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Abstract

Semi-supervised machine learning algorithms are able to handle labeled and unlabeled data. This allows
them to benefit from a bigger dataset and therefore more training examples than common supervised ap-
proaches. For this reason it seems natural to adapt semi-supervision to supervised learning approaches
such as the learning by pairwise comparison using label preferences approach, which can be further
specialized to pairwise classification. This bachelor thesis compares pairwise classification using a su-
pervised classifier with pairwise classification using a semi-supervised classifier. The used classifier is
the support vector machine (SVM), an ordinary supervised classifier. The concept of semi-supervision
is adapted to the support vector machine by using transductive inference. A matter of special interest
is the algorithm for finding label assignments of the unlabeled data in SVMlight. After giving a the-
oretical background of preference learning, pairwise classification and support vector machines, I will
introduce the transductive pairwise classification approach and compare it with the supervised pairwise
classification approach in various evaluations on multi-class datasets.
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1 Introduction

With the rapid growth of the world wide web knowledge engineering is a field gaining more and more im-
portance nowadays. Every day huge amounts of data are flowing into the web unfiltered. For processing
those huge amounts of data in a fast and useful way many approaches have been made. Big companies
like Google1 are trying to improve their information processing in their struggle over market domination.
In addition there are many Open Source2 projects which require a fast information processing like DBpe-
dia3. Furthermore, many online retrailers use recommender systems to provide their customers with the
latest products fitting to their interests [6].

To handle such big amounts of data properly, it is important to extract only the relevant information
out of it. This is done in a preprocessing step which generates the input data for machine learning
algorithms in a proper form.

It is common sense that water is wet.

Attributes: {It is common sense that water is wet .} {common 1 is 2 it 1 sense 1 that 1 water 1 wet 1}
Class label: general knowledge general knowledge

Figure 1.1: For the sentence above, a various number of representations is possible.

Figure 1.1 shows various possibilities of preprocessing the data. It is reasonable that the number of
commas might be a bad attribute for classifying a text into categories. One might notice the loss of the
ordering of the words in the second representation. For data where the ordering itself is important it
could be stored additionally with the attributes. In this thesis, the used data is already preprocessed in a
machine learning applicable way. A specification of the data is given in Section 4.1.1. The preprocessing
itself is not an issue in this thesis and will not be discussed further.

After the preprocessing, the input data consists of the attributes of one data object also called an in-
stance and an assignment to a class which is called a label 4. A whole dataset is then defined by a set of
attributes and a set of class labels and the data, which is often represented as feature vectors.

Depending on the amount of information available in the given input data, various approaches of
machine learning like classification, clustering or ranking are applicable. In common classification the
task is to find the class label which specifies a given instance the best [3]. In ranking, which is part of
preference learning, the goal is to find partial orders in datasets, similar to some given orders in the input
data [9]. Classification and ranking can be further differentiated by the number of classes in the input
data. For Example a very common subtask for classification is the multi-class classification, where the
challenge is to build a classifier that distinguishes between all given classes 5. A more detailed descrip-
tion of preference learning and ranking will be given in Chapter 2.1. In clustering, the task is to detect
clusters in a set of given data points or instances, which then can be described by a specific class [3, 2].
The datasets used in clustering are usually not labeled. So the challenge is to find new classes for nearby
instances without any further input.

When looking at these various machine learning approaches, one big difference is noticeable. Some

1 http://www.google.de/ , Date of last access: 26th October 2013
2 http://opensource.org/ , Date of last access: 26th October 2013
3 http://dbpedia.org/About , Date of last access: 26th October 2013
4 In machine learning terms labeled instances are also called examples.
5 The simple case is the binary classification task, i.e. to build a classifier for a learning problem with only two classes.
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approaches do require labeled instances as input data and some do not. So those approaches were
divided into two big classes of machine learning. Supervised learning and unsupervised learning. In su-
pervised learning, the input data consists of labeled instances. Since assigning the correct class label for
each instance (also called labeling) has to be done manually by humans, it is supervised. The input data
in unsupervised machine learning tasks is not labeled, thus without a supervisor providing examples for
the learning algorithm. So tasks like clustering are unsupervised learning tasks, while classification and
preference learning are supervised learning tasks.

Unlabeled
Data

Labeled
Data

Supervised 
Learning

Unsupervised 
Learning

Semi-supervised
Learning

Figure 1.2: Semi-supervised learning approaches use labeled and unlabeled data.

One may notice that correctly labeled data is expensive because they have to be labeled manually
and the resources are limited. But using only unlabeled data is also impracticable since unsupervised
approaches cannot solve all machine learning tasks [13] 6. So in the last two decades there were many
approaches made trying to find a way to make use of datasets with only a few labeled data points and
many unlabeled data points [13] as shown in Figure 1.2. Those approaches were categorized in a new
category called semi-supervised learning and they have shown to be very useful in some cases [13]. Since
they use both kinds of input data, they can be seen as a cost-benefit trade-off. This raises the question
whether a machine learning task using a supervised learning approach could be solved more efficiently
by using a semi-supervised learning approach.

6 One example would be filtering spam mails. Since there is a big variety of them, at least some examples have to be given.
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2 Background

2.1 Preference Learning

Learning preferences is a task which occurs in many fields. One example would be a search engine. A
search engine which recommends exactly one solution for a query is not very applicable. The solution
might be wrong or the query could be not well formulated. So the requirement of a good search engine
is to find a list of results generated by the user’s query. Furthermore, those results should be ordered by
relevance to the query, meaning that some results have a higher preference than others.
In many machine learning tasks like classification, the training dataset often consists of instances and
class labels. However, in preference learning the training dataset could also contain a finite set of pref-
erences. The goal of preference learning is now to predict a correct ranking1 using these preferences.
Depending on the input data, J. Fürnkranz and E. Hüllermeier provide a general classification of prefer-
ence learning in three big tasks: label ranking, instance ranking and object ranking [6].

2.1.1 Label Ranking

In this bachelor thesis I will focus on the task of label ranking described by J. Fürnkranz and E. Hüller-
meier [9]. The purpose of label ranking is to learn an ordering of the labels according to a given instance.
So be X a set of instances and Y a set of class labels. Generally, the goal then is to find a ranking function
fx(Y ) which provides a ranking for the set of labels Y for the given instance x.
The input data consists of three things:

• a set of n training instances { x i | i = 1,2,...,n }, typically represented by a feature vector

• a set of l class labels { yi | i = 1,2,...,l }

• preferences for each instance x i in the form y1 �xi
y2 which means, that for instance x i, y1 is

preferred against y2

Usually the given preferences are a set of pairwise preferences. As mentioned before the output data is
a ranking of the class labels for each instance x in the form yi �x . . . �x y j , so any permutation of the
set of class labels Y for each instance.

From another point of view, the task of finding an ordering of the labels can be seen as a more gen-
eralized way of classification. In classification we try to find the most relevant class label for an instance.
Now, instead of only computing the most relevant class, we find a ranking of the class labels for each
instance. Just as one can be seen as a generalized version of the other, Fürnkranz and E. Hüllermeier
describe classification to be a specialized form of label ranking [6]:

"Classification: A single class label yi is assigned to each example x l . This implicitly
defines the set of preferences {yi �x l

y j|1≤ j 6= i ≤ k}."

1 Please keep in mind that I will be using the term "ranking" the same way as J. Fürnkranz and E. Hüllermeier [6]. So
when I describe something as "ranking" this does not imply that a total order of preferences exists.
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2.1.2 Learning by Pairwise Comparison

To learn preferences or a ranking function, many strategies have been created. One way to find a
utility function is using regression learning or ordered classification, both are already well established
approaches in machine learning [6]. Some try a model-based approach by making certain assumptions
about the relation structure before initiating the training phase. One example would be the assumption
of a lexicographic order to learn lexicographic preference models like Yaman et al. described [16]. Oth-
ers try a local aggregation approach in some ways similar to the nearest neighbor algorithm [1]. The
approach, which will be introduced and used in this thesis, is to learn a binary preference relation for a
set of given class labels [6].

Learning by pairwise comparison is an approach to train preference relations provided by J. Fürnkranz
and E. Hüllermeier in [9] which will be explained in the following. The idea of decomposition of multi-
class learning problems is already very common in conventional classification. Furthermore, there are
many ways for decomposing multi-class problems into a set of pairwise problems, as all pairs, 1-vs-1
or round robin learning. Motivated by a good performance of those techniques in conventional clas-
sification, the approach was to adapt pairwise comparison to preference learning. This approach was
especially interesting for label ranking, which can be mapped to conventional classification as shown in
Section 2.1.1.

Pairwise Classification

In pairwise classification the key idea is to decompose a multi-class problem with a set of k-classes into
k(k− 1)/2 sets of two classes. So a set of class labels Y = {y1, y2, . . . , yk} is transformed into many sets
of binary problems in the form of Y1 = {y1, y2}, Y2 = {y1, y3}, . . . , Yk(k−1)/2 = {yk−1, yk},⊂ Y . After
the decomposition, for each pair of class labels Y1, . . . , Yk(k−1)/2 a separating model Mi, j, 1 ≤ i < j ≤ k
is trained. Since every set of class labels Yl now only contains two labels, the set of training instances
X used as the input for each model can be reduced to a smaller set X l ⊂ X . X l , only containing the
instances labeled with class labels of Yl . Every model Mi, j now separates the objects with label yi from
objects with label y j.

Mi, j(x) =

¨

yi if x ∈ yi

y j if x ∈ y j
(2.1)

After training the k(k − 1)/2 models, a query instance x ∈ X is given to all these models for classifi-
cation. Now every model Mi, j predicts either the class label yi or y j for the instance and the resulting
prediction is calculated by combining all outcomes. A simple way to get the overall prediction would be
a non-weighted voting. Each prediction of the models Mi, j is counted as a vote for label yi or y j. The
resulting class label would be the one with the most votes.
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Figure 2.1 (a) Building the overall classifier
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Prediction:

Class c

Overall
Prediction:

Class c

Figure 2.1 (b) Predicting new instances

Figure 2.1 Pairwise classification

Figure 2.1 (a) illustrates the building phase of an overall classifier using the pairwise classification ap-
proach. A learning problem with the classes {a, b, c} is decomposed and a separating model for each
binary learning problem is build. Figure 2.1 (b) shows how new instances are predicted. Every base
classifier predict one of the two classes they are trained for. Afterwards a combination of the predictions
is used to generate the prediction of the overall classifier. For the evaluations in this thesis a simple
voting strategy is used, i.e. the class with the most votes is predicted.

There are some reasons given by J. Fürnkranz and E. Hüllermeier [9] for choosing the pairwise clas-
sification approach against other decomposition techniques like the one-vs-all approach. In one-vs-all
learning a single model is trained for each label, which can cause very complex models. One big advan-
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tage decomposing the learning problem in pairwise classification tasks are the resulting subproblems,
which are much less computationally complex than approaches like one-vs-all. At first glance, pairwise
classification seems to have a big disadvantage due to the amount of separating models which have to be
trained compared to one-vs-all classification. Since there are k(k− 1)/2 pairs of class labels, k(k− 1)/2
models have to be trained instead of only k models like in the one-vs-all approach. But experiments
showed that the benefits from smaller training sets for each of those problems are often bigger than the
loss [8]. Furthermore, pairwise classification problems are usually much easier to solve, since the only
task is to find a model separating only two class labels. So a very simple base learner is sufficient for
building the classifier. An illustration of this benefit can be seen in Figure 2.2.
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One-vs-all classification: Even with only three
different classes a more complex classifier is
necessary.

Pairwise classification: Since every pair of
classes are learned separately, a simple sep-
arating model is sufficient.

Figure 2.2 A comparison between the one-vs-all approach and pairwise classification.

2.1.3 Performance Measures

To evaluate the performance of a label ranking approach several criteria can be used. In this thesis I am
using the following criteria2 to compare the performance of both approaches [3]. In addition, I will use
cross-validation3 to prevent an overfitting of the learner. Overfitting is a well-known machine learning
problem which often occurs with small training sets or training sets with an unimportant attribute which
is shared by every instance [3]. For Instance, by training a classifier for identifying salmons on only one
example, the classifier will be able to recognize only salmons with attributes matching the attributes of
the training example. So salmons which slightly differ in some attributes such as color of skin or shape
will not be recognized as salmons at all.
Referring to the notation of a separating model Mi, j described earlier, I will use M+,−(x) which maps 1
for an instance x classified as positive (e.g. x ∈ class a) and -1 for the same instance classified as negative
(e.g. x /∈ class a).

2 For the mathematically formal definitions see [3].
3 Cross-validation will be explained in 2.1.4

9



             

Examples

True
Positives

False
Negatives

False 
Positves

Actual
Positives

Predicted
Positives

Figure 2.3 An example of the actual positives (dashed) and the predicted positives (dotted). The true positives
(brown), false positives (green), true negatives (red) and false negatives (gray) are colored differently.

True Positive Rate

Instances which are classified correctly as positives are called true positives. The true positive rate (tp-rate)
is defined as:

tp-rate=
|{x i : M+,−(x i) = 1∧ x i ∈ X posi t iv e, i = 1, . . . , n}|

|X posi t iv e|
(2.2)

with n being the number of the training examples. So the tp-rate is calculated by the number of all
correctly classified positives divided by the number of all instances labeled as positives and gives us a
proportion of the positives which are correctly classified. In Figure 2.3 the tp-rate would be the fraction
of the brown part of the dotted ellipse.

False Positive Rate

False positives are the actual negatives classified as positives. The fp-rate is defined similar to the tp-rate:

fp-rate=
|{x i : M+,−(x i) = 1∧ x i ∈ Xnegativ e, i = 1, . . . , n}|

|Xnegativ e|
(2.3)

So the fp-rate can be interpreted as a probability that a negative is classified wrongly as a positive. In
Figure 2.3 the false negatives are only in the green part of the dashed ellipse. So the fp-rate would be
the fraction of the green part to the negative examples (everything except the dotted ellipse on the left
side).

Recall

Recall is calculated in the same way as the tp-rate and is used in context of search engines or in informa-
tion retrieval [3].
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Precision

Precision is an alternative measure and seems similar to the tp-rate at first sight, but is quite different. It
is defined as follows:

Precision=
|{x i : M+,−(x i) = 1∧ x i ∈ X posi t iv e, i = 1, . . . , n}|

|{x i : M+,−(x i) = 1, i = 1, . . . , n}|
(2.4)

A good differentiation of the tp-rate and the precision is given by P. Flach in [3]:

"[. . . ] while true positive rate is the proportion predicted positives among the actual positives, precision
represents the proportion of actual positives among the predicted positives."

The precision would be the fraction of the brown colored true positives to the sum of the predicted
positives represented by the dashed ellipse on the right side when looking at Figure 2.3.

Accuracy

Accuracy is the simplest measure for the performance and is the proportion of the correctly classified
instances. It is calculated by:

Accuracy=
|{x i : M+,−(x i) = 1∧ x i ∈ X posi t iv e, i = 1, . . . , n}|+ |{x i : M+,−(x i) =−1∧ x i ∈ Xnegativ e, i = 1, . . . , n}|

|X |
(2.5)

X is the whole set and the sum in the numerator are the correctly classified instances. In Figure 2.3 the
accuracy would be fraction of the sum of the brown part and the gray part to the whole example space.

Confusion Matrix

A confusion matrix is a table which illustrates the results of a classification. The confusion matrix holds
the results for the classes predicted as positive and negative and the actual class labels. So the sum of
one row of a confusion matrix holds the actual positive or negative instances. The sum of one column is
the number of predicted positive or negative instances. A confusion matrix can also contain more than
two classes. The correctly classified instances can be read directly from the diagonal of the matrix. An
illustration is given in Figure 2.4 (a). The correct predictions for each class is an important factor for the
performance of a classifier. But to compare the performance on different datasets it is only interesting
how good the overall performance was [2]. Therefore the microaveraged confusion matrix sums up the
results for each class grouping them into two classes: The correctly predicted positives and the correctly
predicted negatives. Figure 2.4 (b) represents the microaveraged confusion matrix to the confusion
matrix in Figure 2.4 (a). Note that the number of false positives and false negatives will be equal since
every false positive in one class is a false negative in another class.
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2.4 (a) Confusion Matrix: The sum of the
first row would be the number of instances
labeled class a. The sum of the first column
is the number of the instances, which were
predicted class a.

2.4 (b) Microaveraged Confusion Matrix: Since
the confusion matrix in 2.4 (a) contains only
two classes, the sum of correctly predicted
positives and correctly predicted negatives is
equal.

Figure 2.4 Confusion Matrices

2.1.4 Cross-validation

Since there are many factors depending on the input data and because I want to avoid overfitting, it
is reasonable to create several results on independent training and test sets. If there is enough data, it
could be separated into a training set and a test set. The training set is then used to build appropriate
models. For the evaluation, the instances of the test set are classified and the predictions are compared
to the actual class of the instances. But often there is not enough data to form appropriate test and
training sets. This should however not be an excuse to ignore the risk of overfitting a model. Therefore
cross-validation is an approach which is often applied when using small datasets [3]. In cross-validation
the dataset is divided into k-parts or folds. Then one fold is set aside for testing and the remaining k-1
parts are used as the training set. This procedure is repeated k-times, every time using another fold
as the test set. Though the training sets in cross-validation are not completely independent, it is now
possible to compute some performance measurements of the learning algorithm for k-folds. The results
for each fold i hold the performance of the classifiers trained by the remaining k− 1 folds.
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2.2 Support Vector Machines

Among many classifiers support vector machines (SVM) are a very popular one. They were first intro-
duced by V. Vapnik [14]. Since then several actual implementations of support vector machines were
programmed. For the experiments of this thesis I am using an adaption of SVMlight, a SVM implementa-
tion by T. Joachims [10] written in C. In the following I will give an introduction into the theory behind
support vector machines. Since I use SVMs as base classifiers of the k(k − 1)/2 binary classification
problems, I will only have a look at SVMs for classification tasks with two classes. I will be referring to
the classification task of finding separating planes for the classes {−1,+1} for a better readability. Please
note that in a multi-class classification task with the classes {a, b, c}, the goal would be to find separating
hyperplanes for the subtasks {a, b}, {a, c} and {b, c}. Each of these subtasks can be mapped to the task
of predicting if the instance x i belongs to class a (+1) or not (−1). For the subtask {a, b} a separating
model M+,− will predict the following:

M+,−(x i) =

¨

+ 1 if x i ∈ a

−1 if x i /∈ a
(2.6)

Note that x i /∈ a implies x i ∈ b for the subtask {a, b}.

2.2.1 The Optimal Hyperplane
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some of the hyperplanes are suddenly no
longer separating hyperplanes for all exam-
ples.

Figure 2.5 Separating Hyperplanes

The key idea of the support vector machine is to find an optimal separating hyperplane for two finite
subsets of a vector x [15]. So for n data points {(x i, yi)}ni=1 we have x i ∈ Rd where d is any dimension
and yi ∈ {−1,+1}. Basically, when the two subsets are separable, there is an infinite number of sepa-
rating hyperplanes (Figure 2.5 (a) ) and each of them are represented by a function y(x) = wT x +w0.4

4 A hyperplane can always be described by a function y(x) with the data point x and the normal vector of the hyperplane
w.
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So each function could be a proper classifier for yi trained on the vector x and would be applicable for
x . But what if we add some new points z with the same yi ∈ {−1,+1} as examples? Depending on the
chosen classifier, the results could be good or bad (Figure 2.5 (b) ). So the task is to find an optimal
separating hyperplane which gives us the best results for any other point z without having any actual
knowledge about it.
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Figure 2.6 The Optimal Hyperplane

To find the optimal separating hyperplane, V. Vapnik defines it by using the margin. The margin
describes the distance between a decision boundary and the nearest example of a class [3]. Applying the
previous description of a hyperplane, the margin can be described using following equation to calculate
the distance for any point x i to the hyperplane:

y(x i)
‖w‖

=
wT x i + b

‖w‖
(2.7)

To find the optimal hyperplane, we have to find the nearest examples x i which generate the maximal
margin. For an easier computation we can now scale the distance y(x i) of the nearest examples to 1.
Now the margin5 is described by 1

‖w‖ and to maximize it, we have to minimize ‖w‖. V. Vapnik defines
the optimal hyperplane to be the hyperplane with the maximal margin for both classes [15] (Figure
2.6 ). Further he shows that the optimal hyperplane is unique and therefore can be formulated as an
optimization problem.

2.2.2 The Optimization Problem

The goal now is to find an effective method for constructing the optimal hyperplane as defined in the
previous section. Therefore V. Vapnik introduced an equivalent formulation of the optimization problem
[15]:
5 Note that we divide the distance of the nearest examples x i by the length of the normal vector (‖w‖) to normalize the

results.
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"Find a pair consisting of a vector ψ0 and a constant (threshold) b0 such that they satisfy the constraints

(x i ∗ψ0) + b0 ≥ 1, i f yi = 1,

(x j ∗ψ0) + b0 ≤−1, i f y j =−1,
(2.8)

and the vector ψ0 has the smallest norm

|ψ|2 = (ψ ∗ψ).” (2.9)

In other words, we find a vector ψ0 and a constant b0 which are used to construct hyperplanes. One
hyperplane which describes the upper bound -1 for each example with class yi = -1 and another hyper-
plane describing the lower bound +1 for each example with class y j = +1. Using those two hyperplanes
we calculate our ψ0 which minimizes the second equation |ψ|2 = (ψ ∗ψ). 6

Furthermore, we can ensure that the margin is 1
‖w‖ since we choose to scale the distance of all nearest

examples to 1 and thereby we can say |y(x i)| ≥ 1 for all examples. We can describe the problem of
maximizing the margin in a common quadratic optimization problem [15, 3]:

Φ(w) =minw,b
1
2
‖w‖2

subject to yi(wT x i + b)− 1≥ 0
(2.10)

2.2.3 Solving the Optimization Problem

We can solve this quadratic optimization problem using the Lagrange function [15]:

L(w, b,α) =
1

2
‖w‖2−

n
∑

i=1

αi(yi(w
T x i + b)− 1) (2.11)

Now a saddle point has to be found for L(w, b, α). Therefore we derive (2.11) for both variables w and
b and get:

∂ L(w,b,α)
∂ w

= w−
∑n

i=1 yiαi x i = 0⇔ w =
∑n

i=1 yiαi x i

∂ L(w,b,α)
∂ b

=
∑n

i=1 yiαi = 0
(2.12)

Using (2.12) we can reformulate (2.11):

L(w, b,α) =
1

2
‖w‖2−

n
∑

i=1

αi(yi(w
T x i + b)− 1)

=
1

2
‖w‖2−

n
∑

i=1

αi yiw
T x i −

n
∑

i=1

αi yi b+
n
∑

i=1

αi

=(2.18)
1

2

n
∑

i=1

yiαi x
T
i

n
∑

j=1

y jα j x j −
n
∑

i=1

αi yi

n
∑

j=1

y jα j x
T
j x i − 0+

n
∑

i=1

αi

= −
1

2

n
∑

i=1

yiαi x i

n
∑

j=1

y jα j x j +
n
∑

i=1

αi

=
n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

yi y jαiα j x
T
i x j (2.13)

6 Be aware that the vector ψ is the same as the vector w used in (2.7), the normal vector.
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To maximize the margin, we now have to find all coefficients α0
i with αi ≥ 0, i=1, . . . , n and

∑n
i=1 yiαi =

0.7 V. Vapnik concludes that the values of the α0
i which solve the optimization problem correspond to the

vectors x i satisfying the following equation [15]:

yi((x
T
i w0) + b0) = 1 (2.14)

Those vectors x i are called support vectors. One might notice that the equation above describes all the
points with a distance of 1 from the optimal hyperplane and we chose to scale the distance of the closest
points of the optimal hyperplane to 1. Going further, we can reformulate (2.12) for wo and we get:

w0 =
∑n

i=1 yiα
0
i x i

Combined with (2.14), V. Vapnik provides following optimal hyperplane [15]:

f (x ,α0) =
n
∑

i=1

yiα
0
i (x

T
s x) + b0 (2.15)

with x T
s x being the inner product of the two vectors.

One important property of the described support vector approach is that there are only a few sup-
port vectors needed, e.g. in R2 the optimal hyperplane is already defined by three data points (Figure
2.7).
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Figure 2.7 Support Vector Approach

2.2.4 Non-linear separable Datasets

The case described above is only applicable for linear separable datasets. But what if the data is non-
linear separable? One solution could be the mapping of the data to a more fitting space, in which the
data becomes linear separable. This is also called the kernel trick [3]. The basic idea is to apply a kernel

7 This can also be rewritten as: αT y = 0, with α and y representing all α1, . . . ,αn and y1, . . . , yn as a vector. In some
literature this is also called the equation constraint [10].
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function on the data which transforms it into a higher dimension. Since I am only using the linear ’ker-
nel’, i.e. the basic approach without any mapping on other spaces, the kernel trick and kernel functions
will not be explained.

Another solution for non-linear separable data is to allow a certain error rate. In many learning prob-
lems it is often not very feasible to build a classifier which separates the training data perfectly, since this
would lead to overfitting. So if allowing errors for some examples lead to more general solutions, it is
very desirable to do this. Therefore V. Vapnik provides a soft margin separating hyperplane [15].
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The slack variables allow a certain error for some examples, which leads to a wider margin.

Figure 2.8 The soft margin SVM

He introduces the so-called slack variables ξi ≥ 0 for each instance x i and reformulates the optimiza-
tion problem for finding a generalized optimal hyperplane [3, 15]:

Φ(w,ξ) =minw,b,ξ
1
2
|w|2+ C(
∑n

i=1 ξi) (2.16)

The goal is to minimize (2.16) by finding vector w under the following constraints:

yi(wT x i + b) ≥ 1− ξi
i = 1, . . . , n
ξi ≥ 0

When looking at those constraints it becomes clear that the ξi are variables to correct misclassified
examples. The reformulated constraints allow the instance x i to be inside the margin or for ξi > 1
even to be on the wrong side of the separating hyperplane. An illustration is given in Figure 2.8 .
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After applying the Lagrangian, this leads to the same equation as in the separable case which has to be
maximized:

L(w, b,α) =
n
∑

i=1

αi −
1

2

n
∑

i=1

n
∑

j=1

yi y jαiα j x
T
i x j (2.17)

The only things which differ are the constraints 0 ≤ αi ≤ C , i = 1, . . . , n and
∑n

i=1αi yi = 0. Compared
to (2.12) the constraint to αi is not only 0 ≤ αi, but 0 ≤ αi ≤ C . C is referred as the optimal value
parameter and it controls how much influence the slack variables have, since it sets a boundary for ξi in
equation (2.16) and for αi in the constraints. For big C the ξi will have a bigger influence and therefore
allow only a small margin and for small C the influence of ξi will be smaller, resulting in a wider margin.
Combined with the kernel trick, this also affects the number of support vectors which are necessary to
build the support vector machine, since a wider margin will tolerate more misclassification but will also
need less support vectors due to a smaller dimension space for the data.
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3 Semi-supervised Approach
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3.1 (a) Inductive approach: For each set of binary
classification tasks a separating model is built with
maximum margin.

3.1 (b) Transductive approach: All the instances are
used in every binary classification task for building
the separating model.

Figure 3.1 Inductive and Transductive Pairwise Classification

With the increasing popularity of semi-supervised learning approaches [13] it is a natural conclusion
to adapt well-established supervised learning algorithms to semi-supervised learning. Especially the abil-
ity to use unlabeled data, which is one important property of semi-supervised learning algorithms, was a
big motivator. Figure 3.1 describes a scenario in which a overall classifier trained on the semi-supervised
approach might perform better than in the common supervised approach.

In the previous chapter I gave some basics about learning by pairwise comparison and introduced support
vector machines, which will be used as base classifier. In this thesis I will compare the performance of
overall classifiers using the learning by pairwise comparison framework once with common SVMs and
once with transductive SVMs as base classifiers. For this task I will give a brief explanation of the theory
behind transductive support vector machines (TSVM), then I will explain the implementation of TSVM
in SVMlight. Finally, I will introduce the new semi-supervised approach called transductive pairwise
classification and describe the changes applied to the supervised approach.
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3.1 Transductive Support Vector Machines

V. Vapnik introduces a new type of inference in addition to inductive inference, the transductive inference
in [15]. In inductive inference described in the previous chapter, the training data is fully labeled. The
goal is then to train a classifier using the given data and evaluate it for other examples to classify them.
The key idea of transductive inference is to do the training of a classifier and the evaluation of unlabeled
instances in a single step.
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3.2 (a) Inductive SVM: Only positive and negative
examples are considered by the SVM.

3.2 (b) Transductive SVM: All the unlabeled examples
are considered. It is then attempted to classify them.

Figure 3.2 Inductive and Transductive SVMs

Therefore V. Vapnik describes a support vector method using transductive inference. The resulting
SVMs are called transductive support vector machines, or just TSVMs. Adapting the idea of trans-
ductive inference to SVMs, V. Vapnik suggests to additionally consider the test set with k-instances
x∗1, . . . , x∗k along with the training set (y1, x1), . . . , (yn, xn) where y ∈ {−1,1}. The goal is then to
find a good prediction y∗1 , . . . , y∗k for the test set with the maximal separating margin for the whole
dataset (y1, x1), . . . , (yn, xn), (y∗1 , x∗1), . . . , (y∗k , xk∗).

Similar to the inductive case, this can be formulated the same way as the optimization problem for the
linearly separable case:

Φ(w0(y∗1 , . . . , y∗k)) = minw∗0
1
2
‖w∗‖2 (3.1)

s.t.yi[(x T
i w∗) + b]≥ 1, i = 1, . . . , n

y∗j [(x
∗T
i w∗) + b]≥ 1, i = 1, . . . , k

(3.2)

and the more general, non-separable case:

Φ(w0(y∗1 , . . . , y∗k)) = minw∗0,b,ξ,ξ∗[
1
2
‖w∗‖2+ C
∑n

i=1 ξi + C∗
∑k

j=1 ξ
∗
j] (3.3)
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s.t.yi[(x T
i w∗) + b]≥ 1− ξi, ξi ≥ 0, i = 1, . . . , n

y∗j [(x
∗T
i w∗) + b]≥ 1− ξ∗j , ξ∗j ≥ 0, j = 1, . . . , k

(3.4)

Note that w is the normal vector like in the previous chapter. An illustration of the transductive support
vector approach is given in Figure 3.2. When trying to use transduction, a new challenge occurs: finding
the assignments (y1, . . . , yk) with yi ∈ {−1,1}, i = 1, . . . , k for (x1, . . . , xk) which will generate the best
results. For a small set of test examples this problem can be solved by simply trying every combination
of assignments [15]. But for larger test sets this approach becomes unusable. Therefore T. Joachims
provides a solution which I will explain in the following section.

3.2 Transduction in SVMlight

In this thesis I use SVMlight [10], an implementation of support vector machines by T. Joachims. He
solves the problem of finding the best assignments for (y∗1 , . . . , y∗k) by using a local search algorithm
[11]. For this the examples x∗i , x∗j of the test data are classified with labels y∗i , y∗l using the prediction of
an inductive SVM trained with the labeled data, generating the outputs (x∗i , y∗i ), (x

∗
j , y∗j ). Then a SVM

is trained using those assignments. Afterwards he switches the labeling of two predicted test examples
and retrains the classifier with the data (x∗i , y∗j ), (x

∗
j , y∗i ), whereby that one example pair is chosen which

minimizes equation (3.3). This is done iteratively until the optimal assignment of (y∗1 , . . . , y∗k) is found.
The algorithm is shown in Figure 3.3.

Algorithm TSVM:

Input: training examples ((x1, y1), . . . , (xn, yn))
test examples (x∗1, . . . , x∗k)

Parameters: C , C∗

num+
Output: y∗1 , . . . , y∗k

(w, b,ξ, _) := solve_svm_qp([(x1, y1) . . . (xn, yn)], [], C , 0, 0);
C∗− := 10−5;
C∗+ := 10−5 · num+

k−num+
;

while((C∗− < C∗)‖(C∗+ < C∗)){
(w, b,ξ,ξ∗) := solve_svm_qp([(x1, y1) . . . (xn, yn)], [(x∗1, y∗1) . . . (x∗k, y∗k)], C , C∗−, C∗+);
while(∃m, l : (y∗m ∗ y∗l < 0)&(ξ∗m > 0)&(ξ∗l > 0)&(ξ∗m+ ξ

∗
l > 2)){

y∗m :=−y∗m;
y∗l :=−y∗l ;
(w, b,ξ,ξ∗) := solve_svm_qp([(x1, y1) . . . (xn, yn)], [(x∗1, y∗1) . . . (x∗k, y∗k)], C , C∗−, C∗+);

}
C∗− :=min(C∗− · 2, C∗);
C∗+ :=min(C∗+ · 2, C∗);

}
return(y∗1 , . . . , y∗k);

Figure 3.3 The TSVM algorithm

The function solve_svm_qp solves the following optimization problem [10]:
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Φ(w0(y∗1 , . . . , y∗k)) = minw∗0,ξ,x i∗[
1
2
‖w∗‖2+ C
∑n

i=1 ξi + C∗−
∑k

j:y∗j =−1 ξ
∗
j + C∗+
∑k

j:y∗j =1 ξ
∗
j] (3.5)

with the constraints (3.4). C∗− and C∗+ are variables introduced by Morik et. al. [12]. By splitting C∗

in two parts for the negatives and positives, C∗− and C∗+ allow putting more weight on one part or the
other. The reason for this is the fact that in text classification there are often more negative than positive
examples. So when weighted equally using only one C∗, the negatives will have a bigger influence on
the margin than the positives. Since we already have just a few positives this might cause the SVM to
overfit on the negative examples, misclassifying the positive examples. So the intention is to allow the
SVM a wider margin on the negatives using a small C∗− and still recognizes the positives quite well.

In the first step of the algorithm w, b,ξ are found using the inductive approach, since with C∗− = 0
and C∗+ = 0, (3.5) resolves to (2.16). In the next step C∗− and C∗+ are initialized with some small values.
Num+ is a user-defined value and sets the number of test examples which are initially classified as pos-
itives. Those examples are picked by the result of wT x + b. Since num+

k−num+
= 1

k
num+

−1
and 0 < num+ < k

the fraction will result in a value x > 0.
There are several possible cases for the value of the fraction :

• A very simple case is when num+ =
k
2
. In that case num+

k−num+
= 1 and therefore C∗− and C∗+ will be

equal. So when solving (3.5), the ξ∗j for the positives and negatives will be weighted the same.

• Another case is when num+ <
k
2
. In that case num+

k−num+
< 1 and so the initial C∗+ will be smaller and

the slack-variables for the positive labeled instances will have less weight.

• In the next case the num+ >
k
2
. So num+

k−num+
> 1 and the positive slack-variables will be weighted

more than the negatives. Also note that in this case the algorithm will terminate faster because C∗+
will reach C∗ faster.

Num+ = 0 and num+ = k are special cases and internally handled the following way:

• Num+ = 0: The cost-ratio for the positive examples num+
k−num+

is set to 1. Therefore positive and
negative examples are weighted equally. But in the initial assignment none of the examples are
assigned to +1 and there are no y∗i = 1 . Therefore the only positives are the examples already
labeled positive.

• Num+ = k: The cost-ratio for the positive examples num+
k−num+

is set to 0. All unlabeled examples

are initially classified as positives, but any slack-variables ξ∗ will be ignored, since C∗+ equals zero.
Also none of the unlabeled examples will be assigned to −1.

Please note that setting num+ = 0 and num+ = k will resolve in an approach similar to one-vs-all since
the TSVM will try to learn a separating model for exactly all labeled positives or all labeled negatives.

After choosing C , C∗− and C∗+, (w, b,ξ,ξ∗) are calculated for the initial assignments of (y∗1 , . . . , y∗k)
(first loop), a positive labeled example is switched with a negative labeled example and new values for
(w, b,ξ,ξ∗) are calculated (second loop). The first condition in the second loop ensures that y∗m and y∗l
have different class labels. The other conditions (ξ∗m > 0), (ξ∗l > 0) and (ξ∗m + ξ

∗
l < 2) ensure that the

resulting assignment for y∗1 , . . . , y∗k is the best possible one. This procedure is done with increasing C∗−
and C∗+ in every step until the user-defined value C∗ is reached.

So basically we start with a very big margin due to small C∗− and C∗+ and calculate the best possible
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assignment of y∗i . Afterwards, we reduce the margin and optimize again for some examples which were
ignored before due to smaller C∗−, C∗+. A proof for the convergence of the algorithm is given in [11].

o

+

+

+

+

+

+
+

+
-

-
-

-
-

-

-
-

o
o
o
o

o

o

o o
o

o o

o o

o
o

o

o

+

+

+

+

+

+
+

+
-

-
-

-
-

-

-
-

o
o
o
o

o

o

o o
o

o o

o o

o

(1) In the first step an inductive SVM is trained for
the labeled examples.

(2) The examples that deliver the best results for
wT x + b are assigned to +1 (here num+ = 5).
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(3) A new inductive SVM is trained with the initial
assignments.

(4) A positive and a negative example are switched,
as long as the resulting SVM has a wider margin than
before.

Figure 3.4 A graphical example for the TSVM
Figure 3.4 illustrates the first steps of the TSVM algorithm. In the initial phase the inductive SVM is

built using only the positive (red colored "+") and negative (green colored "-") examples (1). Num+
is set to 5 so the unlabeled examples ("O") which are classified as the "most" positive by the SVM are
assigned as positives (red colored "O"). All other examples are assigned to the negatives (2). Now the
SVM is retrained with the initial assignments of the unlabeled examples (3). Then two examples with
different labels are switched and a new SVM is trained, if the resulting margin is bigger than before (4).

One important property of the TSVMlight algorithm is that the resulting classifier is not class-symmetric.
V.Vapnik showed that the inductive SVM always generates the same solution with the best separating
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margin for a binary classification task (a,b) regardless of taking all examples of class a as positives or
the examples of class b as positives [15]. Such a classifier is called class-symmetric for any binary clas-
sification task (a,b). Since the TSVMlight algorithm uses num+ as the number of instances classified as
positives in the initial step, the resulting classifier for a classification task (a,b) might be different from
the classifier for the classification task (b,a).
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(1) TSVM for the task (+, -) with num+ = 4. (2) TSVM for the task (-, +) with num+ = 4.

Figure 3.4 Non-symmetry of the TSVMlight

As Figure 3.4 shows, the resulting classifier for the task (+, -) is different from the classifier for the
task (-, +). So this fact has to be considered for the transductive pairwise classification approach.

3.3 Transductive Pairwise Classification

Now using TSVMs the question is, if and how much better the overall classifier will perform. While
in SVMs good results are strongly depending on optimizing the parameter C [3], in TSVMlight there is
another parameter p which has big influence on the performance of the classifier. p is the positive ratio
for the transduction, i.e. the ratio of the unlabeled examples which will be labeled as positive examples
during the training phase. p · n with n being the number of examples is equal to the parameter num+
described in the previous section.

The transductive pairwise classification approach is quite similar to the learning by pairwise compari-
son approach introduced by J.Fürnkranz and E.Hüllermeier [9, 6]. At the beginning a learning problem
with k-class labels is divided into k(k − 1)/2 learning problems with only two class labels each. Then
a separating model is built for each of the learning problems. Afterwards the classification of the test
examples is done by simple voting like in the supervised approach.
The difference between the supervised approach and the semi-supervised approach is the model building
phase for each pair of class labels. In the supervised approach the separating model was built using only
the examples of the two class labels [9]. Those examples were used to train a support vector machine
generating the optimal separating hyperplane for the two classes. Since transductive support vector ma-
chines are able to build an optimal separating hyperplane with labeled and unlabeled data, I will use all
available data as input data for the TSVM. Note that especially all data with other class labels than the
two classes which are separated will be used additionally ignoring their class labels and therefore treated
as ((y∗1 , x∗1), . . . , (y∗k , x∗k)). An illustration of the pairwise classification example using the transductive or

24



semi-supervised approach is given in Figure 3.6.
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Figure 3.6 Transductive Pairwise Classification

As it was shown in the section before, the TSVMlight is not class-symmetric. Therefore two separating
models will be trained for every binary classification task (a, b), one for (a, b) and one for (b, a). Inter-
nally, the decomposition for the TSVM will be done by a double round robin decomposition. By doing
so, the two separating models might predict different classes for new instances, thereby nullifying the
votes of each other, or predict the same class generating a stronger tendency for it. It is also important
to realize that the semi-supervised approach nullifies the positive effect of the much smaller training sets
which resulted by looking at only two classes, since now all available data is used instead of a small
training set. So the main question I am trying to solve is if there is a significant improvement of the
overall classifier when using transductive support vector machines as base classifier. Depending on the
classification task, one might accept a longer training phase for getting better results.

25



4 Experiments

The goal of the experiments is to compare the performance of the semi-supervised approach with the
common supervised approach. The experiments can be divided roughly into three parts. In the first part
I will compare the two approaches without any optimization on the SVM. In the second part I will focus
on measuring the influence of an additional parameter in the TSVM affecting num+ described in the
previous chapter. In the last part I will optimize the results for both approaches using a cross-validation
to find the best input parameters for the SVM and the TSVM and compare them.

4.1 Used Datasets and Set-up

To get proper results, I used several frameworks written for machine learning tasks. Furthermore, I used
datasets which are often used to evaluate machine learning algorithms and are widespread for a better
comparison of the results with other approaches.

4.1.1 Datasets

The datasets which I am using are some of the multi-class text classification datasets provided by George
Forman [4]. A description of the used datasets is given in Figure 4.1 [4].

Dataset Examples Attributes Classes Dataset Examples Attributes Classes
OHSUMED/oh0 1003 3182 10 TREC/fbis 2463 2000 17
OHSUMED/oh5 918 3012 10 TREC/tr11 414 6429 9
OHSUMED/oh10 1050 3238 10 TREC/tr12 313 5804 8
OHSUMED/oh15 913 3100 10 TREC/tr21 336 7902 6
WebACE/wap 1560 8460 20 TREC/tr23 204 5832 6
TREC/tr31 927 10128 7

Figure 4.1 Description of benchmark datasets

Since the datasets contain many attributes, each instance is described as a sparse feature vector. Most
of these vectors are labeled with the correct class label and used for the training and test phase. An
example of such a dataset can be seen in Figure 4.2. As I use weka as an underlying framework, the data
files are in a .arff format1.

1 ARFF stands for Attribute Relative File Format [7].
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@RELATION iris

@ATTRIBUTE sepallength REAL
@ATTRIBUTE sepalwidth REAL
@ATTRIBUTE petallength REAL
@ATTRIBUTE petalwidth REAL
@ATTRIBUTE class { Iris-setosa,Iris-versicolor,Iris-virginica }

@DATA
5.1,3.5,1.4,0.2,Iris-setosa
4.9,3.0,1.4,0.2,Iris-setosa
4.7,3.2,1.3,0.2,Iris-setosa
4.6,3.1,1.5,0.2,Iris-setosa
. . .
The first part is the header containing information about the data which is going to follow. The actual data begins
with the second part (@DATA). Each line is representing a feature vector assigned to a class.

Figure 4.2 An example for an Arff file

4.1.2 Frameworks

To get proper results of the experiments I used several machine learning frameworks which were devel-
oped over the time and have proven as stable. First I will give a brief description of the used frameworks
and then a scheme of their interaction.

Weka

Weka is a very widespread machine learning environment developed by the Machine Learning Group at
the University of Waikato [7]. It offers various machine learning algorithms and also a proper data format
and learning environment, which is used in lpcforsos. For more information about the framework, please
read the documentation [7]. The used weka version in this bachelor thesis is a modified version of 3.6.9,
which is the latest stable version released.

SVMlight

As base classifier I am using SVMlight, an implementation of support vector machines written in C by
T.Joachims [10]. It already provides various functionalities like the transductive learning mode, which
allows the SVM to use transductive inference described earlier in Chapter 3.2. The relevant settings for
the SVMlight classifier will be named and explained in Section 4.1.4.

LPCforSOS

Learning by Pairwise Comparison for Structured Output Spaces2 is a machine learning framework devel-
oped by the Knowledge Engineering Group at Technische Universität Darmstadt. It is an implementation
of the learning by pairwise comparison approach described by J.Fürnkranz and E.Hüllermeier [9]. The
user can choose between two base classifier environments, the seco environment and the weka envi-
ronment. It allows a classification based on pairwise comparison using classifier functions provided by
weka. It has a built in cross-validation of the overall classifier to avoid overfitting. The results for each
fold are presented in a confusion matrix and a micro-averaged confusion matrix. Further it calculates
the performance measures described in Chapter 2.1.3.
2 http://sourceforge.net/projects/lpcforsos/ , Date of last access: 26th October 2013
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Further Frameworks

Since I am using SVMlight which is written in C, I had to adapt it into the base learning environment
weka. Weka is written in Java, so therefore I am using a Java Native Interface adaption of SVMlight called
JniSVMlight provided by Martin Theobald3.

For the adaption into weka 3.6.9 I used the wrapper class JniSVMLight4Weka. Furthermore, I am us-
ing the CVParameterSelectionMod class to optimize the input parameters of the support vector machines
in the final experiments in Section 4.4. Both, the JniSVMLight4Weka wrapper and the CVParameterSelec-
tionMod class were written and provided by the Knowledge Engineering Group of TU Darmstadt.

4.1.3 Composition of the Frameworks

As, in this thesis, various frameworks were used together, I will give a brief overview of how the individ-
ual parts work together.

DatasetDataset lpcforsoslpcforsos

JniSVMLight4WekaJniSVMLight4Weka
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Figure 4.3 Composition of the frameworks

Figure 4.3 gives an illustration of the hierarchy of the single parts. Lpcforsos is the overlaying machine
learning framework and does the main work. It decomposes the input data and evaluates the per-
formance of the overall classifier by doing a k-fold cross-validation. Weka provides the base-learning
environment as an underlying framework allowing access to the base classifiers which are used. For the
base classifier SVMlight is used, with JniSVMLight4Weka and JniSVMlight for adapting it to weka.

For the experiments the input dataset is divided into k-folds in the initial step. Then each fold is
further divided in c(c − 1)/2 datasets with selected instances of a binary classification task. The de-
composed datasets are then passed to weka which trains the SVMLight classifier for the c(c − 1)/2

3 http://adrem.ua.ac.be/~tmartin/ , Date of last access: 26th October 2013
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datasets. After building the base classifiers, each of the k-folds is used as a test set for the remain-
ing classifiers as described in Section 2.1.4. The final prediction for one instance is done by simple
majority voting as described in Chapter 2.1. In the last step the predictions for each fold are evaluated
and the overall performance is calculated. A scheme of one evaluation run describing the supervised
approach is given in Figure 4.4. The changes I made for the semi-supervised approach affect the decom-
position step. The decomposed datasets for each fold now also includes all instances without the two
class labels of the binary classification problem. Those instances are included unlabeled and passed to
the TSVM.

DatasetDataset

lpcforsoslpcforsos

ResultsResults

wekaweka

SVMLightSVMLight

Base

Classifier

Testdata

Evaluate
Predictions

Classify
By Voting

Prediction

Per Instance

Decompose
Dataset   Decomposed

Datasets Train Base
Classifier

Classify
Testdata

Figure 4.4 Scheme for one evaluation

4.1.4 Set-up

For the evaluation of the new approach I am using the following set-ups for the Learning by Pairwise
Comparison framework and the support vector machine.

LPCforSOS

All relevant input options for the learning by pairwise comparison framework are taken from a xml file.
The input options used in this thesis for the first two parts of the experiments are listed in the following
config.xml file (Figure 4.5):
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1 <?xml version=" 1.0 " encoding="UTF−8" standalone=" yes " ?>
2 <con f i gu ra t i on>
3 <decompositionType>PairwiseDecomposer</ decompositionType>
4 <aggregat ionType>Voting</ aggregat ionType>
5 <datase t>d a t a s e t s /oh0 . a r f f</ da ta se t>
6 <numberOfFolds>10</numberOfFolds>
7 <seedForEva luat ion>2</ seedForEva luat ion>
8 <baseLearnerEnvironment>WekaBaseLearner</ baseLearnerEnvironment>
9 <cla s s i f i e rName>weka . c l a s s i f i e r s . f unc t i on s . JniSVMLight4Weka</ c l a s s i f i e rName>

10 <c l a s s i f i e r O p t i o n s>−tm f a l s e −c 0.0 − j 1.0 −co s t 0.0 −p 0.5 −w 0.1 −e_ab 1.0E−15 −
e_eq 0.0 −e_di 0.1 −m 40 −maxiter 100 −optprec 0.0 −b t rue − i f a l s e −t 0 −z 1 −d
3 −g 1.0 −r 0.0 −s 1.0 −n t rue −ni 0 −v 0</ c l a s s i f i e r O p t i o n s>

11 <transduc t ion>f a l s e</ t ransduc t ion>
12 <i s S y m m e t r i c C l a s s i f i e r>true</ i s S y m m e t r i c C l a s s i f i e r>
13 <dec ima lP rec i s i on>4</ dec ima lP rec i s i on>
14 </ con f i gu ra t i on>

Figure 4.5 An example for the config.xml file

As specified in Chapter 3.3, a learning problem with k-classes will be separated into k(k−1)/2 binary
learning problems. The PairwiseDecomposer additionally gives the possibility to choose among several
decomposition options to provide the input data for the classifier in a proper format. In this thesis the
used classes are MulticlassDecomposition and MulticlassTransDecomposition which are both classes written
especially for decomposing datasets with more than two classes. Furthermore, the MulticlassTransDecom-
position class provides the instances not related to a binary classification problem unlabeled for the base
classifier. To use this class the option transduction has to be set true. The decomposition is done using
the round robin decomposition for multi-class learning problems provided by J. Fürnkranz [5]. Other
options will be explained as follows:

• aggregationType: The method the overall classifier is using in order to classify the test examples. In
this thesis the used option is always simple voting of each base classifier.

• dataset: The used dataset for the evaluation.

• numberOfFolds: The number of folds which will be used for evaluation. For the experiments in this
thesis, the value was set to 104.

• seedForEvaluation: The seed which is used for the random number generator. For more information
see java.util.Random.class5.

• baseLearnerEnvironment: The underlying framework for the base learner. SeCo and weka are pos-
sible. The used base learner environment for the experiments is weka.

• classiferName: The name of the classifier which is used. Since I only use SVMlight as a base classifier,
it is always set to JniSVMLight4Weka.

• classiferOptions: The user-defined options, which are relevant for the classifier defined in classifier-
Name. The options for JniSVMLight4Weka will be explained in the next section.

• transduction: An additional check for the options set for the base classifier in classifierOptions. It
has to be set to the same value as in classifierOptions, either true or false.

4 The value k = 10 is only a convention. But to get proper results, each fold should contain at least 30 instances [3].
5 http://docs.oracle.com/javase/6/docs/api/java/util/Random.html , Date of last access: 26th October 2013
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• isSymmetricClassifier: Additional input information about the classifier to simplify the computation
by doing a single round robin decomposition. Should be set to true, if the used classifier is class-
symmetric, i.e. a classifier M produces the same outputs for the binary set (y1, y2) as for the set
(y2, y1) [5].

• decimalPrecision: Sets the decimal precision for the rates and losses. For the experiments, the
precision is always set to 4.

The only changing options in the config.xml for each experiment are dataset and transduction. The
options for the base classifiers will either be set by the parameter optimization mod or be constant. For
the final experiments there will be some more input parameters introduced in Section 4.4.

JniSVMLight4Weka / SVMlight

There are several options available for the support vector machine. The options explained here are the
input options for JniSVMLight4Weka which are very similar to the input options for SVMlight6 but are
named a little different. The following options are available for JniSVMLight4Weka :

• c: Sets the c parameter of the SVMlight classifer, c ≤ 0.

• tm: train SVM in transduction mode, tm ∈ {true, false}

• j: A cost-factor by which training errors on positive examples (C+) outweighs errors on negative
examples (C−) [12]. It allows the introduction of any prior knowledge about the input data to the
training phase. It is not used in this thesis and thus always set to 1.0 .

• cost: The individual upper bounds for each variable. It is an array used internally and not set.

• p: The fraction of unlabeled examples to be classified into the positive class (default is the ratio of
positive and negative examples in the training data). This value defines the num+ value.

• w: The epsilon width of tube for regression (default 0.1). (unused option)

• e_ab: The tolerable error on alphas at bounds, i.e. 0≤ α± e_ab ≤ c

• e_eq: Sets the tolerable error to allow on the equation constraint:
∑n

i=1αi yi = e_eq, described in
Section 2.2.3

• e_di: The tolerable error for distances used in stopping criterion y(wT x+b)−1= e_di, cf. Equation
(2.12) (default 0.001).

• m: The size of cache for kernel evaluations in MB (default 40). Since I am using the linear kernel,
there is no cache necessary and thus always set to 0 internally.

• maxiter: Number of iterations after which the optimizer terminates, if there was no progress in the
second loop (maxdiff).

• optPrec: The precision of the solver, set to e.g. 1e-21 if convergence problems occur.

• b: Usage of biased hyperplane. If true, use wT x + b = 0 and wT x = 0 otherwise. b ∈ {true, false}

• i: The debug mode. If set to true, classifier outputs additional info to the console. i ∈ {true, false}

• t: Sets the kernel type of the SVMlight classifer. Available are LINEAR, POLYNOMIAL, RBF and
SIGMOID. t ∈ {0,1, 2,3}. In this thesis the value is set to 0.

6 For the input options for the SVMlight, see http://svmlight.joachims.org/ , Date of last access: 26th October 2013.
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• z: Sets the type of the SVM. The only available one is classification (value 1).

• d: Set the degree of the polynomial. (unused option)

• g: Set the gamma value of the rbf kernel function. (unused option)

• r: The c parameter in polynomial and sigmoid kernels. (unused option)

• s: The s parameter in polynomial and sigmoid kernels. (unused option)

• n: The instance normalization, n ∈ {true, false}. If set to true the Normalize class will be used to
apply the weka normalization filter [7] This filter maps to a [0, 1] space by default.

• ni: Sets the normalization method for single instances. Available are none, L1 and L2. These
options are chosen by ni ∈ {0,1, 2}7. Instead of using the weka filter, this option will use the
instance normalization provided by JniSVMLight.

• v: Sets the verbosity level, i.e. the level of SVMlight debugging infos (default 1).

The options marked as unused are the options which do not affect the support vector machine at all,
since the kernel used in the experiments is only the linear one. In the earlier evaluations the parameters
which affect error tolerances and weights were set to the default values. But some parameters had to
be set to worse values in order to attain an acceptable training time. As an example, maxiter was set to
only 100 and e_di was set to 0.1 instead of the default value (0.001). The important input parameter
c is optimized with a parameter optimization by cross-validation in the latter experiments. For the
normalization of the instances I used only the Normalize class (n option) provided by weka.

4.2 First Experiments

After integrating SVMlight into the lpcforsos framework I had to do some modifications to be able to use
the transduction mode. One issue was to modify the lpcforsos framework to provide all the irrelevant
instances of a multi-class dataset unlabeled for training the base classifier. So now, when using trans-
duction, the TSVM is trained on all labeled instances of the binary classification task and every other
instance unlabeled. Also the double round robin decomposition for multi-class datasets was implemented
for the transductive SVM. After integrating SVMlight and enabling the transduction mode, I initially ran
some tests without optimizing any of the input parameters c or num+ (for transduction) for the support
vector machines. The reason was that I wanted to compare the performance of the two approaches
directly regardless of the overall performance compared to other classifiers like J48 or ZeroR, which are
also available in weka [7]. The configuration for the first experiments is illustrated in Figure 4.6 .

7 L1 is the linear normalization of the instances and L2 the L2-normalization
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1 <?xml version=" 1.0 " encoding="UTF−8" standalone=" yes " ?>
2 <con f i gu ra t i on>
3 <decompositionType>PairwiseDecomposer</ decompositionType>
4 <aggregat ionType>Voting</ aggregat ionType>
5 <datase t>d a t a s e t s /oh0 .mc . a r f f</ da ta se t>
6 <numberOfFolds>10</numberOfFolds>
7 <seedForEva luat ion>2</ seedForEva luat ion>
8 <baseLearnerEnvironment>WekaBaseLearner</ baseLearnerEnvironment>
9 <cla s s i f i e rName>weka . c l a s s i f i e r s . f unc t i on s . JniSVMLight4Weka</ c l a s s i f i e rName>

10 <c l a s s i f i e r O p t i o n s>−tm true −c 0.0 − j 1.0 −co s t 0.0 −p −1.0 −w 0.1 −e_ab 1.0E−15 −
e_eq 0.0 −e_di 0.1 −m 40 −maxiter 100 −optprec 0.0 −b t rue − i f a l s e −t 0 −z 1 −d
3 −g 1.0 −r 0.0 −s 1.0 −n t rue −ni 0 −v 0</ c l a s s i f i e r O p t i o n s>

11 <transduc t ion>true</ t ransduc t ion>
12 <i s S y m m e t r i c C l a s s i f i e r>true</ i s S y m m e t r i c C l a s s i f i e r>
13 <dec ima lP rec i s i on>4</ dec ima lP rec i s i on>
14 </ con f i gu ra t i on>

Figure 4.6 The configuration for the first experiments. Only the transduction mode and the symmetric
classifier options were turned on/off.

One significant difference was the longer training phase for the transductive support vector machines,
which was expected (cf. Chapter 3.3). In addition, c was set to 0.0 for the evaluations of the SVM and
the TSVM. By doing so, the default value of c is used which is defined as 1

‖average(x)‖ , with ‖average(x)‖
being the average length of all examples. For p the default value was also used which is defined as the
ratio of positive and negative examples of the binary class problem [10]8.

The total macro averaged results from the first test runs are summarized in Figure 4.7 . Since the first
two experiments ran on an Intel (R) Pentium (R) Dual CPU T3400 @ 2.16 GHz with 4.00 GB RAM, I could
not use the datasets with many attributes or many examples. Those were fbis and wap.

Dataset Accuracy Precision Fp-rate
oh0 77.08% 80.22% 4.27%
oh5 74.49% 79.82% 4.03%
oh10 73.05% 75.41% 4.35%
oh15 70.63% 73.78% 4.49%
tr11 59.63% 57.17% 14.81%
tr12 46.94% 45.23% 21.46%
tr21 71.72% 60.53% 60.07%
tr23 56.31% 59.81% 30.81%
tr31 81.22% 80.84% 7.89%

Dataset Accuracy Precision Fp-rate
oh0 25.34% 36.80% 4.81%
oh5 41.62% 52.59% 5.03%
oh10 32.57% 47.20% 4.62%
oh15 26.61% 34.97% 5.32%
tr11 9.94% 14.69% 2.63%
tr12 13.43% 12.60% 3.42%
tr21 68.14% 48.69% 64.35%
tr23 59.29% 63.34% 25.87%
tr31 9.80% 31.29% 2.34%

Performance SVM Performance TSVM

Figure 4.7 The results of the first evaluations

The results from the first experiments were surprisingly bad for the transductive support vector ap-
proach. While for some classes the tp-rate was pretty good, for the most classes the overall classifier was
pretty bad. An example for dataset oh0 is given in Figure 4.8 . It shows the macro averaged performance
of the overall classifier for the SVM and the TSVM with p set to default. Also the overall performance
of the TSVM was much worse than the performance of the inductive SVM in almost every aspect as the
tp-rates in Figure 4.7 show. The TSVM also had a worse precision compared to the SVM. Only for the
dataset tr23 the transductive approach had a slightly better performance than the inductive approach.

8 p is the parameter which is used for calculating num+ in SVMlight
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Furthermore, the fp-rate of the TSVM approach is often similar or smaller than of the SVM approach.
Thus the TSVM approach seems to classify much more examples as negatives than the SVM approach.

Class Tp-rate Precision Fp-rate
6-Ketoprostaglandin-F1-alpha 78.95% 84.91% 0.85%
Brain-Chemistry 69.01% 80.33% 1.29%
Creatine-Kinase 60.53% 77.97% 1.40%
England 90.06% 63.92% 11.19%
Ethics 82.613% 92.23% 0.90%
Fundus-Oculi 91.91% 78.62% 3.92%
Heart-Valve-Prosthesis 94.33% 76.89% 6.80%
Larynx 42.42% 96.5% 0.11%
Mexico 29.41% 78.95% 0.42%
Uric-Acid 42.86% 88.89% 0.32%

Performance SVM

Class Tp-rate Precision Fp-rate
6-Ketoprostaglandin-F1-alpha 100.00% 17.54% 28.33%
Brain-Chemistry 47.89% 60.71% 2.363%
Creatine-Kinase 42.11% 27.12% 9.28%
England 0.00% 0.00% 0.00%
Ethics 22.61% 96.30% 0.11%
Fundus-Oculi 5.88% 100.00% 0.00%
Heart-Valve-Prosthesis 5.15% 100.00% 0.00%
Larynx 60.61% % 3.63%
Mexico 92.162% 12.21% 35.50%
Uric-Acid 0.00% 0.00% 0.00%

Performance TSVM

Figure 4.8 The overall performance for each class of the dataset oh0.

When comparing the overall confusion matrices illustrated in Figure 4.9, it is clearly noticeable that
the diagonal of the SVM confusion matrix contains much more values than the diagonal of the TSVM
confusion matrix. As explained in Section 2.1.3, the diagonal of a confusion matrix contains the correctly
classified instances. So without any optimization on parameter p, the TSVM performs much worse
than the SVM. Also it is noticeable that the predictions of the TSVM focus on only two classes (6-
Ketoprostaglandin-F1-alpha, Mexico).

a b c d e f g h i j class label

45 2 1 4 0 0 4 0 0 1 a = 6-Ketoprostaglandin-F1-alpha
1 49 2 6 1 7 2 1 0 2 b = Brain-Chemistry
3 3 46 9 0 6 9 0 0 0 c = Creatine-Kinase
1 0 4 163 5 4 2 0 2 0 d = England
0 0 0 15 95 0 4 0 1 0 e = Ethics
0 0 0 7 0 125 4 0 0 0 f = Fundus-Oculi
2 1 1 5 1 1 183 0 0 0 g = Heart-Valve-Prosthesis
1 0 0 7 0 7 23 28 0 0 h = Larynx
0 1 0 28 1 4 2 0 15 0 i = Mexico
0 5 5 11 0 5 5 0 1 24 j = Uric-Acid

4.9 (a): The overall confusion matrix of the SVM for dataset oh0.
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a b c d e f g h i j class label

57 0 0 0 0 0 0 0 0 0 a = 6-Ketoprostaglandin-F1-alpha
56 34 1 0 0 0 0 0 1 0 b = Brain-Chemistry
33 0 32 0 0 0 0 1 10 0 c = Creatine-Kinase
56 5 10 0 0 0 0 8 132 0 d = England
9 1 8 0 26 0 0 2 69 0 e = Ethics

43 12 16 0 1 8 0 8 48 0 f = Fundus-Oculi
67 3 44 0 0 0 10 15 55 0 g = Heart-Valve-Prosthesis
13 0 1 0 0 0 0 40 12 0 h = Larynx
3 0 1 0 0 0 0 0 47 0 i = Mexico

39 1 5 0 0 0 0 0 11 0 j = Uric-Acid

4.9 (b): The overall confusion matrix of the TSVM for dataset oh0.

Figure 4.9 The overall confusion matrices for the SVM and the TSVM.

4.3 Second Experiments

After getting such bad results for the transductive approach from the first experiments I decided to vary p
(the parameter affecting num+) and did several test runs with different p parameters. Since the number
of unlabeled examples which are classified as positives depend on p, the ratio of positive and negative
examples could be a wrong set-up for certain datasets.

E.g. consider a dataset with 100 instances and the class labels {a, b, c, d}. Assume that a partial or-
der of the classes a < b < c < d exists, but is unknown and there be 10 instances labeled class a, 20
instances labeled class b, 30 instances labeled class c and 40 instances labeled class d. Then a base
classifier for the binary classification problem (a, b) with the default value p will try to use 50 percent
(10

20
= 0.5) of the unlabeled instances as positives, which would be (30+ 40) · 0.5 = 35 instances. The

resulting factor would be num+
k−num+

= 35
65
= 7

13
≈ 0.54. Now when calculating the initial C∗+ and C∗− it is

obvious that C∗+ < C∗−. Therefore the slack-variables for class b (ξyi=−1) will have more influence than
the ξyi=1, the slack-variables for class a. The resulting classifier will have a wider margin on class a than
on class b. This will cause the classifier to overfit on the negative examples (class b). Also the TSVMlight
will initially classify half of the unlabeled instances as positives and the other half as negatives. It is
reasonable that the resulting classifier will perform bad for the classes c and d.

So I tried various values for p. Again, I did not do any optimization on the c parameter and used
the default value as in the first experiments. The results of the second experiments including some re-
sults from the first experiments are summarized in Figure 4.10. The configuration was the same as in
Figure 4.6 , now with various parameters for p ∈ {0.0, 0.5,1.0} or default (d). The goal of this experi-
ments was to see how big the influence the p parameter for the results is. So I decided to look at the two
special cases with p = 0.0 and p = 1.0 and the case that positives and negatives are weighted the same
(p = 0.5). Due to computation time and the fact, that for p = 0.0 and p = 1.0 the TSVMlight results
in an approach similar to one-vs-all, I decided to set the option isSymmetricClassifier to true thus, only
applying a round robin decomposition for the subtasks. Furthermore, for p = 0.5 the resulting separat-
ing models should be quite class-symmetric. The difference between the number of instances labeled as
positives (num+) and the number of instances labeled as negatives (num−) is 1 in the worst case (we
have an odd number of unlabeled instances). So for datasets with many examples like in this thesis, the
prediction of the classifier should not differ very much for a binary learning problem. For this reason
isSymmetricClassifier was set to true to save computation time by applying only a round robin instead of
a double round robin decomposition. The results are visualized in Figure 4.10. For a better comparison
the results of the SVM are also listed and indicated by p =−.
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The results in Figure 4.10 show that the performance is very dependent on how parameter p is cho-
sen. As an example, the overall performance of the TSVM is much better than the performance of the
inductive SVM when using 0.0 or 1.0 for p in dataset oh0. But with the same parameter p = 0.0 the
overall classifier performs much worse in the dataset tr11. It is hardly possible to find a good overall p
parameter for every dataset. I also ran several experiments with various datasets (oh0, tr21) varying the
p parameter from 0.0 to 1.0 in ten steps with a step size of 0.1. Those results are shown in Figure 4.119.

Dataset p Accuracy Precision Fp-rate
oh0 - 77.08% 80.22% 4.27%
oh0 d 25.34% 36.80% 4.81%
oh0 0.5 72.78% 83.00% 2.00%
oh0 0.0 81.06% 84.09% 3.84%
oh0 1.0 81.16% 84.43% 3.70%
oh5 - 74.49% 79.82% 4.03%
oh5 d 41.62% 52.59% 5.03%
oh5 0.5 74.30% 80.57% 2.53%
oh5 0.0 75.26% 81.82% 3.76%
oh5 1.0 76.78% 81.47% 3.55%
oh10 - 73.05% 75.41% 4.35%
oh10 d 32.57% 47.20% 4.62%
oh10 0.5 70.19% 78.08% 2.86%
oh10 0.0 75.52% 76.11% 3.77%
oh10 1.0 75.81% 77.36% 3.94%
oh15 - 70.63% 73.78% 4.49%
oh15 d 26.61% 34.97% 5.32%
oh15 0.5 68.78% 75.67% 3.09%
oh15 0.0 71.95% 77.80% 4.58%
oh15 1.0 74.04% 78.56% 4.13%
tr11 - 59.63% 57.17% 14.81%
tr11 d 9.94% 14.69% 2.63%
tr11 0.5 57.74% 58.22% 13.48%
tr11 0.0 36.00% 69.25% 4.41%
tr11 1.0 58.90% 57.67% 14.35%

Figure 4.10 The results of the second evaluations

P Accuracy Precision Fp-rate
0.1 57.44% 80.68% 3.19%
0.2 53.95% 72.97% 3.84%
0.3 56.94% 70.68% 4.03%
0.4 59.64% 72.43% 3.49%
0.5 72.78% 83.00% 2.00%
0.6 64.21% 74.72% 3.18%
0.7 55.47% 74.20% 3.34%
0.8 58.42% 72.38% 3.50%
0.9 65.71% 76.82% 3.44%

P Accuracy Precision Fp-rate
0.1 72.61% 64.22% 57.09%
0.2 72.89% 67.27% 53.93%
0.3 70.53% 59.11% 57.43%
0.4 74.99% 70.34% 50.95%
0.5 74.39% 69.59% 51.60%
0.6 71.98% 65.19% 57.03%
0.7 70.51% 59.47% 62.07%
0.8 68.72% 50.67% 64.88%
0.9 70.21% 54.10% 62.76%

Various p with dataset oh0 Various p with dataset tr21

Figure 4.11 Performance of the TSVM for the datasets oh0 and tr21

9 Note that for evaluations with p 6= 0.5 the option isSymmetricClassifier was set to false for the reasons explained in
Section 3.3.
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As can be seen in Figure 4.11, the precision is quite high in all the evaluations for dataset oh0, being
over 60% for the most p parameter, so the overall classifier was quite accurate for the positives among
the predicted positives. But the tp-rate is pretty bad for the most values of p. Only for the cases of 1.0,
0.0 and 0.5 the classifier did perform quite well. With 1.0 and 0.0 being the extreme cases, I chose to
use 0.5 as a default p value for the final experiments. For dataset tr21 p = 0.5 seems also to be a quite
good choice when looking at the results.

4.4 Final Experiments

The goal of the final experiments was to generate the best results for both approaches with an acceptable
training time. Therefore the c parameter of every base classifier should also be optimized. I wanted to
generate evaluations for the following settings:

• The inductive approach with a parameter selection using cross-validation on parameter c.

• The transductive approach with the default p of 0.5 and a parameter selection using cross-
validation on parameter c.

4.4.1 Modifications

To find the ideal c parameter, I used the CVParameterSelectionMod class developed by the Knowledge
Engineering Group at Technische Universität Darmstadt. This class allows to pick some input options for
a chosen classifier and to specify a set of values for each option which is optimized. The set of tested
values is chosen by a start-value and stop-value and by the number and type of steps from the first to
second. In this thesis I am using exponential steps for the selected parameter. For finding the best c, the
optimizer class tests every parameter and evaluates the classifier trained on the given parameter using a
k-fold cross-validation and then picks the parameter generating the best results.

For the final experiments I tried to find the optimal c parameter by doing a 3-fold cross-
validation. The values which I tried for c were from 2−5 to 25 in ten exponential steps, i.e.
{2−5, 2−4, 2−3, 2−2, 2−1, 20, 21, 22, 23, 24, 25}. Using the CVParameterSelectionMod class should generate
better results due to a good c parameter for the SVM and TSVM, but it also needs a lot more training
time. Since every possible parameter is evaluated, for the base classifier with optimizing c, 11 · 3 = 33
(number of tested parameters times the number of folds) classifiers have to be built instead of one.
To turn on the CVParameterSelectionMod, an additional configuration option has been added to the con-
fig.xml file. The option cvMod is now available and to be set for better results.

For the final experiments another option was added in the configuration file, the sparseStorage op-
tion, which allows lpcforsos to store the instances in a sparse data format. Instead of saving every
value of an instance in a single array, the instances are now split and stored in two arrays. For datasets
with many attributes but only a few values, the sparse storage saves a lot of memory space since the
zeros are saved implicitly. An example for sparse storage is illustrated in Figure 4.1210.

1 0 0 0 0 3 0 0 0 2 1 0 0 1 0

Normal Storage: The instance values are stored in one array at their actual position.

10 Please note that the sparse storage might result in a longer training and testing time, caused by an additional array
access. So if the memory size is not an issue, one might choose to use the normal storage.
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0 5 9 10 13
1 3 2 1 1

Sparse Storage: Instead of using only one array, an index and a value array are used. The index array holds the
position of the entries and the value array their actual value.

Figure 4.12 Sparse Data Storage

The additional options in the config.xml for the final experiments are:

• cvMod: A boolean value for turning on the parameter optimization. When set to true the c param-
eter will be optimized.

• sparseStorage: An option for using the sparse storage. The instances will be stored sparse, when
this option is set true.

Some options for the SVM and the TSVM were also modified and will be explained as follows:

• e_di was now set to the default value to improve the performance of the overall classifier.

• As a conclusion from the results of the previous experiments p in Section 4.3 was always set to 0.5.

4.4.2 Set-up

After the modifications made in the previous section, the final configuration was as follows (Figure 4.13):

1 <?xml version=" 1.0 " encoding="UTF−8" standalone=" yes " ?>
2 <con f i gu ra t i on>
3 <decompositionType>PairwiseDecomposer</ decompositionType>
4 <aggregat ionType>Voting</ aggregat ionType>
5 <datase t>d a t a s e t s /oh0 .mc . a r f f</ da ta se t>
6 <numberOfFolds>10</numberOfFolds>
7 <seedForEva luat ion>2</ seedForEva luat ion>
8 <baseLearnerEnvironment>WekaBaseLearner</ baseLearnerEnvironment>
9 <cla s s i f i e rName>weka . c l a s s i f i e r s . f unc t i on s . JniSVMLight4Weka</ c l a s s i f i e rName>

10 <c l a s s i f i e r O p t i o n s>−tm f a l s e −c 0.0 − j 1.0 −co s t 0.0 −p 0.5 −w 0.1 −e_ab 1.0E−15 −
e_eq 0.0 −e_di 0.001 −m 10 −maxiter 100 −optprec 0.0 −b t rue − i f a l s e −t 0 −z 1
−d 3 −g 1.0 −r 0.0 −s 1.0 −n t rue −ni 0 −v 0</ c l a s s i f i e r O p t i o n s>

11 <transduc t ion>f a l s e</ t ransduc t ion>
12 <cvMod>true</cvMod>
13 <i s S y m m e t r i c C l a s s i f i e r>true</ i s S y m m e t r i c C l a s s i f i e r>
14 <dec ima lP rec i s i on>4</ dec ima lP rec i s i on>
15 <sparseStorage>true</ sparseStorage>
16 </ con f i gu ra t i on>

Figure 4.13 The config.xml for the final experiments.

Since p = 0.5 I decided to set the option isSymmetricClassifier to true again, for less memory consump-
tion and a shorter computation time.

The final experiments ran on a cluster provided by the Knowledge Engineering Group of Technische
Universität Darmstadt. The technical details are given online11: "It consists of 12 nodes with two AMD
Opteron(tm) Processor 250 each. One half of the nodes offer 8 GB RAM (6 x 8 GB = 48 GB RAM) while the
rest houses 4 GB RAM (4 x 6 GB = 24 GB RAM), providing 72 GB RAM in total."

11 http://www.ke.tu-darmstadt.de/resources/ComputingCluster , Date of last access: 26th October 2013
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4.4.3 Results

The results for the eleven evaluated datasets were not really different from the first evaluations. While
in some cases the performance of the TSVM was pretty good compared to the SVM, most results were
significantly worse.

Dataset Accuracy Precision Fp-rate
oh0 79.06% 81.10% 3.63%
oh5 74.50% 78.64% 3.75%
oh10 73.62% 75.45% 4.12%
oh15 71.73% 74.98% 4.00%
tr11 75.59% 74.55% 5.91%
tr12 69.94% 73.95% 9.32%
tr21 78.57% 72.22% 37.07%
tr23 70.62% 70.02% 15.50%
tr31 81.23% 80.61% 7.84%
fbis 68.58% 67.44% 5.30%
wap 78.27% 79.07% 2.68%

Dataset Accuracy Precision Fp-rate
oh0 73.09% 80.95% 2.27%
oh5 75.06% 80.86% 2.55%
oh10 72.76% 76.63% 2.98%
oh15 70.31% 77.93% 5.75%
tr11 59.91% 73.17% 6.83%
tr12 61.96% 66.51% 9.82%
tr21 76.77% 73.07% 36.40%
tr23 68.62% 66.53% 14.54%
tr31 76.58% 80.81% 8.18%
fbis 53.67% 74.46% 2.21%
wap 56.15% 72.69% 1.21%

Performance SVM Performance TSVM

Figure 4.14 Comparison of the performance in the final experiments

As can be seen in Figure 4.14 the tp-rate of the overall classifier using the SVM is between 0.7 and 0.8.
Also Figure 4.14 shows that the precision is in quite the same level like the tp-rate. The overall classifier
using the TSVM is doing good for one half of the datasets (oh5, oh10, oh15, tr21, tr23) but worse than
the SVM for the other half of the datasets. Furthermore, it is noticeable that the TSVM did not do
better in any case and only equally good for the dataset oh5. In every other evaluation the performance
was worse. In addition, the training time of the TSVM approach was at least ten times longer than the
training time of the SVM approach.
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5 Conclusion and Outlook

The results of the experiments have shown that the pairwise classification using inductive support vector
machines is more practicable and generating better results than the approach using transductive sup-
port vector machines. Especially when using large datasets, the transductive support vector machines
require a lot more training time. In addition, the memory consumption is significantly higher when us-
ing TSVMs. The original benefit of the pairwise classification approach was the smaller datasets for the
training phase of each separating model. With using TSVMs all the examples could be used for the train-
ing phase which generated extremely large decomposed datasets. The training time, as well, increased
drastically since the TSVM needed a lot more time than the SVM. So the one benefit against one-vs-all
learning with more complex but less separating models was nullified.

In Summary, a pairwise classification approach using TSVMlight is not practical on this basic level using a
linear kernel and a simple voting strategy. For further research, support vector machines should be made
more efficient. Instead of the linear kernel, a polynomial or an rbf kernel could be used. And when using
these more complex kernels, one should consider extensive testing and evaluation of the optimal input
parameters for those kernels. Another possibility would be to use a better voting strategy. Since we do not
have equally large amounts of examples for every class, the vote of a separating model trained on fewer
labeled examples should have less weight for the overall prediction. One idea could be to use the fraction
of the number labeled example to the number of unlabeled examples used for building the base classifier.

The two suggested improvements described above affect the supervised and the semi-supervised ap-
proach. An improvement for the semi-supervised approach could also be the optimization of the p
parameter, which I set to 0.5. The reason for my choice of p = 0.5 was the strong dependency of the
TSVMlight performance on the p parameter which was explained in Section 3.2 and shown in the exper-
iments. A TSVMlight approach with using different p parameters for each separating base model might
perform much better than the transductive approach using a fixed p. However one should keep in mind,
that for p 6= 0.5 the resulting TSVMlight is not class-symmetric. As a consequence, a double round robin
decomposition should be applied for generating the subsets for the base classifier, which will result in a
higher memory consumption and a longer training time.

The p parameter strongly affects the performance of the transductive support vector machine and
since the number of unlabeled examples which are labeled as positives does not change during the
TSVMlight algorithm, one could try to modify the algorithm of finding the best assignments for y∗i it-
self. Instead of letting the user choose the number of the examples to label as positives, the initial
assignment of the unlabeled examples could be done by a k-nearest-neighbor algorithm using the labeled
examples. Afterwards the algorithm of TSVMlight could be applied to optimize the result on the initial y∗i .

Some other research could be done in adapting the semi-supervised approach to other tasks like multi-
label classification. In multi-label classification, the examples have several class labels instead of one like
in the multi-class task. It may be possible that the TSVM will handle those examples better than the SVM
due to some meta information embedded in the data structure.

Since the performance of the overall classifier using TSVMs was also strongly depending on the used
dataset, one might try to find out for which datasets this approach will perform well. Maybe this ap-
proach might perform better for smaller datasets or datasets with a certain structure. So with a little
prior knowledge, the semi-supervised pairwise classification approach might be a better alternative to the

40



ordinary supervised pairwise classification. Note that with smaller datasets the overall training time will
not differ very much for both approaches.
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