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Abstract

Multiclass Multilabel Perceptrons (MMP) are an efficient incremental algorithm for
training a team of perceptrons for a multilabel prediction task. The key idea is to train
one binary classifier per label, as is typically done for addressing multilabel problems, but
to make the training signal dependent on the performance of the whole ensemble. In this
paper, we propose an alternative approach that is based on a pairwise approach, i.e., we
incrementally train a perceptron for each pair of classes. An evaluation on the Reuters
2000 (RCV1) data shows that our multilabel pairwise perceptron (MLPP) algorithm yields
substantial improvements over MMP in terms of ranking quality and overfitting resistance,
while maintaining its efficiency. Despite the quadratic increase in the number of perceptrons
that have to be trained, the increase in computational complexity is bounded by the average
number of labels per training example.

1. Introduction

An important field in machine learning are algorithms that learn an association of objects
to classes. Often, exactly one out of a set of more than two classes is to be assigned, a
case called multiclass classification. While this problem setting applies to a wide range of
real life problems, there are several types of problems that are not covered by multiclass
algorithms. One example is the association of text documents to genres, where more than
one class can be appropriate for a single document. This type of classification, where an
object is associated with a set of classes, is called multilabel classification. Only a small
number of algorithms are able to naturally learn this type of problems.

A common approach for circumventing this restriction is the use of class binarization
methods, i.e. the decomposition of a classification problem with more than two classes into
several binary subproblems that can then be solved using a binary base learner. The simplest
strategy is one-against-all, in the multilabel setting also referred to as the binary relevance
method. It tackles a multilabel problem by learning one classifier for each class, using all
objects of this class as positive examples and all other objects as negative examples. At
query time, each binary classifier predicts whether its class is relevant for the query example
or not, resulting in a set of relevant labels.

Another option is to transform the multilabel classification problem into a topic ranking
task, where the goal is to compute prediction values indicating how relevant each class is
for a particular example. Though this does not immediately result in a set of classes, it is
possible to obtain the desired output in an additional step that selects classes which exceed
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a determined relevance value. Different methods exist for determining the threshold, a good
overview is provided by Sebastiani [2002]. Recently, Brinker et al. [2006] introduced the
idea of using an artificial label that encodes the boundary between relevant and irrelevant
labels for each example. We note that all these approaches can be applied to the algorithm
proposed in this paper, and in the following we restrict ourselves to a topic ranking scenario,
which is also relevant for many practical applications.

Crammer and Singer [2003] combined the mentioned one-against-all method and the
topic ranking idea in their multilabel multiclass perceptron algorithm (MMP). Instead of
learning the relevance of each class individually and independently, MMP incrementally
trains the entire classifier ensemble as a whole so that it predicts a real-valued relevance
value for each class. This is done by always evaluating the performance of the entire
ensemble, and only producing training examples for the individual classifiers when their
corresponding classes are misplaced in the ranking. It uses perceptrons as base classifiers.
In a way, the used learning technique may also be viewed as reinforcement learning from
immediate rewards.

In this paper, we propose the use of pairwise decomposition as an alternative training
method for an effective ensemble of perceptrons. In this method, one classifier is trained
for each possible class pair, using the examples belonging to the two classes as positive
or negative examples respectively. During prediction, an overall ranking of the classess
determined by combining the predictions of the individual classifiers, e.g. by voting. One
of the advantages of the approach is its efficiency: it can indeed be shown that pairwise
ensembles can be more efficiently trained than the one-against-all ensemble [Fürnkranz,
2002]. Another advantage, of particular importance for perceptrons, is that decomposing
the problem into smaller subproblems will yield simpler, often linear decision boundaries.
For example, Knerr et al. [1992] observed that the classes of a digit recognition task were
pairwise linearly separable, while the corresponding one-against-all task was not solvable
with perceptrons.

Although the superiority of pairwise classification over one-against-all classification has
been shown in several applications [Hsu and Lin, 2002, Fürnkranz, 2002], the study pre-
sented in this paper makes still important contributions for two reasons: First, previous
works have exclusively concentrated on classification tasks. While it is natural to assume
that the performance of the pairwise approach will also extend to the multilabel or topic
ranking task, this has so far not been experimentally confirmed. Second, and more im-
portant, the comparison to MMPs is of particular interest because of the two alternative
approaches for tackling the topic ranking problem: While MMPs propose to include infor-
mation about the ranking task into the training signals, the pairwise approach addresses the
ranking problem by breaking the ranking signal down into elementary binary preferences
that induce the final ranking [Fürnkranz and Hüllermeier, 2003].

2. Preliminaries

We represent an instance or object as a vector x̄ = (x1, . . . , xN ) in a feature space X ⊆ RN .
Each instance x̄i is assigned to a set of relevant labels Y i, a subset of the K possible classes
Y = {c1, . . . , cK}. For multilabel problems, the cardinality |Y i| of the label sets is not
restricted, whereas for binary problems |Y i| = 1. For the sake of simplicity we use the
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following notation for the binary case: we define Y = {1,−1} as the set of classes so that
each object x̄i is assigned to a yi ∈ {1,−1} , Y i = {yi}.

2.1 Perceptrons

A perceptron is a binary classifier initially developed as a model of the biological neuron
[Rosenblatt, 1958]. Internally, it computes a linear combination of a real-valued input vector
and predicts the positive class if the result is positive, and the negative class otherwise. More
precisely, given an input vector x̄, the predicted class of a perceptron is computed as

o′(x̄) = sgn(x̄ · w̄ + ω) (1)

with the weight vector w̄, threshold ω and sgn(t) = 1 for t ≥ 0 and −1 otherwise. We
can interpret a perceptron as a hyperplane with the formula x̄ · w̄ = −ω that divides the
N -dimensional space into two halves. An instance is a point in this space and its position
determines whether it is considered as belonging to one class or the other. If the two sets
of positive and negative points, respectively, can be separated by a hyperplane, they are
called linearly separable. As a consequence, irrespective of the training algorithm used,
linear classifiers like the perceptron cannot arrive at correct predictions for all potential
instances unless the negative and positive instances are linearly separable. In order to find
a possibly existing separating hyperplane, the weights are adapted according to the following
perceptron training rule:

θi = (yi − o′(x̄i)) w̄i+1 = w̄i + ηθix̄i ωi+1 = ωi + ηθiδ (2)

with δ usually being set to 1 and the initial weights set to zero without loss of generality.
The learning rate η can be ignored if set to be constant [Bishop, 1995], as it will be the
case in this work. When a N -dimensional point is misclassified, the hyperplane is moved
towards this point (indicated by θ). If the training examples can be seen iteratively and
the data is linearly separable, the algorithm provably finds a dividing hyperplane. This is
called the perceptron convergence criterion [cf., e.g., Bishop, 1995]. Irrespective of training
until convergence not always being desirable, this property does not reveal anything about
the performance on unseen data.

Note that the number of errors until convergence depends on the margin between the
positive and negative points, i.e. the maximum diameter a separating hyperplane could
have. The hyperplane that maximizes the margin to the closest positive and negative point
is called the optimal hyperplane. Contrary to support vector machines, perceptrons will
not necessarily find an optimal hyperplane. However, the size of the margin is an indicator
for the hardness of the learning problem: the smaller the margin the harder it is for the
perceptron algorithm to find a good solution. On the other hand, perceptrons can be trained
efficiently in an incremental setting, which makes them particularly well-suited for large-
scale classification problems such as the Reuters 2000 (RCV1) benchmark [Lewis et al.,
2004]. For this reason, the perceptron has recently received increased attention [Freund
and Schapire, 1999, Li et al., 2002, Shalev-Shwartz and Singer, 2005, Dekel et al., 2005].

Certainly, the δ value becomes important when the perceptron is trained in only one
epoch: it is easily shown that |w̄| ≤ |W| · max

x̄∈W|x̄| and |ω| ≤ |W| · δ holds for misclassified
training examples W = {x̄ | o′(x̄) 6= y}. A disproportion between maxx̄ |x̄| and δ can

3
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obviously lead to an excessive predominance of the threshold and make the scalar product
even obsolete. To circumvent the problem of determining the right value for δ, we can set
it to zero sacrificing one dimension in the hypothesis space (thus ω=0). Graphically this
means that only separating hyperplanes through the origin are considered, reducing the
number of potentially solvable problems. In practice, especially in high dimensional spaces
as for text documents, this is usually not a very significant restriction, and it additionally
renders on-line learning possible.

2.2 Binary Relevance Ranking

In the binary relevance or one-against-all (OAA) method, a multilabel training set with K
possible classes is decomposed into K binary training sets of the same size that are then used
to train K binary classifiers. So for each pair (x̄i,Y i) in the original training set K different
pairs of instances and binary class assignments (x̄i, yij ) with j = 1 . . .K are generated as
follows:

yij =

{
1 cj ∈ Y i

−1 otherwise
(3)

Supposing we use perceptrons as base learners, K different o′j classifier are trained in order
to recognize if an instance is included in their respective class cj . In consequence, the
combined prediction would be the set {cj | o′j(x̄) = 1}. If, in contrast, we want to obtain a
ranking of classes according to their relevance, we can simply use the result of the internal
computation of the perceptrons as a measure of relevance. According to Equation 1 the
desired linear combination is the inner product oj(x̄) = x̄ · w̄j (ignoring ω as mentioned
above). So the result of the prediction is a vector ō(x̄) = (x̄w̄1, . . . , x̄w̄K) where component
j corresponds to the relevance of class cj . We will denote the ranking function that returns
the position of class c in the ranking with r(c) ∈ {1 . . .K}. Ties are broken randomly to
not favor any particular class.

2.3 Ranking Loss Functions

In order to evaluate the predicted ranking we use different ranking losses. The losses are
computed comparing the ranking with the true set of relevant classes, each of them focusing
on different aspects. For a given instance x̄, a relevant label set Y , a negative label set
Y = Y\Y and a given predicted ranking r(x̄) the different loss functions are computed as
follows:

IsErr The is-error loss determines whether r(c) < r(c′) for all relevant classes c ∈ Y and
all irrelevant classes c′ ∈ Y . It returns 0 for a completely correct, perfect ranking, and
1 for an incorrect ranking, irrespective of ‘how wrong’ the ranking is.

ErrSetSize The error set size loss returns the number of pairs of labels which are
not correctly ordered. Like IsErr, it is 0 for a perfect ranking, but it additionally
differentiates between different degrees of errors.

E
def= {(c, c′) | r(c) > r(c′)} ⊆ Y × Y (4)

δErrSetSize
def= |E| (5)
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Require: Training example pair (x̄, Y), perceptrons w̄1, . . . , w̄K

1: calculate x̄w̄1, . . . , x̄w̄K , loss δ
2: if δ > 0 then . only if ranking is not perfect
3: calculate error sets E, F
4: for each c ∈ F do τc ← 0 . initialize τ ’s
5: for each (c, c′) ∈ E do
6: p←Penalty(x̄w̄1, . . . , x̄w̄K)
7: τc ← τc + p . push up positive classes
8: τc′ ← τc′ − p . push down negative classes
9: σ ← σ + p . for normalization

10: normalize τ ’s
11: for each c ∈ F do
12: w̄c ← w̄c + δ τc

σ · x̄ . update perceptrons

13: return w̄1 . . . w̄K . return updated perceptrons

Figure 1: Pseudocode of the training method of the MMP algorithm

Margin The margin loss returns the number of positions between the worst ranked
positive and the best ranked negative classes. This is directly related to the number
of wrongly ranked classes, i.e. the positive classes that are ordered below a negative
class, or vice versa. We denote this set by F .

F
def= {c ∈ Y | r(c) > r(c′), c′ ∈ Y} ∪ {c′ ∈ Y | r(c) > r(c′), c ∈ Y} (6)

δMargin
def= max(0,max{r(c) | c ∈ Y} −min{r(c′) | c′ /∈ Y}) (7)

AvgP Average Precision is commonly used in Information Retrieval and computes for each
relevant label the percentage of relevant labels among all labels that are ranked before
it, and averages these percentages over all relevant labels. In order to bring this loss
in line with the others so that an optimal ranking is 0, we revert the measure.

δAvgP
def= 1− 1

Y

∑
c∈Y

|{c∗ ∈ Y | r(c∗) ≤ r(c)}|
r(c)

(8)

3. Multiclass Multilabel Perceptrons

MMPs were proposed as an extension of the one-against-all algorithm with perceptrons
as base learners [Crammer and Singer, 2003]. Just as in one-against-all, one perceptron is
trained for each class, and the prediction is calculated via the inner products. The difference
lies in the update method: while in the one-against-all method all perceptrons are trained
independently to return a value greater or smaller than zero, depending on the relevance
of the classes for a certain instance, MMPs are trained to produce a good ranking so that
the relevant classes are all ranked above the irrelevant classes. The perceptrons therefore
cannot be trained independently, considering that the target value for each perceptron
depends strongly on the values returned by the other perceptrons.
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Figure 2: MLPP training: training example x̄ belongs to Y = {c1, c2, c3}, Y = {c4, c5, c6, c7}
are the irrelevant classes, the arrows represent the trained perceptrons.

The pseudocode in Figure 1 describes the MMP training algorithm. When the MMP
algorithm receives a training instance x̄, it calculates the inner products, the ranking and the
loss on this ranking in order to determine whether the current model needs an update. For
determining the ranking loss, any of the methods of Section 2.3 is appropriate, since they
all return a low value on good rankings. This allows to optimize the ranking in accordance
with the used ranking loss. If the ranking is perfect, the algorithm is done, otherwise it
calculates the error set of wrongly ordered class pairs E. The wrongly ranked classes are
also represented in F . In the next step, each class that is present in a pair of E receives a
penalty score. This is done according to a selectable penalty function. Crammer and Singer
[2003] propose several methods, including a function that returns a value proportional to
the difference of the scalar products of both classes. The most successful one, however,
seemed to be the uniform update method, where each pair in E receives the same score. In
the next step, the update weights τ are normalized and each perceptron whose class was
wrongly ordered is updated.

An example will illustrate the peculiarities of the MMP update method: Suppose that
all classes are correctly ordered except for one relevant and three irrelevant classes. The
three negative classes are ranked immediately over the positive.The error set contains three
wrongly ordered pairs and according to the uniform update method the positive class will
receive in the sum a penalty of 3 and the negatives each 1. Thus the perceptron of the
positive class will be updated to a degree three times as great compared with the other
three, in accordance with the degree to which it contributed to the wrong ranking. Note
that regardless of the used penalty function the positive and the negative classes receive
in total the same penalty scores and these are afterwards normalized, so that the degree
of the overall model update only depends on δ, i.e. on the quality of the ranking. More
precisely, the hyperplanes of the perceptrons of the relevant classes are translated by a total
amount of δ x̄, and the remaining classes by − δ x̄. In summary, the degree of the update
for a particular perceptron depends 1) on the used penalty method, 2) on how much it
contributed to the wrong ranking, and 3) on the general ranking performance.
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Require: Training example pair (x̄, Y),
perceptrons {w̄u,v | u < v, cu, cv ∈ Y}

1: for each (cu, cv) ∈ Y × Y do
2: if u < v then
3: w̄u,v ← TrainPerceptron(w̄u,v, (x̄, 1)) . train as positive example
4: else
5: w̄v,u ← TrainPerceptron(w̄v,u, (x̄,−1)) . train as negative example

6: return {w̄u,v | u < v, cu, cv ∈ Y} . updated perceptrons

Figure 3: Pseudocode of the training method of the MLPP algorithm.

4. Multilabel Pairwise Perceptrons

In the pairwise binarization method, one classifier is trained for each pair of classes, i.e.,
a problem with K different classes is decomposed into K(K−1)

2 smaller subproblems. For
each pair of classes (cu, cv), only examples belonging to either cu or cv are used to train
the corresponding classifier o′u,v. All other examples are ignored. In the multilabel case, an
example is added to the training set for classifier o′u,v if u is a relevant class and v is an
irrelevant class, i.e., (u, v) ∈ Y × Y (cf. Figure 2). We will typically assume u < v, and
training examples of class u will receive a training signal of +1, whereas training examples
of class v will be classified with −1. Figure 3 shows the training algorithm in pseudocode.
Of couse MLPPs can also be trained incrementally.

In order to return a class ranking we use a simple voting strategy, known as max-wins.
Given a test instance, each perceptron delivers a prediction for one of its two classes. This
prediction is decoded into a vote for this particular class. After the evaluation of all K(K−1)

2
perceptrons the classes are ordered according to their sum of votes.1At first sight, it may be
disturbing that many ‘unqualified’ perceptrons are involved in the voting process: suppose
that an unseen example x̄ belongs to a label set Y , then a perceptron trained on two classes
of Y cannot know anything relevant in order to separate Y from Y because it has not seen
examples from Y . In the worst case the noisy votes concentrate on single negative classes,
which would lead to misclassifications. But note that any class can at most receive K − 1
votes, so that in the extreme case when the qualified perceptrons all classify correctly and
the unqualified ones concentrate on a single class, a positive class will still receive at least
K − |Y | and a negative at most K − |Y | − 1 votes.

The pairwise binarization method is often regarded as superior to one-against-all because
it profits from simpler decision boundaries in the subproblems [Fürnkranz, 2002, Hsu and
Lin, 2002]. In the case of an equal class distribution, the subproblems have 2

K times the
original size while one-against-all maintains the size. Typically, this goes hand in hand with
an increase of the space where a separating hyperplane can be found. A simple example
illustrates this: imagine two points a and b on a line representing the center of the positive
and negative points. We now insert points according to an arbitrary distribution around
a and b. Let µ(n) denote the margin between the negative and positive points depending
on the number of inserted points n. This function is monotonically decreasing. Thus it is

1. Ties are broken randomly in our case.
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very likely for a subproblem to have a larger margin than the full problem. We have seen
in Section 2.1 that the performance strongly depends on the available margin between the
points of the binary classes. Thus, it can be expected that the MLPP algorithm will also
benefit from the pairwise approach. MMP, on the other hand, is based on an one-against-all
binarization, which, as we have noted in Section 1, will typically have more complex decision
boundaries.

5. Computational Complexity

The notation used in this section is the following: K denotes the number of possible classes,
L the average number of relevant classes per instance in the training set, N the number
of attributes, δ and δ̂ denote the loss and the accumulated average loss respectively. For
each complexity we will give a lower Ω and upper bound O in Landau notation and an
expected value. Since all three algorithms are incrementally trained we will present the
computational complexity per instance. We will also represent the runtime dependencies in
terms of perceptron prediction and update operations. Note that a scalar product operation
w̄x̄ requires nearly the same amount of floating point additions and multiplications as an
update operation w̄ + τ x̄, so we do not need to discriminate between these two. As we are
interested in the difference between different binarization approaches, we can also ignore
operations that have to be performed by both MMP and MLPP, such as sorting or internal
real value operations.The complexity of a basic perceptron operation depends on the average
number of non-zero attributes. This is particularly important for applications like text
classification, where sparse feature vectors are common.

In terms of memory, a single perceptron model has a complexity of O(N). Since the
MMP algorithm uses one perceptron for each class and the MLPP algorithm one for each
pair of classes, the memory complexities are O(KN) and O(K2N) respectively.

Obviously, a perceptron prediction costs one basic perceptron operation. In each training
step the perceptron must predict a class. If it was wrong the update will cost another
operation. Let δper be 0 if the prediction was correct, otherwise 1, and let δ̂per be the
expected average error, then we can represent the complexity as 1 + δ̂per = O(1) for each
instance. The first step in the MMP training is to produce a ranking, hence at least K
operations are necessary even for a perfect ranking. If the ranking is incorrect, for each
wrongly ranked class in F one perceptron is updated (assuming uniform penalties). This
corresponds to δMargin +1, but only if there was an error, otherwise 0. We can hence
write |F | as δMargin + δIsErr. The time complexity for the MMP algorithm is therefore
K + δ̂Margin + δ̂IsErr = O(K). The MLPP algorithm evaluates each training example with
|Y × Y | perceptrons, i.e., |Y |(K − |Y |) operations. One additional operation is required for
each perceptron that makes an incorrect prediction. Using the average values δ̂per and L,
we can denote the expected runtime as L(K − L)(1 + δ̂per) = O(LK). In the worst case L
is K

2 , resulting in quadratic time.2 The bounds for the complexity relationship of MLPP to
MMP are the following:

1
4L = L

1
2K

2K ≤ LK−L
2K ≤ L(K−L)(1+δ̂per)

K+δ̂Margin + δ̂IsErr
≤ L2(K−L)

K < L2K
K < 2L (9)

2. We assume that L ≤ K
2

holds, otherwise the problem can simply be inverted.
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Table 1: Computational complexity given in expected number of perceptron operations per
instance. K: #classes, L: avg. #labels per instance, N : #attributes, δ̂: avg. Loss,
δ̂per, δ̂IsErr ≤ 1, δ̂Margin < K.

training time testing time memory requirement
perceptron 1 + δ̂per 1 N

MMP K + δ̂Margin + δ̂IsErr K O(KN)
MLPP L(K − L)(1 + δ̂per)

K(K−1)
2 O(K2N)

MLPP
MMP O(L) K−1

2 O(K)

Thus, on average, the MLPP algorithm will be L times slower than the MMP algorithm.
An overview over the complexities can be found in Table 1.

6. Evaluation

The Reuters Corpus Volume I (RCV1) is currently one of the most widely used test col-
lections for text categorization research. We used the preprocessed version by Lewis et al.
[2004] that contains 804,414 newswire documents belonging to 103 different categories. The
amount of relevant topics per example ranges from 1 to 17 and is on average 3.24.

6.1 Experimental Setup

The corpus was split into 535,987 training documents (all documents before and including
April 26th, 1999) and 268,427 test documents (all documents after April 26th, 1999) and
processed in chronological order. We used the token files from Lewis et al. [2004], which
are already word-stemmed and stop-word reduced. However, we repeated the last step, as
we experienced that there were still a few occurrences of stop words. Several tests with
different values for the number of attributes and different methods for term weighting and
feature selection were done in a systematic way in order to determine the most appropriate
settings for both algorithms. Typically, we used MMPs to reduce the number of candidates
and, among the remaining candidates, we picked a setting that worked well for both. The
following settings proved to generally provide good results and to allow a fair and represen-
tative comparison: we used the common TF-IDF term weighting method [Sebastiani, 2002]
and used the first 25,000 features ordered by their document frequency. All parameters
of the pre-processing methods were only computed on the training set to ensure that no
information from the test set enters the training phase. For the MMP algorithm we used
the IsErr loss function and the uniform penalty function. This setting showed the best re-
sults in the work of Crammer and Singer [2003] on the RCV1 data set and our experiments
confirm this. All perceptrons were initialized with random values.

9
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Table 2: Comparison on the test set. ∆ indicates the difference between MMP and MLPP
in percentage.

MMP ∆ [%] MLPP OAA
IsErr×100 29.35 -4.11 28.14 35.87
ErrSetSize 2.801 -31.45 1.920 7.614
Margin 2.120 -31.47 1.453 5.833
AvgP 92.82 0.92 93.67 90.00

6.2 Direct Comparison

The results of a direct comparison of MMPs and MLPPs are presented in Table 2. The values
for IsErr and AvgP are presented ×100 for better readability, AvgP is also presented
in the conventional way (with 100% as the optimal value) and not as a loss function.
The results clearly show that the MLPP algorithm outperforms the MMP algorithm (all
differences are statistically significant). Especially on the losses that directly evaluate the
ranking performance the improvement is quite pronounced. On average, MLPPs increase
the number of correctly ranked relevant and irrelevant class pairs by almost one pair per
example. Similarly, the margin between the positive and negative classes is increased by
more than half a class. For the IsErr, the advantage is less pronounced. Typically, a
perfect classification is more likely to occur on documents that have a small number of
labels, whereas on documents with an increasing number of labels the IsErr performance
decreases rapidly. Thus, IsErr focuses more on the performance on cases where there is
not much to rank. The AvgP measure yields a similar gain.

It is particularly important to note that MLPPs outperform MMPs in terms of IsErr,
although MMPs were trained to directly optimize this loss function, whereas MLPPs are
independent of a particular loss function. This holds also if MMPs are trained to optimize
a different loss. For example, the best MMPs trained to optimize Margin yield an average
Margin-Loss of 1.95.

In order to evaluate the algorithms on problem classes other than text classification,
we ran a few quick tests on the yeast (2417 examples, 103 features, 14 classes) and scene
(2000 examples, 294 features, 5 classes) datasets3. The results for 100 epochs over the
training data and 10 fold cross-validation are shown in Table 3. The results for yeast are
mixed, and for scene MLPPs are somewhat better according to all measures, but in general
the differences are inconclusive on these datasets (only IsErr, ErrSetSize and Margin
differences on yeast being statistically significant). In contrast to text classification, these
problems cannot be expected to be linearly separable. The small number of features hardly
allows to construct a separating hyperplane, even for pairs of classes, as the small differences
between both aproaches suggest. In summary, MMP and MLPC seem not to apply quite well
to hardly linearly separable problems, they are rather designed to solve high-dimensional
(and also huge) problems. However kernel functions can be implemented and might solve
this restriction [Freund and Schapire, 1999, Crammer and Singer, 2003].

3. both retrieved at http://mlkd.csd.auth.gr/multilabel.html
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Table 3: Comparison for the yeast and scene data sets.
yeast scene

MMP MLPP MMP MLPP
IsErr×100 89.04 90.69 48.40 48.36
ErrSetSize 15.14 14.51 0.988 0.958
Margin 8.09 7.99 0.972 0.946
AvgP 57.38 57.27 71.52 71.75

6.3 Learning Curve

A learning curve shows how quickly a learner is able to adapt its model to the data presented.
For incremental learners, it is often used to show the learning progress. Before a new
example is added to the training set, it is first tested. The learning curve then shows the
accumulated loss over the processed training instances. The result for the IsErr loss can be
seen in Figure 4 and 6. Figure 6 shows that with an increasing number of examples, MLPPs
accumulate a clear advantage. However, in the beginning, as can be seen from Figure 4,
the differences are less pronounced and the MMP algorithm also seems to have a somewhat
better performance in this region. For the ranking losses ErrSetSize (cf. Figure 5) and
Margin (not shown here) the graphs look very similar, except that here MLPPs clearly
have a better performance from the start. This result and even the comparison in terms of
IsErr is remarkable because the perceptrons of the MLPP are trained on fewer examples,
which may be particularly problematic in the beginning of the training phase.

6.4 Overfitting Analysis

In order to evaluate the overfitting property, both algorithms were trained in several epochs
over the training set. Crammer and Singer [2003] observed that the performance of the
MMP algorithm became worse with an increasing number of epochs. Our results confirm
this observation: While the evaluation on the training data indicates a better adaptation,
the performance on the test data decreases (Figure 7). For the MLPP algorithm the better
adaptation to the training data is also clearly observable, it quickly reaches losses near 0,
but in contrast to MMP, the results on the test data remain stable. We interpret this as
evidence that pairwise decomposition of the problem does in fact fit the problem structure,
i.e., that the classes here are in fact pairwise linearly separable. MLPPs learn these linear
decision boundaries after the first epoch through the training examples, so that further
training is not necessary (but can also not lead to more overfitting).

6.5 Computational Costs

We measured the required run-time in order to compare it to our analysis of the compu-
tational complexity in Section 5. We found it most convenient to measure the amount of
processed operations instead of the amount of (CPU-)time, since in this way it is guaran-
teed to be independent from external factors such as logging activities. Therefore we used
perceptron operations (as discussed above) as measure for our experiments. The MMP
algorithm required 56,680,708 operations for training and 27,647,981 to process the test
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set. Analogously, the MLPP spent 174,184,241 and 1,410,047,031 operations. The ratios
between MLPP and MMP for these values come to 3.07 and 51, respectively. This confirms
our analysis, since the ratio for training is approximately the average number of labels and
the ratio in testing is 103−1

2 .

7. Conclusions

In this paper, we evaluated the use of a pairwise ensemble of perceptrons for multilabel
classification. Our results showed that the resulting incremental learning algorithm can
be efficiently applied to large-scale text categorization problems such as the Reuters 2000
benchmark dataset, which are too complex for popular text categorization techniques such
as standard support vector machines due to their super-linear time complexity. Recently,
however, efficient alternatives have been proposed [Joachims, 2006].

In terms of accuracy, the pairwise approach compares favorably to multiclass multilabel
perceptrons, a recent algorithm for training an one-per-class ensemble of perceptrons in
a co-ordinated way by making the training signal of each perceptron dependent on a loss
function that depends on the entire ranking, and thus dependent on the predictions of the
other perceptrons in the ensemble. With the pairwise approach, we go an alternative way
and try to break up the problem into independent subproblems by not trying to directly
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minimize any particular ranking loss, but by trying to learn the ordering relation that
induces the ranking. This comparison of principles for addressing ranking problems is, in
our opinion, the most important contribution of this work. In addition, we also believe that
pairwise classification has not yet been tried with a problem of this size (both in number of
training examples and in number of labels).

However, the increase in predictive performance has to be paid with a small increase
in computational complexity, namely by a factor that depends on the average number of
labels per example. As for most multilabel problems (in particular in text classification),
this factor is rather small, so we consider this not to be a significant problem.

The reason for the good performance of MLPPs seems to be the adequacy of this pairwise
problem decomposition. Contrary to MMPs, they are able to find perfect classifications
on the training data, which are not due to overfitting but also carry over to improved
performance on the test set. Moreover, this performance does not degrade if more training
epochs are used, as seems to be the case for MMPs. Thus, the problem seems to be
pairwise linearly separable. We believe that this will be the case for many text categorization
problems.

For future research, we see space for improvement especially in two areas for the pairwise
approach. First, the used decoding is suboptimal because the prediction weights of the
base classifiers could be taken into account. Second, several variants of the perceptron were
developed that, like SVMs, try to maximize the margin of the separating hyperplane in
order to produce more accurate models. Preliminary tests with the voting technique by
Price et al. [1995] and ballseptrons [Shalev-Shwartz and Singer, 2005] showed promising
results.
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