
DeepRED –
Rule Extraction from Deep Neural Networks?

Jan Ruben Zilke, Eneldo Loza Mencía, and Frederik Janssen

Technische Universität Darmstadt
Knowledge Engineering Group

j.zilke@mail.de, {eneldo,janssen}@ke.tu-darmstadt.de

Abstract. Neural network classifiers are known to be able to learn very accurate
models. In the recent past, researchers have even been able to train neural net-
works with multiple hidden layers (deep neural networks) more effectively and
efficiently. However, the major downside of neural networks is that it is not triv-
ial to understand the way how they derive their classification decisions. To solve
this problem, there has been research on extracting better understandable rules
from neural networks. However, most authors focus on nets with only one single
hidden layer. The present paper introduces a new decompositional algorithm –
DeepRED – that is able to extract rules from deep neural networks.
The evaluation of the proposed algorithm shows its ability to outperform a ped-
agogical baseline on several tasks, including the successful extraction of rules
from a neural network realizing the XOR function.

1 Introduction

To tackle classification problems, i.e.,deciding whether or not a data instance belongs
to a specific class, machine learning offers a wide variety of methods. If the only goal is
to accurately assign correct classes to new, unseen data, neural networks (NN) are able
to produce very low error rates that yet could not be achieved by other machine learning
techniques [8]. Sufficiently deep NNs, so-called deep neural networks (DNN), are even
able to realize arbitrary functions. And lately, researchers improved the training of these
structures such that they can generalize better and better from training data, for instance
in the research fields of speech recognition and computer vision.

However, there is a major downside of NNs: For humans, it is not easy to understand
how they derive their decisions [11]. However, understanding a NN’s function can be
essential. For instance, this is the case in safety-critical application domains such as
medicine, power systems, or financial markets, where a hidden malfunction could lead
to life-threatening actions or enormous economic loss. A better understanding of the
way NNs derive their decisions could also push NN training research. Making NNs

? This is the authors’ version of the work retrieved from http://www.ke.tu-darmstadt.de. The
final publication is available at Springer at http://dx.doi.org/10.1007/978-3-319-46307-0_29
and appeared in T. Calders, M. Ceci, D. Malerba (Eds.): Discovery Science 19th International
Conference, DS 2016, Bari, Italy, October 19–21, 2016, Proceedings, LNAI 9956, pp. 457–
473, 2016.

http://www.ke.tu-darmstadt.de
http://dx.doi.org/10.1007/978-3-319-46307-0_29

2 Jan Ruben Zilke, Eneldo Loza Mencía, and Frederik Janssen

more transparent, for instance, could help to discover so-called hidden features that
might be formed in DNNs while learning. Such features are not present in the plain
input data, but emerge from combining them in a useful way.

In contrast to NNs, rule-based approaches like decision trees or simple IF-THEN
rules are known to be better understandable. Since most humans tackle classification
problems in a manner very similar to the one implemented by many rule-based learning
techniques, i.e., listing simple conditions that need to be met, their models and decision
processes are more comprehensible.

To overcome the weakness of NNs being black boxes, especially in the 1990s re-
searchers have worked on the idea of extracting rules from them. Since then, a lot of rule
extraction techniques have been developed and evaluated – and for many approaches
quite good results have been reported. However, most algorithms to extract rules focus
on small NNs with only one hidden layer. Surprisingly little work has been done on
analysing the challenges of extracting rules from the more complex DNNs. Although
some authors have presented rather general approaches, to the best of our knowledge,
there does not exist any algorithm that has explicitly been tested on the task of extract-
ing rules from DNNs. But indeed, having a large amount of layers makes the extraction
of comprehensible rules more difficult.

In this paper, we introduce and evaluate DeepRED, a new algorithm that is able to
extract rules from DNNs. The decompositional algorithm extracts intermediate rules for
each layer of a DNN. A final merging step produces rules that describe the DNN’s be-
haviour by means of its inputs. The evaluation shows DeepRED’s ability to successfully
extract rules from DNNs and to outperform a pedagogical approach.

The work is structured as follows: First, we give an overview of the current state-
of-the-art. Afterwards, we describe our proposed algorithm in more detail (Sec. 3). We
evaluate DeepRED on several tasks (Sec. 4 and 5) before we summarize and conclude
our work.

2 Related Work

It is commonly believed that “concepts learned by neural networks are difficult to un-
derstand because they are represented using large assemblages of real-valued parame-
ters” [4]. To transform NNs into a form that is better comprehensible for humans, many
concepts are conceivable. One famous choice is to extract rules from NNs. In [1], the
authors have introduced a widely used taxonomy to distinguish between different rule
extraction algorithms. The taxonomy, for instance, comprises the translucency dimen-
sion that defines the strategy used: decompositional (considering NN’s inner structure),
pedagogical (black box approach), or eclectic (mixture of both).

Examples of eclectic methods are the MofN algorithm [19] as well as the FERNN
algorithm [15]. MofN’s main approach is to find NN connections with similar weights.
FERNN focusses on identifying a NN’s relevant inputs and hidden neurons.

The works dealing with pedagogical rule extraction, for instance, comprise the VIA
method discussed in [17, 18], different sampling-based approaches [5, 16, 13, 21, 14],
and the RxREN algorithm [2]. VIA uses validity interval analysis to find provably correct
rules. Sampling-based methods try to create extensive artificial training sets where rule

DeepRED – Rule Extraction from Deep Neural Networks 3

learning algorithms later can extract rules from. RxREN provides interesting ideas to
prune a NN before rules are extracted (cf. Sec. 3.4).

Examples for decompositional approaches are the KT method that heuristically
searches for input combinations that let a neuron fire [7], a more efficient implementa-
tion of the latter [20], and an algorithm that transforms NNs to fuzzy rules [3]. However,
the most important basis for this present work is the (decompositional) CRED algorithm
presented in [12]. CRED uses decision trees to describe a NN’s behaviour based on the
units in its hidden layer. In a second step it builds up new decision trees to describe the
split points of the first decision trees. Afterwards rules are extracted and merged.

Although we encounter a wide variety of interesting rule extraction approaches,
there is a major shortcoming: Most decompositional algorithms introduced so far can-
not deal with NNs with more than one hidden layer. Furthermore, to the best of our
knowledge, there does not exist any algorithm that has explicitly been tested on the
task of extracting rules from DNNs. This is the case even though most pedagogical ap-
proaches should be able to perform this task without any major modifications. However,
due to the lack of pedagogical techniques to include the knowledge present in a DNN’s
inner structure, we focus on a decompositional method to extract rules from DNNs.

3 The DeepRED Algorithm

With DeepRED (Deep neural network Rule Extraction via Decision tree induction), in
this paper we present an algorithm that is able to overcome the shortcoming of most
state-of-the-art algorithms: DeepRED is applicable to DNNs. Since DeepRED is a de-
compositional approach, in contrast to pedagogical methods, the algorithm is able to
easily extract hidden features from a DNN.

This section is structured as follows: First, we introduce our notation and assump-
tions. After describing the CRED algorithm in more detail, we present DeepRED’s way
to extract rules from DNNs as well as the pruning technique used.

3.1 Preliminaries

We assume a multiclass classification problem with m training examples x1, . . . ,xm, each
x j associated with one class y j ∈ {λ1, ...,λu}. We represent the input values of a NN as
i = i1, . . . , in and the output values as o = o1, . . . ,ou, one for each possible class. The
hidden layers are abbreviated as hi ∈ {h1, . . . ,hk} while the hidden layer hi consists of
the neurons hi,1 . . . ,hi,Hi (in the case of a single-hidden-layer NN, the hidden neurons are
written as h1, . . . ,hH). For convenience, we set h0 = i and hk+1 = o and let hi(x) denote
the specific layer values for input instance x. DeepRED produces intermediate rule sets
Ra→b that include rules that describe layer b by means of terms based on layer a. A
rule r : IF body THEN head is constituted by a set of terms in the body (conditions on
attribute values, or, in our case, also conditions on activation values) and an assignment
term in the head.

4 Jan Ruben Zilke, Eneldo Loza Mencía, and Frederik Janssen

3.2 CRED as Basis

As mentioned earlier, DeepRED is based on CRED (Continuous/discrete Rule Extractor
via Decision tree induction). In a first step, the original algorithm introduced by Sato
and Tsukimoto [12] uses the well-known C4.5 algorithm [10] to transform each output
unit of a NN (with one hidden layer) into a decision tree. Such a tree’s inner nodes are
tests on the values of the hidden layer’s units. The leaves represent the class such an
example would belong to (cf. Figure 1). Afterwards, intermediate rules are extracted
directly from these trees. In the case illustrated in Figure 1, if the task is to find rules
for class1, a single intermediate rule would be extracted, i.e. IF h2 > 0.5 AND h1 ≤ 0.6
THEN ŷ = λ1. This leads us to a rule set that describes the behaviour of a NN on the
basis of the hidden layer’s units.

root

ŷ = λ2

h2 ≤ 0.5

ŷ = λ1

h1 ≤ 0.6

ŷ = λ2

h1>
0.6

h2>
0.5

Fig. 1. Result of CRED’s first step: A decision tree providing rules for the neural network’s output
based on its hidden layer (adapted from [12]).

Next, for each term used in these rules, another decision tree is created using split
points on the NN’s input layer. In these new decision trees, the leaves do not directly
decide for an example’s class, but rather on the tests used in the first tree’s node, as
exemplarily depicted in Figure 2. Extracting rules from this second decision tree leads
us to a description of the hidden neurons’ state by terms consisting of input variables.
In case of the state h2 > 0.5, the following intermediate rules could be extracted: IF
i0 > 0.5 THEN h2 > 0.5, IF i0 ≤ 0.5 AND i1 = a THEN h2 > 0.5, and IF i0 ≤ 0.5 AND
i1 = b THEN h2 > 0.5. Further decision trees must be extracted for all the other split
points found in the first tree (in our example for h1 ≤ 0.6).

As a last step, the intermediate rules that describe the output by means of the hidden
layer and those that describe the hidden layer based on the NN’s inputs are substituted
and merged to build rules that describe the NN’s output on the basis of its inputs. Note
that the resulting rules from the decision tree are disjunctive, i.e., only one will fire at a
time for any test instance.

3.3 Extending CRED to DeepRED

Since CRED is a decompositional rule extraction approach, it is not possible to apply
the original implementation directly to NNs with multiple layers of hidden neurons.

DeepRED – Rule Extraction from Deep Neural Networks 5

root

h2 ≤ 0.5
i1 = c

h2 > 0.5i1 = b

h2 > 0.5
i1=

a
i0 ≤ 0.5

h2 > 0.5

i0>
0.5

Fig. 2. Result of one iteration of CRED’s second step: A decision tree providing rules for h2 > 0.5
based on the neural network’s inputs (adapted from [12]).

However, the algorithmic approach can be extended relatively straight-forward by de-
riving additional decision trees and intermediate rules for every supplementary hidden
layer.

The general process of DeepRED is the following: The algorithm extracts rules for
each class/NN output one after another. For each class it processes every hidden layer
in a descending order. DeepRED extracts rules for each hidden layer that describes its
behaviour based on the preceding layer. In the end, all rules for one class are getting
merged such that we arrive at the rule set Ri→o.

Our modified version of the CRED algorithm – DeepRED – starts just like the orig-
inal implementation by using C4.5 to create decision trees consisting of split points on
the activation values of the last hidden layer’s neurons and the regarding classifications
in the trees’ leaves. Figure 3 provides the pseudo code for DeepRED. To exemplify
DeepRED’s approach we consider, without loss of generality, a NN with k hidden lay-
ers. As a result of the first step we get a decision tree that describes the output layer by
split points on values regarding hk, i.e., the rule set Rhk→o. The data to run C4.5 on is
generated by feeding the training data to the NN and recording the outputs of the hidden
neurons (line 8).

In the next step, in contrast to the algorithm presented by Sato and Tsukimoto, we
do not directly refer to the input layer, but instead process the next shallower hidden
layer, i.e. hk−1 (loop starting in line 1). For every term present in one of the rules in
Rhk→o, we need to apply the C4.5 algorithm to find decision trees that describe layer
hk by means of hk−1 and can be transformed to the rule set Rhk−1→hk (line 10). We
also see that the proposed algorithm also implements a procedure to prevent itself from
performing redundant runs of C4.5 since we only learn a decision tree for terms which
were not already extracted (line 6). Just like in the CRED example presented earlier, the
terms in Rhk→o are directly used to differentiate positive and negative examples for the
regarding C4.5 runs (line 9).

We proceed in the same manner until we arrive at decision trees/rules that describe
terms in the first hidden layer h1 by terms consisting of the original inputs to the NN,
i.e. Ri→h1 .

Now we have rule sets that describe each layer of the NN by their respective pre-
ceding layer, i.e. we have the sets of intermediate rules Ri→h1 ,Rh1→h2 , . . . ,Rhk−1→hk , and

6 Jan Ruben Zilke, Eneldo Loza Mencía, and Frederik Janssen

Input: Neural network h0,h1, . . . ,hk,hk+1, training examples x1,x2, . . . ,xm
Output: Set of rules representing the NN

1 foreach class λv ∈ λ1, . . . ,λu do
2 Rv

hk→o← IF hk+1,v > 0.5 THEN ŷ = λv // initial rule for NN’s prediction

3 foreach hidden layer j = k,k−1, . . .1 do
4 Rv

h j−1→h j
← /0

5 T ← extractTermsFromRuleBodies (Rv
h j→h j+1

)

6 T ← removeDuplicateTerms (T)
7 foreach t ∈ T do
8 x′1, . . . ,x

′
m← h j(x1), . . . ,h j(xm)

// obtain activation values for all neurons in the j−1-th
layer for each training example

9 y′1, . . . ,y
′
m← t(h j+1(x1)), . . . , t(h j+1(xm))

// apply term t on respective activation in layer j and get

binary outcome, the training signal, for each training example

10 Rv
h j−1→h j

← Rv
h j−1→h j

∪ C4.5 ((x′1,y
′
1), . . . ,(x

′
m,y
′
m))

// learn rules for t and add to rules representing the layer

11 end
12 end

// merging to conjunctive rules and cleaning up

13 foreach hidden layer j = k,k−1, . . .1 do
14 Rv

h j−1→o = mergeIntermediateTerms(Rv
h j−1→h j

, Rv
h j→o)

// dissolve rules of remaining two layers

15 Rv
h j−1→o = deleteUnsatisfiableTerms(Rv

h j−1→o)

16 Rv
h j−1→o = deleteRedundantTerms(Rv

h j−1→o)

17 end
18 end
19 return R1

i→o,R
2
i→o, . . . ,R

u
i→o // describes output of NN by rules consisting of

terms on input values of first layer

Fig. 3. Pseudo code of DeepRED.

Rhk→o. To get a rule set Ri→o that describes the NN’s outputs by its inputs, these rules
need to be merged. This merging process proceeds layer-wise (block starting at line 13).
First, DeepRED substitutes the terms in Rhk→o by the regarding rules in Rhk−1→hk to get
the rule set Rhk−1→o (line 14). As mentioned in Figure 3, unsatisfiable intermediate rules
as well as redundant terms are deleted (lines 15 and 16).1 This happens to reduce com-
putation time and memory usage drastically. Next, we merge the rule sets Rhk−1→o and
Rhk−2→hk−1 . Step by step we go through all layers until we arrive at rules that describe
the classification/outputs according to the inputs to the NN, which is the result we were
looking for.

1 The merging may produce rules of the form i1 < 0.1 AND i1 > 0.2, or i1 > 0.4 AND i1 > 0.5.

DeepRED – Rule Extraction from Deep Neural Networks 7

Table 1. Overview of deep neural networks used for evaluation, including the characteristics of
the original data the NNs were trained on and the accuracies of the NN on the training and test
set.

#attributes #training ex. #test ex. NN structure acc(training) acc(test)
MNIST 784 12056 2195 784-10-5-2 99.6% 98.8%

letter 16 1239 438 16-40-30-26 96.9% 97.3%
artif-I 5 20000 10000 5-10-5-2 99.5% 99.4%

artif-II 5 3348 1652 5-10-5-2 99.4% 99.0%
XOR 8 150 106 8-8-4-4-2-2-2 100% 100%

3.4 Pruning

One way to facilitate the rule extraction process is to prune NN components that can be
considered as less important for the classification. While the authors of CRED did not
report on any of these approaches, other researchers have invented several techniques
that help to extract comprehensible rules. As a pre-processing step before DeepRED is
applied, we have borrowed the input pruning technique from RxREN [2]. It proceeds
by testing the NN’s performance while ignoring individual inputs. Those inputs that
where not necessary to still produce an acceptable classification performance are getting
pruned.

4 Experiments

Since we are not aware of any algorithm that has been tested on extracting rules from
DNNs, we want to fill this gap with a DeepRED evaluation. Although DeepRED is able
to extract rules from DNNs with an arbitrary number of output neurons, in this study we
limit ourselves to two-class-problems. Before we present and discuss the results more
extensively, we first take a look at the evaluation data base.

To evaluate DeepRED, we need suitable input data, i.e. trained NNs and training
sets. Unfortunately, it is not trivial to find already trained NNs in literature or online.
Although NN research is a lot about training, usually only network structures, training
methods and performances are reported, while specific weights are not of particular
interest for most researchers. Therefore, we trained DNNs for real-world and artificial
problems. Table 1 summarizes our data basis.

Both, the MNIST and the letter data are taken from real-world problems. The basis
for our MNIST dataset is the dataset presented in [9]. We picked a subset of the original
data, reduced the problem to distinguish only between two different classes (1 vs. rest),
and trained a DNN on it. The letter recognition problem is derived from the dataset in-
troduced in [6]. Here, we first trained the DNN on a multi-class training set. Afterwards
we reduced the training and test set to a binary classification problem (accuracy rates
reported are based on the training set reduced to two classes).

The datasets artif-I and artif-II are artificial ones that we have created to be able
to compare original and extracted models. Both databases comprise examples with five
attributes (discrete and continuous domains). A challenging characteristic of artif-I is
that it contains greater-than relations on real-valued attributes. These functions cannot

8 Jan Ruben Zilke, Eneldo Loza Mencía, and Frederik Janssen

easily be modelled by decision trees. This is not the case with artif-II, however, the
second artificial dataset is based on a model where the value of one attribute has no
effect on the class, which as well might be challenging for rule extraction algorithms.2

As a fifth problem we manually constructed a DNN that solves the XOR problem with
eight inputs. The parity function is well-known as a hard problem for rule learners. Top-
down learner, for instance, need all possible input examples to correctly model XOR.

4.1 Rule Extraction Algorithms

To get an idea of how well the proposed algorithm performs the task of extracting
rules from DNNs, in this evaluation we compare two variants of DeepRED – a version
without and a version with RxREN pruning – with a pedagogical baseline.

To control the behaviour of DeepRED, we implemented two parameters that influ-
ence the included C4.5 algorithm and one for the pruning mechanism. The first two
parameters control when C4.5 should stop further growing a decision tree. As an ad-
ditional general setting we adjust C4.5 to only perform binary splits and to produce a
maximum decision tree depth of ten.

The first parameter – class dominance – is a threshold that considers the classes of
the current data base. If the percentage of examples that belong to the most frequent
class exceeds the value in the class dominance parameter, this class is getting predicted
instead of further dividing the data base.

The second parameter is the minimum data base size. This value tries to stop C4.5
further growing the decision tree when there is not enough data available to base di-
viding steps on. This parameter takes the number of training examples available in the
first step as a reference value and defines a percentage of this size as the minimum data
base size. If for the current step, there are less examples available than the parameter
requires, C4.5 produces a leaf with the most frequent class at this point.

The RxREN pruning parameter, namely the maximum accuracy decrease, controls
the pruning intensity. Step by step, the technique prunes the inputs that are considered
as the least significant ones, as long as the NN’s accuracy does not drop below the
decrease allowed by this parameter.

As a pedagogical rule extraction baseline we choose to use the C4.5 algorithm,
that is also used as a part of DeepRED itself. Like the sampling-based approaches, our
baseline is provided with the training examples as well as the NN’s classification for
these instances (instead of the real classes). Using these values, C4.5 extracts a decision
tree that, afterwards, is transformed to a rule set. The two introduced C4.5 parameters
do also apply to the baseline.

Note that no rule rewriting, rule pruning or any other rule optimization mechanisms
are implemented by the DeepRED variants or the baseline (except DeepRED’s reported
steps to delete redundant terms and unsatisfiable rules).

2 Input instances are drawn randomly from x ∈ {0,0.5,1}×{0,0.25,0.5,0.75,1}× [0,1]3. For
artif-I y = λ1 if x1 = x2, if x1 > x2 AND x3 > 0.4, or if x3 > x4 AND x4 > x5 AND x2 > 0,
else y = λ2, whereas for artif-I y = λ1 if x1 = x2, if x1 > x2 AND x3 > 0.4, or IF x5 > 0.8.

DeepRED – Rule Extraction from Deep Neural Networks 9

4.2 Evaluation Measures

To compare the results of the algorithms presented using the trained DNNs introduced,
we derive two central measures from the extracted rule sets, that are used to assess their
quality. First, we measure the comprehensibility by the number of terms in the extracted
rule set. Second, we use the fidelity (ratio of prediction matches) to compare the mim-
icking performance of the extracted rules in contrast to the original NN’s behaviour.

4.3 Evaluation Setup

Before we setup the evaluation, we collected our expectations of DeepRED’s perfor-
mance. Our expectations were:

1. DeepRED is able to extract rules from deep neural networks.
As stated earlier, to the best of our knowledge, no rule extraction algorithm has
ever been tested on a DNN. We believed that in general the proposed algorithm
can manage this task. However, we also expected DeepRED’s memory and compu-
tation time demands to sometimes make rule extraction processes intractable. We
assumed that this was especially true for classification problems where an instance
is described by a large number of attributes.

2. DeepRED outperforms the baseline on more complex problems.
We believed that our algorithm can profit from a NN’s structure when the training
data model a concept that cannot be described/learned by a simple decision tree –
including but not restricted to the XOR problem. On the other hand, for decision
tree problems, i.e. classification tasks that can more easily be solved by a decision
tree, our assumption was that the baseline could outperform DeepRED.

3. RxREN pruning facilitates the extracted rules.
For problems where not all inputs are relevant, we expected the extracted rules to
be more comprehensible when RxREN pruning has been applied. Depending on
the problem, we even thought that the fidelity rates could be improved. However,
since the optimal setting of the pruning parameters is not trivial, the extracted rules
probably would not reach the possibly best tradeoff between comprehensibility and
fidelity.

4. DeepRED extracts more accurate rules if more data is available.
We believed that the DeepRED algorithm would need a certain amount of data
to extract reasonable rules. However, we also thought that our algorithm is less
dependant on a sufficiently large dataset than C4.5 is, because DeepRED focusses
on the setup of the NN’s inner structure using instances, which is a more efficient
representation compared to the pedagogical point of view.

To check these expectations, our evaluation setup includes three different pairs of
C4.5 parameter values, three different pruning settings, as well as four values that con-
trol the number of training examples visible to the rule extraction algorithm. Table 2
summarizes the different parameter settings chosen.

The number of experiments for the proposed algorithm sums up to 180 (or 36 per
dataset) while the baseline is executed in 60 experiments (or 12 per dataset) – RxREN
pruning never is applied here.

10 Jan Ruben Zilke, Eneldo Loza Mencía, and Frederik Janssen

Table 2. The parameter settings used for the evaluation.

C4.5 parameters
92% / ≤ 2%
95% / ≤ 1%
99% / ≤ 0%

RxREN pruning
No pruning

5%
10%

Training set
10%
25%
50%

100%

Table 3. Statistics of performed experiments for DeepRED.

artif-I artif-II letter MNIST XOR
Executed 36 36 36 21 12

Successful 11 23 26 4 12
Aborted (memory) 24 13 10 7 0

Aborted (time) 1 0 0 10 0

5 Evaluation

The results of DeepRED’s evaluation shows that most of our expectations are met. The
main results are:

DeepRED can Successfully Extract Rules from Deep Neural Networks – Table 3
gives an overview of the general success of applying DeepRED to different DNNs. For
every dataset, we list the number of experiments that were executed3 as well as the
number of successful and aborted attempts4.

One observation is that for every DNN tested there is at least one parameter setting
that enables DeepRED to successfully extract rules. Except for the MNIST dataset, this
also holds true for every RxREN pruning variant evaluated. On the other hand is the
high abortion rate of approximately 46% an indication that the right parameters are
important when using DeepRED. Especially for classification problems with a large
number of inputs, i.e. MNIST, the success rate is very low.

A further investigation concerning the abortion reasons shows that most of the time
memory limits are exceeded while merging if a lot of intermediate rules are present
in the first two layers. The abortions due to violation of time constraints can all be
ascribed to large training sets passed to the algorithm – the implemented C4.5 is not
efficient enough when dealing with large datasets.

DeepRED can Extract Comprehensible Rules for Complex Problems – Taking
a closer look at the results on the datasets artif-I and artif-II lets us assess DeepRED’s
performance on more complex problems. As described earlier, the data in artif-I model
a function that cannot easily be realized by a decision tree. We consider this a diffi-
cult problem for the baseline. The artif-II data, on the other hand, can quite easily be

3 You might notice that, earlier, we mentioned that there are 36 experiments per dataset. How-
ever, to avoid sophisticating the outcomes, we discard those experiments where the RxREN
pruning results in no pruned inputs at all.

4 An abortion could either be the case if the experiment exceeds the allocated memory space
(10000MB) or if DeepRED needs more than the maximum execution time (24 hours).

DeepRED – Rule Extraction from Deep Neural Networks 11

0 100 200 300
0.85

0.9

0.95

1

Number of terms

Fi
de

lit
y

DeepRED
Baseline

0 100 200 300
0.85

0.9

0.95

1

Number of terms

Fi
de

lit
y

DeepRED
Baseline

Fig. 4. Evaluation results for DeepRED and the baseline on artif-I (left) and artif-II (right).

modelled by a decision tree. However, please notice that the functions the DNNs have
learned are not equivalent to the true models.

Figure 4 shows the results. We clearly see that the best DeepRED result outperforms
the baseline on the DNN representing the artif-I dataset. Especially the comprehensi-
bility of the rules extracted by our approach is much better. It seems like the proposed
algorithm could use the inner structure of the DNN to create rules that efficiently model
the NN’s behaviour.

The artif-II dataset gives a different picture: The baseline produces much better
results than DeepRED does. Regarding fidelity, the outcomes of our approach are more
or less similar to those of the artif-I data. However, the baseline is able to find a more
efficient way to model the NN’s outputs – and does so much more accurate. For some
reason, the inner structure of the DNN seems to confuse DeepRED such that it cannot
extract high-quality rules.

Part of our expectation also was, that DeepRED can outperform the baseline by far
when extracting rules from an XOR NN. Figure 5 gives an insight into the performance
on this task. Please notice, that compared to Figure 4 we needed to adjust the axes to
draw a meaningful graph. As we expected it and it is well-known, C4.5 cannot gen-
eralize from XOR training examples to correctly classify distinct test instances, i.e. it
never gets better than random. However, as we see in the graph, DeepRED is able to
use the knowledge embedded in the DNN, to extract rules that correctly classify unseen
examples. As we will discuss in a moment, DeepRED needs a sufficiently large data
basis to perform this task. But if it is given, an error rate of 0% can be achieved (only
having the training examples).

You might argue that DeepRED is not extracting comprehensible rules. In fact, rules
in the form as we use them are not able to efficiently model the XOR problem. To
correctly classify all possible 256 input combinations for this problem, 128 rules with 8
terms each are necessary to cover all 128 positive examples (the default rule covers the
negative examples). In sum this leads to a number of 1024 terms in the rule set – which
is the number of terms, the most accurate rules extracted by DeepRED have.

RxREN Pruning Helps DeepRED to Extract More Comprehensible Rules –
RxREN pruning can facilitate the rule extraction process for DeepRED. Here, we want

12 Jan Ruben Zilke, Eneldo Loza Mencía, and Frederik Janssen

0 500 1,000
0

0.2

0.4

0.6

0.8

1

Number of terms
Fi

de
lit

y

DeepRED
Baseline

Fig. 5. Evaluation results for DeepRED and the baseline on XOR.

No pruning 5% 10%

100

102

104

106

RxREN pruning threshold

N
um

be
ro

ft
er

m
s

letter
artif-I

MNIST

Fig. 6. The effect of DeepRED’s different RxREN pruning parameters on the extracted rules’
comprehensibility.

to analyse how the RxREN pruning affects a rule set’s comprehensibility – and what
it means for its fidelity. Figure 6 offers some insights for this question. We only show
the datasets where not all inputs are important, i.e. letter, artif-I, and MNIST. The con-
nected points represent experiments with the same C4.5 parameters and training set
sizes. Please note, that the figure only shows groups of experiments where at least two
different pruning settings were successful.

One can clearly see that for the vast majority of experiments, the number of terms
gets smaller when the pruning intensity gets higher. This holds true for all experiments
when we only consider no pruning versus pruning with a threshold of 5%.

Figure 7 provides fidelity rates for exactly the same experiments as depicted in
Figure 6. For the artif-I problem, where the 10% pruning setting produced the shortest
rules, we also see the best fidelity rates for the same pruning setting. For the MNIST
problem, instead, the threshold of 10% is too greedy and leads to a much worse fidelity.

DeepRED – Rule Extraction from Deep Neural Networks 13

No pruning 5% 10%

0.8

0.9

1

RxREN pruning threshold

Fi
de

lit
y

letter
artif-I

MNIST

Fig. 7. The effect of DeepRED’s different RxREN pruning parameters on the extracted rules’
fidelity.

The results for the letter problem are less clear. We conclude that the pruning inten-
sity needs to be adjusted in a more elaborate way to ensure the best achievable results.
In total the results are better than expected since, although RxREN pruning overall in-
creases the comprehensibility drastically, a clear trend towards lower fidelity rates can-
not be recognized.

Another interesting observation is the fact that RxREN pruning in eight of 13 cases
in the first place enables DeepRED to successfully extract rules. Without the pruning
option, for instance, the algorithm would not be able to process the MNIST DNN at all.

DeepRED can Extract High-Quality Rules Independently from the Training
Set Size – As a last measure we want to analyse the effect of the training set size on the
results. Our belief was, that DeepRED profits from more available data. The graph in
Figure 8 shows the results of all successful experiments on datasets with less than 4000
training examples (with a minimum fidelity of 77%).

Although we can clearly see that increasing the training set size from 10% to 25%
has a positive influence on the fidelity, the overall results for the artif-II and letter
datasets are surprising. Contrary to our expectations more data do not necessarily lead
DeepRED to extract better rules. Often, the fidelity even gets worse when making more
data available to the algorithm, while the baseline more often can profit from additional
training data. A further investigation why this is the case is left for future research.

For the XOR dataset, Figure 8 shows us exactly what we expected – a strong corre-
lation between the number of training examples and the fidelity of the rule sets. While
the results for the baseline are not shown in the extract of the graph (since the results
are never better than 50%), DeepRED manages to extract sensible rule sets with only
50% of the training data (which is about 29% of all possible input combinations). In our
experiments with 100% training data, the proposed algorithm extracted rules that per-
fectly mimic the NN’s behaviour. Again, we want to clarify that the 100% training data

14 Jan Ruben Zilke, Eneldo Loza Mencía, and Frederik Janssen

10% 25% 50% 100%

0.8

0.9

1

Amount of training data available

Fi
de

lit
y

artif-II (DeepRED)
letter (DeepRED)
XOR (DeepRED)
artif-II (baseline)
letter (baseline)

Fig. 8. The implications of different sizes of the available data on the extracted rules’ fidelity.

are approximately 59% of all possible input combinations. The baseline would only be
able to extract such a rule set, if all 256 possible instances are available for training.

This clearly shows the benefit of having access to the NN’s structure. DeepRED
does not need every input combination of all attributes in the training data – the exam-
ples must only contain the relevant input combinations anywhere in the training set. In
the best case, for an XOR with four inputs, only four examples are needed5, which is
only 25% of all 16 possible input combinations. The deeper a similar XOR network, the
more DeepRED benefits from the NN’s architecture.

6 Conclusion

In this paper, we presented and evaluated DeepRED, a new decompositional algorithm
that solves the problem of extracting rules from DNNs to make their decision processes
more comprehensible.

Since most state-of-the-art algorithms do not consider DNNs at all, we created a
new rule extraction algorithm that is able to deal with DNNs. We proposed DeepRED
which extends the CRED algorithm. Our approach uses C4.5 to create rules that de-
scribe neurons on the basis of neurons in the preceding layer. DeepRED then merges
these rules to produce a rule set that mimics the overall behaviour of the given DNN.

Our evaluation with different parameter settings on five datasets showed DeepRED’s
advantages over a pedagogical baseline. The proposed algorithm even managed to suc-
cessfully extract correct rules from an XOR NN despite not seeing all training examples
that would usually be necessary to replicate such a function with a rule learning algo-
rithm.

5 An example of a sufficient training set with the instance notation x = x1x2x3x4 would be 0011,
1101, 1000, and 0110. It contains all combinations of x1/x2 and x3/x4.

DeepRED – Rule Extraction from Deep Neural Networks 15

Future research on DeepRED is needed to better adjust its parameters and select
or sample suitable training examples. Not only optimizing C4.5 to better fit DNN rule
extraction characteristics, but also a replacement of C4.5 by another rule learner could
be very interesting. Additional evaluations that are not restricted to binary classification
problems would help to further optimize DeepRED. Since, to the best of our knowl-
edge, the DNN rule extraction problem by now has not been analysed more extensively
by other researchers, developing alternatives for DeepRED also is an interesting open
research opportunity.

References

[1] Andrews, R., Diederich, J., Tickle, A.B.: Survey and critique of techniques for extract-
ing rules from trained artificial neural networks. Knowledge-based systems 8(6), 373–389
(1995)

[2] Augasta, M.G., Kathirvalavakumar, T.: Reverse engineering the neural networks for rule
extraction in classification problems. Neural processing letters 35(2), 131–150 (2012)

[3] Benítez, J.M., Castro, J.L., Requena, I.: Are artificial neural networks black boxes? Neural
Networks, IEEE Transactions on 8(5), 1156–1164 (1997)

[4] Craven, M., Shavlik, J.W.: Using sampling and queries to extract rules from trained neural
networks. In: ICML. pp. 37–45 (1994)

[5] Craven, M.W., Shavlik, J.W.: Extracting tree-structured representations of trained networks.
Advances in neural information processing systems pp. 24–30 (1996)

[6] Frey, P.W., Slate, D.J.: Letter recognition using holland-style adaptive classifiers. Machine
learning 6(2), 161–182 (1991)

[7] Fu, L.: Rule generation from neural networks. Systems, Man and Cybernetics, IEEE Trans-
actions on 24(8), 1114–1124 (1994)

[8] Johansson, U., Lofstrom, T., Konig, R., Sonstrod, C., Niklasson, L.: Rule extraction from
opaque models–a slightly different perspective. In: Machine Learning and Applications,
2006. ICMLA’06. 5th International Conference on. pp. 22–27. IEEE (2006)

[9] LeCun, Y., Bottou, L., Bengio, Y., Haffner, P.: Gradient-based learning applied to document
recognition. Proceedings of the IEEE 86(11), 2278–2324 (1998)

[10] Quinlan, J.R.: C4.5: Programs for Machine Learning, vol. 1. Morgan Kaufmann (1993)
[11] Russell, S., Norvig, P.: Artificial intelligence: a modern approach. Pearson Education (1995)
[12] Sato, M., Tsukimoto, H.: Rule extraction from neural networks via decision tree induc-

tion. In: Neural Networks, 2001. Proceedings. IJCNN’01. International Joint Conference
on. vol. 3, pp. 1870–1875. IEEE (2001)

[13] Schmitz, G.P., Aldrich, C., Gouws, F.S.: ANN-DT: an algorithm for extraction of decision
trees from artificial neural networks. Neural Networks, IEEE Transactions on 10(6), 1392–
1401 (1999)

[14] Sethi, K.K., Mishra, D.K., Mishra, B.: KDRuleEx: A novel approach for enhancing user
comprehensibility using rule extraction. In: Intelligent Systems, Modelling and Simulation
(ISMS), 2012 Third International Conference on. pp. 55–60. IEEE (2012)

[15] Setiono, R., Leow, W.K.: FERNN: An algorithm for fast extraction of rules from neural
networks. Applied Intelligence 12(1-2), 15–25 (2000)

[16] Taha, I.A., Ghosh, J.: Symbolic interpretation of artificial neural networks. Knowledge and
Data Engineering, IEEE Transactions on 11(3), 448–463 (1999)

[17] Thrun, S.: Extracting provably correct rules from artificial neural networks. Tech. rep.,
University of Bonn, Institut für Informatik III (1993)

16 Jan Ruben Zilke, Eneldo Loza Mencía, and Frederik Janssen

[18] Thrun, S.: Extracting rules from artificial neural networks with distributed representations.
Advances in neural information processing systems pp. 505–512 (1995)

[19] Towell, G.G., Shavlik, J.W.: Extracting refined rules from knowledge-based neural net-
works. Machine learning 13(1), 71–101 (1993)

[20] Tsukimoto, H.: Extracting rules from trained neural networks. Neural Networks, IEEE
Transactions on 11(2), 377–389 (2000)

[21] Zhou, Z.H., Chen, S.F., Chen, Z.Q.: A statistics based approach for extracting priority rules
from trained neural networks. In: Neural Networks, 2000. IJCNN 2000, Proceedings of the
IEEE-INNS-ENNS International Joint Conference on. vol. 3, pp. 401–406. IEEE (2000)

	DeepRED – Rule Extraction from Deep Neural Networks

