Seminar aus maschinellem Lernen - WS 10/11

Im Rahmen dieses Seminars diskutieren wir neue Forschungsergebnisse aus dem Bereich maschinelles Lernen, in diesem Semester besprechen wir das Buch

Es wird er­wartet, daß Stu­den­ten die ihnen zugeteil­ten Ma­te­ri­alien  in einem ca. 45-minütigen Kurz-Vor­trag (30 min Vor­trag, 15 min Diskus­sion) vorstellen.​ Der Vor­trag sollte je­doch in­haltlich über diese Ma­te­ri­alien hin­aus­ge­hen und eine selb­ständige Au­seinan­der­set­zung mit dem gewählten Thema demon­stri­eren.

Zeit und Ort

Tag Zeit Raum Beginn
Mittwoch 17:10-18:50 S202/E302 20.10.

Ablauf

Jede/r Student/in erhält einen oder mehrere Fachartikel zur Ausarbeitung, deren wesentliche Aspekte dann in einem Vortrag vorgestellt und im Anschluß von allen diskutiert werden sollen. Die Vorträge und/oder Folien können wahlweise auf Deutsch oder Englisch gehalten werden.

Vorkenntnisse

Da diese Artikel dem letzten Stand der Forschung entsprechen, wird einerseits erwartet, dass entsprechende Grundkenntnisse (und Interesse!) in maschinellem Lernen und Data Mining mitgebracht werden, dass man sich aber andererseits im Zuge der Vorbereitung auch selbständig mit der Thematik weiter vertraut macht und ggf. auch weiterführende bzw. grundlegende Literatur zu Rate zieht (bitte Quellen nennen).

Vorträge

Es wird erwartet, daß Sie die Vorträge mit Folien begleiten. Falls Sie keinen Laptop haben, bitte ich mir die Slides rechtzeitig zu senden, damit ich sie auf meinem Laptop einspielen bzw. testen kann. Die Vorträge und/oder Slides können wahlweise auf Deutsch oder Englisch gehalten werden.

Benotung

In die Gesamtnote fließen die Ausarbeitung des Vortrags (Folien), die Präsentation, die Beantwortung von Fragen zum Vortrag, sowie die aktive Teilnahme an der Diskussion bei den Vorträgen anderer ein.

Im Vordergrund der Gesamtbenotung steht jedoch die selbständige Auseinandersetzung mit dem Problem. Für eine sehr gute (1.x) Beurteilung muß klar sein, dass Sie die fraglichen Arbeiten verstanden haben und von den vorliegenden Papers abstrahieren können. Eine exakte Wiedergabe des Inhalts der Papiere führt nur zu einer Beurteilung mit 2.x, außerordentlich schwache Leistungen in einem der genannten Punkte zu 3.x oder schlechter.

Termine

24.11.2011:
1. 12. 2010: 8.12.2010: 15.12.2010:
12.01.2011 19.01.2011: 26.01.2011: 02.02.2011: 09.02.2011:

Kontakt

Johannes Fürnkranz

Kontakt

small ke-icon

Knowledge Engineering Group

Fachbereich Informatik
TU Darmstadt

S2|02 D203
Hochschulstrasse 10

D-64289 Darmstadt

Sekretariat:
Telefon-Symbol+49 6151 16-21811
Fax-Symbol +49 6151 16-21812
E-Mail-Symbol info@ke.tu-darmstadt.de

 
A A A | Drucken | Impressum | Sitemap | Suche | Mobile Version
zum Seitenanfangzum Seitenanfang