Publications of Michael Rapp
2021
Michael Rapp, Eneldo Loza Mencía, Johannes Fürnkranz and Hüllermeier Eyke, Gradient-Based Label Binning in Multi-Label Classification, in: Machine Learning and Knowledge Discovery in Databases (ECML-PKDD), Springer, 2021
[URL]
2020
Michael Rapp, Eneldo Loza Mencía, Johannes Fürnkranz, Vu-Linh Nguyen and Eyke Hüllermeier, Learning Gradient Boosted Multi-label Classification Rules, in: Machine Learning and Knowledge Discovery in Databases (ECML-PKDD), pages 124--140, Springer, 2020
[DOI]
[URL]
Vu-Linh Nguyen, Eyke Hüllermeier, Michael Rapp, Eneldo Loza Mencía and Johannes Fürnkranz, On Aggregation in Ensembles of Multilabel Classifiers, in: Discovery Science, pages 533--547, Springer International Publishing, 2020
[DOI]
[URL]
2019
Yannik Klein, Michael Rapp and Eneldo Loza Mencía, Efficient Discovery of Expressive Multi-label Rules using Relaxed Pruning, in: Discovery Science, pages 367--382, Springer International Publishing, 2019
[DOI]
[URL]
Michael Rapp, Eneldo Loza Mencía and Johannes Fürnkranz, On the Trade-off Between Consistency and Coverage in Multi-label Rule Learning Heuristics, Knowledge Engineering Group, Technische Universität Darmstadt, number 1908.03032, ArXiv e-prints, 2019
[URL]
Michael Rapp, Eneldo Loza Mencía and Johannes Fürnkranz, Simplifying Random Forests: On the Trade-off between Interpretability and Accuracy, Knowledge Engineering Group, Technische Universität Darmstadt, number 1911.04393, ArXiv e-prints, 2019
[URL]
2018
Michael Rapp, Eneldo Loza Mencía and Johannes Fürnkranz, Exploiting Anti-monotonicity of Multi-label Evaluation Measures for Inducing Multi-label Rules, in: PAKDD 2018: Advances in Knowledge Discovery and Data Mining, pages 29--42, Springer International Publishing, 2018
[DOI]
[URL]
Eneldo Loza Mencía, Johannes Fürnkranz, Eyke Hüllermeier and Michael Rapp, Learning Interpretable Rules for Multi-label Classification, in: Explainable and Interpretable Models in Computer Vision and Machine Learning, pages 81--113, Springer-Verlag, 2018
[DOI]
[URL]
2016