Projects
  icon
Topic: LPCforSOS

-No description-

Subtopics:

Keywords:

  • 15 publications (0 read)
  • 24 authors [view]
  • No subtopics
Publications for topic "LPCforSOS" sorted by title

E

Eyke Hüllermeier and Johannes Fürnkranz, Editorial: Preference Learning and Ranking (2013), in: Machine Learning, 93:2-3(185--189)
[URL]
Johannes Fürnkranz and Sang-Hyeun Park, Error-Correcting Output Codes as a Transformation from Multi-Class to Multi-Label Prediction, in: Proceedings of the 15th International Conference on Discovery Science (DS-12), pages 254--267, Springer, 2012
[DOI]

G

Christian Brinker, Eneldo Loza Mencía and Johannes Fürnkranz, Graded Multilabel Classification by Pairwise Comparisons, in: 2014 IEEE International Conference on Data Mining (ICDM 2014), pages 731--736, Curran Associates, IEEE, 2014
[DOI]
linked PDF
Christian Brinker, Eneldo Loza Mencía and Johannes Fürnkranz, Graded Multilabel Classification by Pairwise Comparisons, Knowledge Engineering Group, Technische Universität Darmstadt, Technical Report, 2014
download
linked PDF

L

Eyke Hüllermeier and Johannes Fürnkranz, Learning from Label Preferences, in: Proceedings of the 14th International Conference on Discovery Science (DS-11), pages 2--17, Springer, 2011
[DOI]
Eyke Hüllermeier and Johannes Fürnkranz, Learning from Label Preferences, in: Proceedings of the 22nd International Conference on Algorithmic Learning Theory (ALT-11), pages 38, Springer, 2011
[DOI]

P

Johannes Fürnkranz and Eyke Hüllermeier, Preference Learning, in: Encyclopedia of the Sciences of Learning, pages 986, Springer-Verlag, 2012
[DOI]
Weiwei Cheng, Johannes Fürnkranz, Eyke Hüllermeier and Sang-Hyeun Park, Preference-Based Policy Iteration: Leveraging Preference Learning for Reinforcement Learning, in: Proceedings of the 22nd European Conference on Machine Learning and Principles and Practice of Knowledge Discovery in Databases (ECML PKDD 2011, Athens, Greece), Part I, pages 312--327, Springer, 2011
linked PDF

R

Jan-Nikolas Sulzmann and Johannes Fürnkranz, Rule Stacking: An Approach for Compressing an Ensemble of Rule Sets into a Single Classifier, in: Proceedings of the 14th International Conference on Discovery Science (DS-11), pages 323--334, Springer, 2011
[DOI]

T

Ji-Ung Lee, Transductive Pairwise Classification, TU Darmstadt, Knowledge Engineeering Group, 2013
linked PDF

W

Victor-Philipp Negoescu, Wissensgewinn aus Spieldatenbanken, Knowledge Engineering Group, TU Darmstadt, 2013
linked PDF