# Chapter 11: Network Models of Markets with Intermediaries

Presented by Vladislava Arabadzhieva

## Contents

- 11.1 Price-Setting in Markets
- 11.2 A Model of Trade on Networks
- 11.3 Equilibria in Trading Networks
- 11.4 Further Equilibrium Phenomena
- 11.5 Social Welfare in Trading Networks
- 11.6 Trader Profits
- 11.7 Conclusion

# 11.1 Price-Setting in Markets

- Prices determine goods flows in markets
- Who sets prices?

- Second-price sealed-bid auction: buyers via bids in a procedure chosen by sellers

- **Procurement auction**: sellers via offers in a procedure chosen by buyers

- Large variety of other markets: intermediaries (brokers, market-markers, middlemen)

# 11.1 Price-Setting in Markets: Trade with Intermediaries

- Point of intermediaries and advantages of markets with intermediaries
- Examples of some bigger trading markets: New York Stock Exchange (NYSE), NASDAQ-QMX, Direct Edge, Goldman Sachs, Investment Technologies Group (ITG)
- Characteristics

- Match orders at prices determined by other markets

- Prices set by people (specialists) or electronically by algorithms

- Limited/Unlimited access to market
- Trading availability
- Order book a list of orders that buyers and sellers have submitted for a stock

| INET ho    | me syste | m stats          | help      |
|------------|----------|------------------|-----------|
| inet       |          | GET STOCK        |           |
|            |          |                  |           |
| LAST MATCH |          | TODAY'S ACTIVITY |           |
| Price      | 384.9000 | Orders           | 1,295,622 |
| Time       | 15:18:56 | Volume           | 2,791,809 |
| BUY ORDERS |          | SELL ORDERS      |           |
| SHARES     | PRICE    | SHARES           | PRICE     |
| 50         | 384.8200 | 93               | 384.9500  |
| 100        | 384,8200 | 100              | 385.0300  |
| 100        | 384.8100 | 100              | 385.0600  |
| 300        | 384.8100 | 100              | 385.0700  |
| 100        | 384.8000 | 200              | 385.0900  |
| 500        | 384.7900 | 100              | 385.1800  |
| 200        | 384.7700 | 100              | 385.2400  |
| 500        | 384.7600 | 25               | 385.2500  |
| 100        | 384.7100 | 100              | 385.3500  |
| 100        | 384.6900 | 15               | 385.5000  |
| 200        | 384.6800 | 200              | 385.5500  |
| 300        | 384.5900 | 200              | 385.6000  |
| 100        | 384.5000 | 360              | 385.6300  |
| 50         | 384.0000 | 100              | 385.6800  |
| 100        | 384.0000 | 100              | 385.7100  |
| (209       | more)    | (283             | ( more)   |

# 11.1 Price-Setting in Markets: Trade with Intermediaries

• Limit orders



- Market orders
- "Dark pools": Goldman Sachs's Sigma-X, ITG

# 11.2 A Model of Trade on Networks

- Networks connect various buyers and sellers to different intermediaries
- Three principles of "our" networks
  - existence of intermediaries
  - access to intermediaries
  - difference in prices
- Trader's strategy
- Seller's/ Buyer's strategy
- 2 stages:
  - traders choose simultaneously bids and asks
  - all sellers and buyers choose simultaneously traders

#### 11.2 A Model of Trade on Networks

• Network structure – fixed, externally imposed



# 11.2 A Model of Trade on Networks: Prices and the Flow of Goods

Network structure with bids bti and asks atj



• Penalties imposed on traders

#### 11.2 A Model of Trade on Networks

#### • Payoffs

- trader's payoffs:

sum of asks - sum of bids (- penalty)

- seller's payoffs: bti or vi
- buyer's payoffs:  $v_j a_{tj}$  or 0

#### • Examples

Payoff of second trader: 0.7 + 1 - 0.3 - 0 = 1.4Payoff of second seller: 0.3 Payoff of second buyer: 1 - 0.7 = 0.3

# 11.2 A Model of Trade on Networks: Best Responses and Equilibrium

• Trader T1 can make better offers about their bids and asks:



• Motivation for equilibrium

# 11.2 A Model of Trade on Networks: Best Responses and Equilibrium

- Nash equilibrium
  - each player knows the strategies of others
  - no benefit, if one changes their strategy but others don't
  - each players chooses the best response to others' strategies
- In our case, we need to consider the two stages of the problem
  1. reactions of buyers and sellers to posted prices
  2. choice of prices by traders
- "Subgame perfect Nash equilibrium"

# 11.3 Equilibria in Trading Networks

- Monopoly: Buyers and sellers can deal with only one trader
- Perfect Competition: buyers and sellers can choose among several traders



- Traders make no profit in any equilibrium

- Type of equilibrium determines which seller/buyer receives higher profit

- Game determines only the range of possible equilibria

# 11.3 Equilibria in Trading Networks

#### Implicit Perfect Competition

- all bids and asks are 0
- zero profit for traders because of network structure



### 11.4 Further Equilibrium Phenomena

• Second-price auctions



- seller receives the second highest valuation in payment

- "crossing pair": bid is higher that corresponding ask – still an equilibrium (pathological), when trader doesn't make the trade

#### 11.4 Further Equilibrium Phenomena

• **Ripple Effects from Changes to a Network** 



- analysis: restriction of flow of goods

### 11.4 Further Equilibrium Phenomena

• **Ripple Effects from Changes to a Network**: Equilibrium after adding a new link



# 11.5 Social Welfare in Trading Networks

- Equilibrium should be socially optimal, with maximum social welfare
- $(b_{ti} v_i) + (a_{tj} b_{ti}) + (v_j a_{tj}) = v_j v_i$
- More richly connected networks allow a higher social welfare
- Equilibria and Social Welfare
  - at least one equilibrium exists in every network
  - every equilibrium achieves the social optimum

### **11.6 Trader Profits**

- Tend to go down in more richly connected networks
- Tend to go up when trader is essential to the network
- Depend on the equilibrium



- social welfare of buyers and sellers varies between 1 and 2
- traders T1, T2 und T5 can make profit

### 11.6 Trader Profits

• Eqiulibrium with no trader profit, despite monopoly



- T1 can trade one or two goods; T2 can trade one or zero goods

• Trader T has a positive profit in (some) equilibrium when T has an "essential edge" to another node

# Conclusion

- Markets with intermediaries
- Equilibria
- Competition among intermediaries