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Comprehending 
Neural Networks

NNs are widely used for classification
 current hype about Deep Neural Networks (DNN)
 outperform previous state-of-the-art 

approaches in many domains
 DNNs might represent complex, abstract 

concepts in hidden nodes

Understanding how a NN comes to its decision
is not trivial
 we only know the network’s structure and its weights
 predictive model: usually NNs seen and used as a black box
 learned higher level concepts remain hidden

 exception: visual domain
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Comprehensible
Decision Systems
Comprehensible description of a NN's behaviour 
sometimes essential
 safety critial domains, e.g. medicine, power stations, autonomous 

driving, financial markets

Solution:  → represent NN's behaviour as decision rules

IF X1<0.5 AND X2>0.75 THEN OUT=1
IF X1>0.9 THEN OUT=1
IF X1>0.5 AND X1<0.9 AND X3>0.2 THEN OUT=1
IF X2>0.2 AND X3<0.5 AND X5<0.5 THEN OUT=1
IF X2>0.4 AND X3<0.7 THEN OUT=1
IF X2<0.2 THEN OUT=1
IF X4>0.8 THEN OUT=1
IF X3<0.7 AND X3>0.2 AND X4<0.3 THEN OUT=1
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Comprehensible
Decision Systems
Rules are considered to be comprehensible and interpretable
 symbolic rule model can be inspected

 discover relations between inputs and target concept
 experts can check critical rules, e.g.: IF … THEN emergency braking

 taken decisions can be explained by firing rules
 firing rule reveals decisive attributes and the training examples from 

which the rule was learned

IF X1<0.5 AND X2>0.75 THEN OUT=1
IF X1>0.9 THEN OUT=1
IF X1>0.5 AND X1<0.9 AND X3>0.2 THEN OUT=1
IF X2>0.2 AND X3<0.5 AND X5<0.5 THEN OUT=1
IF X2>0.4 AND X3<0.7 THEN OUT=1
IF X2<0.2 THEN OUT=1
IF X4>0.8 THEN OUT=1
IF X3<0.7 AND X3>0.2 AND X4<0.3 THEN OUT=1
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Extracting Rules from 
Neural Networks

Rule extraction strategies
 Decompositional (considering NN's structure)

IF X1=hi OR X2=hi OR X3=hi THEN OUT=hi
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Extracting Rules from 
Neural Networks

Rule extraction strategies
 Decompositional (considering NN's structure)
 Pedagogical (NN as black box)
 Eclectic (mixture of both)

Models
 previous research in the 90s focussed on 

extracting rules from flat NNs
 types of extracted rules (DNFs, decision tree, fuzzy 

rules, ...) 
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DeepRED: Extraction of Rules 
from Deep Neural Networks 

Goals
 make hidden features accessible (in contrast to pedagogical)
 exploit deep structure to improve efficacy of rule extraction and 

induction process 

Based on CRED
 Continuous/discrete Rule Extractor via Decision tree induction 

(CRED) [Sato and Tsukimoto, 2001]
 only supports NNs with one hidden layer
 uses C4.5 to induce rules

DeepRED extends CRED to arbitrary number of layers
 roughly speaking: apply CRED layer by layer
 decomposible w.r.t. neurons, pedagogical w.r.t. neurons' behaviour
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Pedagogical Baseline 
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Pedagogical Baseline 
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DeepRED
Step 1: track activations at every layer
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Step 2: Find a decision tree that describes 
an output node using activation values of 
the previous hidden layer hi
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Step 3: Advance to next layer hi-1  
Describe activations in current layer hi 

w.r.t. activations in previous layer hi-1
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Step 3.1: 
Replace target activations hi by split points 
on hi using in prediction model hi  h→ i+1
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Replace target activations hi by split points 
on hi using in prediction model hi  h→ i+1
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Step 3.1: 
Induce model hi-1  h→ i
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Step 3.2: 
Repeat step 3 for all hidden layers until 
hi+1 = x
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Step 3.2: 
Repeat step 3 for all hidden layers until 
hi+1 = x
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Step 4: 
Extract rules and clean up

Represent output as a function of inputs
 Extract rule sets R(hi-1  h→ i) from decision trees

 Advance layerwise

 put R(hi-1  h→ i) into R(hi  h→ o) to get R(hi-1  h→ o)

 delete unsatisfiable and redundant terms
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Step 4: 
Extract rules and clean up

Represent output as a function of inputs
 Extract rule sets R(hi-1  h→ i) from decision trees

 Advance layerwise

 put R(hi-1  h→ i) into R(hi  h→ o) to get R(hi-1  h→ o)

 delete unsatisfiable and redundant terms

IF h21>0.6 AND h24>0.3  
    THEN o=0
IF h21>0.6 AND h24<=0.3 
    THEN o=1
IF h21<=0.6 
    THEN o=1

IF h12>0.4 AND h110<=0.1 
   THEN h23<=0.5
IF h12>0.4 AND h110>0.1  
   THEN h24>0.3
IF h12<=0.4 AND h11<=0.4 
   THEN h21>0.6
IF h12<=0.4 AND h11 >0.1 
   THEN h21<=0.6

IF x1>0.5  AND x2>0.6  
    THEN h11<=0.4
IF x1>0.5  AND x2<=0.6 
    THEN h11>0.4
IF x1<=0.5  …
...
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Step 4: 
Extract rules and clean up

Represent output as a function of inputs
 Extract rule sets R(hi-1  h→ i) from decision trees

 Advance layerwise

 put R(hi-1  h→ i) into R(hi  h→ o) to get R(hi-1  h→ o)

 delete unsatisfiable and redundant terms

IF x1>0.5  AND x2>0.6  
    THEN h11<=0.4
IF x1>0.5  AND x2<=0.6 
    THEN h11>0.4
IF x1<=0.5 ...
...

IF (h12<=0.4 AND h11>0.1) AND (h12>0.4 AND h110>0.1)
THEN o=0  
...



2016-10-21  | DS 2016 

Step 4: 
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Step 4: 
Extract rules and clean up

Represent output as a function of inputs
 Extract rule sets R(hi-1  h→ i) from decision trees

 Advance layerwise

 put R(hi-1  h→ i) into R(hi  h→ o) to get R(hi-1  h→ o)

 delete unsatisfiable and redundant terms
 DeepRED can generally represent any neuron as a function of 

the outputs of any preceding layer

Optional RxREN pruning
 prunes insignificant inputs by testing NN performance 

while ignoring the given input
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Experimental setup

Datasets and DNNs used

Evaluation measures
 fidelity on test set: accuracy on mimicking NN's behaviour
 number of terms: tries to assess comprehensibility of found rule set

Algorithm setup
 36 combinations of varying C4.5 parameters, pruning parameters and 

train set sizes 
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Can DeepRED make use of complex concepts 
hidden in NNs?

artif-I
 artificial dataset randomly drawn
 output defined by rule set which cannot easily be realized by 
decision trees
 contains pairwise 

comparisons between inputs

IF x1 = x2 THEN out=1
IF x1 > x2 AND x3 > 0.4 THEN out=1
IF x3 > x4 AND x4 > x5 AND x2 > 0 THEN out=1
ELSE out=0
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Can DeepRED make use of complex concepts 
hidden in NNs?

artif-I
 artificial dataset randomly drawn
 output defined by rule set which cannot easily be realized by 
decision trees
 contains pairwise 

comparisons between inputs

Results
 DeepRED outperforms 
pedagogical baseline
 especially in 

comprehensibility dimension
 hidden concepts lead to compactness
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Can DeepRED make use of complex concepts 
hidden in NNs?

XOR
 parity function: x ∈ {0,1}8  XOR(x→ 1,x2,x3,x4,x5,x6,x7,x8}
 28 examples split into 150 training and 106 test examples
 top-down approaches (e.g. C4.5) usually need all examples to 
learn consistent model

Results
 as expected, baseline fails
 DeepRED is able to extract 
rules that classify all or almost 
all test examples correctly
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Can DeepRED make use of complex concepts 
hidden in NNs?

XOR
 parity function: x ∈ {0,1}8  XOR(x→ 1,x2,x3,x4,x5,x6,x7,x8}
 28 examples split into 150 training and 106 test examples
 top-down approaches (e.g. C4.5) usually need all examples to 
learn consistent model

Results
 even with only 75 training
examples DeepRED extracts
meaningful rules 
(>90% fidelity)

 DeepRED effectively captures 
inherent concepts otherwise 
non accessible
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More insights

Limitations
 artif-II
 can easily be realized by decision tree
 baseline finds more comprehensible rules with very good 

fidelity

Pruning
 removal of up to 10% inputs possible without substantial 
decrease in fidelity

 but reduction in number of conditions of several magnitudes

Training set size
 DeepRED quite stable w.r.t. reduction of training set
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Conclusions

DeepRED
 to our knowledge, first attempt on extracting rules form deep 
neural networks
 important step towards making NN's decisions transparent

 outperforms pedagogical baselines for most of the analyzed 
cases

 DeepRED benefits from deep architecture of NNs when 
addressing data with complex concepts
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Questions? 

IF x1 = x2 THEN out=1
IF x1 > x2 AND x3 > 0.4 THEN out=1
IF x3 > x4 AND x4 > x5 AND x2 > 0 THEN out=1
IF x4=look OR x4=see THEN out=1
ELSE out=0
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Sources

 CRED algorithm: Sato, M. and Tsukimoto, H. (2001). Rule extraction from neural networks via 
decision tree induction. In Neural Networks, 2001. Proceedings. IJCNN’01. International Joint 
Conference on, volume 3, pages 1870–1875. IEEE.

 RxREN algorithm: Augasta, M. G. and Kathirvalavakumar, T. (2012a). Reverse engineering the 
neural networks for rule extraction in classification problems. Neural processing letters, 
35(2):131–150.
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Evaluation with overall 180 + 60 experiments

 Rule extraction algorithms
 DeepRED
 DeepRED with RxREN pruning
 C4.5 as baseline (pedagogical)

 Different parameter settings
 Amount of training data available: for all algorithms
 Stopping criteria for C4.5 (class dominance, database size): 

for all algorithms
 Pruning threshold: for DeepRED with/without

RxREN pruning
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Generous hardware constraints to extract 
high-quality rules

 Measures to rate the extracted rules
 Fidelity
 Number of terms

 Hardware settings
 Lichtenberg High Performance Computer
 Maximum memory consumption: 10,000MB
 Maximum computation time: 24 hours
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Evaluation setting aims at analysing if  
expectations are met

 Expectations
 DeepRED is able to extract rules from DNNs

(proof of concept)
 DeepRED outperforms baseline on rather complex problems

(complex = difficult to describe by decision trees)
 RxREN pruning leads to more comprehensible rules

(if not all inputs are relevant)
 DeepRED extracts more accurate rules if more data is 

available
(however, less dependant on data set size than baseline)
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Additional input pruning can help extracting 
comprehensible rules

 DeepRED intrinsically implements hidden neuron pruning
 A neuron is ignored if it isn’t present in the

decision trees of next deeper layer

 RxREN input pruning
 Prunes insignificant inputs by testing NN

performance while ignoring the given input
 Can improve the basis for DeepRED to

extract more comprehensible rules
 E.g. ignoring 204 of 784 inputs decreases

the NN’s performance only by 0.3 pp
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DeepRED can successfully extract rules from 
DNNs

 For every dataset at least one parameter setting leads to 
extracted rules

 This also holds true for every RxREN pruning setting 
(except for MNIST)

 But: High abortion rates due to too many intermediate 
rules

 (Automated) parameter tuning could help
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DeepRED can extract comprehensible rules 
for rather complex problems

 DeepRED outperforms baseline on artif-I
(artif-I cannot easily be realized by decision tree)
 Especially in comprehensibility dimension

 Baseline finds more comprehensible rules for 
artif-II with very good fidelity rates
(artif-II can easily be realized by decision tree)

 DeepRED is able to extract rules that classify all 
XOR test examples correctly

artif-I

artif-II

XOR
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RxREN pruning helps DeepRED to extract 
more comprehensible rules

 Pruning never leads to worse 
comprehensibility
 Often, pruning enables rule extraction
 Larger pruning thresholds can negatively 

affect comprehensibility

 For artif-I, 10% pruning threshold leads to 
best rule set (fidelity and #terms)

 Overall, a more elaborate setup of pruning 
threshold could lead to optimized results
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For most tasks the fidelity of the extracted 
rules is independent from training size

 Having 25% of the training data
is better than having 10%
 But more data doesn’t

necessarily help DeepRED
 Reasons for decrease in some

cases currently unknown
 Baseline profits from more data

 DeepRED benefits from more training data and NN 
structure to extract high-quality rules from XOR
 Pedagogical baseline cannot extract sensible rules
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Research and evaluation led to several ideas 
for future work

 Evaluation has shown challenges and opportunities
 Good parameter settings are important to receive

good results
 Automated mechanism to fine-tune C4.5 and pruning 

parameters would be helpful
 More elaborate approaches to select necessary examples 

from the training set could improve results
 A replacement or extension of C4.5 in DeepRED could 

be valuable
 Extending other rule extraction algorithms to DNNs still is 

necessary to learn from these results
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