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Abstract

Traffic congestion wastes time, energy, and, thus, money. While well understood on highways, detecting congestion in
dense urban centers is much harder. Recently, floating car data has been proposed to provide congestion information
even in urban centers. However, this is still not fine-grained enough to distinct different lanes and sometimes actually
also directions. Yet the more basic question of Which lane is even affected by congestion? cannot be answered today
without unsustainable manual effort.

We will present an approach that uses inductive loop data to automatically classify congestion-affected roads, i.e., ones
that are likely to be affected by traffic jams. Relying on measurements of both load and count for a given sensor, we found
that most sensors exhibit one of two different patterns. One shows a linear correlation between the number of cars and
the utilization. These roads are not affected by congestion. Congestion manifests as an atypical increase in load without
increase in the number of cars.

By mathematically modeling these two patters, we are able to distinct both classes (congestion-affected sensors from
non-congestion-affected sensors). Using this approach, we were able to correctly identify about 90% of the 499 sensors
that are installed on roads in Darmstadt (Germany). While there is still room for improvement, this paper can be seen as
a first step towards a fully automatic detection of congestion and congestion-affected roads in dense urban centers.
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1 Introduction

The Texas A&M Transportation Institute has estimated that in 2011 congestion caused around 427 million extra hours of
travel time and cost around $10 billion1 in the US alone. However, congestion in dense urban areas is indeed still not
understood well. Mostly, because a manual gathering of the data is unsustainable given the number of streets.

In recent years floating car data has been proposed as a means to detect congestion even in urban areas [3, 2]. Given
the lack in data density and location accuracy, this data is still not fine-grained enough to understand congestion on a
per-lane and per-direction level. Even basic questions, e.g., Is this road even affected by congestion during its lifetime? are,
thus, hard to answer.

In this paper we want to introduce an approach to model congestion using data from inductive loop sensors embedded
into the streets. Due to the known location and high accuracy of these sensors we can detect congestion on a per-sensor
level yielding the most fine-grained method for detecting congestion yet. Given data about sensor utilization and the
number of cars, we are able to model congestion using a custom error function and linear regression. Based on this
model we classify congestion-affected sensors with almost 90% accuracy using different threshold-based approaches.

The remainder of this paper is organized as follows. The data and mathematical model is introduced in Section 2.
Section 3 introduces the classifier, which is then evaluated in Section 4. The paper is concluded in Section 6.

1 http://mobility.tamu.edu/ums/
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2 Data Model

The challenge of this paper is the automatic classification of congestion-affected roads. Which roads in a city are actually
prone to congestion? Before answering this question, we need to understand the input data and how to model congestion
given that input data.

In the following sections we will, thus, first introduce and understand the data sources available. Next, we introduce
our approach to mathematically model congestion given this data. More precisely, we will mathematically model the
difference between roads that are affected or not affected by congestion.

Thus, the following two sections are dedicated to the input data sources and the congestion model respectively.

2.1 Data Sources

All traffic lights in Darmstadt, Germany are equipped with inductive loops. Each inductive loop is one sensor reporting
count and load for each one minute interval. Here, count is the number of cars that have passed over the sensor during
that one minute interval. load is the percentile of time the sensor was active. E.g., if the sensor was active for 30 seconds
during the last minute interval the load is reported as 50%.

Figure 2.1: Overview over all traffic lights with sensors in the city center of Darmstadt (Germany)

Figure 2.1 illustrates the amount of traffic lights for Darmstadt center. Each traffic light is equipped with multiple
inductive loops (sensors) for the different directions and lanes. Each sensor reports two values per minute. Using the
complete data set between the 1st and the 31st of January 2014 the results of this paper are based on 20.254.589 raw
measurements.

This data is preprocessed to filter faulty data and to discretize the time.

2.1.1 Preprocessing

The inductive loops record data for one minute intervals. This time interval is too small to measure traffic accurately,
hence preprocessing of these values had to be performed. Roundtrip times for traffic lights can be as high as 90 seconds,
i.e., using one minute intervals on such roads would not even capture one round trip. To deal with this, we average
load and count over the last 15 consecutive one minute intervals for one specific sensor, leaving us with more stable 15
minute intervals. During preprocessing, we also removed sensors that did not produce any values at all. After this initial
preprocessing 499 sensors are left for classification.

Additionally, for the mathematical model, the count per sensor has been normalized. Each count is divided by the
maximum count for this sensor. Hence the normalized counts are between 0 and 1.

2.1.2 Observations

Before we model congestion it is important to note a number of important observations.
We start by taking a closer look at one crossing (cf. Fig. 2.2). First, congestion is a local phenomenon. While a

road might be congested, it makes more sense to classify congestion on a sensor level. It might be that only one lane
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Figure 2.2: Overview over all traffic lights with sensors in the city center of Darmstadt (Germany)

is congested (e.g., the lane for turning left); it might be that only one direction is congested. Classifying each sensor
allows for the most fine-grained congestion analysis. Second, considering only the count is not enough. Depending on
speed and other factors each street (segment) has a unique capacity. Hence, we need to combine load and count to model
congestion (more in Section 2.2). Third, the distance from sensor to traffic light matters. In Figure 2.2 two sensors are
highlighted. One sensor is placed close to the traffic light. During red light one car is enough to keep the sensor active,
thus increasing the load. The other sensor is placed further away from the traffic light. If only one car needs to stop at
the red light the load will not increase.

Given this observations (especially the third), is it even possible to detect patterns in the data?
Figure 2.3 and Figure 2.4 plot all measurements for two different sensors. These two sensors show different patterns

in their distribution. In Figure 2.3 we observe a near linear relation between the count and the load. Each additional car
seems to have the same impact on load.

Figure 2.3: A sensor that is not congestion-affected (linear pattern)

The second sensor (cf. Fig. 2.4) shows a different pattern, which we could recognize for many other sensors as well. At
some point the linear relation between count and load breaks. Each new car suddenly has a much higher impact on load
until the road hits its capacity limit and the count goes down even though the load further increases. Hence, this turning
point is exactly where the maximum capacity of the sensor, hence the road, is reached. Up to 100 cars in 15 minutes the
traffic is dense but still flowing. And this indicates a reduction of flowing speed or, more specifically, congestion.

Now we have a visual pattern of how congestion looks like. What we are still missing is a model for congestion. This
will be introduced in the next section.

In summary, almost all sensors in Darmstadt show one of these two patterns. The few exceptions will be discussed
later. We are going to refer to these patterns as “congestion-affected” and “non-congestion-affected” sensor. The classifier
will assign one of these two classes based on the following mathematical model.

2.2 Modeling congestion

Given this input data and the abovementioned observations, how can we mathematically describe the characteristics
of congestion? Describe them in such a way that classification is possible. In the following sections, we first try to
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Figure 2.4: A sensor that is congestion-affected (curved pattern)

capture the expected behavior. How would a given sensor behave, if the corresponding street or lane would have infinite
capacity? Then we will introduce an error function to quantify the deviation from this expected behavior.

2.2.1 Fitting a Linear Regression

In order to calculate the deviation from the expected behavior of a sensor, we first have to describe the expected behavior.
Given infinite capacity, we expect that count correlates linearly with load. Hence, the most intuitive approach is fitting a
straight line to the point cloud using linear regression.

A straight line is given by the following equation:

y = αx + β (2.1)

We assume that the load is zero, if no car is present. Hence, the y-intercept is β = 0.
This is accurate for sensors that are not affected by congestion, since the point cloud is approximately linear anyway.

However, this approach cannot be used directly on congestion-affected sensors. Figure 2.5 plots the linear regression for
the above mentioned congestion-affected sensor. Indeed, this does not capture the characteristics of this sensors. What
we actually want is a regression line that approximates the linear behavior found before hitting the capacity.

Figure 2.5: Linear regression for a congestion-affected sensor

Since congestion-affected sensors behave linearly when close to origin, we can approximate the expected behavior
by applying linear regression only on values close to the origin. We tried different cut-off points and using the bottom
70% values for a single sensor led to stable results. This way we can produce usable regression lines for both kinds of
sensors using the same method. Figure 2.6 shows a regression line that was fitted using only the bottom 70% values
(blue colored points). Note that the points near the origin have a high density, which means that free flowing traffic is
more likely than dense traffic.

What this regression line really does is describing the expected linear relation between count and load of any given
sensor, if the capacity would be infinite. Hence, deviation from this expected behavior implies congestion. Deviation is
best described using error functions and the following section will shortly introduce the applied error function.
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Figure 2.6: Regression line on 70% of the data

x-error

Figure 2.7: Regression line and x -error for a single value of a congestion-affected sensor

2.2.2 X -Error

To describe how far away from linear behavior a sensor actually is we need a measure that is able to reflect this. The
error for a given sensor measurement P = (count, load) and a linear regression function f (x) = ax is defined as given
in Equation 2.2, where f −1 is the inverse function of f .

E(P) =

(

f −1(Pload)− Pcount Pcount ≤ f −1(Pload)
0 otherwise

(2.2)

The error function is based on the following observation: Given an infinite capacity (the expected behavior function
f ) we can calculate an expected number of cars for a given load. If the number of cars is lower the traffic flow performs
worse than expected and a positive error is calculated. If the number of cars is higher than expected the traffic flow is
even better than expected and the error is set to 0.

This error is calculated using the mean squared error (MSE) over all x-errors for the remaining 30.0% not used for
calculating the linear regression. The idea is to quantify how good the linear regression calculated on the bottom 70%
fits the top 30%.

MSE(P) =
1

|P|

∑

p∈P

E(p)2 (2.3)

When we compare Figure 2.6 and Figure 2.7 we can see that congestion-affected sensors will have a higher x-error
than non-congestion-affected ones. Hence it seems that the x-error is a good indicator for congestion-affected sensors.

2.2.3 Possible Shortcomings of the X -Error

Using a cut off point of 70% works well for most sensors. However, it does not work for some sensors. Especially, if alot
of measurements are densely clustered around the origin. This can lead to a suboptimal x-error for that sensor that does
no longer reflect the desired property, namely to detect congestion-affected sensors.
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This could be mitigated by, for example, using dynamic cut off points based on density. However, given the variety of
different sensors and the quality of the employed method (cf., Section 4), we postponed this for future work.
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3 Sensor Classification

Figure 3.1: Example for a sensor with the uncertain label

Last section we introduced the x-error, which is designed as an indicator for congestion-affected sensors. A sensor is
more likely to be congestion-affected if the x-error is high.

Given a labeled training data set, we can sort all sensors by their x-error and find the optimal threshold to separate
the two class (congestion-affected and non-congestion-affected). This would yield an optimal threshold for our training
data set. This is not desirable since it would overfit. Therefore, the calculation of the threshold must be independent
from our training set to be still able to generalize to new previously unseen sensors.

Hence, a more general process is introduce in this section. First, we describe how we obtained a labeled data set.
Second, a approach is introduced yielding an upper and lower threshold bound. Third, given the two threshold the
process for interpolating the final threshold is given.

Figure 3.2: Statistics of the merging process

3.1 Manual Labeling

To evaluate any threshold, we must generate a labeled training data set. These labels are not available, hence, we decided
to conduct a manual labeling. The manual labeling was performed by all three authors independently. The main author
labeled twice. Thus, each sensor received four labels total. Given the visual pattern of each sensors one of three labels
could be assigned: (i) Congestion-affected, (ii) non-congestion-affected, and (iii) uncertain. Some sensors are uncertain,
due to different possible errors (e.g., physical relocation of sensors etc.). An example for such a sensor can be seen in
Figure 3.1, which was unanimously labeled uncertain. The sensor seems to have two linear patterns instead of a single
one. Uncertain sensors are filtered out, leaving us with only two classes to distinguish.
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Table 3.1: Example of the process for determining the top threshold
Win. Sensor Cong.

1 Yes
2 Yes

* 3 Yes
* 4 Yes
* 5 No
* 6 Yes
* 7 No

8 No
9 Yes

The actual training set was then generated by assigning the label where the majority of the labelers agreed. In case of
a collision, i.e., the ratio of labels was 2:2, the label of the most experienced labeler was used, which in this case is the
person that labeled the data twice, where then the second label was used.

Figure 3.2 shows the result of the merging process and the frequency of the different possible ratios. Collisions
happened only in 29 of 499 cases, whereas most of the sensors were unanimously labeled with a ratio of 4:0.

This led to 252 congestion-affected sensors, 177 non-congestion-affected ones, and 70 sensors could not be assigned
one of the groups and therefore are uncertain. Please note that we removed these sensors as they contain no information
for our purposes.

3.2 Top and Bottom Thresholding

When we sort all sensors by their corresponding x-error in descending order it is expected that congestion-affected
sensors are more likely to be at the top of the ranking. The non-congestion-affected sensors should be at the bottom and
there should be a part in the middle where both are mixed up.

The threshold needs to be set such that it splits the sensors optimally into the two classes, i.e., the number of misclas-
sified sensors should be minimal. A possible approach to find such a threshold is what we call top and bottom thresholds.
It works as follows: We iterate over every sensor in the list and remember the last ten labels. Starting at the top of the
ranking, we expect these labels to be congestion-affected first. Whenever the number of non-congestion-affected labels,
within the window of ten, becomes greater than four we stop the process and remember the last x-error we saw1. This
will be the top threshold t top. The process is repeated from the bottom (with label expectations reversed) and the result-
ing threshold is called tbot tom. The hypothesis is that the optimal threshold is located somewhere in the middle between
the top and bottom threshold.

Table 3.1 shows a simplified example of this process for the top threshold, where the window size is five and the
process stops when the number of wrong labels exceeds one. In this example the process would stop at sensor 7 (shown
in bold) and would return the corresponding x-error.

Please observe that these two threshold are both biased. The top threshold will have a high precision on congestion-
affected sensors but a lower precision on non-congestion-affected sensors. The bottom threshold consequently behaves
the other way around. It will have a high precision for non-congestion-affected sensors but a low precision for non-
congestion-affected sensors. The following section will deal with finding the optimal threshold between t top and tbot tom.

1 Note that we experimented with different values for the window and the maximum error, but a window size of ten and a maximum error of
four gave the best results.
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3.3 Interpolated Thresholds

We expect the optimal threshold t, the threshold yielding the highest precision for both classes, to lie somewhere be-
tween t top and tbot tom. To find the optimal threshold we linearly distributed thresholds in between t top and tbot tom (cf.
Equation 3.1).

step =
1

n+ 1

�

t top − tbot tom

�

t1 = t top + step

t2 = t1 + step

. . .

tn = tn−1 + step

(3.1)

Each threshold is evaluated independently to find the overall best threshold relative to the top and bottom threshold.
This relative threshold can then be applied to any given set of sensors, without overfitting to the specific set.
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4 Evaluation

The process of finding the optimal threshold is now evaluated using ten-fold cross-validation for three and eight interpo-
lated thresholds together with the corresponding t top and tbot tom thresholds. Each cross-validation is repeated 100 times;
each time with a different random split of the training set. We then calculated the accuracy for each of the thresholds
as acc = cor r/incor r.The scheme just labels every sensor with an x-error greater than the threshold as congestion-affected
and non-congestion-affected otherwise.

Table 4.1: The results for using five different thresholds, averaged over 1000 iterations
Threshold Accuracy Frequency

t top 87.0505% 0
t1 89.9960% 979
t2 88.9220% 20
t3 88.6095% 1

tbot tom 87.9057% 0

This led to the results from Table 4.1 where the best performing threshold is depicted in bold. We also counted how
often a specific threshold had the highest accuracy which can be seen in the frequency column of the two tables. One
would naively expect the threshold t2 which lies exactly in the middle of t top and tbot tom to perform the best. Interestingly
this is not the case and instead the threshold t1 wins. t1 can be written as

t1 = t top + 0.25
�

t top − tbot tom

�

.

We then increased the amount of interpolated thresholds to eight and repeated the process, which led to the results from
Table 4.2.

Table 4.2: The results for using ten different thresholds, averaged over 1000 iterations
Threshold Accuracy Frequency

t top 87.0505% 0
t1 89.1607% 42
t2 89.5962% 390
t3 89.6359% 455
t4 89.2466% 75
t5 89.1197% 36
t6 88.8149% 0
t7 88.3402% 0
t8 88.6779% 2

tbot tom 87.9057% 0

You can see that this time t2 and t3 perform very similar, with t3 taking the lead. This means that the optimal threshold
lies somewhere in between t2 and t3, which is close to the t1 for three interpolated thresholds. Sticking to the simpler
approach with less interpolated thresholds we expect the optimal threshold to be

t = t1 = t top + 0.25
�

t top − tbot tom

�

.
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5 Related Work

The problem of traffic congestion is very frequently researched. Many ideas have been published of which only a few can
be mentioned here.

In his Master’s thesis [3] Jitesh Pati Tripathi used the idea of tracking the speed of a probe vehicle through GPS and
then using this information determine the current traffic situation. He used this method to find what he calls hot spots,
which are places where the traffic gets very congested. This is similar to the congestion-affected roads in our work.

Rebecca Ong et al. used a similar approach in [2], where they also used the GPS data of vehicles to find flock patterns,
where vehicles are moving very slow, to detect potential traffic jams. Also using GPS as their input data were Ke Zhang
and Guangtao Xue in [5], but they introduced a new method of representing the network of intersections which they call
spatio-temporal original-destination matrices. These matrices are calculated from GPS data sets and can be used to find
similarly behaving road segments in terms of traffic congestion.

A different approach was shown by Milos Milojevic and Veselin Rakocevic in [1], where they use a wireless connection
between vehicles to make them self-aware of their surrounding. The vehicles interchange their information about traffic
speed to calculate the current traffic situation.

Chenqi Wang and Hsin-Mu Tsai [4] also used a vehicle to vehicle network in their approach. The advantage of their
approach is that only very few vehicles have to be equipped with their system in order to reach good results. Here
equipped vehicles communicate with a local backend server to measure the current traffic situation. Using this approach
they were able to achieve a detection accuracy of 88.94%.

As shown floating car data is an interesting direction for detecting congestion. They do offer data where no loop
sensors are available. However, the accuracy and density of loop sensors in urban deployments is still unmatched. We
see great potential in both directions and, even more so, hybrid approaches.
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6 Conclusion and Future Work

The automatic detection of congestion-affected sensors is possible. Even using only this simple classification approach
yields 90% accuracy already.

In the future we would like to take more features into account, e.g., grouping sensors together that are all installed
on the same road. We would also like to work on the fitting of the regression line as mentioned earlier. The selection of
values for the fitting could be based on the density of the values, which would lead to better fitting of the linear part. And
this is just the first step on what can be done with inductive loop data in the future. Given the data the next step is to
assign different traffic levels (light, medium, dense, congestion) per sensor. And then detect the current traffic situation
for given count and load values in real-time.

In summary, this work is a first step into the direction of automatic detection of congestion-affected roads, based on
inductive loop data.
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