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History

�World Wide Web

� 89-91: Tim Berners-Lee

� original conception:

� create a place to…

� …publish information/documents� …publish information/documents

� …access information/documents

� today: sequence of webpages rendered in a browser
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Hypertext

�Web forms an information network

� Idea of Hypertext: 

� replace traditional linear structure of text with a network structure

� Precursors of hypertext� Precursors of hypertext

� concept of citations

� books

� patents

� legal decisions
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Memex

� Hypothetical prototype by Vannevar Bush (1945)

� Contains digitized versions of all human knowledge

� Connected by associative links

� inspired by the „associative memory“ of humans

2010-01-12  |  Seminar Machinelles Lernen  |  Tomek Grubba |  5



The Web as a Graph

�Web pages considered as nodes

� Links between web pages considered as edges/vertices

� links are unidirectional!

� Distinction between navigational and transactional links� Distinction between navigational and transactional links

� only navigational links considered
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The Web as a Directed Graph
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The Web as a Directed Graph

� Path

� sequence of nodes from A to B, with the property that each
consecutive pair of nodes in the sequence is connected by an edge
pointing in the forward direction

� Strong Connectivity

� a path exists from every node to every other node

� Strongly Connected Component (SCC)

� subset of nodes such that

i. every node in the subset has a path to every other node

ii. the subset is not part of some larger set with the property of i
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The Web as a Directed Graph
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The Web as a Directed Graph
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Bow-Tie Structure

� Provides a high-level view of the structure

� „Components“ of the web

� One giant Strongly Connected Component

� IN-component

� OUT-component� OUT-component

� Tendrils

� Disconnected components
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Bow-Tie Structure
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Web 2.0

� Changes between (roughly) 2000 and 2009

� No exact definition

�Major forces

i. growth of authoring styles to allow people to create content

ii. movement of people‘s personal data to the internet („cloud“)ii. movement of people‘s personal data to the internet („cloud“)

iii. on-line connections between people
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Web 2.0

� Social phenomena of Web 2.0

� „Software gets better the more people use it“

� „The wisdom of crowds“

� „The Long Tail“
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Popularity

� The popularity of a web page is measured by the in-degree 
(number of in-links)

� As a function of k, what fraction of pages on the web have k in-
links?

� First assumption: The Normal Distribution

� turned out to be wrong

� Observation: 1/k2 

� such a function is called Power Law
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Power Law

http://www.learner.org/courses/mathilluminated/units/11/textbook/05.php
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Rich Get Richer Models

� Barabasi-Albert Model

�makes use of „Preferential Attachment“

� the probability, that node A links to node B is proportional to the in-
degree of B

� Analogy from the real world

� the more people know a person A (e.g. a celebrity), the higher the 
probability, that person B has heard of it
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Unpredictability

� Information cascades can depend on the outcome of a small 
number of initial decisions

� Salgankik et al: experiments on a music download site

�May lead to such an effect, that a worse technology can win, 
because it reaches a certain critical audience earlierbecause it reaches a certain critical audience earlier
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The Long Tail

� Popular retailing concept

� e.g. music business

� selling records by many less known artists can make a bigger bunch 
of the revenue than selling records by fewer bigger artist
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The Long Tail
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Effect of Search Tools

� Do internet search tools, such as Google, make the rich-get-
richer dynamics of popularity more extreme or less extreme?

What about recommendation tools?�What about recommendation tools?
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Thank You!Thank You!
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