
Stacking Label Features for Learning Multilabel Rules?

Eneldo Loza Mencía and Frederik Janssen

Technische Universität Darmstadt
Knowledge Engineering Group

{eneldo,janssen}@ke.tu-darmstadt.de

Abstract. Dependencies between the labels is commonly regarded as the crucial
issue in multilabel classification. Rules provide a natural way for symbolically de-
scribing such relationships, for instance, rules with label tests in the body allow
for representing directed dependencies like implications, subsumptions, or ex-
clusions. Moreover, rules naturally allow to jointly capture both local and global
label dependencies.
We present a bootstrapped stacking approach which uses a common rule learner
in order to induce label-dependent rules. For this, we learn for each label a sep-
arate ruleset, but we include the remaining labels as additional attributes in the
training instances. Proceeding this way, label dependencies can be made explicit
in the rules. Our experiments show competitive results in terms of the standard
multilabel evaluation measures. But more importantly, using these additional at-
tributes is shown to allow to discover and consider label relations as well as to
better comprehend the available multilabel datasets.
However, this approach is only a first step towards integrating the multilabel
rule learning directly in the rule induction process, e.g., in typical separate-and-
conquer rule learners. We present future perspectives, advantages, and arising
issues in this regard.

1 Introduction

Rule learning has a very long history and is a well-known problem in the machine
learning community. Over the years many different algorithms to learn a set of rules
were introduced. The main advantage of rule-based classifiers are interpretable models
as rules can be easily comprehended by humans. Also, the structure of a rule offers the
calculation of overlapping of rules as well as more specific and more general-relations.
Thus, the rule set can be easily modified as opposed to most statistical models such as
SVMs or neural networks. However, most rule learning algorithms are currently limited
to binary or multi-class classification.

On the other hand, many problems involve assigning more than a single class to an
object. These so-called multilabel problems can often be found when text is classified

? This is the authors’ version of the work retrieved from http://www.ke.tu-darmstadt.de. The
original publication is available at http://www.springerlink.com, DOI: 10.1007/978-3-319-
11812-3_17, and appeared in Džeroski, Sašo et al. (Eds.): Discovery Science 17th Interna-
tional Conference, DS 2014, Bled, Slovenia, October 8-10, 2014. Proceedings, LNAI 8777,
pp. 192–203, 2014.

http://www.ke.tu-darmstadt.de
http://www.springerlink.com


2 Eneldo Loza Mencía and Frederik Janssen

into topics or tagged with keywords, but there are also many examples from other media
such as the recognition of music instruments or emotions in audio recordings or the
classification of scenes in images.

It is widely accepted that one major issue in learning from multilabel data is the
exploitation of label dependencies. Learning algorithms may greatly benefit from con-
sidering label correlations, and we believe that rule induction algorithms provide a good
base for this. Firstly, so called global dependencies between only labels can be explicitly
modeled and expressed in form of rules. But also, and much more interesting, depen-
dencies that include both label and regular features can be constituted, which we refer to
as local dependencies. Secondly, such rules are directly interpretable and comprehensi-
ble for humans. Even if complex and long rules are generated, the implication between
classes can be estimated more easily than with other approaches by focusing on the part
of the rules that considers the classes. Hence, one is able to directly analyze the induced
rule models and may greatly benefit from these explicit notations, in contrast to other
types of models where the key information is not accessible directly.

We propose in this work to learn such interdependencies by providing the true label
information directly to the rule learner. This is done by stacking the label features as
additional input instance features. Although this is not the first work in making use of
stacking in order to consider label dependencies (cf. Sec. 3.1), it is to our knowledge the
first time that rule induction was used in order to make the label dependencies explicit.
We show that the proposed method, though conceptually very simple, is suitable in
order to reveal global as well as local label dependencies. Almost more importantly,
the induced models allow for a detailed analysis of the datasets commonly used in the
community for benchmarking w.r.t. the contained dependencies.

The proposed bootstrapping in the prediction phase remains open for discussion,
though its performance is competitive to straight-forward approaches. But our ultimate
goal is to have a complete framework for multilabel rule induction instead of employing
special schemes for learning and predicting. We give some perspectives and ideas for
further research in the end of the paper.

2 Multilabel Classification and Inductive Rule Learning

2.1 Multilabel Classification

Multilabel classification refers to the task of learning a function h(x) that maps in-
stances x = (x1, . . . ,xm)∈X to label subsets or label vectors y = (y1, . . . ,yn)∈ {0,1}n,
where L = {λ1, . . . ,λn}, n = |L | is a finite set of predefined labels and where each
label attribute yi corresponds to the absence (0) or presence (1) of label λi . Thus, in
contrast to multiclass learning, alternatives are not assumed to be mutually exclusive,
such that multiple labels may be associated with a single instance. This, and especially
the resulting correlations and dependencies between the labels in L , make the multi-
label setting particularly challenging and interesting compared to the classical field of
binary and multiclass classification.

From a probabilistic point of view, this is one of the main differences. In binary and
multiclass problems the only observable probabilistic dependence is between the input
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variables, i.e., the attributes x j, and the label variables yi. A learning algorithm tries to
learn exactly this dependence in form of a classifier function h. In fact, if a classifier
provides a score or confidence for its prediction ŷ = h(x), this is often regarded as an
approximation of P(y = ŷ

∣∣ x), i.e., the probability that ŷ is true given a document x.
From the early beginning of multilabel classification, there have been attempts to

exploit these types of label correlations [e.g. 12, 7, 17]. A middle way is followed by
Read et al. [14] and Dembczyński et al. [5] and their popular (probabilistic) classifier
chains by stacking the underlying binary relevance classifiers with the predictions of
the previous ones. However, only recently Dembczyński et al. provided a clarifica-
tion and formalization of label dependence in multilabel classifications. Following their
argumentation, one must distinguish between unconditional and conditional label de-
pendence. Roughly speaking, the unconditional dependence or independence between
labels does not depend on a specific given input instance (the condition) while condi-
tional dependence does. We may also refer to these as global and local dependencies,
since they are revealed globally or only in subspaces of the input space.

An example may illustrate this: Suppose a label space indicating topics from news
articles and a subtopic foreign affairs of the topic politics. Obviously, there will be a
dependency between both labels, since the presence of a subtopic implies the presence
of the super topic and the probability of foreign affairs would be higher than average if
politics is observed. These probabilities are unconditional or global since they do not
depend on a particular document. Suppose now that a particular news article is about
the Euro crisis. Under this condition, the conditional probabilities for both labels as
well as the dependency between would likely increase and hence be different from the
unconditional ones. However, if an article was about the cardiovascular problems of
Ötzi, we would observe that both labels are conditionally independent for this instance,
since the probability for one label would very likely not depend on the presence of the
other label (both being very low).

The predominant approach in multilabel classification is binary relevance (BR)
learning [cf. e.g. 16]. It tackles a multilabel problem by learning one classifier for each
label, using all objects of this label as positive examples and all other objects as neg-
ative examples. There exists hence a strong connection to concept learning, which is
dedicated to infer a model or description of a target concept from specific examples
of it [see, e.g., 4]. When several target concepts are possible or given for the same set
of instances, we formally have a multilabel problem. The problem of this approach is
that each label is considered independently of each other, and as we have seen by the
example given before, this can lead to loss of useful information for classification.

A possible simple solution to generate rules that may consider several labels in
the head is to use the label powerset (LP) transformation [cf. 16], which decomposes
the initial problem into a multiclass problem with {y

∣∣ (x,y) ∈ training set} ⊆ {0,1}n

as possible classes. This problem can then be processed with common rule induction
algorithms, which will thus produce rules with several labels in the head.

This approach is potentially able to consider conditional dependencies, namely the
case of label co-occurrences. The main drawback is that the number of classifiers that
have to be learned grows exponentially. Another obvious disadvantage is that we can
only predict label relations and combinations which were seen in the training data.
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2.2 Inductive Rule Learning

As the goal of this paper is to make label dependencies explicit by using rules, we will
also shorty introduce inductive rule learning. This is one of the oldest and therefore
best researched fields in machine learning. Many algorithms were proposed over the
years, Ripper [3] being one of the most popular and used ones. In this work, we used
this algorithm, but the proposed method does also naturally work with other rule learn-
ing algorithms. Ripper is a so-called separate-and-conquer (SeCo) algorithm [6], i.e., it
proceeds by learning a good rule on the data, then adds the rule to the ruleset, removes
all examples covered by this rule, and searches the next one as long as (positive) ex-
amples are left in the dataset. In order to prevent overfitting, the two constraints that
all examples have to be covered (completeness) and that negative examples must not
be covered (consistency) can be relaxed so that some positive examples may remain
uncovered and/or some negative examples may be covered by the set of rules. SeCo
usually only works for binary datasets. Hence, a natural way of addressing multilabel
problems is to consider each label separately (cf. BR), resulting in a model consisting
of separate rulesets for each label.

2.3 Different Forms of Multilabel Rules

A rule learner has a set of rules (ruleset) as result. These rules are of the form

head← body

where the body consists of a number of conditions (attribute-value tests) and, in the
regular case, the head has only one single condition of the form yi = 0 or 1 (in our
case). We refer to this type of rules as single-label head rules in contrast to multi-
label head rules, which contain several label assignments in their head and can thus
conveniently express label co-occurrences. Commonly, the conditions in the body are
on attributes from the instance space. However, in order to reflect label dependencies
(e.g., implications, subsumptions, or exclusions), we would need to have labels on both
sides of the rule. Hence, if a rule may contain conditions on the labels, we refer to it as
label-dependent rules (also referred to as contextual rules [4]), and label-independent if
this is not the case. Global dependencies are hence best reflected by full label-dependent
bodies, whereas local dependencies can be described by partially label-dependent rules
with mixed attributes in the body.

In summary: We start from label-independent single-label rules. Label dependen-
cies can already be captured by label-independent multi-label rules. The next section
describes a straight-forward approach for obtaining such rules. Future extensions are
proposed in Sec. 6. This particular work focuses on learning label-dependent single-
label rules (Sec. 3), which, as shown, are well suited for modeling and expressing label
dependencies. The full expressiveness is though obtained by label-dependent multi-
label rules, which we leave for further research (Sec. 6).

3 Learning Label-Dependent Rules

We present in the next subsection a straight-forward, yet effective approach in order to
learn label-dependent rules which allows to discover valuable information in data.
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3.1 Stacking of Label Features

The recently very popular classifier chains [14] were found to be an effective ap-
proach for exploiting conditional label dependencies. Classifier chains (CC) make use
of stacking the previous BR classifiers’ predictions in order to implement the chain
rule P(y1, . . . ,yn) = P(yn

∣∣ y1, . . . ,yn−1) in probability theory, since they learn the bi-
nary classifiers hi with training examples of the form (x1, . . . ,y1, . . . ,yi−1) [cf. 5]. One
drawback of CC is the (randomly chosen) predetermined, fixed order of the classifiers
(and hence the labels) in the chain, which makes it impossible to learn dependencies in
the contrary direction. This was already recognized by D. Malerba and Esposito [4] in
1997, who built up a very similar system in order to learn multiple dependent concepts.
In this case, the chain on the labels was determined beforehand by a statistical analy-
sis of the label dependencies. Still, using a rule learner for solving the resulting binary
problems would only allow to induce rules between two labels in one direction.

Thus, we propose to use a full stacking approach in order to overcome the main
disadvantage of CC, i.e., the fixed order. Like in binary relevance, we learn one theory
for each label, but we expand our training instances by the label information of the
other labels, i.e., the training examples vectors for learning label yi are of the type
(x1, . . . ,y1, . . . ,yi−1,yi+1, . . . ,yn) for an instance x. The result of using this as training
data is exactly what we are seeking for, namely label-dependent single-label rules. The
amount of label-features in the body additionally allows us to determine the type of
dependency. We refer to this technique as stacked binary relevance (SBR) in contrast
to plain, unstacked BR.

This is very similar to the approaches of Godbole and Sarawagi [8], Guo and Gu
[9], and very recently, Montañés et al. [13]. They all have in common that they are using
label presence information (either directly from the training data, or from the outputs
of underlying BR classifiers) as (either sole or additional) features in order to learn an
ensemble of binary relevance classifiers on top. The closest related approaches to our
proposition are the conditionally dependency networks (CDN) [9] and the dependent
binary relevance (DBR) models [13]. Both learn their models as indicated before but
with one major difference: Since they are concerned with estimating probability dis-
tributions (especially joint distribution), they both use logistic regression as their base
classifier, which is particularly adequate for estimating probabilities. This type of mod-
els are obviously much harder to comprehend than rules, especially for higher number
of input features. Therefore, the label dependencies would remain hidden somewhere in
the model, even though they may have been taken into account and accurate classifiers
may have been obtained. To make the dependencies explicit and at the same time keep a
high prediction quality, we propose to use rule-based models. One additional difference
between the approaches is how the prediction is conducted, which is discussed next.

3.2 Prediction by Bootstrapping

For the prediction we propose to use a bootstrapping approach in the sense that we
apply our models iteratively on our own previous predictions until the predictions are
stable or any other stopping criterium is met. More formally, we use the learned models
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h′i to produce a prediction ŷ j = (ŷ j,1, ŷ j,2, . . .) where ŷ j,i = h′i(x, ŷ j−1) is based on the
predictions in the previous iteration j−1.

One obvious issue with this approach is the initialization of ŷ0. A possible option,
also proposed by DBR, is to use the predictions of a BR ensemble, i.e., ŷ0,i = hi(x).
We also evaluate the option of initializing with unknown label information, i.e., ŷ0 =
(?,?, . . .), and to benefit from the natural support of symbolic approaches for such at-
tribute states (missing, don’t care, etc.). On the other hand, this approach only works
if the rule learner found enough rulesets with label-independent rules so that the boot-
strapping can proceed, which is in fact somehow contradictory to the objective of de-
tecting as much dependencies as possible. In the future, we also plan to use random
initialization. Together with enough iterations of Gibbs sampling, this was shown to be
very effective for CDN.

We also may make use of an additional capability of rule learners, namely to abstain
from classifying if no appropriate rule was found (instead of predicting the default rule)
so that the label attribute may be filled up in consequent iterations.

4 Evaluation

An overview of the used datasets1 is given in Tab. 1. They are from different domains
and have varying properties. Details of the data are given in the analysis when needed.
As rule learner, we use the JRip implementation of Ripper [3] with default parameters,
except for the pruning, which is turned off or on depending on the experiment.

We use micro-averaged precision and recall to evaluate our results, i.e., we compute
a two-class confusion matrix for each label (yi = 1 vs. yi = 0) and eventually aggregate
the results by (component-wise) summing up all n matrices into one global confusion
matrix (cf. [16]). Recall and precision is computed based on this global matrix in the
usual way, F1 denotes the unweighted harmonic mean between precision and recall. In
addition, we measure the subset accuracy, which is the percentage 1

m ∑
m
i=1 [[yi = ŷi]] of

the m test instances for which the labelsets were exactly correctly predicted ([[z]] returns
1 if z is true, otherwise 0). The measures, as well as other statistics, are averaged over
the ten-fold cross validation results, which we use for all our experiments.

4.1 Model and Data Analysis

Tab. 2 shows the properties of the rulesets generated by using plain BR and stacked BR
decomposition with JRip. As we will see in the following, these statistics not only help
to analyze the algorithm, but even more importantly, they are of great use for analyzing
and understanding the datasets at hand. Though it is commonly assumed that there exist
label dependencies between the labels in multilabel datasets, and many works deal with
exploiting such dependencies, this assumption is most often not explicitly examined.
To our knowledge, this is the first work providing a systematic analysis of the label
dependencies contained in seven of the most popular benchmarks.

1 We refer to the MULAN repository for details and sources: http://mulan.sf.net/datasets.html.

http://mulan.sf.net/datasets.html
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Table 1. Statistics of the used datasets: name of the dataset, domain of the input instances, number
of instances, number of nominal/binary and numeric features, total number of unique labels,
average number of labels per instance (cardinality), average percentage of relevant labels (label
density), number of distinct labelsets in the data.

name domain instances nominal numeric labels cardinality density distinct
EMOTIONS music 593 0 72 6 1.87 0.311 27
SCENE image 2407 0 294 6 1.07 0.179 15
YEAST biology 2417 0 103 14 4.24 0.303 198
GENBASE biology 662 1186 0 27 1.25 0.046 32
MEDICAL text 978 1449 0 45 1.25 0.028 94
ENRON text 1702 1001 0 53 3.38 0.064 753
CAL500 music 502 0 68 174 26.0 0.150 502

Column (5) shows the percentage of conditions on labels w.r.t. to all conditions in
the model. We see that there is a great divergence between the datasets. E.g., the mod-
els for GENBASE do not use label features at all, i.e., their rules’ bodies are completely
label-independent. This is a strong indicator that we have completely independent la-
bels in this dataset, or, at least, very weak dependencies. This is remarkable, since this
breaks the main assumption, mentioned before, and yet this dataset may have often been
used in the literature to show the ability of a certain algorithm to exploit label depen-
dencies. In this case though, learning each label independently is already sufficient and
exploiting (possibly non-existing) label dependencies clearly will not yield better per-
formance. A look into columns (1)-(4), the prediction quality (Tab. 3) and eventually
into the models, reveals that the presence of one single short amino acid chain (instance
feature) is often enough to correctly predict a particular functional family (label).

For (5) it is also remarkable that pruning substantially increases the percentage of
used label features. Pruning tries to remove conditions and rules which work good on a
training set, but do not generalize well on a separate validation set. Hence, this increase
indicates that label features are more useful for obtaining more general models than the
original instance features. However, the increase does not come hand in hand with a
decrease in the size of the models comparing BR and stacked BR, as can be seen by the
average size of the rulesets (columns (1) and (2)) and rules ((3) and (4)), which does
not reveal any trend.

While (5) may serve as an indicator of general dependency between labels, columns
(6) and (7) allow to further differentiate. E.g., 20.8% of fully label-dependent rulesets
for YEAST, i.e., rulesets with rules only having conditions on label features, show that
(at least) 20.8% of the labels in YEAST are unconditionally dependent on other labels.
On the other hand, by leaving out the 6.2% of labels which are independent, we can
derive that (at most) 73.0% of the labels are conditionally dependent on other labels.
Note that (6) should be considered as a lower bound, since the rate substantially suffers
from the high number of instance features due to a kind of instance feature flooding:
The probability of selecting an instance feature in the refinement step of a rule instead
of an equally good label feature increases with growing number of instance features.
However, the same effect cannot be observed for (7).
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Table 2. Statistics. From left to right, for BR model: (1) avg. # rules per label ruleset, (2) avg. #
conditions per rule. For stacked model: (3) avg. # rules per label ruleset, (4) avg. # conditions per
rule, (5) percentage of conditions with label feature tests, (6) perc. of label rulesets depending
only on other labels, (7) perc. of label rulesets depending only on instance features.

dataset pruning (1) (2) (3) (4) (5) (6) (7)
EMOTIONS yes 3.26 2.78 2.74 3.09 35.0% 18.0% 0.0%
EMOTIONS no 11.50 4.02 11.02 4.18 17.6% 0.0% 0.0%
SCENE yes 6.72 4.27 5.44 4.44 16.0% 0.0% 18.0%
SCENE no 13.58 5.40 11.10 5.09 10.2% 0.0% 2.0%
YEAST yes 2.47 3.72 3.78 2.56 63.0% 20.8% 6.2%
YEAST no 7.20 5.95 10.58 3.78 31.3% 0.0% 0.0%
GENBASE yes 0.90 1.05 0.90 1.05 0.0% 0.0% 100.0%
GENBASE no 0.99 1.29 0.99 1.29 0.0% 0.0% 100.0%
MEDICAL yes 1.08 1.72 1.07 1.81 17.4% 0.0% 79.3%
MEDICAL no 2.46 3.47 2.00 3.17 13.6% 0.0% 73.6%
ENRON yes 1.54 3.38 1.89 3.37 35.9% 3.3% 35.0%
ENRON no 5.82 4.97 6.94 4.68 25.1% 0.0% 11.0%
CAL500 yes 0.45 2.23 1.37 2.07 60.7% 29.0% 23.8%
CAL500 no 6.03 3.88 6.82 3.51 29.7% 1.2% 1.7%

The datasets with the highest observed degree of label dependency are YEAST
and CAL500. For CAL500, this may be explained by the categorizations of songs
into emotions, which often come hand in hand or completely contradict, like Angry-
Agressive against Carefree-Lighthearted.

Examples of learned rulesets for YEAST are given in Fig. 1. In this particular case,
we see a much more compact and less complex ruleset for Class4 for the stacked model
than for the independently learned BR classifier. The ruleset also seems more appropri-
ate for a domain expert to understand coherences between proteins (instance features)
and protein functions (labels).

Fig. 1 also shows the models for the diagnosis Cough in the MEDICAL task. This
dataset is concerned with the assignment of international diseases codes (ICD) to real,
free text radiological reports. Interestingly, the stacked model reads very well, and the

Approach YEAST MEDICAL ENRON

BR Class4← x23 > 0.08, x49 < -0.09 Cough← “cough”, “lobe” Joke← “mail”, “fw”,
Class4← x68 < 0.05, x33 > 0.00, x24 > 0.00, Cough← “cough”, “atelectasis” ”didn”

x66 > 0.00, x88 > -0.06 Cough← “cough”, opacity
Class4← x3 < -0.03, x71 > 0.03, x91 > -0.01 Cough← “cough”, airways
Class4← x68 < 0.03, x83 > -0.00, Cough← “cough” , “pneumonia”, “2”

x44> 0.029, x93 < 0.01 Cough← “coughing”
Class4← x96 < -0.03, x10 > 0.01, x78< -0.07 Cough← “cough”, “early”

Stacked Class4← Class3, Class2 Cough← “cough” , Pneumonia , Joke← Personal,
BR Class4← Class5, Class6 Pulmonary_collapse , Asthma “day”, “mail”

Class4← Class3, Class1, x22 > -0.02 Cough← “coughing”
Cough← Asthma, “mild”

Fig. 1. Example rulesets for one exemplary label, respectively, learned by the normal and the
stacked BR approach. Attribute names in italic denote label attributes, attributes with an overline
denote negated conditions.
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found relationship seems to be even comprehensible by non-experts: If the patient does
not have Pneumonia, a Pulmonary_collapse or Asthma and “cough”s or is “coughing”,
he just has a Cough. Otherwise, he may also have a “mild” Asthma, in which case he is
also considered to have a Cough.

In ENRON, which is concerned with the categorization of emails during the Enron
scandal, the model is less comprehensible, as it is also for the BR model. However,
the relation between Personal and Joke can clearly be explained from the hierarchical
structure on the topics. This also shows the potential of using rule learning in multilabel
classification for reconstructing underlying hierarchies.

4.2 Prediction Performance

Tab. 3 shows the predictive performance of the different approaches. We compare BR,
LP, Stacked BR with BR initialization and abstaining (SBRBR/?) or predicting the de-
fault label (SBRBR/d), respectively, in the case of the default rule firing, and lastly SBR
with empty initialization and abstaining (SBR?/?). For all approaches, we used the prun-
ing version of JRip. Due to the space limit, we only report the results after the 10th

bootstrapping iteration in the case of SBR.2

As expected, LP is the best approach w.r.t. subset accuracy. Somehow surprisingly,
BR and both first SBRs obtain very similar avg. ranks, although the stacking of the
label features is considered to particularly address the correct prediction of labelsets
[5, 9, 13]. SBR?/? clearly suffers from the cold start problem when many label de-
pendencies were encountered, best seen by the high precision but very low recall and
subset accuracy obtained. BR is best for precision, but is always worse than SBRBR/?

and SBRBR/d on recall,3 which in general find the better trade-off between recall and
precision, beating all other approaches on F1. Recall that BR’s predictions are inputs
for SBRBR/? and SBRBR/d . Apparently, the additional iterations applying the stacked
models allow labels which were initially missed to be found due to the label context.

5 Related Work

Many rule-based approaches to multilabel learning rely on association rules as those
can have many conditions in the head. However, as the goal is classification, usually
Classification Association Rules (CARs) are used, instead of regular association rules
that would also find relations between instance-features. E.g., in Ávila et al. [2] a genetic
algorithm is used to induce single-label association rules. A multilabel prediction is
then built by using a combination of all covering rules of the BR rule sets. A good
distribution of the labels is also ensures by using a token-based re-calculation of the
fitness value of each rule. Li et al. [10] learn single-label association rules as well. For
prediction, exactly those labels are set that have a probability greater than 0.5 in the
covering rules.

2 We found that more iterations consistently decrease subset acc. and recall, but increases preci-
sion and F1. However, the average absolute difference was consistently below 1%.

3 Except of course for GENBASE, where all plain and stacked BR models are equal.
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Table 3. Experimental performance on the seven datasets. The small number after the result
indicates the rank of the particular approach. The last block shows the average over these ranks.

Approach Subset Acc. Precision Recall F1 Subset Acc. Precision Recall F1
SCENE EMOTIONS

BR 46.24% 2 68.82% 2 60.94% 4 64.55% 3 23.60% 3 65.54% 2 57.23% 3 60.97% 3

LP 58.33% 1 63.61% 4 61.09% 3 62.32% 4 20.56% 4 56.47% 5 55.66% 4 56.01% 4

SBRBR/? 46.11% 3 65.56% 3 65.68% 2 65.58% 2 24.28% 2 64.02% 3 62.73% 2 63.24% 2

SBRBR/d 45.32% 4 58.31% 5 77.79% 1 66.63% 1 24.96% 1 57.46% 4 75.54% 1 65.24% 1

SBR?/? 29.13% 5 75.83% 1 33.28% 5 46.08% 5 9.09% 5 70.03% 1 21.97% 5 32.54% 5

GENBASE MEDICAL

BR 96.83% 2.5 98.95% 2.5 98.42% 2.5 98.68% 2.5 66.96% 2 80.26% 2 84.29% 3 82.19% 1

LP 95.77% 5 97.30% 5 94.78% 5 95.99% 5 68.20% 1 80.18% 3 73.97% 4 76.93% 4

SBRBR/? 96.83% 2.5 98.95% 2.5 98.42% 2.5 98.68% 2.5 66.86% 3 79.38% 4 84.78% 2 81.96% 2

SBRBR/d 96.83% 2.5 98.95% 2.5 98.42% 2.5 98.68% 2.5 66.25% 4 78.21% 5 86.01% 1 81.89% 3

SBR?/? 96.83% 2.5 98.95% 2.5 98.42% 2.5 98.68% 2.5 28.93% 5 82.39% 1 36.16% 5 50.13% 5

ENRON CAL500
BR 9.17% 3 62.75% 1 49.09% 3 55.03% 2 0.00% 3 52.73% 1 24.88% 4 33.76% 3

LP 11.51% 1 41.06% 5 15.11% 4 22.08% 4 0.00% 3 31.90% 4 31.80% 1 31.84% 4

SBRBR/? 9.17% 4 57.96% 2 55.09% 2 56.40% 1 0.00% 3 47.61% 2 30.90% 2 37.42% 1

SBRBR/d 9.87% 2 43.13% 4 59.06% 1 49.71% 3 0.00% 3 44.76% 3 30.43% 3 36.20% 2

SBR?/? 0.06% 5 53.10% 3 7.50% 5 13.08% 5 0.00% 3 26.48% 5 0.26% 5 0.51% 5

YEAST Average rank
BR 9.18% 4 68.47% 1 55.33% 4 61.19% 3 2.79 3 1.64 1 3.36 3 2.50 3

LP 16.92% 1 60.04% 4 57.10% 3 58.52% 4 2.29 1 4.29 5 3.43 4 4.14 4

SBRBR/? 10.18% 2.5 66.88% 2 57.63% 2 61.90% 2 2.86 4 2.64 3 2.07 2 1.79 1

SBRBR/d 10.18% 2.5 58.31% 5 66.21% 1 61.98% 1 2.71 2 4.07 4 1.50 1 1.93 2

SBR?/? 0.25% 5 65.35% 3 1.31% 5 2.56% 5 4.36 5 2.36 2 4.64 5 4.64 5

A different idea is to introduce multi-label instead of single-label rules. Those are
able to directly classify a multi-label-instance without the need to combine single-label
rules [1]. Interestingly, the proposed rules also allow for postponing the classification
by offering a “don’t care"-value. The classification is then done by using a weighted
voting scheme as many multilabel rules may cover the example.

Another multilabel rule algorithm is MMAC [15]. Here a multi-class, multilabel as-
sociative classification approach is used by not only generating from all frequent item-
sets the rules that pass the confidence threshold but also include the second best rules
and so on. Multilabel rules are then generated from these association rules by the fre-
quent itemsets where covered instances are removed then. Rules with same conditions
are then merged which enables a total ranking of all labels for each test instance.

Other approaches are from the inductive logic programming field. Here, some also
allow for having label features in the rule bodies, but due to the different nature dis-
closed by relational rules, these methods are not in the scope of this paper. In summary,
label dependencies are not tackled explicitly though they might be taken into account
by algorithm-specific properties. Please consider [11] for a more extensive discussion.
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6 Future Challenges

All presented approaches for learning multilabel models, BR, LP and SBR decomposi-
tion, have one aspect in common, namely that they transform the original problem into
several subproblems, which are then solved independently. This might be appropriate
or even advantageous for certain use cases, for instance when the objective is to obtain
isolated theories representing each label (cf. concept learning), or w.r.t. efficiency. But
often it is more desirable to obtain one global theory comprehensively explaining a par-
ticular multilabel dataset. The induction of one global model also allows a better control
over the objective loss, an important issue in multilabel classification due to the variety
of existing measures, resulting directly from the diversity of the real life scenarios.

Regarding the introduced stacked BR approach which we used for learning label-
dependent single-label rules, we propose to integrate the stacking of label features di-
rectly into the SeCo induction process. The idea is to start with unset label features,
consequently only label-independent rules will be learnt in the beginning. However, the
covered rules are not separated, but labeled accordingly and readded to the training set.
Hence, we would get rid of the cold start and deadlock problem and no bootstrapping
or sampling would be necessary.

Multiple labels in the head allow for representing co-occurrence relationships. In
addition, only label-dependent multi-label rules allow to express all types of possible
dependencies. The solution using LP can learn multilabel head rules, but with the men-
tioned shortcomings (Sec. 2.1). Therefore, we propose the following modifications.

In order to obtain one single global theory, we learn so-called multiclass decision
lists, which allow to use different heads in consecutive rules of the decision list. If
we limit ourselves to labelsets seen in the training data, this corresponds to using LP
transformation with a multiclass decision list learner. However, the evaluation for each
possible labelset can be very expensive (O(2n) in the worst case). The following greedy
approach may solve this. It starts by evaluating the condition candidates w.r.t. to each
label independently in order to determine the best covered label. Having selected the
best covered label for the given rule body, we can only stay the same or get worse
if we now add an additional label to our head, since the number of covered examples
remain the same and the number of covered positives, for which the head applies, cannot
increase. Hence, depending on the heuristic used, we can safely prune great part of the
label combinations by exploiting the anti-monotonicity of the heuristic.

Challenges to both proposed extensions, and to the self-evident combination of
both, concern the rule learning process itself: The right selection of the heuristic was
already a complex issue in traditional rule induction and has to be reviewed for mul-
tilabel learning. Furthermore, using unordered and multiclass decision lists gain new
relevance, too.

We plan to use our method in order to analyze the datasets, and further benchmark
datasets commonly used in the literature, in more detail. Regarding prediction quality,
we expect to improve our performance by adopting the extensions presented in Sec. 3.
An extended empirical study with additional state-of-the-art algorithms would reveal
any development and allow further comparisons.
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7 Conclusions

In this work, we introduced a simple yet effective approach to making label dependen-
cies explicit with the means of rules. The proposed stacking approach is able to induce
rules with labels as conditions in the bodies of the rules. In our analyses on seven mul-
tilabel datasets, the resulting models turned out to be indeed very useful in order to
discover interesting aspects a normal rule learner is unable to uncover. For instance, we
found out that the GENBASE dataset exhibits only very weak label dependencies, if any
at all, despite the fact that it is frequently used for evaluating multilabel algorithms. In
contrast to other approaches, the proposed method naturally allows for discovering and
expressing local as well as global label dependencies.

The second part of the evaluation showed that our approach works particularly well
for trading-off recall and precision, obtaining the best result w.r.t. F-measure. For sub-
set accuracy, it is beaten by LP, which is particularly tailored towards this measure.
However, the introduced technique of bootstrapping predictions still requires the initial
input of a plain BR. Therefore, we presented two different but combinable directions
for learning global theories as future challenges in the field of multilabel rule learning.
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