Frederik Janssen
First name(s): Frederik
Last name(s): Janssen

Publications of Frederik Janssen sorted by title

A

Frederik Janssen and Johannes Fürnkranz, A Re-Evaluation of the Over-Searching Phenomenon in Inductive Rule Learning, TU Darmstadt, Knowledge Engineering Group, number TUD-KE-2008-02, 2008
attachment
linked PDF
Frederik Janssen and Johannes Fürnkranz, A Re-evaluation of the Over-Searching Phenomenon in Inductive Rule Learning, in: Proceedings of the German Workshop on Lernen, Wissen, Adaptivität - LWA2008, pages 42-50, 2008
Frederik Janssen and Johannes Fürnkranz, A Re-evaluation of the Over-Searching Phenomenon in Inductive Rule Learning, in: Proceedings of the SIAM International Conference on Data Mining (SDM-09), pages 329--340, 2009
[URL]
Axel Schulz, Jakob Karolus, Frederik Janssen and Immanuel Schweizer, Accurate Pollutant Modeling and Mapping: Applying Machine Learning to Participatory Sensing and Urban Topology Data, in: Proceedings of the International Conference on Networked Systems (NetSys2015), Cottbus, Germany, pages 1--8, IEEE, 2015
[DOI]
[URL]
Frederik Janssen and Johannes Fürnkranz, An Empirical Investigation of the Trade-Off between Consistency and Coverage in Rule Learning Heuristics, in: Proceedings of the 11th International Conference on Discovery Science (DS-08), pages 40--51, Springer-Verlag, 2008
[DOI]
linked PDF
Frederik Janssen and Johannes Fürnkranz, An Empirical Quest for Optimal Rule Learning Heuristics, TU Darmstadt, Knowledge Engineering Group, number TUD-KE-2008-01, 2008
attachment
linked PDF
Immanuel Schweizer, Kamill Panitzek, Sang-Hyeun Park and Johannes Fürnkranz, An Exploitative Monte-Carlo Poker Agent, in: Proceedings of the LWA 2009: Lernen -- Wissen -- Adaption, Workshop Knowledge Discovery, Data Mining and Machine Learning (KDML-09), pages 100--104, 2009

B

Big Data Analytics in the Social and Ubiquitous Context, Springer, Lecture Notes in Computer Science, volume 9546, 2016
[URL]

C


D

Timo Nolle, Immanuel Schweizer and Frederik Janssen, Data-driven Detection of Congestion-affected Roads, Knowledge Engineering Group, Technische Universität Darmstadt, number TUD–KE–2014–02, 2014
linked PDF
Jan Ruben Zilke, Eneldo Loza Mencía and Frederik Janssen, DeepRED -- Rule Extraction from Deep Neural Networks, in: Discovery Science: 19th International Conference, DS 2016, Bari, Italy, October 19--21, 2016, Proceedings, pages 457--473, Springer International Publishing, 2016
attachment
[DOI]
linked PDF

E

Eneldo Loza Mencía, Sang-Hyeun Park and Johannes Fürnkranz, Efficient Voting Prediction for Pairwise Multilabel Classification, in: Proceedings of the LWA 2009: Lernen - Wissen - Adaption, Workshop Knowledge Discovery, Data Mining and Machine Learning (KDML-09), Darmstadt, Germany, pages 72--75, 2009
linked PDF
Andrei Tolstikov, Frederik Janssen and Johannes Fürnkranz, Evaluation of Different Heuristics for Accommodating Asymmetric Loss Functions in Regression, in: Proceedings of the 20th International Conference on Discovery Science (DS-17), Kyoto, Japan, Springer-Verlag, 2017
[DOI]
[URL]
Andrei Tolstikov, Frederik Janssen and Johannes Fürnkranz, Evaluation of different Regression Learners under Asymmetric Loss for Predictive Maintenance, Knowledge Engineering Group, Technische Universität Darmstadt, number TUD–KE–2015–02, 2015
attachment
linked PDF
Axel Schulz, Frederik Janssen, Petar Ristoski and Johannes Fürnkranz, Event-Based Clustering for Reducing Labeling Costs of Event-Related Microposts, in: Proceedings of the 9th International AAAI Conference on Web and Social Media (ICWSM-15), Oxford, UK, pages 686--690, AAAI Press, 2015
[URL]
Axel Schulz, Petar Ristoski, Johannes Fürnkranz and Frederik Janssen, Event-Based Clustering for Reducing Labeling Costs of Incident-Related Microposts, in: Proceedings of the ICML-15 2nd International Workshop on Mining Urban Data (MUD-15), Lille, France, pages 44--52, CEUR workshop proceedings, 2015
[URL]

H

Frederik Janssen, Heuristic Rule Learning, TU Darmstadt, Knowledge Engineering Group, 2012
[URL]
Frederik Janssen and Johannes Fürnkranz, Heuristic Rule-Based Regression via Dynamic Reduction to Classification, in: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI-11), Barcelona, Spain, pages 1330--1335, 2011
[URL]

I

Heiko Paulheim, Axel Schulz, Frederik Janssen, Petar Ristoski and Immanuel Schweizer, Intelligente Datenauswertung mit Linked Open Data, in: Corporate Semantic Web: Wie semantische Anwendungen in Unternehmen Nutzen stiften, pages 187--201, Springer Vieweg, 2015
[DOI]
[URL]

L

Alexander Gabriel, Heiko Paulheim and Frederik Janssen, Learning Semantically Coherent Rules, in: Proceedings of the 1st International Workshop on Interactions between Data Mining and Natural Language Processing co-located with The European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2014), pages 49--63, CEUR Workshop Proceedings, 2014
[URL]
Sebastian Kauschke, Immanuel Schweizer, Michael Fiebrig and Frederik Janssen, Learning to Predict Component Failures in Trains, in: Proceedings of the 16th LWA Workshops: KDML, IR and FGWM, pages 71--82, CEUR Workshop Proceedings, 2014
attachment
[URL]

M

Frederik Janssen and Johannes Fürnkranz, Meta-Learning Rule Learning Heuristics, TU Darmstadt, Knowledge Engineering Group, number TUD-KE-2007-02, 2007
attachment
linked PDF
Frederik Janssen and Johannes Fürnkranz, Meta-Learning Rule Learning Heuristics, in: Proceedings of ECML-PKDD-07 Workshop on Planning to Learn (PlanLearn-07), pages 9-21, 2007
linked PDF
Frederik Janssen and Johannes Fürnkranz, Meta-Learning Rule Learning Heuristics, in: Proceedings of the German Workshop on Lernen, Wissen, Adaptivität - LWA2007, pages 167--174, 2007

O

Frederik Janssen and Johannes Fürnkranz, On Meta-Learning Rule Learning Heuristics, in: Proceedings of the 7th IEEE International Conference on Data Mining (ICDM-07), pages 529--534, 2007
[DOI]
linked PDF
Sebastian Kauschke, Frederik Janssen and Immanuel Schweizer, On the Challenges of Real World Data in Predictive Maintenance Scenarios: A Railway Application, in: Proceedings of the LWA 2015 Workshops: KDML, FGWM, IR, and FGDB, Trier, Germany, October 7-9, 2015., pages 121-132, CEUR Workshop Proceedings, 2015
attachment
[URL]
Frederik Janssen and Johannes Fürnkranz, On Trading Off Consistency and Coverage in Inductive Rule Learning, in: Proceedings of the German Workshop on Lernen, Wissen, Adaptivität - LWA2006, pages 306--313, Gesellschaft für Informatik e. V. (GI), 2006
[URL]

P

Sebastian Kauschke, Johannes Fürnkranz and Frederik Janssen, Predicting Cargo Train Failures: A Machine Learning Approach for a Lightweight Prototype, in: Proceedings of the 19th International Conference on Discovery Science (DS-16), Bari, Italy, pages 151--166, Springer-Verlag, 2016
[DOI]
[URL]

S

Frederik Janssen and Johannes Fürnkranz, Separate-and-conquer Regression, TU Darmstadt, Knowledge Engineering Group, number TUD-KE-2010-01, 2010
linked PDF
Frederik Janssen and Johannes Fürnkranz, Separate-and-conquer Regression, in: Proceedings of the German Workshop on Lernen, Wissen, Adaptivität - LWA2010, Kassel, Germany, pages 81--89, 2010
[URL]
Julius Stecher, Frederik Janssen and Johannes Fürnkranz, Separating Rule Refinement and Rule Selection Heuristics in Inductive Rule Learning, in: Proceedings of the European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML-PKDD-14), Part 3, pages 114--129, Springer, 2014
[DOI]
[URL]
Julius Stecher, Frederik Janssen and Johannes Fürnkranz, Shorter Rules Are Better, Aren't They?, in: Proceedings of the 19th International Conference on Discovery Science (DS-16), pages 279--294, Springer-Verlag, 2016
[DOI]
[URL]
Christian Meurisch, Usman Naeem, Muhammad Awais Azam, Frederik Janssen, Benedikt Schmidt and Max Mühlhäuser, Smarticipation: intelligent personal guidance of human behavior utilizing anticipatory models, in: Proceedings of the 2016 ACM International Joint Conference on Pervasive and Ubiquitous Computing, UbiComp Adjunct 2016, Heidelberg, Germany, pages 1227--1230, 2016
Eneldo Loza Mencía and Frederik Janssen, Stacking Label Features for Learning Multilabel Rules, in: Discovery Science - 17th International Conference, DS 2014, Bled, Slovenia, October 8-10, 2014, Proceedings, pages 192-203, Springer, 2014
[DOI]
linked PDF

T

Frederik Janssen and Johannes Fürnkranz, The SeCo-framework for rule learning, TU Darmstadt, Knowledge Engineering Group, number TUD-KE-2010-02, 2010
linked PDF
Frederik Janssen and Markus Zopf, The SeCo-Framework for Rule Learning, in: Proceedings of the German Workshop on Lernen, Wissen, Adaptivität - LWA2012, Dortmund, Germany, 2012
Eneldo Loza Mencía and Frederik Janssen, Towards Multilabel Rule Learning, in: Proceedings of the German Workshop on Lernen, Wissen, Adaptivität - LWA2013, pages 155--158, 2013
[URL]
Frederik Janssen, Faraz Fallahi, Jan Noessner and Heiko Paulheim, Towards Rule Learning Approaches to Instance-based Ontology Matching, in: 1st International Workshop on Knowledge Discovery and Data Mining Meets Linked Open Data (Know@LOD), pages 13--18, 2012
attachment
linked PDF

U

Eneldo Loza Mencía, Simon Holthausen, Axel Schulz and Frederik Janssen, Using Data Mining on Linked Open Data for Analyzing E-Procurement Information, in: Proceedings of the first DMoLD: Data Mining on Linked Data Workshop at ECML/PKDD2013, 2013
[URL]

W

Axel Schulz and Frederik Janssen, What Is Good for One City May Not Be Good for Another One: Evaluating Generalization for Tweet Classification Based on Semantic Abstraction, in: Proceedings of the Fifth Workshop on Semantics for Smarter Cities (a Workshop at the 13th International Semantic Web Conference (ISWC 2014)), Riva del Garda, Italy, pages 53--67, 2014
[URL]