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Abstract— Multiclass multilabel perceptrons (MMP) have
been proposed as an efficient incremental training algorithm
for addressing a multilabel prediction task with a team of
perceptrons. The key idea is to train one binary classifier per
label, as is typically done for addressing multilabel problems,
but to make the training signal dependent on the performance
of the whole ensemble. In this paper, we propose an alternative
technique that is based on a pairwise approach, i.e., we
incrementally train a perceptron for each pair of classes. Our
evaluation on four multilabel datasets shows that the multi-
label pairwise perceptron (MLPP) algorithm yields substantial
improvements over MMP in terms of ranking quality and
overfitting resistance, while maintaining its efficiency. Despite
the quadratic increase in the number of perceptrons that have to
be trained, the increase in computational complexity is bounded
by the average number of labels per training example.

I. INTRODUCTION

MULTILABEL CLASSIFICATION problems have
gained increasing attention in recent times. In contrast

to the well-known multiclass setting, the target classes are
not exclusive: an object may belong to an unrestricted set of
classes instead of exactly one. This applies to a wide range
of real life problems, the mapping of texts to genres being
the best known in the field of machine learning. Only a
small number of algorithms are naturally able to learn this
type of problem.

A common approach to address this problem is the use
of class binarization methods, i.e. the decomposition of the
problem into several binary subproblems that can then be
solved using a binary base learner. The simplest strategy is
one-against-all, in the multilabel setting also referred to as
the binary relevance method. It tackles a multilabel problem
by learning one classifier for each class, using all objects
of this class as positive examples and all other objects as
negative examples. At query time, each binary classifier
predicts whether its class is relevant for the query example
or not, resulting in a set of relevant labels.

Another option is to transform the multilabel classifica-
tion problem into a label ranking task, where the goal is
to compute prediction values indicating how relevant each
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class is for a particular example. Though this does not
immediately result in a set of classes, it is possible to obtain
the desired output in an additional step that selects classes
which exceed a determined relevance value. Several methods
exist for determining the threshold [Sebastiani, 2002], the
method of Elisseeff and Weston [2001] being one of the most
cited. Recently, Brinker et al. [2006] introduced the idea of
using an artificial label that encodes the boundary between
relevant and irrelevant labels for each example. We note that
all these approaches can be applied to the algorithm proposed
in this paper, and in the following we restrict ourselves to
a label ranking scenario, which is also relevant for many
practical applications.

Crammer and Singer [2003] combined the mentioned
one-against-all method and the label ranking idea in their
multiclass multilabel perceptron algorithm (MMP). Instead
of learning the relevance of each class individually and
independently, MMP incrementally trains the entire classifier
ensemble as a whole so that it predicts a real-valued relevance
score for each class. This is done by always evaluating the
performance of the entire ensemble, and only producing
training examples for the individual classifiers when their
corresponding classes are incorrectly ordered in the ranking.
Perceptrons are used as base classifiers.

In this paper, we propose the use of pairwise decom-
position as an alternative training method for an effective
ensemble of perceptrons. We train one classifier for each
possible class pair, using the examples belonging to the two
classes as positive or negative examples respectively. During
prediction, an overall ranking of the classes is determined
by combining the predictions of the individual classifiers,
e.g. by voting. One of the advantages of the approach
is its efficiency: it can indeed be shown that pairwise
ensembles can be more efficiently trained than the one-
against-all ensemble [Fürnkranz, 2002]. Another advantage,
of particular importance for perceptrons, is that decomposing
the problem into smaller subproblems will yield simpler,
often linear decision boundaries. For example, Knerr et al.
[1992] observed that the classes of a digit recognition task
were pairwise linearly separable, while the corresponding
one-against-all task was not solvable with perceptrons.

Although the superiority of pairwise classification over
one-against-all classification has been shown in several ap-
plications [Hsu and Lin, 2002, Fürnkranz, 2002], the study
presented in this paper still makes important contributions
for two reasons: First, previous works have exclusively
concentrated on classification tasks. While it is natural to
assume that the performance of the pairwise approach will



also extend to the multilabel or label ranking task, this
has so far not been experimentally confirmed. Second, and
more importantly, the comparison to MMPs provides another
datapoints in evaluating the two alternative approaches for
tackling the label ranking problem: While MMPs propose to
include information about the ranking task into the training
signals, the pairwise approach addresses the ranking problem
by breaking the ranking signal down into elementary binary
preferences that induce the final ranking [Fürnkranz and
Hüllermeier, 2003].

II. PRELIMINARIES

We represent an instance or object as a vector x̄ =
(x1, . . . , xN ) in a feature space X ⊆ RN . Each instance x̄i
is assigned to a set of relevant labels Y i, a subset of the K
possible classes Y = {c1, . . . , cK}. For multilabel problems,
the cardinality |Y i| of the label sets is not restricted, whereas
for binary problems |Y i| = 1 holds. For the sake of
simplicity we use the following notation for the binary case:
we define Y = {1,−1} as the set of classes so that each
object x̄i is assigned to a yi ∈ {1,−1} , Y i = {yi}.

A. Perceptrons

The perceptron is a well-studied binary classifier initially
developed as a model of the biological neuron [Rosenblatt,
1958]. Internally, it computes a linear combination of a
real-valued input vector and predicts a class depending on
whether the result is positive or negative. We use a version
that works without learning rate and threshold.1 The output
of this perceptron is given by

o′(x̄) = sgn(x̄ · w̄) (1)

with the weight vector w̄ and sgn(t) = 1 for t ≥ 0 and
−1 otherwise. We can interpret a perceptron as a hyperplane
that divides the N -dimensional space into two halves. If it
is possible to find a separating hyperplane that separates
negative from positive instances, the two set of points are
called linearly separable. In order to find such a hyperplane,
the weights are adapted according to the following rule:

θi = (yi − o′(x̄i)) w̄i+1 = w̄i + θix̄i (2)

If the training examples are seen iteratively and the data
is linearly separable, the algorithm provably finds a sepa-
rating hyperplane [cf., e.g., Bishop, 1995]. In this case,
the number of errors until convergence depends on the
margin between the positive and negative points. The size
of the margin is thus an indicator for the hardness of
the learning problem: the smaller the margin the harder it
is for the algorithm to find a good solution. Contrary to
Support Vector Machines, which find an (optimal) maximum

1Note that the learning rate becomes superfluous when it is set to
be constant [Bishop, 1995] and using a threshold, i.e. extending each
vector x̄i by one dimension with a constant value ρ, implies having to
tune an additional parameter [Tsampouka and Shawe-Taylor, 2007]. To
circumvent this problem, we set it to zero sacrificing one dimension in
the hypothesis space. In practice, especially in high dimensional spaces as
for text documents, this is usually not a very significant restriction, and it
additionally renders on-line learning possible.

margin hyperplane, perceptrons can be trained efficiently in
an incremental setting, which makes them particularly well-
suited for large-scale classification problems such as the
RCV1 benchmark [Lewis et al., 2004], without forfeiting too
much accuracy. For this reason, the perceptron has recently
received increased attention [e.g. Freund and Schapire, 1999,
Li et al., 2002, Shalev-Shwartz and Singer, 2005, Crammer
et al., 2006, Khardon and Wachman, 2007, Tsampouka and
Shawe-Taylor, 2007]. Alternatively, some researchers have
proposed efficient training algorithms for approximating the
maximum margin hyperplane [Joachims, 2006].

B. Binary Relevance Ranking

In the binary relevance (BR) or one-against-all (OAA)
method, a multilabel training set with K possible classes
is decomposed into K binary training sets of the same
size that are then used to train K binary classifiers. So
for each pair (x̄i,Y i) in the original training set K different
pairs of instances and binary class assignments (x̄i, yij ) with
j = 1 . . .K are generated as follows:

yij =

{
1 cj ∈ Y i
−1 otherwise

(3)

Supposing we use perceptrons as base learners, K different
o′j classifier are trained in order to recognize if an instance
is included in their respective class cj . In consequence, the
combined prediction would be the set {cj | o′j(x̄) = 1}.
If, in contrast, we want to obtain a ranking of classes
according to their relevance, we can simply use the result
of the internal computation of the perceptrons as a measure
of relevance. According to Equation 1 the desired linear
combination is the inner product oj(x̄) = x̄·w̄j (ignoring ω as
mentioned above). So the result of the prediction is a vector
ō(x̄) = (x̄w̄1, . . . , x̄w̄K) where component j corresponds
to the relevance of class cj . We will denote the ranking
function that returns the position of class c in the ranking
with r(c) ∈ {1 . . .K}. Ties are broken randomly to not favor
any particular class.

C. Ranking Loss Functions

In order to evaluate the predicted ranking we use different
ranking losses. The losses are computed comparing the
ranking with the true set of relevant classes, each of them
focusing on different aspects. For a given instance x̄, a
relevant label set Y , a negative label set Y = Y\Y and a given
predicted ranking function r the different loss functions are
computed as follows:

ISERR The is-error loss determines whether r(c) < r(c′)
for all relevant classes c ∈ Y and all irrelevant classes c′ ∈ Y .
It returns 0 for a completely correct, perfect ranking, and
1 for an incorrect ranking, irrespective of ‘how wrong’ the
ranking is.

ERRSETSIZE The error set size loss returns the number
of pairs of labels which are not correctly ordered. Such
as ISERR, it is 0 for a perfect ranking, but it additionally



differentiates between different degrees of errors.

E
def
= {(c, c′) | r(c) > r(c′)} ⊆ Y × Y (4)

δERRSETSIZE
def
= |E| (5)

MARGIN The margin loss returns the number of positions
between the worst ranked positive and the best ranked
negative classes. This is directly related to the number of
wrongly ranked classes, i.e. the positive classes that are
ordered below a negative class, or vice versa. We denote
this set by F .

F
def
={c ∈ Y | r(c) > r(c′), c′ ∈ Y}
∪{c′ ∈ Y | r(c) > r(c′), c ∈ Y}

(6)

δMARGIN
def
= max(0,max{r(c) | c ∈ Y} −min{r(c′) | c′ /∈ Y})

(7)

AVGP Average Precision is commonly used in Infor-
mation Retrieval and computes for each relevant label the
percentage of relevant labels among all labels that are ranked
before it, and averages these percentages over all relevant
labels. In order to bring this loss in line with the others so
that an optimal ranking is 0, we revert the measure.

δAVGP
def
= 1− 1

Y

∑
c∈Y

|{c∗ ∈ Y | r(c∗) ≤ r(c)}|
r(c)

(8)

III. MULTICLASS MULTILABEL PERCEPTRONS

MMPs were proposed as an extension of the binary rele-
vance algorithm with perceptrons as base learners [Crammer
and Singer, 2003]. Just as in binary relevance, one perceptron
is trained for each class, and the prediction is calculated via
the inner products. The difference lies in the update method:
while in the binary relevance method all perceptrons are
trained independently to return a value greater or smaller than
zero, depending on the relevance of the classes for a certain
instance, MMPs are trained to produce a good ranking so that
the relevant classes are all ranked above the irrelevant classes.
The perceptrons therefore cannot be trained independently,
considering that the target value for each perceptron depends
strongly on the values returned by the other perceptrons.

The pseudocode in Figure 1 describes the MMP training
algorithm. When the MMP algorithm receives a training
instance x̄, it calculates the inner products, the ranking and
the loss on this ranking in order to determine whether the
current model needs an update. For determining the ranking
loss, any of the methods of Section II-C is appropriate,
since they all return a low value on good rankings. This
allows to optimize the ranking in accordance with the used
ranking loss. If the ranking is perfect, the algorithm is done,
otherwise it calculates the error set of wrongly ordered class
pairs E. The wrongly ranked classes are also represented
in F . In the next step, each class that is present in a pair
of E receives a penalty score. This is done according to
a selectable penalty function. Crammer and Singer [2003]
propose several methods, including a function that returns a

Require: Training example pair (x̄, Y), perceptrons
w̄1, . . . , w̄K

1: calculate x̄w̄1, . . . , x̄w̄K , loss δ
2: if δ > 0 then . only if ranking is not perfect
3: calculate error sets E, F
4: for each c ∈ F do τc ← 0 . initialize τ ’s
5: for each (c, c′) ∈ E do
6: p←PENALTY(x̄w̄1, . . . , x̄w̄K)
7: τc ← τc + p . push up positive classes
8: τc′ ← τc′ − p . push down negative classes
9: σ ← σ + p . for normalization

10: normalize τ ’s
11: for each c ∈ F do
12: w̄c ← w̄c + δ τcσ · x̄ . update perceptrons

13: return w̄1 . . . w̄K . return updated perceptrons

Fig. 1. Pseudocode of the training method of the MMP algorithm

value proportional to the difference of the scalar products of
both classes. The most successful one, however, seemed to
be the uniform update method, where each pair in E receives
the same score. In the next step, the update weights τ are
normalized and each perceptron whose class was wrongly
ordered is updated.

An example will illustrate the peculiarities of the MMP
update method: Suppose that all classes are correctly ordered
except for one relevant and three irrelevant classes. The three
negative classes are ranked immediately over the positive.The
error set contains three wrongly ordered pairs and according
to the uniform update method the positive class will receive
in the sum a penalty of 3 and the negatives each 1. Thus
the perceptron of the positive class will be updated to a
degree three times as great compared to the other three,
in accordance with the degree to which it contributed to
the wrong ranking. Note that regardless of the used penalty
function the positive and the negative classes receive in total
the same penalty scores and these are afterwards normalized,
so that the degree of the overall model update only depends
on δ, i.e. on the quality of the ranking. More precisely,
the hyperplanes of the perceptrons of the relevant classes
are translated by a total amount of δ x̄, and the remaining
classes by − δ x̄. In summary, the degree of the update for a
particular perceptron depends 1) on the used penalty method,
2) on how much it contributed to the wrong ranking, and
3) on the general ranking performance.

IV. MULTILABEL PAIRWISE PERCEPTRONS

In the pairwise binarization method, one classifier is
trained for each pair of classes, i.e., a problem with K differ-
ent classes is decomposed into K(K−1)

2 smaller subproblems.
For each pair of classes (cu, cv), only examples belonging to
either cu or cv are used to train the corresponding classifier
o′u,v . All other examples are ignored. In the multilabel case,
an example is added to the training set for classifier o′u,v
if u is a relevant class and v is an irrelevant class, i.e.,
(u, v) ∈ Y × Y (cf. Figure 2). We will typically assume
u < v, and training examples of class u will receive a



Fig. 2. MLPP training: training example x̄ belongs to Y = {c1, c2, c3},
Y = {c4, c5, c6, c7} are the irrelevant classes, the arrows represent the
trained perceptrons.

Require: Training example pair (x̄, Y),
perceptrons {w̄u,v | u < v, cu, cv ∈ Y}

1: for each (cu, cv) ∈ Y × Y do
2: if u < v then
3: w̄u,v ← TRAINPERCEPTRON(w̄u,v, (x̄, 1))

. train as positive example
4: else
5: w̄v,u ← TRAINPERCEPTRON(w̄v,u, (x̄,−1))

. train as negative example
6: return {w̄u,v | u < v, cu, cv ∈ Y}

. updated perceptrons

Fig. 3. Pseudocode of the training method of the MLPP algorithm.

training signal of +1, whereas training examples of class
v will be classified with −1. Figure 3 shows the training
algorithm in pseudocode. Of course MLPPs can also be
trained incrementally.

In order to return a class ranking we use a simple voting
strategy, known as max-wins. Given a test instance, each
perceptron delivers a prediction for one of its two classes.
This prediction is decoded into a vote for this particular class.
After the evaluation of all K(K−1)

2 perceptrons the classes
are ordered according to their sum of votes (ties are broken
randomly). At first sight, it may be disturbing that many
‘unqualified’ perceptrons are involved in the voting process:
suppose that an unseen example x̄ belongs to a label set Y ,
then a perceptron trained on two classes of Y cannot know
anything relevant in order to separate Y from Y because it
has not seen examples from Y . In the worst case the noisy
votes concentrate on single negative classes, which would
lead to misclassifications. But note that any class can at most
receive K − 1 votes, so that in the extreme case when the
qualified perceptrons all classify correctly and the unqualified
ones concentrate on a single class, a positive class will still
receive at least K − |Y | and a negative at most K − |Y | − 1
votes.

The pairwise binarization method is often regarded as
superior to binary relevance because it profits from simpler
decision boundaries in the subproblems [Fürnkranz, 2002,
Hsu and Lin, 2002]. In the case of an equal class distribution,
the subproblems have 2

K times the original size while binary

relevance maintains the size. Typically, this goes hand in
hand with an increase of the space where a separating
hyperplane can be found. A simple example illustrates this:
imagine two points a and b on a line representing the center
of the positive and negative points. We now insert points
according to an arbitrary distribution around a and b. Let
µ(n) denote the margin between the negative and positive
points depending on the number of inserted points n. This
function is monotonically decreasing. Thus it is very likely
for a subproblem to have a larger margin than the full
problem. We have seen in Section II-A that the performance
strongly depends on the available margin between the points
of the binary classes. Thus, it can be expected that the MLPP
algorithm will also benefit from the pairwise approach.
MMP, on the other hand, is based on an binary relevance
binarization, which, as we have noted in Section I, will
typically have more complex decision boundaries.

Note that pairwise classification can be seen as a spe-
cial case of the generalized Error Correcting Output Codes
(ECOC) framework [Allwein et al., 2000] with a fixed encod-
ing matrix. We believe that this is a case that deserves special
attention for several reasons. First and foremost, it has clearly
defined semantics. Each binary classifier determines which of
two labels is to be preferred for a given example. This is the
smallest piece of information that is needed for establishing
an order between all labels. Second, it is a fixed, domain-
independent and non-stochastic decomposition method that
has a good overall performance. In several experimental
studies (including Allwein et al. [2000]), it performed en par
or better than competing decoding matrices. The chief reason
for the good performance is that two-class problems are often
linearly separable, even in low-dimensional spaces. Finally, it
is also among the most efficient decoding schemes. In some
sense, our philosophy is orthogonal to ECOC: While ECOC
puts its efforts into choosing a good encoding matrix, we
fix the encoding to the all-pairs approach and concentrate on
the decoding phase. We believe that many practical problems
can be reduced to estimating pairwise probabilities. These
can then be combined in various ways, optimizing different
performance criteria with a single, fixed pairwise ensemble.

V. COMPUTATIONAL COMPLEXITY

The notation used in this section is the following: K
denotes the number of possible classes, L the average number
of relevant classes per instance in the training set, N the num-
ber of attributes, δ and δ̂ denote the loss and the accumulated
average loss respectively. For each complexity we will give
a lower Ω and upper bound O in Landau notation and an
expected value. Since all three algorithms are incrementally
trained we will present the computational complexity per
instance. We will also represent the runtime dependencies in
terms of perceptron prediction and update operations. Note
that a scalar product operation w̄x̄ requires nearly the same
amount of floating point additions and multiplications as an
update operation w̄ + τ x̄, so we do not need to discriminate
between these two. As we are interested in the difference
between different binarization approaches, we can also ignore



TABLE I
COMPUTATIONAL COMPLEXITY GIVEN IN EXPECTED NUMBER OF

PERCEPTRON OPERATIONS PER INSTANCE. K : #classes, L: avg. #labels

per instance, N : #attributes, δ̂: avg. Loss, δ̂per, δ̂ISERR ≤ 1, δ̂MARGIN < K .

training time prediction time
memory

requirement
perceptron 1 + δ̂per 1 N

MMP K + δ̂MARGIN + δ̂ISERR K O(KN)

MLPP L(K − L)(1 + δ̂per)
K(K−1)

2
O(K2N)

MLPP
MMP

O(L) K−1
2

O(K)

operations that have to be performed by both MMP and
MLPP, such as sorting or internal real value operations.The
complexity of a basic perceptron operation depends on the
average number of non-zero attributes. This is particularly
important for applications such as text classification, where
sparse feature vectors are common.

In terms of memory, a single perceptron model has a
complexity of O(N). Since the MMP algorithm uses one
perceptron for each class and the MLPP algorithm one for
each pair of classes, the memory complexities are O(KN)
and O(K2N) respectively.

Obviously, a perceptron prediction costs one basic per-
ceptron operation. In each training step the perceptron must
predict a class. If it was wrong the update will cost another
operation. Let δper be 0 if the prediction was correct,
otherwise 1, and let δ̂per be the expected average error, then
we can represent the complexity as 1+ δ̂per = O(1) for each
instance. The first step in the MMP training is to produce a
ranking, hence at least K operations are necessary even for a
perfect ranking. If the ranking is incorrect, for each wrongly
ranked class in F one perceptron is updated (assuming
uniform penalties). This corresponds to δMARGIN +1, but only
if there was an error, otherwise 0. We can hence write
|F | as δMARGIN + δISERR. The time complexity for the MMP
algorithm is therefore K + δ̂MARGIN + δ̂ISERR = O(K). The
MLPP algorithm evaluates each training example with |Y×Y |
perceptrons, i.e., |Y |(K − |Y |) operations. One additional
operation is required for each perceptron that makes an
incorrect prediction. Using the average values δ̂per and L, we
can denote the expected runtime as L(K − L)(1 + δ̂per) =
O(LK). In the worst case L is K

2 , resulting in quadratic
time.2 The bounds for the complexity relationship of MLPP
to MMP are the following:

1
4L = L

1
2K

2K ≤ L
K−L
2K ≤ L(K−L)(1+δ̂per)

K+δ̂MARGIN + δ̂ISERR

≤ L 2(K−L)
K < L 2K

K < 2L

(9)

Thus, assuming similar loss rates, the MLPP algorithm will
be on average L times slower than the MMP algorithm. An
overview over the complexities can be found in Table I.

2We assume that L ≤ K
2

holds, otherwise the problem can simply be
inverted.

VI. EVALUATION

The Reuters Corpus Volume I (RCV1) is currently one of
the most widely used test collections for text categorization
research. We used the preprocessed version by Lewis et al.
[2004] that contains 804,414 newswire documents belonging
to 103 different categories. The amount of relevant topics per
example ranges from 1 to 17 and is on average 3.24.

A. Experimental Setup

The corpus was split into 535,987 training documents
(all documents before and including April 26th, 1999) and
268,427 test documents (all documents after April 26th,
1999) and processed in chronological order. We used the
token files from Lewis et al. [2004], which are already word-
stemmed and stop-word reduced. However, we repeated the
last step, as we experienced that there were still a few
occurrences of stop words. Several tests with different values
for the number of attributes and different methods for term
weighting and feature selection were done in a systematic
way in order to determine the most appropriate settings for
both algorithms. Typically, we used MMPs to reduce the
number of candidates and, among the remaining candidates,
we picked a setting that worked well for both. The following
settings proved to generally provide good results and to allow
a fair and representative comparison: we used the common
TF-IDF term weighting method [Sebastiani, 2002] and used
the first 25,000 features ordered by their document frequency.
All parameters of the pre-processing methods were only
computed on the training set to ensure that no information
from the test set enters the training phase. For the MMP
algorithm we used the ISERR loss function and the uniform
penalty function. This setting showed the best results in the
work of Crammer and Singer [2003] on the RCV1 data
set and our experiments confirm this. All perceptrons were
initialized with random values.

We performed also tests with the binary relevance method
and a multilabel variant of the multinomial Naive Bayes
(NB) algorithm in order to provide a baseline. In one of
our first experiments we counted the TF-IDF instead of the
term frequency values for the Naive Bayes. We found out
that by using this additional information about the overall
relevance of each term the accuracy even doubled for some
losses. We report therefore these improved results.3

B. Direct Comparison

The results of a direct comparison of MMPs and MLPPs
are presented in Table II. The values for ISERR and AVGP
are presented ×100 for better readability, AVGP is also
presented in the conventional way (with 100% as the optimal
value) and not as a loss function. The results clearly show
that the MLPP algorithm outperforms the MMP algorithm
(all differences are statistically significant according to the
Wilcoxon Signed-Rank Test [Demšar, 2006]). Especially on

3Note also that using the Naive Bayes as base classifier for a pairwise
binarization is pointless as it results in the normal Naive Bayes [Sulzmann
et al., 2007].



the losses that directly evaluate the ranking performance, the
improvement is quite pronounced. On average, MLPPs in-
crease the number of correctly ranked relevant and irrelevant
class pairs by almost one pair per example. Similarly, the
margin between the positive and negative classes is improved
by more than half a class. For the ISERR, the advantage is
less pronounced. Typically, a perfect classification is more
likely to occur on documents that have a small number of
labels, whereas on documents with an increasing number
of labels the ISERR performance decreases rapidly. Thus,
ISERR focuses more on the performance on cases where
there is not much to rank. The AVGP measure yields a similar
gain.

It is particularly important to note that MLPPs outperform
MMPs in terms of ISERR, although MMPs were trained
to directly optimize this loss function, whereas MLPPs are
independent of a particular loss function. This holds also if
MMPs are trained to optimize a different loss. For example,
the best MMPs trained to optimize MARGIN yield an average
MARGIN-Loss of 1.95.

In order to evaluate the algorithms on other data sets,
we performed a few quick tests on the older reuters-21578
data set (11367 examples, 10000 features, 120 classes)4

and, to represent other application settings, the yeast (2417
examples, 103 features, 14 classes, in average 4.24 labels per
example) and scene (2000 examples, 294 features, 5 classes,
in average 1.24 labels per example) data sets.5

Previous experiments showed that both non-text problems
seem to be hardly linearly separable even using pairwise
decomposition and that both algorithms appear to not apply
well to this sort of problems [Loza Mencı́a and Fürnkranz,
2007]. As the results were inconclusive, we simulated the
use of a polynomial kernel of second degree by adding all
possible pairwise products of the original features to the
feature vector. This allows us to translate the problem into a
higher dimensional space where it is more likely linearly
separable without having to modify our implementation
and analysis. Note however that it is generally possible to
use any kernel function in combination with perceptrons
[Freund and Schapire, 1999, Crammer and Singer, 2003].
We plan to investigate how to take advantage especially of
the pairwise decomposition in order to use kernel functions
more efficiently.

The results for 10 epochs (i.e. 10 iterations over the
training data) in the case of reuters-21578 and 100 epochs
for yeast and scene over the training data and ten-fold
cross-validation are shown in Table III. The results on the
reuters21578 data set confirm the results on the newer
Reuters data set, however the rather small difference in
ISERR is not statistically significant (one-side Wilcoxon
signed-rank test with p = 0.05 was performed on the three
data sets). The pairwise decomposition also shows to improve
the classification results on the yeast data set (all results are

4retrieved at http://www.daviddlewis.com/resources/testcollections/
reuters21578 and preprocessed similar to RCV1

5both retrieved at http://mlkd.csd.auth.gr/multilabel.html

TABLE II
COMPARISON ON THE RCV1 TEST SET. ∆ INDICATES THE DIFFERENCE

BETWEEN MMP AND MLPP IN PERCENTAGE.

MMP ∆ [%] MLPP BR NB
ISERR×100 29.35 -4.11 28.14 35.87 51.79
ERRSETSIZE 2.801 -31.45 1.920 7.614 6.285
MARGIN 2.120 -31.47 1.453 5.833 4.513
AVGP 92.82 0.92 93.67 90.00 82.26

TABLE III
COMPARISON FOR THE reuters21578, yeast AND scene DATA SETS.

reuters21578 yeast scene
MLPP MMP BR MLPP MMP BR MLPP MMP BR

ISERR×100 17.46 17.83 22.18 74.43 77.33 79.07 25.22 26.30 26.21
ERRSETSIZE 1.691 2.974 12.38 6.456 7.887 8.581 0.392 0.412 0.430
MARGIN 1.399 2.565 9.602 4.396 5.188 5.553 0.391 0.410 0,430
AVGP 90.77 90.20 84.45 75.15 71.39 70.41 86.43 85.82 85.64

statistically significant). Nevertheless the problem seems to
be generally hard to handle even with the usage of kernels
since the losses are quite high. In contrast the results on the
scene data set are better in general. The differences between
MMP and MLPP are clearly visible, though the results of
ERRSETSIZE and MARGIN are not statistically significant.
Note the remarkable performance of BR in this case, even
outperforming the MMPs on ISERR (no comparison with
BR is statistically significant). Although we see the main
application field of the MLPP algorithm in the efficient
solving of large scale (in number of examples as well as
features) problems such as text classification, where feature
vectors are additionally very sparse, the reported results are
competitive with other published results on the yeast and
scene data set [Zhang and Zhou, 2006, Veloso et al., 2007].

C. Learning Curve

A learning curve shows how quickly a learner is able
to adapt its model to the data presented. For incremental
learners, it is often used to show the learning progress.
Before a new example is added to the training set, it is
first tested. The learning curve then shows the accumulated
loss over the processed training instances. The result for
the ISERR loss on the RCV1 data can be seen in Figure 4
and 6. Figure 6 shows that with an increasing number of
examples, MLPPs accumulate a clear advantage. However, in
the beginning, as can be seen from Figure 4, the differences
are less pronounced and the MMP algorithm also seems to
have a somewhat better performance in this region. For the
ranking losses ERRSETSIZE (cf. Figure 5) and MARGIN (not
shown here) the graphs look very similar, except that here
MLPPs clearly have a better performance from the start.
This result and even the comparison in terms of ISERR is
remarkable because the perceptrons of the MLPP are trained
on fewer examples, which may be particularly problematic
in the beginning of the training phase.

D. Overfitting Analysis

In order to evaluate the overfitting property, both algo-
rithms were trained in several epochs over the training set.



0.35

0.4

0.45

0.5

0.55

0.6

0.65

0 10000 20000 30000 40000 50000 60000

ac
cu

m
ul

at
ed

av
er

ag
e

IS
E

R
R

number of training examples

BR
MMP
MLPP

Fig. 4. Learning curve for the first 60000 examples (ISERR).
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Fig. 7. Error on training and test data depending on the number of epochs.

Crammer and Singer [2003] observed that the performance of
the MMP algorithm became worse with an increasing number
of epochs. Our results confirm this observation: While the
evaluation on the training data indicates a better adaptation,
the performance on the test data decreases (Figure 7). For the
MLPP algorithm the better adaptation to the training data is
also clearly observable, it quickly reaches losses near 0, but
in contrast to MMP, the results on the test data remain stable.
We interpret this as evidence that pairwise decomposition of
the problem does in fact fit the problem structure, i.e., that the
classes here are in fact pairwise linearly separable. MLPPs
learn these linear decision boundaries after the first epoch
through the training examples, so that further training is not
necessary (but can also not lead to more overfitting).

E. Computational Costs

To validate our analysis of the computational complexity in
Section V, we measured the amount of processed perceptron
operations to guarantee to be independent from external
factors such as logging activities and others. The MMP
algorithm required 56,680,708 operations for training and
27,647,981 to process the test set. Analogously, the MLPP
spent 174,184,241 and 1,410,047,031 operations (cf. Table
IV). The ratios between MLPP and MMP for these values
come to 3.07 and exactly 51, respectively. This confirms
our analysis, since the ratio for training is approximately
the average number of labels and the ratio in testing is
103−1

2 . The CPU-time for predicting the labels of 268,427
documents was about 7 minutes for MMPs and 84 minutes
for MLPPs (on a 2 GHz Dual Core Opteron).

We expect to be able to considerably reduce the prediction
time by adapting the efficient voting method proposed in
[Park and Fürnkranz, 2007] to multilabel problems. The key
idea of the method is to ignore predictions for which it can
be guaranteed that they only affect the ranking of irrelevant
labels. It can easily be adapted to the multilabel case in
conjunction with a thresholding method such as the artificial
boundary label of Brinker et al. [2006].

VII. CONCLUSIONS

In this paper, we evaluated the use of a pairwise ensem-
ble of perceptrons for multilabel classification. Our results
showed that despite the need for training a quadratic number
of classifiers, the resulting incremental learning algorithm
can be efficiently applied to large-scale text categorization
problems. Moreover, in terms of accuracy, the pairwise
approach compares favorably to multiclass multilabel per-
ceptrons, a recent algorithm for training an one-per-class
ensemble of perceptrons in a coordinated way by making the
training signal of each perceptron dependent on a loss func-
tion that depends on the entire ranking, and thus dependent
on the predictions of the other perceptrons in the ensemble.
With the pairwise approach, we go an alternative way and
try to break up the problem into independent subproblems
by not trying to directly minimize any particular ranking
loss, but by trying to learn the ordering relation that induces
the ranking. This comparison of principles for addressing
ranking problems is, in our opinion, the most important
contribution of this work. In addition, we also believe that
pairwise classification has not yet been tried with a problem



TABLE IV
NUMBER OF PERCEPTRON OPERATIONS FOR THE DIFFERENT

ALGORITHMS ON THE TRAINING AND TEST SET

BR MMP MLPC
training 55,896,832 56,680,708 174,184,241

prediction 27,647,981 27,647,981 1,410,047,031

of this size (both in number of training examples and in
number of labels).

However, the increase in predictive performance has to
be paid with a small increase in computational complexity,
namely by a factor that depends on the average number of
labels per example. As for most multilabel problems (in
particular in text classification), this factor is rather small
(about 3.24 in the Reuters 2000 data set), so we consider this
not to be a significant problem. The prediction time remains
a problem, however we expect to considerably reduce the
prediction costs to the level of training time by using Quick
Weighted Voting [Park and Fürnkranz, 2007] in conjunction
with the artificial boundary label of Brinker et al. [2006] (cf.
Section VI-E). We are currently working on this issue.

The reason for the good performance of MLPPs seems
to be the adequacy of this pairwise problem decomposition.
Contrary to MMPs, they are able to find perfect classifica-
tions on the training data, which are not due to overfitting
but also carry over to improved performance on the test set.
Moreover, this performance does not degrade if more training
epochs are used, as it does for MMPs. Thus, the problem
seems to be pairwise linearly separable. We believe that this
will be the case for many text categorization problems.

For future research, we see room for improvement es-
pecially in two areas for the pairwise approach. First, the
used decoding is suboptimal because the prediction weights
of the base classifiers could be taken into account. Second,
several variants of the perceptron algorithm were developed
that, similar to SVMs, try to maximize the margin of the
separating hyperplane in order to produce more accurate
models. Preliminary tests with the weighted voting technique
by Price et al. [1995] on the one hand and perceptrons with
margins [Li et al., 2002, Crammer et al., 2006, Khardon and
Wachman, 2007, Tsampouka and Shawe-Taylor, 2007] on
the other hand showed promising results.
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