Projects
  icon
Topic: GLocSyn

-No description-

Subtopics:

Keywords:


  • 36 publications (0 read)
  • 40 authors [view]
  • No subtopics
Publications for topic "GLocSyn" sorted by title

A

Lars Wohlrab and Johannes Fürnkranz, A Comparison of Strategies for Handling Missing Values in Rule Learning, TU Darmstadt, Knowledge Engineering Group, number TUD-KE-2009-03, 2009
attachment
linked PDF
Jan-Nikolas Sulzmann and Johannes Fürnkranz, A Comparison of Techniques for Selecting and Combining Class Association Rules, in: From Local Patterns to Global Models: Proceedings of the ECML/PKDD-08 Workshop (LeGo-08), pages 154--168, 2008
linked PDF
Jan-Nikolas Sulzmann and Johannes Fürnkranz, A Comparison of Techniques for Selecting and Combining Class Association Rules, in: Proceedings of the LWA 2008: Lernen -- Wissen -- Adaption, pages "", 2008
Frederik Janssen and Johannes Fürnkranz, A Re-Evaluation of the Over-Searching Phenomenon in Inductive Rule Learning, TU Darmstadt, Knowledge Engineering Group, number TUD-KE-2008-02, 2008
attachment
linked PDF
Frederik Janssen and Johannes Fürnkranz, A Re-evaluation of the Over-Searching Phenomenon in Inductive Rule Learning, in: Proceedings of the SIAM International Conference on Data Mining (SDM-09), pages 329--340, 2009
[URL]
Jan-Nikolas Sulzmann and Johannes Fürnkranz, A Study of Probability Estimation Techniques for Rule Learning, in: From Local Patterns to Global Models: Proceedings of the ECML/PKDD-09 Workshop (LeGo-09), pages 123--138, 2009
linked PDF
Jan-Nikolas Sulzmann and Johannes Fürnkranz, An Empirical Comparison of Probability Estimation Techniques for Probabilistic Rules, in: Proceedings of the 12th International Conference on Discovery Science (DS-09), Porto, Portugal, pages 317--331, Springer-Verlag, 2009
attachment
[URL]
Frederik Janssen and Johannes Fürnkranz, An Empirical Investigation of the Trade-Off between Consistency and Coverage in Rule Learning Heuristics, in: Proceedings of the 11th International Conference on Discovery Science (DS-08), pages 40--51, Springer-Verlag, 2008
[DOI]
linked PDF
Frederik Janssen and Johannes Fürnkranz, An Empirical Quest for Optimal Rule Learning Heuristics, TU Darmstadt, Knowledge Engineering Group, number TUD-KE-2008-01, 2008
attachment
linked PDF

B

Anne-Christine Karpf, Bidirectional Rule Learning, Knowledge Engineering Group, TU Darmstadt, 2010
linked PDF

D


F

Arno J. Knobbe, Bruno Crémilleux, Johannes Fürnkranz and Martin Scholz, From Local Patterns to Global Models: The LeGo Approach to Data Mining, in: From Local Patterns to Global Models: Proceedings of the ECML/PKDD-08 Workshop (LeGo-08), pages 1--16, 2008
linked PDF

H

Frederik Janssen and Johannes Fürnkranz, Heuristic Rule-Based Regression via Dynamic Reduction to Classification, in: Proceedings of the 22nd International Joint Conference on Artificial Intelligence (IJCAI-11), Barcelona, Spain, pages 1330--1335, 2011
[URL]

I

Matthias Beckerle, Interaktives Regellernen, TU Darmstadt, Knowledge Engineering Group, 2009
linked PDF
Jiawei Du, Iterative Optimization of Rule Sets, TU Darmstadt, Knowledge Engineering Group, 2010
linked PDF

M

Frederik Janssen and Johannes Fürnkranz, Meta-Learning Rule Learning Heuristics, TU Darmstadt, Knowledge Engineering Group, number TUD-KE-2007-02, 2007
attachment
linked PDF
Frederik Janssen and Johannes Fürnkranz, Meta-Learning Rule Learning Heuristics, in: Proceedings of ECML-PKDD-07 Workshop on Planning to Learn (PlanLearn-07), pages 9-21, 2007
linked PDF
Frederik Janssen and Johannes Fürnkranz, Meta-Learning Rule Learning Heuristics, in: Proceedings of the German Workshop on Lernen, Wissen, Adaptivität - LWA2007, pages 167--174, 2007
Sven Burges, Meta-Lernen einer Evaluierungs-Funktion für einen Regel-Lerner, TU Darmstadt, Knowledge Engineering Group, 2006
attachment
linked PDF

O

Frederik Janssen and Johannes Fürnkranz, On Trading Off Consistency and Coverage in Inductive Rule Learning, in: Proceedings of the German Workshop on Lernen, Wissen, Adaptivität - LWA2006, pages 306--313, Gesellschaft für Informatik e. V. (GI), 2006
[URL]

P

Jan-Nikolas Sulzmann and Johannes Fürnkranz, Probability Estimation and Aggregation for Rule Learning, TU Darmstadt, Knowledge Engineering Group, number TUD-KE-2010-03, 2010
attachment
linked PDF

R

Jan-Nikolas Sulzmann and Johannes Fürnkranz, Rule Stacking: An Approach for Compressing an Ensemble of Rule Sets into a Single Classifier, in: Proceedings of the 14th International Conference on Discovery Science (DS-11), pages 323--334, Springer, 2011
[DOI]
Johannes Fürnkranz, Rule-Based Methods, in: Encyclopedia of Systems Biology, Springer-Verlag, 2013

S

Frederik Janssen and Johannes Fürnkranz, Separate-and-conquer Regression, TU Darmstadt, Knowledge Engineering Group, number TUD-KE-2010-01, 2010
linked PDF
Sven Wagner, Supervised Local Pattern Discovery, TU Darmstadt, Knowledge Engineering Group, 2008
attachment
linked PDF

T

Frederik Janssen and Johannes Fürnkranz, The SeCo-framework for rule learning, TU Darmstadt, Knowledge Engineering Group, number TUD-KE-2010-02, 2010
linked PDF
Frederik Janssen, Faraz Fallahi, Jan Noessner and Heiko Paulheim, Towards Rule Learning Approaches to Instance-based Ontology Matching, in: 1st International Workshop on Knowledge Discovery and Data Mining Meets Linked Open Data (Know@LOD), pages 13--18, 2012
attachment
linked PDF

U

Heiko Paulheim and Johannes Fürnkranz, Unsupervised Generation of Data Mining Features from Linked Open Data, in: International Conference on Web Intelligence and Semantics (WIMS'12), 2012
attachment
[DOI]

V

Marc Ruppert, Vergleich von AQ, CN2 und CN2 mit Weighted Covering, TU Darmstadt, Knowledge Engineering Group, 2006
attachment
linked PDF
Benedict Werling, Vergleich von Pruning-Algorithmen für Regel-Lerner, TU Darmstadt, Knowledge Engineering Group, 2008
attachment
linked PDF