
On Meta-Learning Rule Learning Heuristics

Frederik Janssen and Johannes Fürnkranz

TU Darmstadt, Knowledge Engineering Group
Hochschulstraße 10, D-64289 Darmstadt, Germany

E-mail: [janssen,juffi]@ke.informatik.tu-darmstadt.de

Abstract

The goal of this paper is to investigate to what extent
a rule learning heuristic can be learned from experience.
To that end, we let a rule learner learn a large number of
rules and record their performance on the test set. Sub-
sequently, we train regression algorithms on predicting the
test set performance of a rule from its training set charac-
teristics. We investigate several variations of this basic sce-
nario, including the question whether it is better to predict
the performance of the candidate rule itself or of the result-
ing final rule. Our experiments on a number of independent
evaluation sets show that the learned heuristics outperform
standard rule learning heuristics. We also analyze their be-
havior in coverage space.

1 Introduction

It is well-known that learning a classification rule is es-
sentially a search problem [10, 3], where the states are rules
and the successor function is a refinement operator that re-
turns all minimal specializations of a rule. The goal is to
find a rule that maximizes the predictive performance in a
domain. As this performance cannot be directly measured,
an evaluation function is used to estimate the quality of a
rule. Typically, the same evaluation function is also used
as a search heuristic that allows a greedy search algorithm
to focus on interesting parts of the hypothesis space. The
long-term goal of our research is to understand the prop-
erties of such search heuristics. The underlying (implicit)
assumption is that a rule with high quality will also produce

c©2007 IEEE. Personal use of this material is permitted. However,
permission to reprint/republish this material for advertising or promotional
purposes or for creating new collective works for resale or redistribution
to servers or lists, or to reuse any copyrighted component of this work in
other works must be obtained from the IEEE.

The original paper was published in the Proceedings of the 7th IEEE In-
ternational Conference on Data Mining (ICDM-07), pages 529–534, 2007

good refinements. There has not been much work on try-
ing to characterize the behavior of good heuristics. Notable
exceptions include [9], where weighted relative accuracy
(WRA) is proposed as a novel heuristic, and [6], in which
a wide variety of rule evaluation metrics were analyzed and
compared by visualizing their behavior in ROC space.

In previous work [7], we adjusted parameters of three
heuristics, whose shape was predetermined. The key idea
of this work is to meta-learn such a heuristic from expe-
rience, without a bias towards existing measures. To this
end, we create a large meta data set which we use to learn
a function that predicts the performance of a rule on an in-
dependent test set. In order to address the issue that a good
rule evaluation function does not necessarily coincide with
a good search heuristic for finding a rule that optimizes the
evaluation function, we also analyze a setting in which the
learner attempts to predict the performance of a complete
rule from its incomplete predecessors.

2 Rule Learning Algorithm

For the purpose of this empirical study, we implemented
a simple Separate-and-conquer (or Covering) rule learning
algorithm [3] within the Weka machine learning environ-
ment [14]. Both the outer loop (the covering procedure)
and the top-down refinement inside the learner are fairly
standard. For details about the implementation see [4, 3].

Separate-and-conquer rule learning can be divided into
two main steps: First, a rule is learned from the training
data by a greedy search (the conquer step). Second, all ex-
amples covered by the learned rule are removed from the
data set (the separate step). Then, the next rule is learned
on the remaining examples. Both steps are repeated as long
as positive examples are left in the training set. The re-
finement procedure, which is used inside the conquer step
of the algorithm, returns all possible candidate refinements
that can be obtained by adding a single condition to the body
of the rule. For nominal attributes, conditions test for equal-

ity with a domain value, for numerical attributes they use >
and ≤. The best among all refinements is selected.

Our implementation continues to greedily refine the cur-
rent rule until no more negative examples are covered. In
this case, the search stops and the best rule encountered dur-
ing the refinement process is added to the theory (which is
initialized as the empty theory). Note that this is not nec-
essarily the last rule searched. We use random tie breaking
for rules with equal evaluation, and filter out candidate rules
that do not cover any positive examples. Rules are added to
the theory as long as this increases the accuracy of the the-
ory on the training set (this is the case when the best rule
found covers more positive than negative examples).

We did not use any specific pruning technique, but solely
relied on the evaluation of the rules by the used heuris-
tic. Note, however, that this does not mean that we learn
an overfitting theory that is complete and consistent on the
training data (i.e., a theory that covers all positive and no
negative examples), because many heuristics will prefer im-
pure rules with a high coverage over pure rules with a lower
coverage.

Multi-class problems are tackled by sorting the classes
according to their frequency (least frequent first), and train-
ing binary classifiers that discriminate a class from all sub-
sequent classes. The classifiers are then used in this order,
which essentially means that a decision list is formed, in
which the rules for each class appear in blocks of increas-
ing class frequencies.

3 Rule Learning Heuristics

Numerous heuristics have been provided for inductive
rule learning, a general survey can be found in [3]. Most
rule learning heuristics can be seen as functions of the fol-
lowing four arguments:

• P and N : the number of positive/negative examples in
the training set

• p and n: the number of positive/negative examples
covered by the rule

Examples of heuristics of this type are the commonly used
heuristics that are shown in Table 1.

As P and N are constant for a given learning problem,
these heuristics effectively only differ in the way they trade
off completeness (maximizing p) and consistency (minimiz-
ing n), and may thus be viewed as a function h(p, n). As
a consequence, each rule can be considered as a point in
coverage space, a variant of ROC space that uses the abso-
lute numbers of true positives and false positives as its axes.
The preference bias of different heuristics may then be vi-
sualized by plotting the respective heuristic values of the
rules on top of their positions in coverage space, resulting

Table 1. Rule learning heuristics used in this
paper (∼ denotes order equivalency)

precision = p
p+n ∼

p−n
p+n

accuracy = p+(N−n)
P+N ∼ p− n

Laplace = p+1
p+n+2

WRA = p+n
P+N (p

p+n −
P

P+N) ∼ p
P −

n
N

correlation = p(N−n)−(P−p)n√
PN(p+n)(P−p+N−n)

in a 3-dimensional plot (p, n, h(p, n)). A good way to view
this graph in two dimensions is to plot the isometrics of the
learning heuristics, i.e., to show contour lines that connect
rules with identical heuristic evaluation values [6]. Another
method is to plot both contour lines and the surface of the
function, what we have done in our visualization (cf. Sec-
tion 5.4).

The goal of our work is to automatically learn a function
h(p, n), which allows to predict the quality of a learned rule.
However, note that most of the functions in Table 1 contain
some non-linear dependencies between these values. In or-
der to make the task for the learner easier, we will not only
characterize a rule by the values p, n, P , and N , but in
addition also use the following parameters as input for the
meta-learning phase:

• tpr = p
P , the true positive rate of the rule

• fpr = n
N , the false positive rate of the rule

• Prior = P
P+N , the a priori distribution of positive and

negative examples

• prec = p
p+n , precision, the fraction of positive exam-

ples covered by the rule

Thus, we decided to characterize a rule r by an 8-tuple
< P,N, Prior, p, n, tpr, fpr, prec >. Some heuristics use
additional components, such as the length of the rule, or the
number of positive and negative examples that are covered
by the rule’s predecessor. We have also performed experi-
ments that include the length of the rule (which can be found
in the long version of this paper [8]), but this did not have a
noticable effect on the performance. We think that the main
goal of using the length of a rule is to indirectly capture
the degree of generality of a rule (shorter rules cover more
examples), which can be directly measured with p and n.

We will not consider statistics about a rule’s predecessor,
as our goal is to find a function that allows to evaluate a rule,
irrespective of how it has been learned. Including them may
result in different evaluations for the same rule, depending
on the order in which its conditions have been added to the

rule body. An example of such a heuristic is FOIL’s in-
formation gain. We will also not include it in our perfor-
mance measures because it actually measures the quality of
refinements and not the quality of rules, which means that it
cannot be used to select an optimal rule without the use of
additional stopping criteria.

4 Meta-Learning Scenario

We frame the rule learning process as a search problem
in the following way: Each (incomplete) rule is a state, and
all possible refinements (e.g., all possible conditions that
can be added to the rule) are the actions. The rule-learning
agent repeatedly has to pick one of the possible refinements
according to their expected utility until it has completed the
learning of a rule.

In this framework, the problem of meta-learning a rule
learning heuristic may be considered as a reinforcement
learning problem: After learning a complete theory, the
learner receives a reinforcement signal (e.g., the estimated
accuracy of the learned theory), which can then be used to
adjust the utility function. After a (presumably large) num-
ber of learning episodes, the utility function should con-
verge to a heuristic that evaluates a candidate rule with the
quality of the best rule that can be obtained by refining the
candidate rule. However, for practical purposes this sce-
nario appears to be too complex. In [2] a reinforcement
learning algorithm was applied on this problem, but with
disappointing results.

For this reason, we redefine the problem as a supervised
learning task: Each rule is evaluated on a separate test set,
in order to get an estimate of its true performance. This
information is then used as the target value for rules that
are characterized with the eight features discussed in Sec-
tion 3. We studied both, immediate reward (where rules are
trained on their own test set performance) and delayed re-
ward (where rules are trained on the performance of their
best refinement; cf. Section 5.3).

As explained above, we try to model the relation of the
rule’s statistics measured on the training set and its ”true”
performance, which is estimated on an independent test set.
Therefore, we used the rule learner described above for ob-

Table 2. Accuracies and theory complexities
for several methods

method MAE Accuracy # conditions
LinearRegression 0.22 77.43% 117.6
MLP (1 node) 0.28 77.81% 121.3
MLP (5 nodes) 0.27 77.37% 1085.8
MLP (10 nodes) 0.27 77.53% 112.7

taining the induced 8-tuple for each learned rule. This char-
acterization form a training instance in the meta data set.
The training signals are the performance parameters of the
rule on the test set.

As we want to guide the entire rule learning process, we
need to record this information not only for final rules —
those that would be used in the final theory — but also for
all their predecessors. Therefore all candidate rules which
are created during the refinement process are included in the
meta data as well. The Algorithm for creating the meta data
is described in detail in [8].

It should be noted, that we ignored all rules that do not
cover any instance on the test data. Our reasons for this
were that on the one hand we did not have any training in-
formation for this rule , and on the other hand such rules do
not do any harm (they will not have an impact on test set
accuracy as they do not classify any example). In total, our
meta dataset contains 87, 380 examples.

To ensure that we obtain a set of rules with varying char-
acteristics, the following parameters were modified:

Datasets: We used 27 datasets with varying characteris-
tics (different number of classes, attributes, instances)
from the UCI Repository [12] (for a list see [8]).

5x2 Cross-validation: For each dataset, we performed 5
iterations of a 2-fold cross-validation. 2-fold cross-
validation was chosen because in this case the training
and test sets have equal size, so that we do not have
to account for statistical variance in the precision or
coverage estimates.

Classes: For each dataset and each fold, we generated one
dataset for each class, treating this class as the positive
one and the union of all the others as the negative class.
Rules were learned for each of the resulting two-class
datasets.

Heuristics: We ran the rule learner several times on the bi-
nary datasets, each time using a different search heuris-
tic (displayed in Table 1). The first four form a repre-
sentative selection of search heuristics with linear ROC
space isometrics [5], while the correlation heuristic
has non-linear isometrics. These heuristics represent
a large variety of learning biases.

We used two different methods for learning functions on
the meta data. First, we applied a simple linear regression
based on the Akaike criterion [1] for model selection. A key
advantage of this method is that we obtain a simple, eas-
ily comprehensible form of the learned heuristic function.
Note that the learned model is anyhow non-linear in the
basic dimensions p and n because of the non-linear terms
that are used as basic features (e.g., p/(p+n)). Neverthe-
less, the type of functions that can be learned with linear

Table 3. Accuracy and theory complexity comparison of various heuristics with training-set (p, n) and
predicted (p̂, n̂) coverages (number of conditions in brackets)

args Accuracy Precision WRA Laplace Correlation
(p, n) 75.60% (104.77) 76.22% (129.17) 75.80% (12.13) 76.89% (118.83) 77.57% (47.5)
(p̂, n̂) 75.39% (110.8) 76.53% (30) 69.89% (29.97) 76.80% (246.8) 58.09% (40.4)

regression is quite restricted. In order to be able to address
a wider class of functions, we used multilayer perceptrons
with back propagation algorithm and sigmoid nodes. We
applied various sizes of the hidden layer (1, 5, and 10), and
trained for one epoch (i.e., we went through the training data
once). We have also tried to train the networks with a larger
number of epochs, but the results did not improve. We used
the algorithms which are implemented in Weka [14], initial-
ized with the standard parameters.

A straight-forward approach to measure the fit of the
learned function to the target values is to estimate its mean
absolute error by a 10-fold cross validation on the meta data.

MAE(f, f̂) =
1

m

m∑
i=0

|f̂(i)− f(i)|

where m denotes the number of instances, f(i) the actual
value, and f̂(i) the predicted value of instance i.

Note, however, that a low prediction error on the meta
data set does not necessarily imply that the function works
good as heuristic (cf. Table 2). Thus, our primary method
for evaluating the learned heuristics is to use these heuris-
tics inside the rule learner. To this end, we evaluate the
rule learner on 30 UCI data sets, which have not been used
during the training phase (for a list see [8]). Like the 27
data sets on which the rules for the meta data are induced,
these 30 sets have varying characteristics to ensure that our
method will perform well under a wide variety of condi-
tions. On each dataset, the rule learner with the learned
heuristics was evaluated with one iteration of a 10-fold cross
validation. The performance over all sets was then aver-
aged. We also evaluated the length of the learned theories
in terms of number of conditions.

5 Results

5.1 Predicting Test-Set Precision

We are first interested in how accurately the out-of-
sample precision of a rule can be predicted. We train a
linear regression model and a neural network on the eight
measurements that we use for characterizing a rule (cf. Sec-
tion 3) using the test set precision as the target function.

Table 2 displays results for three different neural networks,
with varying numbers of nodes in the hidden layer and the
linear regression. The performances of the four algorithms
are quite comparable, with the possible exception of the
neural network with 5 nodes in the hidden layer, which in-
duced very large theories (over 1000 conditions on aver-
age), and also had a somewhat worse performance in pre-
dictive accuracy.

The following function was learned by the linear regres-
sion method:

hLR = 0.0001 · P + 0.0001 ·N + 0.7485 · P/(P+N)

−0.0001 · p− 0.0009 · n+ 0.3863 · p/(p+n)

+0.165 · p/P + 0 · n/N + 0.0267

The most important feature was the a priori distribution
of the examples in the training data followed by the pre-
cision of the rule. Interestingly, while the tpr has a non-
negligible influence on the result, the fpr is practically ig-
nored. Both the current coverage of a rule (p and n) and
the total example counts of the data (P and N) have com-
parably low weights. This is not that surprising if one keeps
in mind that the target value is in the range [0, 1], while the
absolute values for p and n are in a much higher range. We
nevertheless had included them because we believe that in
particular for rules with low coverage, the absolute numbers
are more important than their relative fractions. A rule that
covers only a single example will typically be bad, irrespec-
tive of the size of the original dataset.

5.2 Predicting Coverage

So far we focused on directly predicting the out-of-
sample precision of a rule, assuming that this would be a
good heuristic for learning a rule set. However, this choice
was somewhat arbitrary. Ideally, we would like to repeat
this experiment with out-of-sample values for all common
rule learning heuristics. In order to cut down the number
of needed experiments, we decided to directly predict the
number of covered positive (p̂) and negative (n̂) examples.
We then can combine the predictions for these values with
any standard heuristic h by computing h(p̂, n̂) instead of the
conventional h(p, n). Note that the heuristic h only gets the

(a) Linear Regression (b) Neural Network

Figure 1. Isometrics of the functions (final rule precision)

predicted coverages (p̂ and n̂) as new input, all other statis-
tics (e.g., P ,N) are still measured on the training set. This
is feasible because we designed the experiments so that the
training and test set are of equal size, i.e., the values pre-
dicted for p̂ and n̂ are predictions for the number of covered
examples on an independent test set of the same size as the
training set.

Table 3 compares the performance of various heuristics
with measured and predicted coverage values on the 30 test
sets. In general, the results are disappointing. For three of
the five heuristics, no significant change could be observed,
but for WRA and the Correlation heuristic, the performance
degrades substantially. A rather surprising observation is
the complexity of the learned theories. For instance, the
heuristic Precision produces very simple theories when it is
used with the out-of-sample predictions, and, by doing so,
increases the predictive accuracy. Apparently, the use of the
predicted values of p̂ and n̂ allows to prevent overfitting,
because the predicted positive/negative coverages are never
exactly 0 and therefore the overfitting problem observed
with Precision does not occur any more. In summary, it
seems that the predictions of both the linear regression and
the neural network are not good enough to yield true cov-
erage values on the test set. A closer look at the predicted
values reveals that on the one hand both regression methods
predict negative coverages and that on the other hand for the
region of low coverages (which is the important one) too op-
timistic values are predicted. The acceptable performance is
caused by a balancing of the two imprecise predictions (as
observed with the two precision-like metrics) or rather by
an induced bias which tries to omit the extreme values in
the evaluations (which are responsible for overfitting).

5.3 Predicting the Value of the Final Rule

Rule learning heuristics typically evaluate the quality of
the current, incomplete rule, and use this measure for greed-
ily selecting the best candidate for further refinement. How-
ever, if we frame the learning problem as a search problem,

a good heuristic should not evaluate a candidate rule with
its discriminatory power, but with its potential to be refined
into a good final rule. To take this into account, we applied
a method which can be interpreted as an ”offline” version
of reinforcement learning. We simply assign each candi-
date rule the precision value of its final rule in one refine-
ment process. As a consequence, all candidate rules of one
refinement process have the same target value, namely the
value of the rule that has eventually been selected. Because
of the deletion of all final rules that do not cover any exam-
ple on the test set, we decided to remove all predecessors
of such rules as well. Thus, the new meta data set contains
only 77,240 examples in total.

The neural network performs best with an accuracy of
78.37% followed by the linear regression which achieves
77.95% on the 30 sets used for testing. The neural network
also has less conditions in average than the linear regression
(53.97 vs. 95.63). Both induced heuristics outperform all of
the standard heuristics (cf. Table 3). The linear regression
was trained on the meta data set that only contains the 4
most important features (cf. Section 5.1). In terms of theory
complexity it seems that about 50 conditions in average are
necessary to obtain an accurate classifier.

5.4 Isometrics of the Heuristics

To understand the behavior of the learned heuristics, we
follow the framework introduced in [6] and analyze their
isometrics in ROC or coverage space. Figure 1 shows 3D-
plots of the surface of the learned heuristics in a coverage
space with 60x48 examples (the sizes were chosen arbitrar-
ily). The bottom of the graph shows isometric lines that
characterize this surface. Figure 1(a) displays the isomet-
rics of the heuristic that was learned by the linear regression
(the one that performed best). Figure 1(b) shows the best-
performing neural network (the one that uses only one node
in the hidden layer).

Apparently, both functions learn somewhat different
heuristics. Although the 3D-surfaces looks fairly similar

to each other (except for the stronger non-linear behavior
of the neural net), the isometric lines reveal that the learned
heuristics are, in fact, quite different. The isometrics of the
linear regression are comparable to those of weighted rela-
tive accuracy (see [5] for an isometric plot), but with a dif-
ferent cost model (i.e. false negatives are more costly than
false positives). The isometrics for the neural net seems to
employ a trade-off similar to that of the F -measure. The
shift towards the N -axis is reminiscent of the F -measure
(for an illustration see [7]), which tries to correct the un-
desirable property of precision that all rules that cover no
negative examples are evaluated equally, irrespective of the
number of positive examples that they cover.

However, both heuristics have a non-linear shape of the
isometrics in common, which bends the lines towards the
N -axis. Effectively, this encodes a bias towards rules that
cover a low number of positive examples (compared to reg-
ular precision). This seems to be a desirable property for a
heuristic that is used in a covering algorithm, where incom-
pleteness (not covering all positive examples) is less severe
than inconsistency (covering some negative examples), be-
cause incompleteness can be corrected by subsequent rules,
whereas inconsistency cannot.

6 Conclusion

The most important result of this work is that we have
shown that a rule learning heuristic can be learned that out-
performs standard heuristics in terms of predictive accuracy
on a collection of databases that were not used in the meta-
learning phase. Our first results were already en par with
the correlation heuristic, which performed best in our ex-
periments (cf. Table 2 and Table 3). These results were
achieved with meta data that contains only a few obvious
features including the out-of-sample precision as the target
value. Subsequently, we tried to modify several parameters
of this basic setup with mixed results. In particular, predict-
ing the positive and negative coverage of a rule on a test set,
and using these predicted coverage values inside the heuris-
tics did not prove to be successful. Also, more complex
neural network architectures did not seem to be important,
linear regression and neural networks with a single node in
the hidden layer performed best. On the other hand, a key
result of this work is that evaluating a candidate rule by its
potential of being refined into a good final rule works better
than evaluating the quality of the candidate rule itself. This
indicates that a clear separation of rule evaluation metrics
(which characterize which rules we should look for) and
search heuristics (which guide the process of finding such
rules) is important. We intend to further investigate this is-
sue.

A visualization of the learned heuristics in coverage
space gave some insight into the general functionalities of

the learned heuristics. In comparison to heuristics with lin-
ear isometrics, the learned heuristics have non-linear iso-
metrics that implement a particularly strong bias towards
rules with a low coverage on negative examples. This makes
sense for heuristics that will be used in a covering loop, be-
cause incompleteness can be compensated by subsequent
rules, whereas inconsistency cannot. Correlation, the stan-
dard heuristic that performed best in our experiments, im-
plements a similar bias [6]. Thus, the results of this paper
also contribute to our understanding of the desirable behav-
ior of rule-learning heuristics.

Our results may also be viewed in the context of trying
to correct overly optimistic training error estimates (resub-
stitution estimates). In particular, in some of our experi-
ments, we tried to directly predict the out-of-sample preci-
sion of a rule. This problem has been studied theoretically
in [13, 11]. In [4] meta data was also created in a quite sim-
ilar way, and the authors have tried to fit various functions
to the data. But the focus there is the analysis of the ob-
tained predictions for out-of-sample precision, which is not
the key issue in our experiments.

Acknowledgements: This research was supported by the Ger-
man Science Foundation (DFG) under grant FU 580/2-1.

References

[1] H. Akaike. A new look at the statistical model selection.
IEEE Transactions on Automatic Control, 19(6):716–723,
1974.

[2] S. Burges. Meta-Lernen einer Evaluierungs-Funktion für
einen Regel-Lerner, December 2006. Master’s Thesis.

[3] J. Fürnkranz. Separate-and-Conquer Rule Learning. Artifi-
cial Intelligence Review, 13(1):3–54, February 1999.

[4] J. Fürnkranz. Modeling rule precision. In LWA, pages 147–
154, 2004.

[5] J. Fürnkranz and P. A. Flach. An Analysis of Rule Evaluation
Metrics. In Proceedings 20th International Conference on
Machine Learning (ICML’03), pages 202–209. AAAI Press,
January 2003.

[6] J. Fürnkranz and P. A. Flach. ROC ’n’ Rule Learning - To-
wards a Better Understanding of Covering Algorithms. Ma-
chine Learning, 58(1):39–77, January 2005.

[7] F. Janssen and J. Fürnkranz. On trading off consistency and
coverage in inductive rule learning. In LWA, pages 306–313,
2006.

[8] F. Janssen and J. Fürnkranz. Meta-learning rule learn-
ing heuristics. Technical Report. Knowledge Engineering
Group, TU Darmstadt. TUD-KE-2007-2, 2007.

[9] N. Lavrač, P. Flach, and B. Zupan. Rule evaluation measures:
A unifying view. In Proceedings of the 9th International
Workshop on Inductive Logic Programming (ILP-99), pages
174–185, 1999.

[10] T. M. Mitchell. Generalization as search. Artificial Intelli-
gence, 18(2):203–226, 1982.

[11] M. Mozina, J. Demsar, J. Zabkar, and I. Bratko. Why is rule
learning optimistic and how to correct it. In Machine Learn-
ing: ECML 2006, 17th European Conference on Machine
Learning, pages 330–340, 2006.

[12] D. Newman, C. Blake, S. Hettich, and C. Merz. UCI Repos-
itory of Machine Learning databases, 1998.

[13] T. Scheffer. Finding association rules that trade support op-
timally against confidence. In Principles of Data Mining
and Knowledge Discovery, 5th European Conference, PKDD
2001, pages 424–435, 2001.

[14] I. H. Witten and E. Frank. Data Mining — Practical Machine
Learning Tools and Techniques with Java Implementations.
Morgan Kaufmann Publishers, 2nd edition, 2005.

