill the bins, we use an observer, which is notified every time we determine in which bin an example belongs.
The observer fills a vector, which holds all possible bins, with the corresponding examples. It also simplifies
our binning, since it handles the data structure by increasing the number of examples and setting the current
minimal value, as well as the current maximal value.

Algorithm 2 describes the functionality of the observer. It starts by taking in the index of the bin, where the

Algorithmus 2 : Bin Update fi,—ypdate (index, exampleIndex, exampleV alue)
Input: index, exampleIndex, exapmleV alue
bin = getBin(index)
bin.numExamles+ +
if bin.maxValue < exampleValue then
| bin.maxValue = exampleValue
end
if exampleValue < bin.minValue then
| bin.minValue = exampleValue
end
append Example(index) to Examples

feature value should be put in (index), the index of the example (exampleIndex), to which the feature
belongs, and the actual feature value to store (exampleValue). The two if-conditions check the incoming
value against the stored minimal and maximal value respectively. We initialized the maximum value as the
smallest possible value and the minimum value as the largest possible value of their data type, this way we do
not need to check anything else, since the first value will override both of them naturally.

24

4.2 Binning Algorithms

In this section we will look at the practical implementation of the two unsupervised binning methods, Equal-
Frequency Binning and Equal-Width Binning, which where introduced in Chapter 3. We will also list some
design decisions and evaluate them by giving some alternatives.

4.2.1 Equal-Frequency Binning

Algorithmus 3 : Equal-Frequency Binning f.,_ ¢,(n,D)

Input: n : 0 < n < m: Number of Bins
Input: D = {xg, z1, z2, ..., T, }: Feature Vector
sort Feature Vector
numElementsPerBin = [m/n]
binlndex = 0
previousValue = 0
fori <+ 0tom by 1 do
currentValue = value_of(z;)
if previousValue # currentValue then

| binIndex = |i/ numElementsPerBin |
end
previousValue = currentvalue
notifyObserver(binlndex, index_of(z;), currentValue)
end

Algorithm 3 describes the Equal-Frequency Binning method. As described previously our feature list has to be
sorted, to use this method. So we start by sorting the feature vector. The variable numElementsPerBin
is calculated with Equation 3.1. We talked about rounding up as a method to ensure that we generate a
whole number. It is also used to ensure that the indexes, we generate here, are valid. To show this we can
prove that rounding down to the next whole number would be insufficient by a contradicting example. If
we have a feature vector containing 0, 1,2, 3,4, 5,6 and we want 3 bins, the equation would look like this
num = % = 2,3333. To demonstrate the problem we round the number down. So we want to put 7 elements
into 3 bins by putting 2 elements in each bin. This does not work, we have six spots for seven values. If we
round up we get 3 bins with 3 elements each and can fit all elements with free spaces after the last value.
There are other solutions, like adding an extra bin for overflowing values. But this introduces the problem,
that we would generate more bins, than we want. Another solution would have been to put all values, which
would overflow, in the last bin, like we do in Equal-Width binning. In the worst case the last bin would contain
2n — 1 elements for n being the number of elements in any one of the other bins. This would be a worse
solution as well, since our last bin, together with the first one, are the only bins which contribute to only one
threshold. Every value, which comes after the first one in the last bin, is only relevant, if all smaller values are
filtered out, so we want to avoid making this bin bigger than the others. There is one other design which
could be used. We could calculate the number of overflowing elements n,. = total mod n and add a single
example to the first n,. bins. This solution would produce good results, as well, but was cut in favor of the
simpler solution.

We also have to set the variable for the previous value to 0. Obviously the value of x_; does not exist, but 0 is

25

a work around, which works like we intend it to. In the for-loop we check if the previous value is the same as
the current value, if that is the case we would like to put it in the same bin. We want to have all equal values
in the same bin, otherwise we would have two adjacent bins, where the maximum value of the bin with the
lower index is the same as the minimum value of the bin with the higher index. This would generate this
exact value as a threshold. A value within the set is a worse threshold than one between two values, because
we can not differentiate between the two values, if they are equal.

Now we can look at the reason, why we choose 0 for our first previous value. We have to look at the following
two cases:

1. The first value xo = 0: The if-condition evaluates to false, so we skip the index calculation and put x(
in the bin with index 0, since we did not change binIndex from its initial value 0, yet. The first value
belongs in this bin. The bin must have 1 or more spaces, since we didn’t fill anything in and the number
of examples per bin has to be greater than 0.

2. The first value x¢ # 0: The if-condition evaluates to true, so we calculate the index of the bin, we want
to put our example in. Because we are looking at z, ¢ has to be 0. 0 divided by any value is still 0, so
we put the first example in the bin with index 0 as expected.

After that we set our previous value to our current value and the next iteration works as intended. We could
have used any value as the previous value in the first iteration, but 0 seems like the most natural solution.
We glossed over the calculation for the bin index, but this is an important step, as well. In Chapter 3 we said
we want to iterate over the list and fill the first bin with elements corresponding to the calculated number of
examples per bin. After that we want to do the same for the next bin and for each one coming after, until
we have no examples left, while keeping in mind that equal values always have to end up in the same bin.
For the mathematical explanation we will call the bin index x(7), since we want to calculate it in relation to
i. The number of elements per bin will be called n. i goes from 0 to the total number of elements, so this
iterates through the index of each value in the feature vector. We use an example with a feature vector with 7
elements, which do not overlap, the feature values do not matter in the calculation, except if two or more
values are equal. In this example we want 4 bins, this means we want 2 examples per bin. The indexes are
calculated as such:

z(0)=|9] =0
(1) =] =0
z(2) = _%_ =1
2(3) = 3] =1
r(4) = 'g' =2
«(5) = |3 =2
z(6) = 'g' =3

By looking at these indexes, we see there are two values for the first, second and third bin, and one for the
last one. We use the property of the integer division that there are exactly n natural numbers = which can be
divided by n to get an arbitrary and fixed result y.

This way each value is put in the right bin and we stop, if there is no example left. Note that we will increase
i, even if the value is put in the same bin as the previous value, this could lead to empty bins between filled

26

ones, if there are a lot of equal values in a given feature vector. This is no concern, since we already handle
empty bins by removing them.

4.2.2 Equal Width Binning

Algorithmus 4 : Equal-Width Binning fe,—,(n, D)
Input: n : 0 < n < m: Number of Bins
Input: D = {z9,x1,z2, ..., T, }: Feature Vector
max = max_value_of (D)
min = min_value_of (D)
spanPerBin = (max—min)/n
for i + 0 to m by 1 do
currentValue = value_of(x;)
binlndex = [((currentValue—min)/spanPerBin) |
if binindex > n then
| binlndex =n —1
end
end

In this method the same value always ends up in the same bin, because we calculate a span, or range, of
values for each bin and equal values belong to the same span. We are not settled on a specific amount of
examples per bin. Our span per bin is calculated by the span of all values divided by the amount of bins we
want. This is represented through the initial three lines of pseudo code in Algorithm 4. Now we iterate over
all feature value indexes starting with 0 and going up to the total number of examples. We fetch the value of
the feature on the index we look at. Now we can calculate the corresponding indexes. We look at the simple
example 4,5,5,1, 3,2, 8 and we want 4 bins. The span s is calculated as such:

s=51=175

Note that we do not need to round this value, since we are not operating on indexes but values, these can be
real numbers and are not limited to integers. To show how the for-loop determines the bin index, we use f(7)
as the function that returns the bin index for the value at feature vector index ¢ with the span 1.75 and the
minimum 1, which we have already calculated.

F0) = |13 =1
) =37 =2
f2) =37 =2
@) =55t =0
f@) =] =1
16) = |i7] =
16) = |35t =4=3

27

We reduced the calculated index of the biggest example by 1 to avoid addressing a fifth bin. We talked about
this in Chapter 3, the last range has to be inclusive, while all other ranges have to include the lower border
and exclude the upper border, else we would have to include a value on the border in two bins. This exception
is made by the if-condition, following the index calculation.
We will always produce this overflowing index for exactly the highest value in a feature matrix. Through
changing the equation, it becomes clear why. We replace the current value with the largest value max, since
this is the case we want to examine. We use s again as symbol for span per bin, n is the number of bins we
want, f(i) represents the function, which calculates the bin index from the example index again, and i is the
index of the highest value.

max — min

f@@) =

mar—min

|S: n

sy = T
£i) = (max — min) *n . “@.1)

(max — min)

Since our index starts at 0 the n-th bin’s index is n — 1, so n is never a valid index, even though it will always
be assigned to the highest value. Like mentioned before, we just set it to the biggest index n — 1.

4.3 Filtering

We have to ensure that our environment, the data we use, changes to learn a new condition each time, else
we would have the same data in every iteration and we would produce the same condition every time. We
do ensure this change by filtering examples, which are covered by a rule. But, through binning, the feature
values for one example could end up in multiple bins with entirely different indexes. So if we learn a rule,
which covers the first two bins of one feature value, we can simply delete those two bins from this feature list.
But we also have to remove all the examples they contain. We have to find all other feature values of these
examples in all other bins. Image 4.2 shows schematically how this distribution looks in the data structure, if
we just learned a rule based on the first two bins of the first feature.

We expect the filtering of the bins to take, as long as, if we had not binned at all. Since we have to go through
each bin to look for each feature value of a given example, which is covered, the time complexity should
be O(instaces * features) for the first iteration and should get faster with each iteration, since we filter out
examples. This is equivalent to filtering without binning, see Subsection 2.1.4.

4.3.1 Dynamic and Static Filtering

By removing feature values from a bin, we could change the minimum or the maximum value of a bin. Two
different approaches to handle this event were implemented, referred to as the dynamic and the static filtering
respectively.

Dynamic Filtering This method is called dynamic, because we dynamically adjust the minimum and maximum
value of any given bin, once the feature value, corresponding to one of these values, is removed. For example,
if we have a bin containing 1, 2, 3, 4 and remove the example, which contains the feature value 4 we would

28

feature 0 feature 1 feature 2

X =000 X] = 1] =000]

X =000 X = G X] - 1]
11] = 11] =X 1 X]
11] = 11] - 1]
11] = 1 11X =00 1]
- 11] =00 16 = 1]
- 1 1] = 1] - X]
- 11] =1 X X X = 1]

legend:
= 1 1] X
bin list of examples newly covered

Figure 4.2: Filter Example

set the maximal value from 4 to 3. This way all bins always have the correct boundaries. Because of this it is
expected, that this method is more accurate than the static method.

Static Filtering Static filtering describes the opposite. We do not adjust the minimum or maximum value,
after we first created the bin, even if we remove the corresponding value. If we look at our last example, the
maximum value would not change after the removal of the value 4. This is expected to be less accurate than
dynamic filtering, but it will help us to evaluate how effective the dynamic solution is.

4.3.2 Filter Functions

Two filter functions were implemented; filterAnyVector, which is called before, we look at possible
refinements, if the rule has changed since we last filtered, filterCurrentVector, which is called on the
feature vector, which belongs to the feature, which is used for the refinement. By going into more detail we
will encounter the term cache entry. In reality there are some more details here, but this term represents a
crucial concept and can not be omitted. The cache entry is a data structure, which holds our bins and supplies
some fast methods to access information about our bins. We start by looking at filterAnyVector, since
we can build on it in the explanation of filterCurrentVector.

filterAnyVector

We want to filter multiple vectors such that only elements remain in the vectors, which are also covered by the
condition, we just learned. We refer to Algorithm 5.

29

Algorithmus 5 : filterAnyVector

Input: BinVector, cache Entry

maxElements = BinVector.length

filteredVector = cacheEnitry.getVector

wasEmpty = false

if filteredVector is null then
Make a new empty cacheEntry with size max
Set filtereVector to the new cacheEntry
wasEmpty = true

end
i=0
for r < 0 to maxElements by 1 do
numExamples = 0, maxValue = —oo, minValue = oo

for each Example do

if Example is covered then
The following two condition is only for dynamic binning
if exampleValue < minValue then
| minValue = exampleValue
end
if maxValue < exampleValue then
| maxValue = exampleValue
end
if wasEmpty then
| addExample
end
numExamples+ +
end
else
if not wasEmpty then
| remove Example
end
end
end
if not wasEmpty then
| swap(, r)
end

if numExamples > 0 then
| BinVectorEntry i = Bin r; i++
end
end
update filteredVector; update cacheEntry

In the beginning filteredVector can be null, which means it is empty, if we do not have a cacheEntry
already. In this case we have to make a new cacheEntry with the size of maxElements, which represents
the number of elements in the bin vector at this time. Filtering reduces the number of elements and we will
never add elements back in. This is why, we do not need more spaces than maxElements in the cacheEntry.
So we initialize it with this size. We have to remember that we made a new cacheEntry, so we set wasEmpty
to true.

30

i is the index of the bin we are currently looking at in the filtered list. If a bin is filtered out ¢ is not increased
and the next unfiltered bin will take over its index in the filtered list.

The outer for-loop iterates over each entry of the bin vector, which means it iterates over single bins. In
dynamic binning we start by updating the borders of the bin if necessary. This part resembles what Algorithm
2 does to set these values. After this we continue with both variations by adding an example, if the cache
was empty. If the cache was not empty, the value is already in the collection and has not to be added, we just
do not remove it later. If the example was not covered and the cache was not empty, we have to remove the
example. If the example is not covered, we just do not add it in the case that the cache was empty.

If we removed a bin, we swap the current entry with the entry on the spot i. This way we close a possible
gap in the data. In case i < r, we removed a bin before the current one so we swap the current entry onto
the next open spot in the vector, which is i. If i = » we did not remove an entry and the swap function does
nothing. The case ¢ > r is not possible, since we increment r in every iteration, while we only increase i, if a
entry was selected.

The cache entry is updated by setting the number of conditions to the new number of conditions. This is
important to know, in order to know, when to filter again. If the number of conditions in the cache is different
to the number of conditions overall, we need to filter.

31

filterCurrentVector

As mentioned before the filtering of the vector, we used to learn a condition is somewhat easier, since we can
look at entire bins without checking each example, see feature0 in 4.2. We refer to Algorithm 6.

Algorithmus 6 : filterCurrentVector

Input: BinVector, cache Entry, condition End, covered
numTotalElements = BinVector.length
wasEmpty = false
filteredVector = cacheEntry.getVector
if covered then
| numElements = conditionEnd
end
else
if numTotalElements > conditionEnd then
| numElements = numTotalElements - conditionEnd
end
else
| numElements = 0
end

end
if filteredVector is null then
Make a new empty cacheEntry with size numElements
Set filtereVector to the new cacheEntry
wasEmpty = true
end
i=0
if covered then
| start = 0; end = conditionEnd
end
else
| start = conditionEnd; end = numTotalElements
end
for r + start to end by 1 do
for each Example do
omitted updates
if wasEmpty then
| addExample
end
end
if not wasEmpty then
| swapExamples(, r)
end
update Bin; i+ +

end
update filteredVector; update cacheEntry

First we have to look at the two new input parameters conditionEnd and covered. conditionEnd
specifies the cut-off, where the learned condition ends, it will also be called split point in the following
explanation. The parameter covered tells us, if the feature values until this point are covered (¢rue) or if
the feature values after this point are covered(false).

The following block of nested conditions uses this information to determine, how much elements should be
in the resulting vector. When the split point is larger than or equal to the total number of elements, we set

32

numElements to 0, in this case there are no elements covered by the condition and the outer for-loop, which
is the main part of this function, will be skipped entirely.

Note that we do not have to make an equivalent check, if the condition is covered. If the split point is larger
than the total number of elements, everything is covered and there is no problem. On the other hand, if it is 0
and no example is covered, we would again skip the loop.

As briefly mentioned the outer for-loop is the center piece of this function. To determine over which part
of the bin vector it should iterate we set the parameters start and end. Now we know which bin vector
elements are covered and where they are. The for-loop iterates over them, the inner for-loop iterates over the
examples of the bin and updates other parts of the BOOMER algorithm, which are not relevant to this paper,
about which examples are covered. Then, if our cache was empty, it adds the example. If it was not empty we
leave the cache as is. After the loop we swap the covered examples to the beginning of the list. We update the
filtered vector and the cache entry like in Algorithm 5.

33

5 Evaluation

In this chapter we will look at experiments. These were run to evaluate our solution. The data sets used, will
be introduced, before looking at how the experiments where set up, followed by some metrics, which tell us
how the new solution performed in comparison to the fundamental algorithm. Lastly we analyze the results.

5.1 Data Sets

We will use the following data sets to evaluate our solution:

] Name \ Domain \ Instances \ Attributes \ Labels \ Source ‘
mediamill | video 43907 120 101 | [Sno+06]
scene image 2407 294 6 | [Bou+04]
yeast biology 2417 103 14 | [EWO02]

* mediamill: Mediamill contains not only the most examples of those data sets, but also the most labels.
This data set can provide us with general trends corresponding to these facts.

* scene: Scene is fairly comparable with yeast but we would expect a better acceleration since scene has
three times the attributes that yeast has, which means each example less will have a bigger impact.

* yeast: As mentioned under scene, we expect less acceleration from yeast.

We will focus on data sets from three different domains. All of these data sets are dense, since we expect the
best results, if there is only minimal sparsity. This means there are only a small amount or even no values
which are set to a default value, typically 0. If the opposite was to be true, there would be a lot of feature
values equal to the default value, which would almost certainly take a bin for themselves. This effect is more
likely to occur, if we increase the number of bins. Bins, which only contain default values, can typically only
generate bad conditions, since the default value often tells us nothing about the example. Also more feature
values lead to more thresholds, which means there is an increased amount of possible conditions, so we can
reduce this amount further. We expect better results for mediamill, since it is the biggest data set and our
solution should scale with the number of instances, since we can group them in less bins relative to the total
number of examples.

34

5.2 Experimental Setup

The following hardware was used to conduct the experiments:
* CPU: AMD Ryzen 7 3800X - 8 cores @ 3.90 GHz - 128 GB RAM

All data sets, previously described, were ran without binning to establish a baseline. Then we ran our two
methods Equal-Frequency Binning and Equal-Width Binning with static and dynamic filtering and the maximal
amount of bins set to 2,4, 8,16, 32 and 64 respectively. In preliminary experiments it was found out that a bin
ratio, a fraction of bins relative to the amount of distinct feature values, could be set to low values, as low as
0.01, without losing a lot of accuracy. The minimal amount of bins possible, which is 2, was used to find out
how low the number of bins could be set. We want to find general trends, since tuning the parameter would
take a lot of time. This is the reason for using 2" for the number of bins.

We also used 8 parallel CPU threads. Each time the algorithm learns exactly 1000 rules, one default rule and
999 rules with non-empty bodies. For every experiment we ran, we used 10-Fold-Cross-Validation to ensure
that the results are as reliable as possible.

5.3 Metrics

We use the following two metrics, to compare the training time and accuracy of our new methods to our
original algorithm.
These metrics should fulfill the following three conditions:

* The values should be largely between 0 and 1
* A bigger value should always be better than a smaller one
* The value has to be relative to our baseline

These three conditions ensure a comparability between all values.

5.3.1 Relative Speed Up (RSU)

The speed up in relation to the original training time is calculated like this:

t—t
t

RSU = (5.1
With ¢ being the time the original algorithm took and ¢’ the time that the new variant took.
Let us look at our conditions:

* The values should be largely between 0 and 1. We look at the following three cases:

— The RSU equals 1, if we need 0 seconds to train our model: % = % =1
We can not accomplish a training time of 0 seconds, so we can not get a score of 1 or above.

- The RSU equals 0, if the new method takes exactly as long as the baseline: =t = %

t
This is an undesirable result, since we want to get faster.

35

— This metric can become negative, if the new method takes longer than the old one. In this case the
speed up is below zero and the algorithm does not improve the training time with this parameters.
So we do not need to compare it, since we already know that this run did not achieve the goal, we
set.

* A bigger value should always be better than a smaller one: The less time the new algorithm takes, the
better. So if ¢’ gets smaller the RSU should increase and if ¢’ gets bigger the RSU should get smaller. If
we look at the formula, we see this is true, as well.

- RSU 1= =1

- RSU |= =1

* The value has to be relative to our baseline: To ensure this we divide by the time the original algorithm
took.

5.3.2 Relative Accuracy Improvement (RAI)

We look at the improvement of predictive performance of the original algorithm and the binning algorithm in
relation to the default rule and to each other. For the accuracy we used the example-wise F1 Accuracy. The F1
score is calculated by this equation:

Fl = M (5_2)
p+r
With p being the precision score and r being the recall score. They are calculated as such:
t t
p=—" - (5.3)

= r =
tp+ fp tp+ fn

tp is the number of true positives, fp and fn are the number of false positives and negatives respectively. This
information is taken from Chapter 11 of [Grul5].
We calculate the metric with the following formula:

a —ag

RAI = (5.4)

a— aq
With a being the F1 accuracy of the original algorithm; o’ the F1 accuracy of the new variant and a4 the
F1 accuracy of the default rule. It was also considered to use the Hamming Accuracy in addition to the
example-wise F1 Accuracy, but this provided no additional information in the interpretation of the results, so
this information is not shown.

* The values should be largely between 0 and 1. Here we have to consider three cases, as well:

— This value falls below zero if the default rule is more accurate than the accuracy of our new
algorithm. This is the worst case, since the default rule is the fastest execution possible and should
be the least accurate. In this case the algorithm did not achieve its goal and we do not need to
compare the run with successful ones.

— This value can go above 1, if the new variant is more accurate than the original. We do not expect
to see this.

36

— We expect the relation ay < a’ < a. In this case this value is between 0 and 1, which would fulfill
our condition by definition.

* A bigger value should always be better than a smaller one, so a bigger value should represent a higher
accuracy of the new variant. This is true, since a’, our new accuracy and only interesting value, stands
in the numerator.

— RAI |= %k
~ RAI{= 212

* The value has to be relative to our baseline. Since this value is a percentage of the accuracy improvement
of the baseline in relation to the accuracy of the default rule, this is true by definition.

37

5.4 Analysis of the Results

5.4.1 Reduction of Possible Conditions

Let us first look at the initial goal, we set. Did we reduce the number of possible conditions? Table 5.1 lists all
possible conditions the algorithm evaluated, sorted by filtering method, binning method and number of bins
for each data set.

| Filter | Binning | #Bins | scene | yeast | mediamill |
y | none | | 1450768146 | 231211774 | 41932149631 |
dynamic | eq-freq 2 1750107 548611 251721
dynamic | eq-freq 4 6944302 2320729 919638
dynamic | eq-freq 8 17391623 6390232 2714850
dynamic | eq-freq 16 37155631 | 14217348 7489660
dynamic | eq-freq 32 72990901 | 27919739 19794368
dynamic | eq-freq 64 138392054 | 50716692 50285234
dynamic | eq-width | 2 2797645 902658 296645
dynamic | eq-width | 4 7533213 2675458 1099830
dynamic | eq-width | 8 17068047 5161349 3524338
dynamic | eq-width | 16 32579712 9383721 10506240
dynamic | eq-width | 32 59331650 16762195 28282732
dynamic | eq-width | 64 104842206 | 28972828 66328852
static eq-freq 2 293267 102306 119532
static eq-freq 4 879135 307181 360634
static eq-freq | 8 2050299 717747 841563
static eq-freq 16 4385543 1536986 1808266
static eq-freq 32 9017264 3187645 3731542
static eq-freq 64 18217466 6466111 7596822
static eq-width | 2 293614 102658 119557
static eq-width | 4 881263 307040 360066
static eq-width | 8 2046628 706643 843959
static eq-width | 16 4332737 1467458 1806289
static eq-width | 32 8756175 2864691 3711693
static eq-width | 64 17108261 5401588 7461155

Figure 5.1: Table: Number of possible conditions

We can see, that all runs with binning produce less possible conditions than the original algorithm with no
binning, which is marked by none in column binning. We can also see that within the same binning and filter
method more bins mean more possible conditions and less bins mean less possible conditions, as was to be
expected. If we look at the differences between the binning methods, we see that equal-frequency produces
less possible conditions with a small amount of bins, while equal-width produces less possible conditions with
more bins. If we look at the differences between both filtering methods, we see that both reduce the number of

38

possible conditions by up to factor of hundred thousand (100000), but the static filtering consistently reduces
them more. In the most extreme cases static filtering reduces the number of possible conditions by up to factor
10 more than dynamic binning.

The explanation for these observations, can be as follows:

1. Reduction of conditions: As said earlier, this was our goal. We only look at the thresholds between the
bins, not between each value, so we have to check less possible conditions.

2. Scaling of possible conditions with number of bins: With less bins there are less thresholds between
bins and less possible conditions.

3. Difference between binning methods: Equal-Width produces a lot more empty bins, when the number
of bins is high. A larger number of bins leads to a shrinking range for each individual bin, which leads
to less filled bins, because the likelihood of values belonging in a certain range decreases. Bins which
contain no value can not be considered for thresholds, therefore there are less thresholds meaning less
possible conditions.

4. Difference between filtering methods: Through the adjustments to the minimum and maximum
values of the bins, dynamic binning introduces new thresholds every time, we filter. This allows a good
refinement for a rule. Static binning keeps the same thresholds through the entire process, so the
refinement can not improve the quality of the rule as much. In the following analysis there are more
instances, which indicate this.

5.4.2 Comparing binning time and filtering time

Since binning and its corresponding filtering are the new methods, we should look at those. We use two filter
functions in our implementation, filterAnyVector and filterCurrentVector, so their times were
tracked separately. The vector reading time of the baseline runs are also tracked to compare it to the time the
binning method took, because in both cases these are the times we need to prepare the data for the rest of the
implantation. Since the tables became large, they are divided by data sets. Within a given data set the values
are the most comparable. Keep in mind that the filter time can be longer than the total training time, since
the training time is evaluated over the whole process not considering the parallel threads one by one and the
filtering time is the added filtering time of each single thread. This is no problem since we only look at the
relation between the filtering times and not in relation to the total training time. The results for the data set
yeast are shown in Table 5.2, the results for the data set scene are shown in Table 5.3 and the results for the
data set mediamill are shown in Table 5.4.

39

|

Filter

| Binning | #Bins | bin/read time | filterAny | filterCurrent |

] \ none \ \ 0.0128 \ 1.5928 \ 0.0300 \
dynamic | eq-freq 2 0.0493 | 21.4579 0.1681
dynamic | eq-freq | 4 0.0531 | 18.4005 0.1611
dynamic | eq-freq 8 0.0491 | 17.4991 0.1680
dynamic | eq-freq 16 0.0426 | 12.7241 0.1419
dynamic | eq-freq 32 0.0527 | 12.6704 0.1475
dynamic | eq-freq 64 0.0492 | 12.8009 0.1496
dynamic | eq-width | 2 0.0444 | 18.7269 0.1944
dynamic | eq-width | 4 0.0460 | 15.8273 0.1963
dynamic | eq-width | 8 0.0550 | 14.8321 0.1738
dynamic | eq-width | 16 0.0535 | 11.2105 0.1356
dynamic | eq-width | 32 0.0475 | 11.5641 0.1340
dynamic | eq-width | 64 0.0461 | 11.8573 0.1322
static eq-freq 2 0.0608 | 4.2029 0.0556
static eq-freq | 4 0.0603 | 4.9233 0.0353
static eq-freq 8 0.0608 | 5.3916 0.0275
static eq-freq 16 0.0608 5.3050 0.0244
static eq-freq 32 0.0524 5.4348 0.0249
static eq-freq 64 0.0553 5.5505 0.0254
static eg-width | 2 0.0442 5.0016 0.0312
static eq-width | 4 0.0442 5.4108 0.0231
static eq-width | 8 0.0462 | 5.5826 0.0259
static eq-width | 16 0.0440 5.5533 0.0303
static eq-width | 32 0.0526 | 5.7064 0.0311
static eq-width | 64 0.0476 | 5.9018 0.0314

Figure 5.2: Table: Yeast: Filter and Binning Time in seconds

40

| Filter | Binning | #Bins | bin/read time | filterAny | filterCurrent |

| | none | \ 0.0322 | 5.0003 | 0.0749 |
dynamic | eq-freq 2 0.0630 | 61.5551 0.1643
dynamic | eq-freq | 4 0.0613 | 52.3145 0.1472
dynamic | eq-freq 8 0.0629 | 50.6810 0.1509
dynamic | eq-freq 16 0.0628 | 50.0758 0.1552
dynamic | eq-freq 32 0.0755 | 31.9343 0.1153
dynamic | eq-freq 64 0.0613 | 33.7805 0.1178
dynamic | eq-width | 2 0.0555 | 52.4810 0.1746
dynamic | eq-width | 4 0.0633 | 50.8859 0.1588
dynamic | eq-width | 8 0.0563 | 54.4200 0.1730
dynamic | eq-width | 16 0.0535 | 54.7226 0.1722
dynamic | eq-width | 32 0.0580 | 36.7527 0.1297
dynamic | eq-width | 64 0.0611 | 39.4525 0.1338
static eq-freq 2 0.0595 9.4030 0.0449
static eq-freq | 4 0.1139 | 10.6361 0.0275
static eq-freq 8 0.0840 | 11.3099 0.0255
static eq-freq 16 0.0939 | 11.5614 0.0268
static eq-freq 32 0.0928 | 11.9503 0.0285
static eq-freq | 64 0.0851 | 13.2867 0.0309
static eg-width | 2 0.0685 | 12.6272 0.0209
static eq-width | 4 0.0624 | 13.2460 0.0235
static eq-width | 8 0.0397 | 13.4723 0.0317
static eq-width | 16 0.0561 | 14.1846 0.0334
static eq-width | 32 0.0550 | 14.9697 0.0384
static eq-width | 64 0.0530 | 16.3386 0.0437

Figure 5.3: Table: Scene: Filter and Binning Time in seconds

The four main observation, we can make are:

1. Binning is not necessarily slower than just reading the data, especially for the data set mediamill, but in
most cases binning does take longer. Even in those cases the overhead is in the micro second range and
is negligible in relation to the filtering time.

2. Equal-Width binning tends to take less time. This is what we expected, since the Equal-Width binning
does not need to sort the data.

3. The filtering with binning takes a lot more time than without, even though we expected it to be roughly
the same.

4. Static filtering is faster then the dynamic method, but still slower than the original.

The last two observation require a bit more attention. The time complexity of filtering with binning is the
same as the time complexity of filtering without binning, namely O(instances * features). The difference
is the new data structure bin, through which we have to navigate. For more information on this structure
refer to the first section of Chapter 4. By examining this structure, we can see that we have to look at a bin in

47

| Filter | Binning | #Bins | bin/read time | filterAny | filterCurrent |

| | none | \ 0.2695 | 89.8053 | 11.4798 |
dynamic | eq-freq 2 0.1947 | 1332.5035 6.8262
dynamic | eq-freq | 4 0.1892 | 836.0623 11.1205
dynamic | eq-freq 8 0.1814 | 643.2856 14.7502
dynamic | eq-freq 16 0.1792 | 610.9052 19.2853
dynamic | eq-freq 32 0.3630 | 630.3168 26.4567
dynamic | eq-freq 64 0.2159 | 679.7267 36.1455
dynamic | eq-width | 2 0.1975 | 463.8279 14.7757
dynamic | eq-width | 4 0.1723 | 612.4378 17.8907
dynamic | eq-width | 8 0.1931 | 764.7619 25.3364
dynamic | eq-width | 16 0.2217 | 923.6635 39.8141
dynamic | eq-width | 32 0.2374 | 1091.2539 55.8251
dynamic | eq-width | 64 0.1937 | 1170.2363 67.4630
static eq-freq 2 0.2215 | 1060.0089 6.4623
static eq-freq | 4 0.3138 | 536.6678 9.1521
static eq-freq 8 0.2667 | 401.6495 10.1953
static eq-freq 16 0.2459 | 400.5129 10.4783
static eq-freq 32 0.2509 | 403.5872 10.6057
static eq-freq | 64 0.2394 | 416.3299 10.7104
static eq-width | 2 0.1744 | 266.0313 12.8286
static eq-width | 4 0.2239 | 352.9561 12.3975
static eq-width | 8 0.1705 435.8694 12.2357
static eq-width | 16 0.2198 | 495.4262 12.4519
static eq-width | 32 0.2354 | 553.6663 12.5622
static eq-width | 64 0.1826 | 577.2671 12.6227

Figure 5.4: Table: Mediamill: Filter and Binning Time in seconds

the feature vector, then iterate through the linked list of examples in this bin Examples. Here is the crucial
difference to the baseline implantation, which uses only a feature vector, which is implemented as an array,
to search through. The new implementation has to go through an array of bins and additionally through a
linked list for each entry in the bin. The initial array is smaller as it only contains bins instead of all feature
values, but the linked lists are slow to iterate through, so it seems like the smaller array size cannot mitigate
this additional expenditure.

Let us look at the last observation. The implementation of dynamic filtering is the same as the one of static
filtering with the only exception being two if-conditions, which check if the minimum or maximum value has
changed. For further information refer to Section 4.3.

These additional instructions can not cause such a great difference in training time. Our assumption from
earlier, dynamic filtering introduces more thresholds and makes more refinements, which leads to more filter
calls, would also explain this phenomenon. To confirm or reject the assumption, that the filtering is called less
often, we tracked how often the filtering methods were actually called, which is listed in Table 5.5.

42

| Data Set | Binning | #Bins | dyn Any | dyn Current | static Any | static Current |
yeast eq-freq 2 454105 4495 99073 999
yeast eq-freq 4 684954 6861 101034 1017
yeast eq-freq 8 847151 8578 103362 1043
yeast eq-freq 16 923110 9410 109598 1086
yeast eq-freq 32 924909 9474 118115 1169
yeast eq-freq 64 899345 9275 128605 1273
yeast eq-width | 2 847164 8528 99511 999
yeast eq-width | 4 997246 10389 110495 1113
yeast eq-width | 8 925361 9691 129708 1311
yeast eg-width | 16 869022 9100 145387 1464
yeast eq-width | 32 837526 8740 153389 1552
yeast eg-width | 64 801659 8368 159601 1613
scene eq-freq 2 1472743 5085 287691 999
scene eq-freq 4 2070752 7262 297396 1026
scene eq-freq 8 2286415 8056 308770 1070
scene eq-freq 16 2352545 8318 331258 1149
scene eq-freq 32 2361713 8384 360317 1241
scene eq-freq 64 2338368 8313 391766 1352
scene eq-width | 2 2797233 9688 289579 999
scene eq-width | 4 2587006 9087 328479 1131
scene eq-width | 8 2676832 9431 354962 1227
scene eq-width | 16 2560263 9029 372001 1287
scene eq-width | 32 2498146 8823 390700 1345
scene eq-width | 64 2430160 8584 402267 1388
mediamill | eq-freq 2 132157 1119 118553 999
mediamill | eq-freq 4 189800 1609 118533 999
mediamill | eqg-freq 8 277445 2360 118878 1002
mediamill | eq-freq 16 398334 3395 119456 1006
mediamill | eq-freq 32 549235 4672 120003 1010
mediamill | eq-freq 64 721425 6129 120777 1017
mediamill | eq-width | 2 188499 1625 118011 999
mediamill | eq-width | 4 294267 2520 120421 1017
mediamill | eq-width | 8 468263 3989 123295 1040
mediamill | eq-width | 16 724927 6214 119735 1065
mediamill | eq-width | 32 994358 8476 124931 1093
mediamill | eq-width | 64 1200702 10206 129260 1120

Figure 5.5: Table: Number Filter Calls

We can see, the static filtering methods get called less often. Sometimes the filterCurrent method is only
called 999 times with static filtering, which means it is called once per learned rule. This is the least amount
possible. Now that we confirmed that the filter methods are called less often by using static filtering, we look
at our assumption and analyze its plausibility:

1. Dynamic Filtering adjusts the thresholds of the bins.

This introduces more thresholds, which allow for refinements, which are evaluated better.

2. Static Filtering keeps the same thresholds through the entire run time.

This leads to limited improvement opportunities for additional refinements.

43

We know that the first line of 1. and 2. are true, since this is how we defined the methods in Section 4.3. That
dynamic binning produces more thresholds follows from the fact that adjusting minimal and maximal values
also changes the thresholds between them. Since filtering is called every time we evaluate a refinement, we
know that dynamic binning evaluates more refinements from the data in Table 5.5. So this assumption is at
least plausible.

44

5.4.3 Tendencies from Scatter-Plots

At this point we look at some scatter plots and establish general trends, which are looked into in more detail
later. They depict the relationship between RSU (Speed Up) and RAI (Accuracy Improvement). We abbreviated
dynamic filtering as Dyn, static filtering as Stat, Equal-Frequency Binning as Eq-Fr and Equal-Width Binning
as Eq-W. Since labeling the data points with the number of bins used would make the scatter-plots confusing,
tables with the data, which was used to generate the plots will be included below them.

Yeast

Trade-Off

@® DynEg-Fr @ DynEg-W StatEg-Fr @ StatEq-W

08

06

04

Speed Up

02

Figure 5.6: Scatter-Plot:

0,50 0,75 1,00

Accuracy Improvment

Trade-Off Yeast; Data: Table 5.7

45

| Filtler | Binning | #Bins | RAI| RSU |

] | no binning | \ 1] 0 |
dynamic | eq-freq 2 0.9170 | 0.0833
dynamic | eq-freq 4 0.9692 | 0.1444
dynamic | eq-freq 8 0.9849 | 0.1452
dynamic | eq-freq 16 1.0075 | 0.2240
dynamic | eq-freq 32 1.0144 | 0.1614
dynamic | eq-freq 64 1.0047 | 0.0440
dynamic | eq-width 2 0.8716 | 0.1218
dynamic | eq-width 4 0.9542 | 0.1928
dynamic | eq-width 8 0.9908 | 0.2144

dynamic | eq-width 16 1.0011 | 0.2917
dynamic | eq-width 32 0.9884 | 0.2457
dynamic | eq-width 64 0.9870 | 0.1963

static eq-freq 2 0.8260 | 0.7297
static eq-freq 4 0.9730 | 0.7256
static eq-freq 8 0.9996 | 0.7228
static eq-freq 16 1.0173 | 0.7208
static eq-freq 32 1.0209 | 0.7113
static eq-freq 64 1.0060 | 0.6937
static eq-width 2 0.8051 | 0.7348
static eq-width 4 0.8754 | 0.7292
static eq-width 8 0.9591 | 0.7169

static eq-width 16 0.9856 | 0.7089
static eq-width 32 0.9941 | 0.6956
static eq-width 64 1.0011 | 0.6758

Figure 5.7: Table: Trade-Off Yeast

First we look at the scatter-plot produced by our experiments on the data set yeast in Scatter Plot 5.6. The
divide between static and dynamic binning is directly visible, since data points generated with static binning
are grouped in the top right hand corner, while the data points created by methods with dynamic binning
are grouped in the bottom right hand corner. This means static filtering leads to faster learning on this data
set. This was not expected, but we can explain this with what we already know. Static binning leads to less
possible conditions and needs less time to filter, see Table 5.1 and Table 5.2 respectively.

On this data set, we do not seem to lose a lot of accuracy with a small amount of bins and we even see an
increase of accuracy in relation to the original algorithm, if we use 16 or more bins with Equal-Frequency
Binning. Equal-Width Binning produces results better than the original algorithm with 16 bins and dynamic
filtering or 64 bins and static filtering. In the case of the yeast data set binning seems to work like Random
Instance-Sub Sampling [PS10], since it breaks down a set into a smaller sub-sets. Even though binning does
not introduce randomness, it still functions in a similar way and increases accuracy.

If we look at the table 5.6 we can identify the points, which are grouped together. With this information we
can deduce that runs with 8, 16, 32, and 64 generally produce similarly good results for each filtering-binning
setup.

46

Scene

Trade-Off
@ DynEg-Fr @ DynEg-W StatEg-Fr @ StatEg-W
1,00
075 . . 9
®
. 050
=
k-1
@
2 025
w
0,00 -
] oo™
025 "i

0,00 025 050 075 1,00

Accuracy Improvment

Figure 5.8: Scatter-Plot: Trade-Off Scene; Data: Table 5.9

| Filtler | Binning | #Bins | RAI | RSU |
] | no binning | \ 1] 0 |
dynamic | eq-freq 2 0.9504 | -0.1164
dynamic | eq-freq 4 1.0167 | -0.0732
dynamic | eq-freq 8 1.0287 | -0.0959
dynamic | eq-freq 16 1.0119 | -0.1480
dynamic | eq-freq 32 1.0128 | -0.0089
dynamic | eq-freq 64 0.9983 | -0.1647
dynamic | eq-width 2 0.8019 | -0.0868
dynamic | eq-width 4 0.9757 | -0.0995
dynamic | eq-width 8 0.9995 | -0.1953
dynamic | eq-width 16 1.0128 | -0.2365
dynamic | eq-width 32 1.0022 | -0.0706
dynamic | eq-width 64 1.0120 | -0.1972
static eq-freq 2 0.9019 | 0.7694
static eq-freq 4 1.0233 | 0.7604
static eq-freq 8 1.0366 | 0.7537
static eq-freq 16 1.0237 | 0.7465
static eq-freq 32 1.0255 | 0.7308
static eqg-freq 64 1.0246 | 0.6932
static eq-width 2 0.6966 | 0.7360
static eq-width 4 0.9156 | 0.7253
static eq-width 8 0.9985 | 0.7111
static eq-width 16 1.0088 | 0.6974
static eq-width 32 1.0089 | 0.6704
static eq-width 64 1.0247 | 0.6322

Figure 5.9: Table: Trade-Off Scene

We can see similar tendencies in Scatter Plot 5.8 like in the runs with the data set yeast, but the divide between
static and dynamic filtering is even worse for the dynamic method, since the RSU in every case is less then
zero. This means this method provides no benefit over the original algorithm. Quite the opposite is true.
Dynamic filtering leads to longer training times and slows the algorithm down. It rarely increases the accuracy,
but not by enough to consider running it over the original algorithm and taking more time.

On the flip side, static filtering produces good results. With Equal-Frequency Binning it increases the accuracy
for each number of bins greater than 2, with Equal-Width for each number greater than 8. The RSU is also
notable since it is comparable to the results of static filtering on the yeast data set, which already saved a lot
of time.

We can assume that the amount of attributes play a significant role in these changes, since it is the biggest
difference between those two data sets. By checking Table 5.3 we can see that dynamic filtering took much
more time in relation to the static filtering, compared to the other two data sets. This is also backed by the
data from Table 5.5, since we see the same pattern with the filter calls. The cause could be what we discussed
before: Dynamic filtering introduces more thresholds, which allows for more refinements and consequently
leads to more filter calls. Since this happens for each feature, we can assume that dynamic filtering will take
even longer with an increasing amount of features.

Mediamill

Trade-Off

@ DynEg-Fr @ DynEg-W Stat Eq-Fr @ StatEg-W
075

050 (]

Speed Up
[]

000

0,25 0,00 0,25 0,50 075 1,00

Accuracy Improvment

Figure 5.10: Scatter-Plot: Trade-Off Mediamill; Data: Table 5.11

48

| Filter | Binning | #Bins | RAI [RSU |

] [no binning | \ 1] 0 |
dynamic | eq-freq 2 0.1909 | 0.2078
dynamic | eq-freq 4 0.7517 | 0.1718
dynamic | eq-freq 8 0.8909 | 0.1498
dynamic | eq-freq 16 0.9529 | 0.1297
dynamic | eq-freq 32 0.9743 | 0.1044
dynamic | eq-freq 64 0.9876 | 0.0631
dynamic | eq-width 2 0.4352 | 0.3507
dynamic | eq-width 4 0.6908 | 0.2699
dynamic | eq-width 8 0.8530 | 0.1724
dynamic | eq-width 16 0.9303 | 0.0798
dynamic | eq-width 32 0.9486 | -0.0263
dynamic | eq-width 64 0.9886 | -0.0544
static eq-freq 2 -0.2575 | 0.4441
static eqg-freq 4 0.5734 | 0.5173
static eq-freq 8 0.7882 | 0.5289
static eqg-freq 16 0.8482 | 0.5295
static eq-freq 32 0.8550 | 0.5327
static eqg-freq 64 0.8484 | 0.5298
static eq-width 2 0.4613 | 0.6423
static eq-width 4 0.4443 | 0.6147
static eq-width 8 0.6926 | 0.5661
static eq-width 16 0.8095 | 0.5127
static eq-width 32 0.8512 | 0.4702
static eq-width 64 0.8401 | 0.4719

Figure 5.11: Table: Trade-Off Mediamill

In Scatter Plot 5.10 we see a noticeable data point on the left, we did not see before. The Table 5.11 determines
that this value belongs to the run with the parameters static filtering, Equal-Frequency binning and 2 bins. We
already indirectly noted, that the minimum number of bins (2) leads to the worst results, as expected. Static
binning leads to worse accuracy on this data set in general. These factors with the worse performance of our
methods in terms of accuracy on this data set led to a worse accuracy than the default rule with the given
parameters, we did not expect to sacrifice so much accuracy. This is the worst case, since the default rule
should be improved upon and not diminished. One possible explanation is, that the split point is chosen so
poorly that most of the features are not represented correctly anymore and the algorithm learns false rules.
This theory is supported by the fact that other approaches still achieve positive results. If we look at the two
Equal-Width Binning results, we see they perform a lot better. They would find a better split point which is
exactly in the middle of the total span of values. This tells us a lot more about the feature values and we can
learn better conditions. Continuing this assumption, the dynamic filter approach can mitigate a bad split point
in case of Equal-Frequency Binning with 2 bins, since it updates the bin borders and therefore moves the split
point.

In this experiments the accuracy actually decreased with all parameters, instead of increasing it with some.
Static binning only reaches about 85% of the accuracy improvement the original algorithm achieved. With
dynamic binning we still reach about 99%. This was to be expected and fulfills the assumption about this
approach we formulated in the beginning: “We want to sacrifice some accuracy to reduce the training time.”
The increase we saw until now was more surprising.

49

Dynamic filtering is slower than the original, when used with 32 or 64 bins and the Equal-Width method. This
filter method is faster with other parameters, but still not as fast as the static filter method, which reduces the
training time to about half of the original.

So here we have to actually decide; do we want to sacrifice some accuracy to gain more speed, or do we want
to invest more time to benefit the accuracy. We could tune the parameters accordingly.

5.4.4 Comparison of Binning Methods

To refine our understanding of the binning methods in terms of accuracy and training time, we look at
both in direct comparison. We will take a look at the corresponding Table 5.12, which reformats the data,
we previously looked at. This should help to compare it. We could simply count the number of times each
algorithm was faster or more accurate to find a general pattern. Considering that negative values in one of both
categories makes the used method useless under the given parameters, we do not consider the scene-dynamic
runs since both methods produce a negative RAI. We also consider Equal-Frequency better in both categories
for the mediamill-dynamic runs with 32 and 64 bins, because Equal-Width is slower in each case. Equal-Width
is considered better in both categories for mediamill-static with 2 bins, since Equal-Frequency reduces the
accuracy below the accuracy of the default rule.

Equal-Frequency | Equal-Width | Total
RAI 26 4 30
RSU 16 14 30
Total 42 18 60

We can conclude, that Equal-Frequency produces more accurate results. For the speed up we can not conclude
a clear advantage of one or the other, since the differences are not that clear.

50

RAI RSU
Data Set | Filtering | #Bins | Equal-Freq \ Equal-Width | Equal-Freq \ Equal Width
yeast dynamic | 2 0.9170 0.8716 0.0833 0.1219
yeast dynamic | 4 0.9692 0.9542 0.1444 0.1928
yeast dynamic | 8 0.9849 0.9908 0.1452 0.2144
yeast dynamic | 16 1.0074 1.0011 0.2240 0.2917
yeast dynamic | 32 1.0144 0.9884 0.1614 0.2457
yeast dynamic | 64 1.0047 0.9870 0.0440 0.1963
yeast static 2 0.8260 0.8051 0.7297 0.7348
yeast static 4 0.9730 0.8754 0.7256 0.7292
yeast static 8 0.9996 0.9591 0.7228 0.7169
yeast static 16 1.0173 0.9856 0.7208 0.7089
yeast static 32 1.0209 0.9941 0.7113 0.6956
yeast static 64 1.0060 1.0011 0.6937 0.6758
scene dynamic | 2 0.9504 0.8019 -0.1164 -0.0869
scene dynamic | 4 1.0167 0.9757 -0.0732 -0.0995
scene dynamic | 8 1.0287 0.9995 -0.0959 -0.1953
scene dynamic | 16 1.0119 1.0128 -0.1480 -0.2365
scene dynamic | 32 1.0128 1.0022 -0.0089 -0.0706
scene dynamic | 64 0.9983 1.0120 -0.1647 -0.1972
scene static 2 0.9019 0.6966 0.7694 0.7360
scene static 4 1.0233 0.9156 0.7604 0.7253
scene static 8 1.0366 0.9985 0.7537 0.7111
scene static 16 1.0237 1.0088 0.7465 0.6975
scene static 32 1.0255 1.0089 0.7308 0.6704
scene static 64 1.0246 1.0247 0.6932 0.6322
mediamill | dynamic | 2 0.1909 0.4352 0.2078 0.3507
mediamill | dynamic | 4 0.7517 0.6908 0.1718 0.2699
mediamill | dynamic | 8 0.8910 0.8530 0.1498 0.1724
mediamill | dynamic | 16 0.9529 0.9303 0.1297 0.07980
mediamill | dynamic | 32 0.9743 0.9486 0.1044 -0.0263
mediamill | dynamic | 64 0.9876 0.9886 0.0631 -0.0544
mediamill | static 2 -0.2575 0.4613 0.4441 0.6424
mediamill | static 4 0.5734 0.4443 0.5173 0.6148
mediamill | static 8 0.7883 0.6926 0.5289 0.5661
mediamill | static 16 0.8482 0.8095 0.5296 0.5127
mediamill | static 32 0.8550 0.8512 0.5327 0.4702
mediamill | static 64 0.8484 0.8401 0.5298 0.4719

Figure 5.12: Table: RAlI and RSU comparison of binning methods

51

5.4.5 Comparison of Filtering Methods

If we use the same method like in the last section to compare filtering methods, we can make some general
statements about them as well. Since we do not discard the values of dynamic binning on the scene data set,
we get a few values more. In this case we also reordered the tables to get a better view of the values. RAI and
RSU are shown in Table 5.13.

dynamic | static | Total
RAI 14 22 36
RSU 1 35 36
Total 15 57 72

This distribution shows that static filtering is always faster than the dynamic approach. The one data point,
where we evaluate the dynamic filtering as the better one, is the one instance, where static binning caused a
negative accuracy value. We can conclude that static binning is faster. In almost two thirds of experiments
static filtering returned a more accurate model. But since the worse values are limited to mediamill, the
biggest data set, it is possible that static filtering performs even worse, if the data sets get bigger.

52

RAI RSU
Data Set | Binning | #Bins | dynamic | static | dynamic | static
yeast eq-freq 2 0.9170 | 0.8260 0.0833 | 0.7297
yeast eq-freq 4 0.9692 | 0.9730 | 0.1444 | 0.7256
yeast eq-freq 8 0.9849 | 0.9996 | 0.1452 | 0.7228
yeast eq-freq 16 1.0075 | 1.0173 | 0.2240 | 0.7208
yeast eq-freq 32 1.0144 | 1.0209 | 0.1614 | 0.7113
yeast eq-freq | 64 1.0047 | 1.0060 | 0.0440 | 0.6937
yeast eq-width | 2 0.8716 | 0.8051 | 0.1219 | 0.7348
yeast eg-width | 4 0.9542 | 0.8754 | 0.1928 | 0.7292
yeast eq-width | 8 0.9908 | 0.9591 0.2144 | 0.7169
yeast eq-width | 16 1.0011 | 0.9856 | 0.2917 | 0.7089
yeast eq-width | 32 0.9884 | 0.9941 0.2457 | 0.6956
yeast eq-width | 64 0.9870 | 1.0011 | 0.1963 | 0.6758
scene eq-freq 2 0.9504 | 0.9019 | -0.1164 | 0.7694
scene eq-freq 4 1.0167 | 1.0233 | -0.0732 | 0.7604
scene eq-freq 8 1.0287 | 1.0366 | -0.0959 | 0.7537
scene eq-freq 16 1.0119 | 1.0237 | -0.1480 | 0.7465
scene eq-freq 32 1.0128 | 1.0255 | -0.0089 | 0.7308
scene eq-freq 64 0.9983 | 1.0246 | -0.1647 | 0.6932
scene eq-width | 2 0.8019 | 0.6966 | -0.0869 | 0.7360
scene eq-width | 4 0.9757 | 0.9156 | -0.0995 | 0.7253
scene eq-width | 8 0.9995 | 0.9985 | -0.1953 | 0.7111
scene eq-width | 16 1.0128 | 1.0088 | -0.2365 | 0.6975
scene eq-width | 32 1.0022 | 1.0089 | -0.0706 | 0.6704
scene eg-width | 64 1.0120 | 1.0247 | -0.1972 | 0.6322
mediamill | eq-freq 2 0.1909 | -0.2575 | 0.2078 | 0.4441
mediamill | eq-freq 4 0.7517 | 0.5734 | 0.1718 | 0.5173
mediamill | eq-freq 8 0.8909 | 0.7883 | 0.1498 | 0.5289
mediamill | eq-freq 16 0.9529 | 0.8481 | 0.1297 | 0.5296
mediamill | eq-freq 32 0.9749 | 0.8550 | 0.1044 | 0.5327
mediamill | eq-freq 64 0.9876 | 0.8484 | 0.0631 | 0.5298
mediamill | eq-width | 2 0.4352 | 0.4616 | 0.3507 | 0.6424
mediamill | eq-width | 4 0.6908 | 0.4443 | 0.2699 | 0.6148
mediamill | eq-width | 8 0.8530 | 0.6926 | 0.1724 | 0.5661
mediamill | eq-width | 16 0.9303 | 0.8095 | 0.0798 | 0.5127
mediamill | eq-width | 32 0.9486 | 0.8512 | -0.0263 | 0.4702
mediamill | eq-width | 64 0.9886 | 0.8401 | -0.0544 | 0.4719

Figure 5.13: Table: RAlI and RSU comparison of filtering methods

53

6 Conclusion

This chapter summarizes what we learned and gives an outlook on future work. We will also look briefly at an
improvement, which was already made.

6.1 Deduction

In this section we look at what we found out and give some recommendations based on the experience gained,
while working with the solution, we examined in this paper.

6.1.1 Summarizing the observations

First things first: We succeeded in reducing the number of possible conditions. In fact we could reduced them
by up to factor 100000, as shown by our experiments.

The overhead of the binning is marginal, but the filtering is far more difficult to optimize. Even though we
implemented a static filtering method, which leads to faster results, than the dynamic method, which was
thought to be more accuracy conserving, while being just as fast.

We also saw that the trade-off between accuracy and training time does not need to sacrifice a lot of accuracy
to reach a decent time reduction. On the data sets with less instances we could even improve the accuracy of
the predictions. On the data set with the most instances, we lost the most accuracy.

The Equal-Frequency Binning produces more accurate results than our Equal-Width method. We can not make
a well-founded statement about which of them is faster.

By comparing filter methods, we could determine, that static filtering generally produces better results. But
we do not know, if this result is scalable, yet.

From our scatter plots we can guess that in general a number of bins between 8 and 32 is advisable. There
probably is an optimal amount of bins for each combination of data set, binning method and filter method,
but to find it, you would have to try out each integer greater or equal to 2 and less than the original amount of
instances. This would take a lot of time which would defeat the purpose of binning, which is, after all, finding
a good enough model in less time.

6.1.2 Recommendations

It is recommended to start the algorithm with Equal-Frequency Binning and static filtering, as well as a number
of bins between 8 and 32. This should also make a bad result, like we saw on the data set mediamill with this
binning-filtering combination and only 2 bins unlikely, since there should be enough thresholds to learn good
conditions. Is the data set a lot bigger and a high accuracy is crucial, dynamic binning should be used, which
could still achieve a decent speed up.

54

6.2 Future Work

To wrap everything up, we look at what can be done in the future. This is a special outlook since one of the
suggestions was already implemented, while finishing this paper, so we will take a look at it first.

6.2.1 Improving Implementation

We implemented the example list of the data structure bin as linked lists, this was mainly done to enable
dynamic filtering. This could be one of the main reasons, why filtering is so slow. Since we saw that dynamic
filtering is not necessarily better than static filtering, we could implement an array which saves the indexes of
contained examples for each bin.

This is exactly what Michael Rapp did using the results from this paper as a baseline. Our experiments were
run on this implementation, as well. The results are compared to the current static filtering in tables 6.1 and
6.2. The column “difference” is built by subtracting the old results from the new ones, which means positive
results signal an improvement by the new implementation and negative results are a deterioration in relation
to the current algorithm. Please note that the difference was calculated before rounding the results, so it can
vary a bit.

When we look at the RAI comparison, we see what was to be expected. Since we do basically the same as
before, but with another underlying data structure, the accuracy should not change and it does not really
change. Most of the differences stay below one percent point and we see positive and negative changes
seemingly at random. So we can conclude that the accuracy stays the same.

When we look at the RSU we see a clear increase. On the two smaller data sets the speed increases by up to
21 percent points. On the bigger one we see an increase by up to 41 percent points.

So we can reasonably assume by focusing on static binning, we can change to a more suitable data structure
to increase the speed up beyond the point of the algorithm introduced in this thesis.

55

| Data Set | Binning [#Bins | linked list | array [difference |
yeast eq-freq 2 0.8260 | 0.8260 0
yeast eq-freq 4 0.9730 | 0.9696 -0.0033
yeast eq-freq 8 0.9996 | 0.9930 -0.0066
yeast eq-freq 16 1.0173 | 1.0256 0.0083
yeast eq-freq 32 1.0209 | 1.0193 -0.0017
yeast eq-freq 64 1.0060 | 1.0116 0.0056
yeast eq-width | 2 0.8051 | 0.8056 0.0005
yeast eq-width | 4 0.8754 | 0.8719 -0.0035
yeast eq-width | 8 0.9591 | 0.9599 0.0008
yeast eq-width | 16 0.9856 | 0.9884 0.0028
yeast eq-width | 32 0.9941 | 1.0038 0.0096
yeast eq-width | 64 1.0011 | 1.0016 0.0005
scene eq-freq 2 0.9019 | 0.9019 0
scene eq-freq 4 1.0233 | 1.0228 -0.0004
scene eq-freq 8 1.0366 | 1.0402 0.0037
scene eq-freq 16 1.0237 | 1.0312 0.0076
scene eq-freq 32 1.0255 | 1.0347 0.0093
scene eq-freq 64 1.0246 | 1.0350 0.0104
scene eq-width | 2 0.6966 | 0.6954 -0.0013
scene eq-width | 4 0.9156 | 0.9258 0.0103
scene eq-width | 8 0.9985 | 1.0023 0.0037
scene eq-width | 16 1.0088 | 1.0161 0.0073
scene eq-width | 32 1.0089 | 1.0170 0.0081
scene eq-width | 64 1.0247 | 1.0166 -0.0080
mediamill | eq-freq 2 -0.2575 | -0.2575 0
mediamill | eq-freq 4 0.5734 | 0.5737 0.0003
mediamill | eq-freq 8 0.7883 | 0.7826 -0.0056
mediamill | eq-freq 16 0.8482 | 0.8397 -0.0085
mediamill | eq-freq 32 0.8550 | 0.8624 0.0074
mediamill | eq-freq 64 0.8484 | 0.8451 -0.0033
mediamill | eq-width | 2 0.4613 | 0.4613 0.0001
mediamill | eq-width | 4 0.4443 | 0.4439 -0.0004
mediamill | eq-width | 8 0.6926 | 0.7035 0.0109
mediamill | eq-width | 16 0.8095 | 0.7997 -0.0099
mediamill | eq-width | 32 0.8512 | 0.8364 -0.0148
mediamill | eq-width | 64 0.8401 | 0.8581 0.0180

Figure 6.1: Table: RAl comparison with new filter method

56

Data Set | Binning | #Bins | linked list | array | difference

yeast eq-freq 2 0.7297 | 0.8265 0.0968
yeast eq-freq 4 0.7256 | 0.8379 0.1123
yeast eq-freq 8 0.7228 | 0.8394 0.1166
yeast eq-freq 16 0.7208 | 0.8297 0.1089
yeast eq-freq 32 0.7113 | 0.8371 0.1258
yeast eq-freq 64 0.6937 | 0.8198 0.1261
yeast eq-width | 2 0.7348 | 0.8412 0.1064
yeast eq-width | 4 0.7292 | 0.8489 0.1197
yeast eq-width | 8 0.7169 | 0.8513 0.1344
yeast eg-width | 16 0.7089 | 0.8449 0.1360
yeast eq-width | 32 0.6956 | 0.8415 0.1458
yeast eq-width | 64 0.6758 | 0.8288 0.1530
scene eq-freq 2 0.7694 | 0.8566 0.0872
scene eq-freq 4 0.7604 | 0.8630 0.1025
scene eqg-freq 8 0.7537 | 0.8542 0.1006
scene eq-freq 16 0.7465 | 0.8551 0.1086
scene eq-freq 32 0.7308 | 0.8539 0.1231
scene eq-freq 64 0.6932 | 0.8405 0.1473
scene eq-width | 2 0.7360 | 0.8630 0.1270
scene eq-width | 4 0.7253 | 0.8648 0.1395
scene eq-width | 8 0.7111 | 0.8581 0.1469
scene eq-width | 16 0.6975 | 0.8585 0.1610
scene eq-width | 32 0.6704 | 0.8528 0.1824
scene eq-width | 64 0.6322 | 0.8482 0.2160
mediamill | eq-freq 2 0.4441 | 0.8590 0.4148
mediamill | eq-freq 4 0.5173 | 0.8619 0.3446
mediamill | eqg-freq 8 0.5289 | 0.8555 0.3265
mediamill | eq-freq 16 0.5296 | 0.8527 0.3231
mediamill | eq-freq 32 0.5327 | 0.8571 0.3245
mediamill | eq-freq 64 0.5298 | 0.8632 0.3333
mediamill | eq-width | 2 0.6424 | 0.8615 0.2191
mediamill | eq-width | 4 0.6148 | 0.8566 0.2418
mediamill | eq-width | 8 0.5661 | 0.8588 0.2928
mediamill | eq-width | 16 0.5127 | 0.8580 0.3454
mediamill | eq-width | 32 0.4702 | 0.8618 0.3916
mediamill | eq-width | 64 0.4719 | 0.8619 0.3900

Figure 6.2: Table: RSU comparison with new filter method

6.2.2 Implementing more complex binning methods

As discussed in section 2.2, there are more binning methods. We looked at Gradient One-Side Sampling,
Weighted Quantile Sketch and Exclusive Feature Binning.

The first two can be used as a basis to implement supervised example binning methods. To do so we need
additional information, namely the gradients. To expand our current algorithm to handle this, we would need to
gain this additional information from other parts of BOOMER. We implemented a method getFeatureInfo,
which should gather and contain information about a feature vector. This could be expanded to handle the

57

gradients and other information, as well.

We also would need to bin after each learned rule, so we could simplify filtering by not filtering the bins
themselves, but the whole data instead. This has the advantage that each example is still stored with each of
its feature values. So it is easy to find all feature values which need to be filtered, since we do not have to
search them in each bin.

We did not develop algorithms for feature bundling. A future work would need to start from scratch, but it
could be beneficial to enable the handling of sparse data.

6.2.3 Accounting for Sparsity

In the beginning of this thesis we ruled out sparse data to reduce complexity. In future work it is possible to
expand the discussed approach to support sparse data. One possible solution could be ignoring missing values
while binning. We would have to reduce the total number of elements in a given feature vector by one for
each sparse value we would be skipping before sorting other values into bins. To filter correctly later on, we
would have to keep a list of all sparse values for each feature vector and the examples they originate from, so
we do not have to look at the entire vector. As pointed out before, Exclusive Feature Binning could be useful
to reduce sparsity and ensure better results ones this approach is fit to handle sparse data.

58

Bibliography

[AAM20]

[Bah21]

[Bou+04]

[Bro20]

[CG16]

[EWO02]

[FGL12]

[Grul5]
[HS99]

[Knu98]

[Lit20]

[LJ]

[Pod20]

[Pow89]
[PS10]

[Rap+20]

[Rus10]

Ahmad Alimadadi, Sachin Aryal, and Ishan Manandhar. “Artificial intelligence and machine
learning to fight COVID-19”. In: AI and Machine Learning for Understanding Biological Processes
(2020).

MJ Bahmani. Understanding LightGBM Parameters (and How to Tune Them). Mar. 19, 2021. URL:
https://neptune.ai/blog/lightgbm-parameters-guide.

Matthew R. Boutell et al. “Learning multi-label scene classification”. In: Pattern Recognition 37.9
(2004), pp. 1757-1771.

Tim Brooks. An Executive’s Guide to Demystifying AI and Machine Learning. July 1, 2020. URL:
https://www.wwt.com/article/executives-guide-to-demystifying-ai-and-
machine-learning.

Tiangi Chen and Carlos Guestrin. “XGBoost: A Scalable Tree Boosting System”. In: Proceedings of
the 22nd International Conference on Knowledge Discovery and Data Mining. 2016, pp. 785-794.

André Elisseeff and Jason Weston. “A Kernel Method for Multi-Labelled Classification”. In: Ad-
vances in Neural Information Processing Systems 14 (NIPS-01). 2002, pp. 681-687.

Johannes Fiirnkranz, Dragan Gamberger, and Nada Lavrac. Foundations of Rule Learning. Springer,
2012.

Joel Grus. Data science from scratch: first principles with Python. O’Reilly, 2015.

Geoffrey Hinton and Terrence J. Sejnowski. Unsupervised Learning: Foundations of Neural Compu-
tation. MIT Press, 1999.

Donald E. Knuth. The Art of Computer Programming: Volume 3: Sorting and Searching. Adison-
Wesley, 1998.

Nico Litzel. Was ist Big Data? Feb. 1, 2020. urL: https://www.bigdata-insider.de/was-
ist-big-data-a-562440/.

Eneldo Loza Menciia and Frederik Janssen. “Learning rules for multi-label classification: A
stacking and a separate-and-conquer approach”. In: Machine Learning 105.1 (), pp. 77-126.

Sidhantha Poddar. Binning in Data Mining. Sept. 28, 2020. urL: https://www.geeksforge
eks.org/binning-in-data-mining/.

David Powers. Machine learning of natural language. Springer, 1989.

Santhosh Pathical and Gursel Serpen. “Comparison of subsampling techniques for random
subspace ensembles”. In: International Conference on Machine Learning and Cybernetics. 2010.

Michael Rapp et al. “Learning Gradient Boosted Multi-label Classification Rules”. In: Proceedings
of the European Conference of Machine Learning (ECML-PKDD). 2020, pp. 124-140.

Stuart Russell. Artificial Intelligence: A Modern Approach. Prentice Hall, 2010.

59

https://neptune.ai/blog/lightgbm-parameters-guide
https://www.wwt.com/article/executives-guide-to-demystifying-ai-and-machine-learning
https://www.wwt.com/article/executives-guide-to-demystifying-ai-and-machine-learning
https://www.bigdata-insider.de/was-ist-big-data-a-562440/
https://www.bigdata-insider.de/was-ist-big-data-a-562440/
https://www.geeksforgeeks.org/binning-in-data-mining/
https://www.geeksforgeeks.org/binning-in-data-mining/

[Say21a]

[Say21b]

[Seb05]
[Shal8]

[Sno+06]

[Sril8]

[Vis19]

[Yil19]

[Zho12]

Saed Sayad. Supervised Binning. Mar. 31, 2021. urL: https://www . saedsayad . com/
supervised_binning.htm.

Saed Sayad. Unsupervised Binning. Mar. 31, 2021. urL: https://www. saedsayad.com/
unsupervised_binning.htm.

Nicu Sebe. Machine learning in computer vision. Springer, 2005.

Abhishek Sharma. What makes LightGBM lightning fast? Oct. 15, 2018. urL: https://toward
sdatascience.com/what-makes-1lightgbm-1lightning-fast-a27cf0d9785e.

Cees Snoek et al. “The challenge problem for automated detection of 101 semantic concepts in
multimedia”. In: Information and Computation/Information and Control - JANDC. 2006, pp. 421-
430.

Harshita Srivastava. What Is Sparse Data? May 31, 2018. urL: https://magoosh.com/data-
science/what-is-sparse-data/.

Venkat Anurag Setty Vishal Morde. XGBoost Algorithm: Long May She Reign! Apr. 8, 2019. URL:
https://towardsdatascience.com/https-medium-com-vishalmorde-xgboost-
algorithm-long-she-may-rein-edd9f99be63d.

Soner Yildirim. Understanding the LightGBM. Sept. 15, 2019. urL: https://towardsdatasc
ience.com/understanding-the-1lightgbm-772ca68aabfa.

Zhi-Hua Zhou. Ensemble methods: Foundations and algorithms. Taylor & Francis, 2012.

60

https://www.saedsayad.com/supervised_binning.htm
https://www.saedsayad.com/supervised_binning.htm
https://www.saedsayad.com/unsupervised_binning.htm
https://www.saedsayad.com/unsupervised_binning.htm
https://towardsdatascience.com/what-makes-lightgbm-lightning-fast-a27cf0d9785e
https://towardsdatascience.com/what-makes-lightgbm-lightning-fast-a27cf0d9785e
https://magoosh.com/data-science/what-is-sparse-data/
https://magoosh.com/data-science/what-is-sparse-data/
https://towardsdatascience.com/https-medium-com-vishalmorde-xgboost-algorithm-long-she-may-rein-edd9f99be63d
https://towardsdatascience.com/https-medium-com-vishalmorde-xgboost-algorithm-long-she-may-rein-edd9f99be63d
https://towardsdatascience.com/understanding-the-lightgbm-772ca08aabfa
https://towardsdatascience.com/understanding-the-lightgbm-772ca08aabfa

	Zusammenfassung
	Abstract
	Introduction
	Motivation
	Structure of this Thesis

	Fundamentals
	Learning Gradient Boosted Multi-label Rules
	Multi-label Classification
	Rules and Boosting
	Thresholds
	Filtering

	Related Work
	Split Finding
	Gradient One-Side Sampling
	Exclusive Feature Bundling
	Weighted Quantile Sketch

	Unsupervised Example Binning
	Equal-Frequency Binning
	Equal-Width Binning

	Implementation
	Data Structures
	Datatype Bin
	Binning Observer

	Binning Algorithms
	Equal-Frequency Binning
	Equal Width Binning

	Filtering
	Dynamic and Static Filtering
	Filter Functions

	Evaluation
	Data Sets
	Experimental Setup
	Metrics
	Relative Speed Up (RSU)
	Relative Accuracy Improvement (RAI)

	Analysis of the Results
	Reduction of Possible Conditions
	Comparing binning time and filtering time
	Tendencies from Scatter-Plots
	Comparison of Binning Methods
	Comparison of Filtering Methods

	Conclusion
	Deduction
	Summarizing the observations
	Recommendations

	Future Work
	Improving Implementation
	Implementing more complex binning methods
	Accounting for Sparsity

