
Efficient Multilabel Classification Algorithms
for Large-Scale Problems in the Legal Domain★

Eneldo Loza Menćıa and Johannes Fürnkranz

Knowledge Engineering Group
Technische Universität Darmstadt

{eneldo,juffi}@ke.tu-darmstadt.de

Abstract In this paper we applied multilabel classification algorithms
to the EUR-Lex database of legal documents of the European Union. On
this document collection, we studied three different multilabel classifica-
tion problems, the largest being the categorization into the EUROVOC
concept hierarchy with almost 4000 classes. We evaluated three algo-
rithms: (i) the binary relevance approach which independently trains
one classifier per label; (ii) the multiclass multilabel perceptron algo-
rithm, which respects dependencies between the base classifiers; and (iii)
the multilabel pairwise perceptron algorithm, which trains one classifier
for each pair of labels. All algorithms use the simple but very efficient
perceptron algorithm as the underlying classifier, which makes them ve-
ry suitable for large-scale multilabel classification problems. The main
challenge we had to face was that the almost 8,000,000 perceptrons that
had to be trained in the pairwise setting could no longer be stored in
memory. We solve this problem by resorting to the dual representation
of the perceptron, which makes the pairwise approach feasible for pro-
blems of this size. The results on the EUR-Lex database confirm the
good predictive performance of the pairwise approach and demonstrates
the feasibility of this approach for large-scale tasks.

Key words: text classification, multilabel classification, legal documents,
EUR-Lex database, learning by pairwise comparison

1 Introduction

The EUR-Lex text collection is a collection of documents about European Union
law. It contains many several different types of documents, including treaties,
legislation, case-law and legislative proposals, which are indexed according to
several orthogonal categorization schemes to allow for multiple search facilities.
The most important categorization is provided by the EUROVOC descriptors,

★ This is the authors’ version of the work from www.ke.tu-darmstadt.de.
The original publication is available at www.springerlink.com, DOI:
10.1007/978-3-642-12837-0 11, and appeared in E. Francesconi et al.
(Eds.): Semantic Processing of Legal Texts, LNAI 6036, pp. 192-215, 2010,
www.springerlink.com/content/63251w4h540l2r24/.

http://www.ke.tu-darmstadt.de
http://www.springerlink.com
http://dx.doi.org/10.1007/978-3-642-12837-0_11
http://www.springerlink.com/content/63251w4h540l2r24/


2 E. Loza Menćıa and J. Fürnkranz

which is a topic hierarchy with almost 4000 categories regarding different aspects
of European law.

This document collection provides an excellent opportunity to study text
classification techniques for several reasons:

– it contains multiple classifications of the same documents, making it possi-
ble to analyze the effects of different classification properties using the same
underlying reference data without resorting to artificial or manipulated clas-
sifications,

– the overwhelming number of produced documents make the legal domain
a very attractive field for employing supportive automated solutions and
therefore a machine learning scenario in step with actual practice,

– the documents are available in several European languages and are hence
very interesting e.g. for the wide field of multi- and cross-lingual text classi-
fication,

– and, finally, the data is freely accessible (at http://eur-lex.europa.eu/)

In this paper, we make a first step towards analyzing this database by app-
lying multilabel classification techniques on three of its categorization schemes.
The database is a very challenging multilabel scenario due to the high number
of possible labels (up to 4000), which, for example, exceeds the number of labels
in the REUTERS databases by one order of magnitude. The EUR-Lex dataset
is now publicly available under http://www.ke.tu-darmstadt.de/resources/
eurlex/.

We evaluated three methods on this task:

– the conventional binary relevance approach (BR), which trains one binary
classifier per label

– the multilabel multiclass perceptron (MMP), which also trains one classifier
per label but does not treat them independently, instead it tries to minimize
a ranking loss function of the entire ensemble [3]

– the multilabel pairwise perceptron (MLPP), which trains one classifier for
each pair of classes [12]

Previous work on using these algorithms for text categorization [12] has
shown that the MLPP algorithm outperforms the other two algorithms, whi-
le being slightly more expensive in training (by a factor that corresponds to the
average number of labels for each example). However, another key disadvan-
tage of the MLPP algorithm is its need for storing one classifier for each pair
of classes. For the EUROVOC categorization, this results in almost 8,000,000
perceptrons, which would make it impossible to solve this task in main memory.

To solve this problem, we introduce and analyze a novel variant that addresses
this problem by representing the perceptron in its dual form, i.e. the perceptrons
are formulated as a combination of the documents that were used during training
instead of explicitly as a linear hyperplane. This reduces the dependence on the
number of classes and therefore allows the Dual MLPP algorithm to handle the
tasks in the EUR-Lex database.

http://eur-lex.europa.eu/
http://www.ke.tu-darmstadt.de/resources/eurlex/
http://www.ke.tu-darmstadt.de/resources/eurlex/


Efficient Multilabel Classification for Large-Scale Problems 3

Originally, the MLPP accepts a multilabel information but only outputs a
ranking over all possible labels, following [3] and their MMP algorithm. In or-
der to find a delimiter between relevant and irrelevant labels within a provided
ranking of the labels, we have recently introduced the idea of using an artificial
label that encodes the boundary between relevant and irrelevant labels for each
example [2], which has also been successfully applied to the Reuters-RCV1 text
categorization task [6], a large collection of news texts. This approach was ad-
apted to work with the dual variant and we present first results in this paper.
However, we will focus our analysis on the produced ranking. There are three
reasons for this: (i) the MMP, to which we directly compare, and the pairwise
method naturally provide such a ranking, (ii) the ranking allows to evaluate the
performance differences on a finer scale, (iii) our key motivation is to study the
scalability of these approaches which is determined by the rankings, and (iv)
although several different thresholding techniques exist that can be applied to
the rankings produced by both MMP and MLPP (a good overview is provided
in [20]), it was not the intention of this work to provide a comparison between
them.

The outline of the paper is as follows: We start with a presentation of the
EUR-Lex respository and the datasets that we derived from it (Section 2). Sec-
tion 3 briefly recapitulates the algorithms that we study, followed by the pre-
sentation of the dual version of the MLPP classifier (Section 4). In Section 5,
we compare the computational complexity of all approaches, and present the
experimental results in Section 6.

2 The EUR-Lex Repository

The EUR-Lex/CELEX (Communitatis Europeae LEX) Site1 provides a freely
accessible repository for European Union law texts. The documents include the
official Journal of the European Union, treaties, international agreements, legis-
lation in force, legislation in preparation, case-law and parliamentary questions.
They are available in most of the languages of the EU, and in the HTML and
PDF format. We retrieved the HTML versions with bibliographic notes recursi-
vely from all (non empty) documents in the English version of the Directory of
Community legislation in force2, in total 19,348 documents. Only documents re-
lated to secondary law (in contrast to primary law, the constitutional treaties of
the European Union) and international agreements are included in this reposito-
ry. The legal form of the included acts are mostly decisions (8,917 documents),
regulations (5,706), directives (1,898) and agreements (1,597). This version of
the dataset differs slightly from that presented in previous works [14, 13], which
still contained 19,596 documents. Some empty documents that were missed in
the previous version and all corrigendums (they contained the same standard
text except for one document since they were concerned with translations of the

1 http://eur-lex.europa.eu
2 http://eur-lex.europa.eu/en/legis/index.htm

http://eur-lex.europa.eu
http://eur-lex.europa.eu/en/legis/index.htm


4 E. Loza Menćıa and J. Fürnkranz

Title and reference
Council Directive 91/250/EEC of 14 May 1991 on the legal protection of
computer programs

Classifications

EUROVOC descriptor
– data-processing law, computer piracy, copyright, software, approxima-

tion of laws
Directory code

– 17.20.00.00 Law relating to undertakings / Intellectual property law
Subject matter

– Internal market, Industrial and commercial property

Text
COUNCIL DIRECTIVE of 14 May 1991 on the legal protection of computer
programs (91/250/EEC)

THE COUNCIL OF THE EUROPEAN COMMUNITIES,

Having regard to the Treaty establishing the European Economic Community
and in particular Article 100a thereof,

Having regard to the proposal from the Commission (1),

In cooperation with the European Parliament (2),
. . .

Figure 1. Excerpt of a EUR-Lex sample document with the CELEX ID
31991L0250. The original document contains more meta-information. We trai-
ned our classifiers to predict the EUROVOC descriptors, the directory code and
the subject matters based on the text of the document.

law into other languages than English) have been removed. The updated version
can be found under http://www.ke.tu-darmstadt.de/resources/eurlex/.

The bibliographic notes of the documents contain information such as dates of
effect and validity, authors, relationships to other documents and classifications.
The classifications include the assignment to several EUROVOC descriptors,
directory codes and subject matters, hence all classifications are multilabel ones.
EUROVOC is a multilingual thesaurus providing a controlled vocabulary for
European Institutions3. Documents in the documentation systems of the EU
are indexed using this thesaurus. The directory codes are classes of the official
classification hierarchy of the Directory of Community legislation in force. It
contains 20 chapter headings with up to four sub-division levels.

The high number of 3,956 different EUROVOC descriptors were identified
in the retrieved documents, each document is associated to 5.31 descriptors on
average. In contrast there are only 201 different subject matters appearing in the
dataset, with a mean of 2.21 labels per document, and 410 different directory

3 http://europa.eu/eurovoc/

http://www.ke.tu-darmstadt.de/resources/eurlex/
http://europa.eu/eurovoc/


Efficient Multilabel Classification for Large-Scale Problems 5

Table 1. Statistics of datasets. The attribute number in parenthesis denotes the
actual used number of features, i.e. for scene and yeast the number of features
after adding the pairwise products and for the text collections the amount after
feature selection. Label density indicates the average number of labels per instan-
ce d relative to the total number of classes n, and distinct counts the distinct
label-sets found in the dataset ∣{Pi ∣ i = 0 . . .m}∣.

dataset name #classes n avg. label-set size d density d
n

distinct

EUR-Lex subject matter 201 2.213 1.101 % 2540
EUR-Lex directory code 410 1.292 0.315 % 1615
EUR-Lex EUROVOC 3956 5.310 0.134 % 16467

codes, with a label set size of on average 1.29. Note that for the directory codes we
used only the assignment to the leaf category as the parent nodes can be deduced
from the leaf node assignment. For the document in Figure 1 this would mean a
set of labels of {17.20} instead of {17, 17.20}. An overview of the properties of
the different views on the dataset are given in Table 1.

Figure 1 shows an excerpt of a sample document with all information that has
not been used removed. The full document can be viewed at http://eur-lex.
europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31991L0250:EN:NOT. We
extracted the text body from the HTML documents, excluding HTML tags,
bibliographic notes or other additional information that could distort the re-
sults. The text was tokenized into lower case, stop words were excluded, and the
Porter stemmer algorithm was applied. In order to perform cross validation,
the instances were randomly distributed into ten folds. The tokens were projec-
ted for each fold into the vector space model using the common TF-IDF term
weighting.In order to reduce the memory requirements, of the approx. 200,000
resulting features we selected the first 5,000 ordered by their document frequen-
cy. This feature selection method is very simple and efficient and independent
from class assignments, although it performs comparably to more sophisticated
methods using chi-square or information gain computation [21]. In order to en-
sure that no information from the test set enters the training phase, the TF-IDF
transformation and the feature selection were conducted only on the training
sets of the ten cross-validation splits.

The EUROVOC thesaurus has already been presented as set of classes for
a multilabel classification task in [18]. The authors use several refined text and
linguistig processing techniques and statistical computations in order to return
a list of associated lemmas from the EUROVOC thesaurus for documents of the
EU. However, their results are not comparable since a different resource was used
for the documents, resulting also in a different number of EUROVOC descriptors
used, namely around 2900

http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31991L0250:EN:NOT
http://eur-lex.europa.eu/LexUriServ/LexUriServ.do?uri=CELEX:31991L0250:EN:NOT


6 E. Loza Menćıa and J. Fürnkranz

3 Preliminaries

We represent an instance or object as a vector x̄ = (x1, . . . , xN ) in a feature
space X ⊆ RN . Each instance x̄i is assigned to a set of relevant labels Pi, a
subset of the n possible classes ℒ = {�1, . . . , �n}. For multilabel problems, the
cardinality ∣Pi∣ of the label sets is not restricted, whereas for binary problems
∣Pi∣ = 1. For the sake of simplicity we use the following notation for the binary
case: we define ℒ = {1,−1} as the set of classes so that each object x̄i is assigned
to a �i ∈ {1,−1} , Pi = {�i}.

3.1 Ranking Loss Functions

In order to evaluate the predicted ranking we use different ranking losses. The
losses are computed comparing the ranking with the true set of relevant classes,
each of them focusing on different aspects. For a given instance x̄, a relevant
label set P , a negative label set N = ℒ∖P and a given predicted ranking r : ℒ →
{1 . . . n}, with r(�) returning the position of class � in the ranking, the different
loss functions are computed as follows:

– The is-error loss (IsErr) determines whether r(�) < r(�′) for all relevant
classes � ∈ P and all irrelevant classes �′ ∈ P . It returns 0 for a completely
correct, perfect ranking, and 1 for an incorrect ranking, irrespective of ‘how
wrong’ the ranking is.

– The one-error loss (OneErr) is 1 if the top class in the ranking is not a
relevant class, otherwise 0 if the top class is relevant, independently of the
positions of the remaining relevant classes.

– The ranking loss (RankLoss) returns the number of pairs of labels which
are not correctly ordered normalized by the total number of possible pairs.
As IsErr, it is 0 for a perfect ranking, but it additionally differentiates
between different degrees of errors.

E
def
= {(�, �′) ∣ r(�) > r(�′)} ⊆ P ×N �RankLoss

def
=

∣E∣
∣P ∣∣N ∣

(1)

– The margin (Margin) loss returns the number of positions between the
worst ranked positive and the best ranked negative classes. This is directly
related to the number of wrongly ranked classes, i.e. the positive classes that
are ordered below a negative class, or vice versa. We denote this set by F .

F
def
={� ∈ P ∣ r(�) > r(�′), �′ ∈ N} ∪ {�′ ∈ N ∣ r(�) > r(�′), � ∈ P}

(2)

�Margin
def
= max(0,max{r(�) ∣ � ∈ P} −min{r(�′) ∣ �′ /∈ P}) (3)

– Average Precision (AvgP) is commonly used in Information Retrieval and
computes for each relevant label the percentage of relevant labels among
all labels that are ranked before it, and averages these percentages over all



Efficient Multilabel Classification for Large-Scale Problems 7

relevant labels. In order to bring this loss in line with the others so that an
optimal ranking is 0, we revert the measure.

�AvgP
def
= 1− 1

P

∑
�∈P

∣{�∗ ∈ P ∣ r(�∗) ≤ r(�)}∣
r(�)

(4)

3.2 Multilabel Evaluation Measures

There is no generally accepted procedure for evaluating multilabel classificati-
ons. Our approach is to consider a multilabel classification problem as a meta-
classification problem where the task is to separate the set of possible labels
into relevant labels and irrelevant labels. Let P̂i denote the set of labels predic-
ted by the multilabel classifier and N̂i = ℒ ∖ P̂i the set of labels that are not
predicted by the classifier for an instance x̄i. Thus, we can, for each individual
instance x̄i, compute a two-by-two confusion matrix Ci of relevant/irrelevant vs.
predicted/not predicted labels:

Ci predicted not predicted

relevant ∣Pi ∩ P̂i∣ ∣Pi ∩ N̂i∣ ∣Pi∣
irrelevant ∣Ni ∩ P̂i∣ ∣Ni ∩ N̂i∣ ∣Ni∣

∣P̂i∣ ∣N̂i∣ ∣ℒ∣

From such a confusion matrix Ci, we can compute several well-known measures:

– The Hamming loss (HamLoss) computes the percentage of labels that are
misclassified, i.e., relevant labels that are not predicted or irrelevant labels
that are predicted. This basically corresponds to the error in the confusion
matrix.

HamLoss(Ci)
def
= 1− 1

∣ℒ∣
∣∣P̂i△Pi∣∣ (5)

The operator △ denotes the symmetric difference between two sets and is

defined as A△B def
= (A ∖ B) ∪ (B ∖ A), i.e. P̂i△Pi has all labels that only

appear in one of the two sets.
– Precision (Prec) computes the percentage of predicted labels that are re-

levant, recall (Rec) computes the percentage of relevant labels that are
predicted, and the F1-measure is the harmonic mean between the two.

Prec(Ci)
def
=
∣P̂i ∩ Pi∣
∣P̂i∣

Rec(Ci)
def
=
∣P̂i ∩ Pi∣
∣Pi∣

(6)

F1(Ci)
def
=

2
1

Rec(Ci)
+ 1

Prec(Ci)

=
2Rec(Ci)Prec(Ci)

Rec(Ci) + Prec(Ci)
(7)



8 E. Loza Menćıa and J. Fürnkranz

To average these values, we compute a micro-average over all values in a test
set, i.e., we add up the confusion matrices Ci for examples in the test set and
compute the measure from the resulting confusion matrix. Thus, for any given
measure f , the average is computed as:

favg = f(

m∑
i=1

Ci) (8)

To combine the results of the individual folds of a cross-validation, we average
the estimates f javg , j = 1 . . . q over all q folds.

3.3 Perceptrons

We use the simple but fast perceptrons as base classifiers [19]. Such as Sup-
port Vector Machines (SVM), their decision function describes a hyperplane
that divides the N -dimensional space into two halves corresponding to positive
and negative examples. We use a version that works without learning rate and
threshold:

o′(x̄) = sgn(x̄ ⋅ w̄) (9)

with the internal weight vector w̄ and sgn(t) = 1 for t ≥ 0 and−1 otherwise. Two
sets of points are called linearly separable if there exists a separating hyperplane
between them. If this is the case and the examples are seen iteratively, the
following update rule provably finds a separating hyperplane (cf., e.g., [1]).

�i = (�i − o′(x̄i)) w̄i+1 = w̄i + �ix̄i (10)

It is important to see that the final weight vector can also be represented as
linear combination of the training examples:

w̄ =

m∑
i=1

�ix̄i o′(x̄) = sgn(

m∑
i=1

�i ⋅ x̄ix̄) (11)

assuming m to be the number of seen training examples and �i ∈ {−1, 0, 1}.
The perceptron can hence be coded implicitly as a vector of instance weights
� = (�1, . . . , �m) instead of explicitly as a vector of feature weights. This repre-
sentation is denominated the dual form and is crucial for developing the memory
efficient variant in Section 4.

The main reason for choosing perceptrons as our base classifier is because,
contrary to SVMs, they can be trained efficiently in an incremental setting,
which makes them particularly well-suited for large-scale classification problems
such as the Reuters-RCV1 benchmark [9], without forfeiting too much accuracy.
For this reason, the perceptron has recently received increased attention (e.g.
[4, 8]).



Efficient Multilabel Classification for Large-Scale Problems 9

Require: Training example pair (x̄, P ), perceptrons w̄1, . . . , w̄n
1: calculate x̄w̄1, . . . , x̄w̄n, loss �
2: if � > 0 then ⊳ only if ranking is not perfect
3: calculate error sets E, F
4: for each � ∈ F do �� ← 0, � ← 0 ⊳ initialize � ’s, �

5: for each (�, �′) ∈ E do
6: p← Penalty(x̄w̄1, . . . , x̄w̄n)
7: �� ← �� + p ⊳ push up pos. classes
8: ��′ ← ��′ − p ⊳ push down neg. classes
9: � ← � + p ⊳ for normalization

10: for each � ∈ F do
11: w̄� ← w̄� + � ��

�
⋅ x̄ ⊳ update perceptrons

12: return w̄1 . . . w̄n ⊳ return updated perceptrons

Figure 2. Pseudocode of the training method of the MMP algorithm

3.4 Binary Relevance Ranking

In the binary relevance (BR) or one-against-all (OAA) method, a multilabel
training set with n possible classes is decomposed into n binary training sets of
the same size that are then used to train n binary classifiers. So for each pair
(x̄i,Pi) in the original training set n different pairs of instances and binary class
assignments (x̄i, �ij ) with j = 1 . . . n are generated setting �ij = 1 if �j ∈ Pi and
�ij = −1 otherwise. Supposing we use perceptrons as base learners, n different
o′j classifiers are trained in order to determine the relevance of �j . In consequence,
the combined prediction of the binary relevance classifier for an instance x̄ would
be the set {�j ∣ o′j(x̄) = 1}. If, in contrast, we desire a class ranking, we simply
use the inner products and obtain a vector ō(x̄) = (x̄w̄1, . . . , x̄w̄n). Ties are
broken randomly to not favor any particular class.

3.5 Multiclass Multilabel Perceptrons

MMPs were proposed as an extension of the one-against-all algorithm with per-
ceptrons as base learners [3]. Just as in binary relevance, one perceptron is trai-
ned for each class, and the prediction is calculated via the inner products. The
difference lies in the update method: while in the binary relevance method all
perceptrons are trained independently to return a value greater or smaller than
zero, depending on the relevance of the classes for a certain instance, MMPs
are trained to produce a good ranking so that the relevant classes are all ran-
ked above the irrelevant classes. The perceptrons therefore cannot be trained
independently, considering that the target value for each perceptron depends
strongly on the values returned by the other perceptrons.

The pseudocode in Fig. 2 describes the MMP training algorithm. In summary,
for each new training example the MMP first computes the predicted ranking,
and if there is an error according to the chosen loss function � (e.g. any of the



10 E. Loza Menćıa and J. Fürnkranz

Require: Training example pair (x̄, P ),
perceptrons {w̄u,v ∣ u < v, �u, �v ∈ ℒ}

1: for each (�u, �v) ∈ P ×N do
2: if u < v then
3: w̄u,v ← TrainPerceptron(w̄u,v, (x̄, 1)) ⊳ train as positive example
4: else
5: w̄v,u ← TrainPerceptron(w̄v,u, (x̄,−1)) ⊳ train as negative example

6: return {w̄u,v ∣ u < v, �u, �v ∈ ℒ} ⊳ updated perceptrons

Figure 3. Pseudocode of the training method of the MLPP algorithm.

losses in Sec. 3.1), it computes the set of wrongly ordered class pairs in the
ranking and applies to each class in this set a penalty score according to a freely
selectable function. We chose the uniform update method, where each pair in
E receives the same score [3]. Please refer to [3] and [12] for a more detailed
description of the algorithm.

3.6 Multilabel Pairwise Perceptrons

In the pairwise binarization method, one classifier is trained for each pair of

classes, i.e., a problem with n different classes is decomposed into n(n−1)
2 smaller

subproblems. For each pair of classes (�u, �v), only examples belonging to either
�u or �v are used to train the corresponding classifier o′u,v. All other examples
are ignored. In the multilabel case, an example is added to the training set for
classifier o′u,v if u is a relevant class and v is an irrelevant class, i.e., (u, v) ∈ P×N
(cf. Figure 4). We will typically assume u < v, and training examples of class
u will receive a training signal of +1, whereas training examples of class v will
be classified with −1. Figure 3 shows the training algorithm in pseudocode. Of
course MLPPs can also be trained incrementally.

In order to return a class ranking we use a simple voting strategy, known as
max-wins. Given a test instance, each perceptron delivers a prediction for one
of its two classes. This prediction is decoded into a vote for this particular class.

After the evaluation of all n(n−1)
2 perceptrons the classes are ordered according

to their sum of votes. Ties are broken randomly in our case.
Figure 5 shows a possible result of classifying the sample instance of Figure

4. Perceptron o′1,5 predicts (correctly) the first class, consequently �1 receives
one vote and class �5 zero (denoted by o′1,5 = 1 in the first and o′5,1 = −1 in
the last row). All 10 perceptrons (the values in the upper right corner can be
deduced due to the symmetry property of the perceptrons) are evaluated though
only six are ‘qualified’ since they were trained with the original example.

This may be disturbing at first sight since many ‘unqualified’ perceptrons are
involved in the voting process: o′1,2 is asked for instance though it cannot know
anything relevant in order to determine if x̄ belongs to �1 or �2 since it was
neither trained on this example nor on other examples belonging simultaneously
to both classes (or to none of both). In the worst case the noisy votes concentrate



Efficient Multilabel Classification for Large-Scale Problems 11

��

�� ���� ��

��
�

	

Figure 4. MLPP training: training example x̄ belongs to P = {�1, �2}, N =
{�3, �4, �5} are the irrelevant classes, the arrows represent the trained percep-
trons.

o′1,2 = 1 o′2,1 = -1 o′3,1 = -1 o′4,1 = -1 o′5,1 = -1
o′1,3 = 1 o′2,3 = 1 o′3,2 = -1 o′4,2 = -1 o′5,2 = -1
o′1,4 = 1 o′2,4 = 1 o′3,4 = 1 o′4,3 = -1 o′5,3 = -1
o′1,5 = 1 o′2,5 = 1 o′3,5 = 1 o′4,5 = 1 o′5,4 = -1

v1 = 4 v2 = 3 v3 = 2 v4 = 1 v5 = 0

Figure 5. MLPP voting: an example x̄ is classified by all 10 base perceptrons
o′u,v, u ∕= v , �u, �v ∈ ℒ. Note the redundancy given by o′u,v = −o′v,u. The last
line counts the positive outcomes for each class.

on a single negative class, which would lead to misclassifications. But note that
any class can at most receive n− 1 votes, so that in the extreme case when the
qualified perceptrons all classify correctly and the unqualified ones concentrate
on a single class, a positive class would still receive at least n−∣P ∣ and a negative
at most n− ∣P ∣ − 1 votes. Class �3 in Figure 5 is an example for this: It receives
all possible noisy votes but still loses against the positive classes �1 and �2.

The pairwise binarization method is often regarded as superior to binary
relevance because it profits from simpler decision boundaries in the subproblems
[5, 7]. In the case of an equal class distribution, the subproblems have 2

n times
the original size whereas binary relevance maintains the size. Typically, this goes
hand in hand with an increase of the space where a separating hyperplane can be
found. Particularly in the case of text classification the obtained benefit clearly
exists. An evaluation of the pairwise approach on the Reuters-RCV1 corpus [9],
which contains over 100 classes and 800,000 documents, showed a significant
and substantial improvement over the MMP method [12]. This encourages us
to apply the pairwise decomposition to the EUR-Lex database, with the main
obstacle of the quadratic number of base classifier in relationship to the number
of classes. Since this problem can not be coped for the present classifications in
EUR-Lex we propose to reformulate the MLPP algorithm in the way described
in Section 3.6.



12 E. Loza Menćıa and J. Fürnkranz

��

�� ���� ��

��

��

	




Figure 6. calibration: introdu-
cing virtual label �0 that se-
parates P an N . Perceptrons
w̄1,0, w̄2,0, w̄0,3, w̄0,4, w̄0,5 are addi-
tionally trained.

��

�� ���� ��

��

��

	




Figure 7. CMLPP training: the
complete set of trained perceptrons.

Note that MLPP can potentially be used with any binary base learner. In
particular it is possible to use advanced perceptron variants that especially consi-
der the case of unbalanced classification problems [10, 4], since this is commonly
the case for problems with a high number of classes [16]. In our opinion, this
problem is not too severe for the pairwise decomposition, since it does not com-
pare one class against the accumulation of all remaining examples, achieving in
average a more balanced factor between positive and negative examples. Moreo-
ver, since we mainly evaluate the ranking quality, MMP and BR should not be
discriminated by unbalanced classes.

3.7 Calibrated Label Ranking

To convert the resulting ranking of labels into a multilabel prediction, we use
the calibrated label ranking approach [6]. This technique avoids the need for
learning a threshold function for separating relevant from irrelevant labels, which
is often performed as a post-processing phase after computing a ranking of all
possible classes. The key idea is to introduce an artificial calibration label �0,
which represents the split-point between relevant and irrelevant labels. Thus,
it is assumed to be preferred over all irrelevant labels, but all relevant labels
are preferred over �0. This introduction of an additional label during training is
depicted in Figure 6, the combination with the normal pairwise base classifiers
is shown in Figure 7.

As it turns out, the resulting n additional binary classifiers { o′0,u ∣u = 1 . . . n}
are identical to the classifiers that are trained by the binary relevance approach.
Thus, each classifier o′0,u is trained in a one-against-all fashion by using the whole
dataset with { x̄i ∣�u ∈ Pi} ⊆ X as positive examples and { x̄i ∣�u ∈ Ni} ⊆ X
as negative examples. At prediction time, we will thus get a ranking over n+ 1
labels (the n original labels plus the calibration label). Then, the projection of



Efficient Multilabel Classification for Large-Scale Problems 13

voting aggregation of pairwise perceptrons with a calibrated label to a multilabel
output is quite straight-forward:

P̂ = {� ∈ ℒ ∣ v(�) > v(�0)}

where v(�) is the amount of votes class � has received.
We denote the MLPP algorithm adapted in order to support the calibration

technique as CMLPP. This algorithm was again applied to the large Reuters-
RCV1 corpus, outperforming the binary relevance and MMP approach [6].

4 Dual Multilabel Pairwise Perceptrons

With an increasing number of classes the required memory by the MLPP algo-
rithm grows quadratically and even on modern computers with a large memory
this problem becomes unsolvable for a high number of classes. For the EURO-
VOC classification, the use of MLPP would mean maintaining approximately
8,000,000 perceptrons in memory. In order to circumvent this obstacle we refor-
mulate the MLPP ensemble of perceptrons in dual form as we did with one single
perceptron in Equation 11. In contrast to MLPP, the training examples are thus
required and have to be kept in memory in addition to the associated weights,
as a base perceptron is now represented as w̄u,v =

∑m
i=1 �

t
u,vx̄i. This makes an

additional loop over the training examples inevitable every time a prediction is
demanded. But fortunately it is not necessary to recompute all x̄ix̄ for each base
perceptron since we can reuse them by iterating over the training examples in
the outer loop, as can be seen in the following equations:

w̄1,2x̄ = �1
1,2x̄1x̄ + �2

1,2x̄2x̄ + . . .+ �m1,2x̄mx̄

w̄1,3x̄ = �1
1,3x̄1x̄ + �2

1,3x̄2x̄ + . . .+ �m1,3x̄mx̄

...

w̄1,nx̄ = �1
1,nx̄1x̄ + �2

1,nx̄2x̄ + . . .+ �m1,nx̄mx̄

w̄2,3x̄ = �1
2,3x̄1x̄ + �2

2,3x̄2x̄ + . . .+ �m2,3x̄mx̄

...

(12)

By advancing column by column it is not necessary to repeat the dot products
computations, however it is necessary to store the intermediate values, as can
also be seen in the pseudocode of the training and prediction phases in Figures 8
and 9. Note also that the algorithm preserves the property of being incrementally
trainable. We denote this variant of training the pairwise perceptrons the dual
multilabel pairwise perceptrons algorithm (DMLPP).

In addition to the savings in memory and run-time, analyzed in detail in
Section 5, the dual representation allows for using the kernel trick, i.e. to replace
the dot product by a kernel function, in order to be able to solve originally not
linearly separable problems. However, this is not necessary in our case since text
problems are in general linearly separable.



14 E. Loza Menćıa and J. Fürnkranz

Require: New training example pair (x̄m, Pm),
training examples x̄1 . . . x̄m−1, P1 . . . Pm−1,
weights {�iu,v ∣ �u, �v ∈ ℒ, 0 < i < m}

1: for each x̄i = x̄1 . . . x̄m−1 do ⊳ iterate over previous training examples
2: pi ← x̄i ⋅ x̄m
3: for each (�u, �v) ∈ Pm ×Nm do ⊳ x̄m only relevant for training these pairs
4: if �iu,v ∕= 0 then
5: su,v ← su,v + �iu,v ⋅ pt ⊳ note that su,v = −sv,u
6: for each (�u, �v) ∈ Pm ×Nm do ⊳ update only concerned perceptrons
7: if su,v < 0 then ⊳ and only if they misspredicted
8: �mu,v ← 1 ⊳ note that �u,v = −�v,u
9: return {�mu,v ∣ (�u, �v) ∈ P ×N} ⊳ return new weights

Figure 8. Pseudocode of the training method of the DMLPP algorithm.

Require: example x̄ for classification,
training examples x̄1 . . . x̄m−1, P1 . . . Pm−1,
weights {�iu,v ∣ �u, �v ∈ ℒ, 0 < i < m}

1: for each x̄i = x̄1 . . . x̄m−1 do ⊳ iterate over training examples
2: p← x̄i ⋅ x̄
3: for each (�u, �v) ∈ Pi ×Ni do ⊳ x̄i was only be part of training these pairs
4: if �iu,v ∕= 0 then ⊳ consider only if x̄ is actually part of w̄u,v
5: su,v ← su,v + �iu,v ⋅ p ⊳ add intermediate score to w̄u,vx̄

6: for each (�u, �v) ∈ ℒ × ℒ do
7: if u ∕= v ∧ su,v > 0 then
8: vu ← vu + 1 ⊳ add up a vote for winning class �u

9: return voting v̄ = (v1, . . . , v∣ℒ∣) ⊳ return voting

Figure 9. Pseudocode of the prediction phase of the DMLPP algorithm.

Note also that the pseudocode needs to be slightly adapted when the DMLPP
algorithm is trained in more than one epoch, i.e. the training set is presented to
the learning algorithm more than once. It is sufficient to modify the assignment
in line 8 in Figure 8 to an additive update �mu,v ← �mu,v + 1 for a revisited
example x̄m. This setting is particularly interesting for the dual variant since,
when the training set is not too big, memorizing the inner products can boost
the subsequent epochs in a substantial way, making the algorithm interesting
even if the number of classes is small.

4.1 Calibration

There exist two ways of adapting the calibration approach described in Section
3.7 for DMLPP: processing the additional subproblems internally or externally.

The first version trains the additional base classifiers also in dual form. Ho-
wever, we believe that this approach could decrease the advantage that DMLPP
obtains through the sparseness of the pairwise decomposition.



Efficient Multilabel Classification for Large-Scale Problems 15

Therefore, the second version considered simply trains an external (non-dual)
binary relevance classifier (as described in Section 3.4) in parallel. During clas-
sification, the predictions of the base perceptrons of the BR classifier are incor-
porated in the voting process. We will denote this algorithm as DCMLPP.

5 Computational Complexity

The notation used in this section is the following: n denotes the number of
possible classes, d the average number of relevant classes per instance in the
training set, N the number of attributes and N ′ the average number of attributes
not zero (size of the sparse representation of an instance), and m denotes the
size of the training set. For each complexity we will give an upper bound O in
Landau notation. We will indicate the runtime complexity in terms of real value
additions and multiplications ignoring operations that have to be performed by
all algorithms such as sorting or internal real value operations. Additionally, we
will present the complexities per instance as all algorithms are incrementally
trainable. We will also concentrate on the comparison between MLPP and the
implicit representation DMLPP.

The MLPP algorithm has to keep n(n−1)
2 perceptrons, each with N weights

in memory, hence we need O(n2N) memory. The DMLPP algorithm keeps the
whole training set in memory, and additionally requires for each training ex-
ample x̄ access to the weights of all class pairs P × N . Furthermore, it has to
intermediately store the resulting scores for each base perceptron during predic-
tion, hence the complexity is O(mdn+mN ′ + n2) = O(m(dn+N ′) + n2).4 We
can see that MLPP is applicable especially if the number of classes is low and
the number of examples high, whereas DMLPP is suitable when the number of
classes is high, however it does not handle huge training sets very well.

For processing one training example, O(dn) dot products have to be com-
puted by MLPP, one for each associated perceptron. Assuming that a dot pro-
duct computation costs O(N ′), we obtain a complexity of O(dnN ′) per training
example. Similarly, the DMLPP spends m dot product computations. In addi-
tion the summation of the scores costs O(dn) per training instance, leading to
O(m(dn+N ′)) operations. It is obvious that MLPP has a clear advantage over
DMLPP in terms of training time, unless n is of the order of magnitude of m
or the model is trained over several epochs, as already outlined in the previous
Section 4.

During prediction the MLPP evaluates all perceptrons, leading to O(n2N ′)
computations. The dual variant again iterates over all training examples and as-
sociated weights, hence the complexity is O(m(dn+N ′)). At this phase DMLPP

4 Note that we do not estimate d as O(n) since both values are not of the same order
of magnitude in practice. For the same reason we distinguish between N and N ′ since
particularly in text classification both values are not linked: a text document often
turns out to employ around 100 different words whereas the size of the vocabulary of
a the whole corpus can easily reach 100,000 words (although this number is normally
reduced by feature selection).



16 E. Loza Menćıa and J. Fürnkranz

Table 2. Computational complexity given in expected number of addition and
multiplication operations. n: #classes, d: avg. #labels per instance, m: #training
examples, N : #attributes, N ′: #attributes∕=0.

training time testing time memory requirement

MMP, BR O(nN ′) O(nN ′) O(nN)
MLPP O(dnN ′) O(n2N ′) O(n2N)
DMLPP O(m(dn+N ′)) O(m(dn+N ′)) O(m(dn+N ′) + n2)

benefits from the linear dependence of the number of classes in contrast to the
quadratic relationship of the MLPP. Roughly speaking the breaking point when
DMLPP is faster in prediction is approximately when the square of the num-
ber of classes is clearly greater than the number of training documents. We can
find a similar trade-off for the memory requirements with the difference that the
factor between sparse and total number of attributes becomes more important,
leading earlier to the breaking point when the sparseness is high. A compilation
of the analysis can be found in Table 2, together with the complexities of MMP
and BR. A more detailed comparison between MMP and MLPP can be found
in [12].

In summary, it can be stated that the dual form of the MLPP balances the
relationship between training and prediction time by increasing training and
decreasing prediction costs, and especially benefits from a decreased prediction
time and memory savings when the number of classes is large. Thus, this techni-
que addresses the main obstacle to applying the pairwise approach to problems
with a large number of labels.

For the complexities of the calibrated variants of MLPP and DMLPP we
can simply add the corresponding complexity of BR, at least if we consider the
externally calibrated variant of DCMLPP.

6 Experiments

For the MMP algorithm we used the IsErr loss function and the uniform penalty
function. This setting showed the best results in [3] on the RCV1 data set. The
perceptrons of the BR and MMP ensembles were initialized with random values.
We performed also tests with a multilabel variant of the multinomial Naive
Bayes (MLNB) algorithm in order to provide a baseline. Another baseline is
depicted by FC (frequency classifier) that returns always the same ranking of
classes according to the class frequency in the training set.

6.1 Ranking Quality

The results for the four algorithms and the three different classifications of EUR-
Lex are presented in Table 3. DMLPP results are omitted since they differ only



Efficient Multilabel Classification for Large-Scale Problems 17

T
a
b

le
3
.

A
ve

ra
ge

ra
n

k
in

g
lo

ss
es

fo
r

th
e

th
re

e
v
ie

w
s

o
n

th
e

d
a
ta

a
n

d
fo

r
th

e
d

iff
er

en
t

a
lg

o
ri

th
m

s.
F

o
r
Is
E
r
r

,
O
n
e
E
r
r

,
R
a
n
k
L
o
ss

an
d
M
a
r
g
in

lo
w

va
lu

es
ar

e
g
o
o
d

,
fo

r
A
v
g
P

th
e

h
ig

h
er

th
e

b
et

te
r.

1
ep

o
ch

2
ep

o
ch

s
5

ep
o
ch

s
1
0

ep
o
ch

s
F
C

M
L
N
B

B
R

M
M

P
D
C
M

L
P
P

B
R

M
M

P
D
C
M

L
P
P

B
R

M
M

P
D
C
M

L
P
P

B
R

M
M

P
D
C
M

L
P
P

subject

matterIs
E
r
r
×

1
0
0

9
9
.5

8
9
9
.4

7
6
5
.9

9
5
5
.7

0
5
1
.3

8
5
8
.7

8
5
1
.9

6
4
4
.0

7
5
3
.4

2
4
2
.7

7
3
8
.2

3
5
0
.1

9
4
0
.2

2
3
6
.3

4
O
n
e
E
r
r
×

1
0
0

7
7
.8

3
9
8
.6

8
3
5
.7

1
3
0
.5

8
2
2
.7

8
2
7
.1

3
2
7
.0

9
1
7
.2

9
2
2
.6

9
1
8
.3

8
1
3
.4

9
2
0
.6

4
1
5
.9

7
1
2
.5

5
R
a
n
k
L
o
ss

1
2
.8

9
8
.8

8
5

1
7
.3

8
2
.3

0
3

1
.0

6
4

1
3
.8

9
2
.5

2
0

0
.9

1
1

1
1
.5

8
2
.0

9
1

0
.7

9
6

9
.7

5
2

1
.8

5
0
.7

6
2

M
a
r
g
in

4
0
.1

6
2
5
.0

4
6
2
.3

1
1
0
.1

1
4
.3

1
6

5
2
.2

8
1
1
.2

2
3
.7

5
7

4
4
.7

7
9
.3

6
6

3
.3

3
7

3
8
.4

5
8
.1

7
7

3
.2

1
4

A
v
g
P

2
2
.5

7
1
1
.9

1
5
9
.3

3
7
4
.0

1
7
8
.6

8
6
6
.0

7
7
6
.9

5
8
2
.7

3
7
0
.6

9
8
2
.1

0
8
5
.6

4
7
3
.3

0
8
3
.7

5
8
6
.5

2

directory

codeIs
E
r
r
×

1
0
0

9
1
.5

1
9
9
.3

4
5
2
.8

0
4
7
.6

8
3
6
.5

5
4
6
.2

6
4
0
.0

1
3
2
.3

8
4
0
.7

6
3
3
.2

8
2
9
.2

2
3
7
.5

5
3
1
.3

9
2
8
.3

0
O
n
e
E
r
r
×

1
0
0

9
0
.1

3
9
9
.0

4
4
4
.4

0
4
0
.8

5
2
8
.2

2
3
7
.3

8
3
2
.9

9
2
4
.4

2
3
1
.4

8
2
5
.7

9
2
1
.4

1
2
8
.1

2
3
.9

2
0
.6

5
R
a
n
k
L
o
ss

1
4
.1

7
7
.4

4
6

1
9
.4

0
2
.3

8
3

0
.9

7
2

1
5
.0

9
2
.0

5
8

0
.8

6
3

1
1
.6

9
1
.8

7
4

0
.8

2
4

9
.8

7
6

1
.5

2
9

0
.8

1
5

M
a
r
g
in

6
8
.3

3
3
4
.4

4
9
6
.4

3
1
4
.1

8
5
.6

2
6

7
7
.3

2
1
2
.1

8
5
.0

4
5

6
1
.4

8
1
0
.9

5
4
.8

3
1

5
2
.9

4
8
.9

4
7

4
.7

8
5

A
v
g
P

1
8
.9

8
6
.7

1
4

5
7
.1

0
6
8
.7

0
7
7
.8

9
6
3
.6

8
7
4
.9

0
8
0
.8

7
6
8
.7

5
7
9
.8

4
8
2
.8

7
7
1
.6

1
8
1
.3

0
8
3
.3

8

EUROVOC

Is
E
r
r
×

1
0
0

9
9
.8

2
9
9
.8

2
9
9
.2

5
9
9
.1

4
9
8
.2

0
9
8
.7

0
9
8
.0

0
9
6
.7

5
9
7
.4

6
9
6
.1

4
9
7
.0

6
9
5
.1

3
O
n
e
E
r
r
×

1
0
0

9
3
.5

2
9
9
.5

8
5
3
.1

1
7
8
.9

8
3
4
.7

6
4
4
.9

3
5
6
.8

8
2
8
.0

1
3
6
.6

9
3
9
.4

6
3
3
.8

4
3
4
.9

9
R
a
n
k
L
o
ss

1
2
.9

7
2
2
.3

4
3
9
.7

8
3
.6

6
9

2
.6

9
2

3
5
.2

5
4
.0

9
1

2
.3

9
8

3
0
.9

3
4
.5

7
3

2
8
.5

9
4
.5

0
9

M
a
r
g
in

1
3
5
7
.1

0
1
6
2
3
.7

2
3
2
1
8
.1

2
5
6
2
.8

1
4
2
6
.2

8
3
0
4
0
.0

1
6
7
0
.6

5
3
8
7
.5

1
2
8
4
6
.4

7
7
5
7
.0

1
2
7
1
6
.6

3
7
4
0
.1

2
A
v
g
P

5
.5

0
4

1
.0

6
0

2
5
.5

5
2
7
.0

4
4
6
.7

9
3
0
.7

1
3
8
.4

2
5
2
.7

2
3
5
.9

5
4
7
.6

5
3
8
.3

1
5
0
.7

1

T
a
b

le
4
.

C
om

p
u

ta
ti

o
n

al
co

st
s

in
C

P
U

-t
im

e
a
n

d
m

il
li

o
n

s
o
f

re
a
l

va
lu

e
o
p

er
a
ti

o
n

s
(M

o
p

.)
su

bj
ec

t
m

a
tt

er
tr

a
in

in
g

te
st

in
g

B
R

2
9
.9

6
s

7
.0

9
s

1
,6

8
0

M
o
p
.

1
8
4

M
o
p
.

M
M

P
3
1
.9

5
s

6
.8

9
s

1
,8

0
7

M
o
p
.

1
8
4

M
o
p
.

D
M

L
P

P
3
7
2
.1

4
s

1
5
1
.9

8
s

6
,0

3
5

M
o
p
.

4
,4

7
1

M
o
p
.

M
L

P
P

6
9
.5

0
s

1
6
4
.0

4
s

3
,8

8
6

M
o
p
.

1
8
,4

2
7

M
o
p
.

d
ir

ec
to

ry
co

d
e

tr
a
in

in
g

te
st

in
g

B
R

5
0
.6

7
s

9
.6

2
s

3
,4

2
0

M
o
p
.

3
7
8

M
o
p
.

M
M

P
5
3
.3

8
s

9
.4

6
s

3
,6

1
5

M
o
p
.

3
7
8

M
o
p
.

D
M

L
P

P
3
8
3
.4

0
s

1
8
7
.6

5
s

3
,0

4
7

M
o
p
.

5
,2

4
6

M
o
p
.

M
L

P
P

1
2
0
.7

0
s

6
4
3
.3

4
s

4
,7

3
5

M
o
p
.

7
7
,6

2
9

M
o
p
.

E
U

R
O

V
O

C
tr

a
in

in
g

te
st

in
g

B
R

3
6
8
.0

2
s

5
3
.3

4
s

3
3
,0

7
4

M
o
p
.

3
,6

6
2

M
o
p
.

M
M

P
4
7
9
.1

4
s

5
2
.9

0
s

4
0
,5

4
7

M
o
p
.

3
,6

6
2

M
o
p
.

D
M

L
P

P
1
3
,0

5
8
.0

1
s

6
,7

8
0
.5

1
s

1
7
,6

4
7

M
o
p
.

1
2
3
,4

2
2

M
o
p
.

M
L

P
P

–
–

–
–



18 E. Loza Menćıa and J. Fürnkranz

slightly from those of DCMLPP due to the possible additional (one) vote won
against the artificial label. In the same way, we omit the results of MLPP since
they differ only marginally due to a different random initialization. Note however
that MLPP cannot be applied to the EUROVOC dataset due to the high memory
requirements, which was the reason for developing the dual version.

The values for IsErr, OneErr, RankLoss and AvgP are shown ×100% for
better readability, AvgP is also presented in the conventional way (with 100%
as the optimal value) and not as a loss function. The number of epochs indicates
the number of times that the online-learning algorithms were able to see the
training instances. No results are reported for the performance of DCMLPP on
EUROVOC for more than two epochs due to time restrictions. Note also that
the results differ slightly from those of previous experiments in [14, 13] due to
the modifications to the dataset presented in Section 2.

The first appreciable characteristic is that DCMLPP dominates all other
algorithms on all three views of the EUR-Lex data, regardless of the number
of epochs or losses. Often DCMLPP achieves better results than the other al-
gorithms for more epochs. Especially on the losses that directly evaluate the
ranking performance the improvement is quite pronounced and the results are
already unreachable after the first epoch.

In addition to the fact that the DMLPP outperforms the remaining algo-
rithms, it is still interesting to compare the performances of MMP and BR as
they have still the advantage of reduced computational costs and memory re-
quirements in comparison to the (dual) pairwise approach and could therefore
be more applicable for very complex data sets such as EUROVOC, which is
certainly hard to tackle for DMLPP (cf. Section 6.3).

For the subject matter and directory code, the results clearly show that the
MMP algorithm outperforms the simple one-against-all approach. Especially on
the losses that directly evaluate the ranking performance the improvement is
quite pronounced. The smallest difference can be observed in terms of OneErr,
which evaluates the top class accuracy.

The performance on the EUROVOC descriptor data set confirms the pre-
vious results. The differences in RankLoss and Margin are very pronounced.
In contrast, in terms of OneErr the MMP algorithm is worse than one-against-
all, even after ten epochs. It seems that with an increasing amount of classes,
the MMP algorithm has more difficulties to push the relevant classes to the top
such that the margin is big enough to leave all irrelevant classes below, although
the algorithm in general clearly gives the relevant classes a higher score than
the one-against-all approach. An explanation could be the dependence between
the perceptrons of the MMP. This leads to a natural normalization of the sca-
lar product, while there is no such restriction when trained independently as
done in the binary relevance algorithm. As a consequence there could be some
perceptrons that produce high maximum scores and thereby often arrive at top
positions at the overall ranking. Furthermore, MMP’s accuracy on RankLoss
and Margin seems to suffer from the increased number of classes, since the loss
increases from the first to the fifth epoch, and still in the tenth epoch the value



Efficient Multilabel Classification for Large-Scale Problems 19

Table 5. Average multilabel losses for the three views on the data and for the
label set predicting BR and DCMLPP. For HamLoss low values are good, for
the remaining measures high values near 100% are good.

1 epoch 2 epochs 5 epochs 10 epochs
BR DCMLPP BR DCMLPP BR DCMLPP BR DCMLPP

su
bj

ec
t

m
a

tt
er

HamLoss 1.196 0.715 1.004 0.641 0.823 0.574 0.757 0.540
F1 54.39 62.43 60.13 68.81 65.73 72.66 68.32 74.47
Rec 64.64 54.02 68.66 64.26 71.62 69.25 74.11 71.56
Prec 47.03 74.08 53.55 74.09 60.74 76.43 63.39 77.63

d
ir

ec
to

ry

co
d

e

HamLoss 0.416 0.231 0.355 0.198 0.289 0.179 0.265 0.169
F1 46.81 49.37 53.28 62.95 59.74 67.75 62.58 69.64
Rec 58.31 36.05 64.51 53.55 68.36 59.87 70.54 61.89
Prec 39.13 78.56 45.41 76.38 53.07 78.04 56.26 79.61

E
U

R
O

V
O

C HamLoss 0.267 0.125 0.238 0.117 0.208 0.199
F1 26.95 18.20 31.56 36.11 36.42 38.57
Rec 37.03 10.45 41.30 24.89 44.84 46.93
Prec 21.19 71.62 25.54 65.82 30.67 32.74

is higher than after only one epoch. Perhaps it is indicated to use a different loss
for MMP to optimize for problems with higher amount of classes, where IsErr
is inevitably high (cf. Section 3.5). The price to pay for the good OneErr of BR
is a decreased quality of the produced rankings, as the results for RankLoss and
Margin are even beaten by Naive Bayes, which is by far the worst algorithm
for the other losses.

It is interesting to note in this context that the frequency classifier often
achieves a better performance than Naive Bayes and even BR, especially with
increasing number of classes as with EUROVOC.

The fact that in only approximately 5% of the cases a perfect classification
is achieved and in only approx. 65% the top class is correctly predicted in EU-
ROVOC (MMP) should not lead to an underestimation of the performance of
these algorithms. Considering that with almost 4000 possible classes and only
5.3 classes per example the probability of randomly choosing a correct class is
less than one percent, namely 0.13%, the performance is indeed substantial.

6.2 Multilabel Classification Quality

Table 5 shows the several results for predicting a set of labels for each instance
rather than a ranking of labels. Obviously, only results for BR and the calibrated
version of DMLPP can be shown since MMP only produces a ranking. The first
remarkable point is that DCMLPP outperforms BR in all direct comparisons for
the overall measures HamLoss and F1 and also Prec. But interestingly, BR
always achieves a higher Rec than DCMLPP. This is due to the fact that the
calibration tends to underestimate the number of returned labels for each instan-



20 E. Loza Menćıa and J. Fürnkranz

ce, especially for a high number of total classes and when the base classifiers are
not yet that accurate such as for low numbers of epochs. A possible explanation
for this behavior is the following: when the BR classifier, that is also included
in DCMLPP or CMLPP, predicts that v classes are positive, this means for the
remaining classes that they have to obtain at least n−v votes of their maximum
of n votes in order to be predicted as positive. The probability that this happens
for a real positive class decreases with increasing n and increasing error of the
base classifiers, since it becomes more probably that at least v base classifiers
mistakenly commit a wrong decision.

The average label set size that is produced by DCMLPP demonstrates this:
for subject matter it increases from 1.65 to 2.04 (BR from 3.05 to 2.59), for
directory code from 0.59 to 1.0 (BR: 1.93 to 1.62) and for EUROVOC it increases
from small 0.77 to 2.01 after the second epoch (BR from 9.28 to 7.61 in the
tenth epoch). BR begins with an overestimation, reducing the predicted size
subsequently.

In order to allow a comparison independent of different tendencies of the
different thresholding techniques, we have computed Rec and Prec using the
correct, true size of the label set of the test examples. With this trick, we obtained
a Rec/Prec of 68.5% for BR and 79.3 for DCMLPP on the last epoch of
subject matter. Note that Rec equals always Prec since we have always the
same amount of false positives and false negatives in the confusion matrix. For
directory code the values are 64.8 and 75.0, and for EUROVOC 33.6 and 48.0
for the second epoch, 40.8 for the tenth epoch for BR. This trick can also be
applied in order to compare to MMP, which is beaten by DCMLPP but better
than BR with 76.2, 71.9, 35.2 and 47.1 respectively.

6.3 Computational Costs

In order to allow a comparison independent from external factors such as logging
activities and the run-time environment, we ignored minor operations that have
to be performed by all algorithms, such as sorting or internal operations. An
overview over the amount of real value addition and multiplication computations
is given in Table 4 (averaged over the cross validation splits, trained for one
epoch), together with the CPU-times on an AMD Dual Core Opteron 2000
MHz as additional reference information. We report only results of DMLPP,
since DCMLPP’s operations and seconds can easily be derived or estimated by
adding those of BR. Furthermore, we include the results for the non-dual MLPP,
however no values have been received for the EUROVOC problem due to the
memory space problem discussed at the end of this section.

We can observe a clear advantage of the non-pairwise approaches on the
subject matter data especially for the prediction phase, however the training costs
are in the same order of magnitude. Between MLPP and DMLPP we can see an
antisymmetric behavior: while MLPP requires only almost half of the amount of
the DMLPP operations for training, DMLPP reduces the amount of prediction
operations by a factor of more than 4. For the directory code the rate for MMP
and BR more than doubles in correspondence with the increase in number of



Efficient Multilabel Classification for Large-Scale Problems 21

Table 6. Memory requirements of the different classifiers for the EUR-Lex da-
tasets.

dataset BR/MMP DMLPP DCMLPP MLPP

subject matter 153 MB 199 MB 210 MB 541 MB
directory code 167 MB 210 MB 229 MB 1,818 MB
EUROVOC 1,145 MB 1,242 MB 1,403 MB –

classes, additionally the MLPP testing time substantially increases due to the
quadratic dependency, while DMLPP profits from the decrease in the average
number of classes per instance. It even causes less computations in the training
phase than MMP/BR. The reason for this is not only the reduced maximum
amount of weights per instance (cf. Section 5), but particularly the decreased
probability that a training example is relevant for a new training example (and
consequently that dot products and scores have to be computed) since it is less
probable that both class assignments match, i.e. that both examples have the
same pair of positive and negative classes. This becomes particularly clear if we
observe the number of non-zero weights and actually used weights during training
for each new example. The classifier for subject matter has on average 20 weights
set per instance out of 440 (= d(n−d)) in the worst case (a ratio of 4.45%), and
on average 4.97% of them are required when a new training example arrives. For
the directory code with a smaller fraction d/n 35.0 weights are stored (6.66%), of
which only 1.10% are used when updating. This also explains the relatively small
number of operations for training on EUROVOC, since from the 1,781 weights
per instance (8.45%), only 0.55% are relevant to a new training instance. In this
context, regarding the disturbing ratio between real value operations and CPU-
time for training DMLPP on EUROVOC, we believe that this is caused by a
suboptimal storage structure and processing of the weights and we are therefore
confident that it is possible to reduce the distance to MMP in terms of actual
consumed CPU-time by improving the program code. Memory swapping may
also have influenced the measurement.

Note that MMP and BR compute the same amount of dot products, the
computational costs only differ in the number of vector additions, i.e. percep-
tron updates. It is therefore interesting to observe the contrary behavior of both
algorithms when the number of classes increases: while the one-against-all algo-
rithm reduces the ratio of updated perceptrons per training example from 1.33%
to 0.34% when going from 202 to 3993 classes, the MMP algorithm more than
doubles the rate from 8.53% to 22.22%. For the MMP this behavior is natural:
with more classes the error set size increases and consequently the number of
updated perceptrons. In contrast BR receives less positive examples per base
classifier, the perceptrons quickly adopt the generally good rule to always return
a negative score, which leads to only a few binary errors and consequently to
little corrective updates. A more extensive comparison of BR and MMP can be
found in a previous work [11].



22 E. Loza Menćıa and J. Fürnkranz

The memory consumption provided by the Java Virtual Machine after trai-
ning the several classifiers for one epoch is depicted in Table 6.3. Note that these
sizes include the overhead caused by the virtual machine and the machine lear-
ning framework.5 MLPP already consumes more memory than the dual variant
for the first dataset with 200 classes. For the 400 classes of the directory code
view the algorithm requires almost 2 GB, while DMLPP is able to compress
the same information into slightly more than 200 MB. As expected and alrea-
dy mentioned in Section 6.1, MLPP is not applicable to EUROVOC. A simple
estimation based on the number of base classifiers, number of features and bytes
per float variable results in 152 GB of memory. Another remarkable fact is that
the memory requirement of DMLPP is comparable to that of the one-per-class
algorithms: for the smaller datasets we obtain an overhead of only 50 MB and
for the bigger EUROVOC view it requires only double of the memory, although
representing a quadratic number of base classifiers. On the other hand, a view
on the memory consumption of DCMLPP reveals that great part of the space
for MMP/BR and DCMLPP is caused by overhead of the JVM and the machine
learning framework (instances and class mappings in memory, extensive stati-
stics, etc.). If we compute the core memory requirements of BR by subtracting
DMLPP’s value from DMLPP’s for EUROVOC, we obtain 161 MB. In conse-
quence we obtain a general overhead of 981 MB and thus an actual memory
consumption of 261 MB for DMLPP. These values seem to be realistic after a
simple estimation.

7 Conclusions

In this paper, we introduced the EUR-Lex text collection as a promising test bed
for studies in text categorization, available at http://www.ke.tu-darmstadt.

de/resources/eurlex/. Among its many interesting characteristics (e.g., multi-
linguality), our main interest was the large number of categories, which is one
order of magnitude above other frequently studied text categorization bench-
marks, such as the Reuters-RCV1 collection.

On the EUROVOC classification task, a multilabel classification task with
4000 possible labels, the DMLPP algorithm, which decomposes the problem into
training classifiers for each pair of classes, achieves an average precision rate of
slightly more than 50%. Roughly speaking, this means that the (on average) five
relevant labels of a document will (again, on average) appear within the first 10
ranks in the relevancy ranking of the 4,000 labels. This is a very encouraging
result for a possible automated or semi-automated real-world application for
categorizing EU legal documents into EUROVOC categories.

This result was only possible by finding an efficient solution for storing the
approx. 8,000,000 binary classifiers that have to be trained by this pairwise ap-
proach. To this end, we showed that a reformulation of the pairwise decompositi-

5 We used the WEKA framework (http://www.cs.waikato.ac.nz/˜ml/weka/), but
we adapted it so that it maintains a copy of a training instance in memory only
when necessary for the incremental updating.

http://www.ke.tu-darmstadt.de/resources/eurlex/
http://www.ke.tu-darmstadt.de/resources/eurlex/
http://www.cs.waikato.ac.nz/~ml/weka/


Efficient Multilabel Classification for Large-Scale Problems 23

on approach into a dual form is capable of handling very complex problems and
can therefore compete with the approaches that use only one classifier per class.
It was demonstrated that decomposing the initial problem into smaller problems
for each pair of classes achieves higher prediction accuracy on the EUR-Lex da-
ta, since DMLPP substantially outperforms all other algorithms. This confirms
previous results of the non-dual variant on the large Reuters Corpus Volume 1
[12]. The dual form representation allows for handling a much higher number
of classes than the explicit representation, albeit with an increased dependence
on the training set size. Despite the improved ability to handle large problems,
DMLPP is still less efficient than MMP, especially for the EUROVOC data with
4000 classes. However, in our opinion the results show that DMLPP is still com-
petitive for solving large-scale problems in practice, especially considering the
trade-off between runtime and prediction performance.

As further work, we have adapted the efficient voting technique for pairwise
classification introduced in [17] to the multilabel case. This technique permits
to reduce the amount of perceptron predictions of the MLPP algorithm during
the classification of the subject matter and directory code views to a level com-
petitive to BR/MMP [15]. However, the processing of the almost 4000 classes of
EUROVOC is out of scope, making it still necessary to use techniques such as
the Dual MLPP.

Additionally, we are currently investigating hybrid variants to further reduce
the computational complexity. The idea is to use a different formulation in trai-
ning than in the prediction phase depending on the specific memory and runtime
requirements of the task. In order e.g. to combine the advantage of MLPP du-
ring training and DMLPP during predicting on the subject matter subproblem,
we could train the classifier as in the MLPP (with the difference of iterating
over the perceptrons first so that only one perceptron has to remain in memory
at a point in time) and than convert it to the dual representation by means of
the collected information during training the perceptrons. The use in training
of SVMs or more advanced perceptron variants that, similar to SVMs, try to
maximize the margin of the separating hyperplane in order to produce more
accurate models [4, 8], is also an interesting option.

Acknowledgements This work was supported by the EC 6th framework project

ALIS (Automated Legal Information System) and by the German Science Foundation

(DFG).

8 References

[1] Christopher M. Bishop. Neural Networks for Pattern Recognition. Oxford Uni-
versity Press, 1995.

[2] Klaus Brinker, Johannes Fürnkranz, and Eyke Hüllermeier. A Unified Model
for Multilabel Classification and Ranking. In Proceedings of the 17th European
Conference on Artificial Intelligence (ECAI-06), 2006.

[3] Koby Crammer and Yoram Singer. A Family of Additive Online Algorithms for
Category Ranking. Journal of Machine Learning Research, 3(6):1025–1058, 2003.



24 E. Loza Menćıa and J. Fürnkranz

[4] Koby Crammer, Ofer Dekel, Joseph Keshet, Shai Shalev-Shwartz, and Yoram Sin-
ger. Online passive-aggressive algorithms. Journal of Machine Learning Research,
7:551–585, 2006.

[5] Johannes Fürnkranz. Round Robin Classification. Journal of Machine Learning
Research, 2:721–747, 2002.

[6] Johannes Fürnkranz, Eyke Hüllermeier, Eneldo Loza Menćıa, and Klaus Brinker.
Multilabel classification via calibrated label ranking. Machine Learning, 73(2):
133–153, 2008.

[7] Chih-Wei Hsu and Chih-Jen Lin. A Comparison of Methods for Multi-class Sup-
port Vector Machines. IEEE Transactions on Neural Networks, 13(2):415–425,
2002.

[8] Roni Khardon and Gabriel Wachman. Noise tolerant variants of the perceptron
algorithm. Journal of Machine Learning Research, 8:227–248, 2007.

[9] David D. Lewis, Yiming Yang, Tony G. Rose, and Fan Li. RCV1: A New Bench-
mark Collection for Text Categorization Research. Journal of Machine Learning
Research, 5:361–397, 2004.

[10] Yaoyong Li, Hugo Zaragoza, Ralf Herbrich, John Shawe-Taylor, and Jaz S. Kan-
dola. The Perceptron Algorithm with Uneven Margins. In Machine Learning,
Proceedings of the Nineteenth International Conference (ICML 2002), pages 379–
386, 2002.

[11] Eneldo Loza Menćıa and Johannes Fürnkranz. An evaluation of efficient multilabel
classification algorithms for large-scale problems in the legal domain. In LWA
2007: Lernen - Wissen - Adaption, Workshop Proceedings, pages 126–132, 2007.

[12] Eneldo Loza Menćıa and Johannes Fürnkranz. Pairwise learning of multilabel
classifications with perceptrons. In Proceedings of the 2008 IEEE International
Joint Conference on Neural Networks (IJCNN 08), pages 2900–2907, Hong Kong,
2008.

[13] Eneldo Loza Menćıa and Johannes Fürnkranz. Efficient pairwise multilabel clas-
sification for large-scale problems in the legal domain. In Walter Daelemans,
Bart Goethals, and Katharina Morik, editors, Proceedings of the European Confe-
rence on Machine Learning and Principles and Practice of Knowledge Disocvery in
Databases (ECML-PKDD-2008), Part II, pages 50–65, Antwerp, Belgium, 2008.
Springer-Verlag.

[14] Eneldo Loza Menćıa and Johannes Fürnkranz. Efficient multilabel classification
algorithms for large-scale problems in the legal domain. In Proceedings of the
Language Resources and Evaluation Conference (LREC) Workshop on Semantic
Processing of Legal Texts, pages 23–32, Marrakech, Morocco, 2008.

[15] Eneldo Loza Menćıa, Sang-Hyeun Park, and Johannes Fürnkranz. Efficient vo-
ting prediction for pairwise multilabel classification. In Proceedings of the 11th
European Symposium on Artificial Neural Networks (ESANN-09). Springer, 2009.

[16] Arturo Montejo Ráez, Luis Alfonso Ureña López, and Ralf Steinberger. Adap-
tive selection of base classifiers in one-against-all learning for large multi-labeled
collections. In Advances in Natural Language Processing, 4th International Con-
ference (EsTAL 2004), Alicante, Spain, October 20-22, Proceedings, volume 3230
of Lecture Notes in Computer Science, pages 1–12. Springer, 2004.

[17] Sang-Hyeun Park and Johannes Fürnkranz. Efficient pairwise classification. In
J. N. Kok, J. Koronacki, R. Lopez de Mantaras, S. Matwin, D. Mladenič, and
A. Skowron, editors, Proceedings of 18th European Conference on Machine Lear-
ning (ECML-07), pages 658–665, Warsaw, Poland, 2007. Springer-Verlag.



Efficient Multilabel Classification for Large-Scale Problems 25

[18] Bruno Pouliquen, Ralf Steinberger, and Camelia Ignat. Automatic annotation of
multilingual text collections with a conceptual thesaurus. In Proceedings of the
Workshop ’Ontologies and Information Extraction’ at the Summer School ’The
Semantic Web and Language Technology - Its Potential and Practicalities’ (EU-
ROLAN’2003), 28 July - 8 August 2003, Bucharest, Romania, 2003.

[19] Frank Rosenblatt. The perceptron: a probabilistic model for information storage
and organization in the brain. Psychological Review, 65(6):386–408, 1958.

[20] Fabrizio Sebastiani. Machine learning in automated text categorization. ACM
Computing Surveys, 34(1):1–47, 2002.

[21] Yiming Yang and Jan O. Pedersen. A comparative study on feature selection
in text categorization. In ICML ’97: Proceedings of the Fourteenth International
Conference on Machine Learning, pages 412–420. Morgan Kaufmann Publishers
Inc., 1997.


	Efficient Multilabel Classification Algorithms for Large-Scale Problems in the Legal Domain
	Eneldo Loza Mencía and Johannes Fürnkranz

