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Abstract

In the area of machine learning, multi-label classi�cation is the task of learning a model from training

data in order to be able to assign a set of labels to yet unknown instances [Read et al., 2011, Tsoumakas

and Katakis, 2006]. This is in contrast to binary or multi-class classi�cation problems, where only sin-

gle classes are predicted. For example, newspaper articles can often be associated with multiple topics

and a single piece of music can belong to more than one genre at once [Godbole and Sarawagi, 2004,

Tsoumakas and Katakis, 2006]. As recent studies have revealed, multi-label classi�cation approaches,

which are able to take correlations between labels � e.g. subsumptions or exclusions � into account, are

expected to achieve better predictive results [Read et al., 2011]. Loza Mencía and Janssen [2015] have

recently proposed a separate-and-conquer rule learning algorithm for solving multi-label classi�cation

problems, which is able to discover dependencies between individual labels. This is based on inducing

rules, which partially or fully depend on label conditions, instead of being exclusively based on testing

the values, which are associated with individual instances. The authors of said work advocate the use of

rule learning algorithms for solving multi-label classi�cation tasks, because rules are a natural and simple

form of expressing a learned model. Furthermore, they allow to expose correlations between labels in

a human-readable and -interpretable manner. However, the individual rules, which are learned by Loza

Mencía and Janssen's algorithm do only predict the presence or absence of one single label. In order to

overcome this restriction, the work at hand aims at modifying the original algorithm in order to be able

to induce so-called multi-label head rules, which allow to predict multiple labels at once. One challenge

of inducing such rules is, that the number of possible label combinations, which have to be taken into ac-

count for each rule, exponentially increases with the number of available labels. Therefore, the primary

contribution of this work is to elaborate a way for ef�ciently learning multi-label head rules, even if a

large number of labels is given. In order to achieve this, the proposed algorithm is based on exploiting

the so-called anti-monotonicity of certain evaluation metrics, which are used to measure the performance

of potential rules. In this work, it is shown, how said property can be exploited for reducing the com-

putational complexity of searches for multi-label head rules. Furthermore, various evaluation methods,

which are commonly used for measuring multi-label classi�cation performance, are examined in order

to show, whether they ful�ll the properties of anti-monotonicity, or not. This is indispensable for discov-

ering valid con�gurations of the proposed algorithm and enables to understand its limitations. Finally,

by applying the proposed algorithm to different data sets and statistically evaluating the predictions and

characteristics of the learned models, the effects of learning multi-label head rules is shown. By compar-

ing the outcome of the proposed algorithm to those of different multi-label classi�cation approaches, it

is also shown, that it is able to compete with those approaches in terms of predictive performance.



Zusammenfassung

Auf dem Gebiet des maschinellen Lernens versteht man unter Multi-Label Klassi�zierung das Lernen

eines Modells auf Basis von Trainingsdaten, um anschließend in der Lage zu sein, eine Menge von La-

bels noch unbekannten Instanzen zuzuweisen [Read et al., 2011, Tsoumakas and Katakis, 2006]. Dies

steht im Gegensatz zu binärer Klassi�zierung oder Multiklassen-Problemen, bei denen lediglich einzel-

ne Klassen vorhergesagt werden. Beispielsweise können Zeitungsartikel häu�g mit mehreren Themen

in Verbindung gebracht werden und ein Musikstück kann zu mehr als einem einzigen Genre gehören

[Godbole and Sarawagi, 2004, Tsoumakas and Katakis, 2006]. Wie vergangene Studien zeigten, er-

zielen Ansätze zur Multi-Label Klassi�zierung, die Korrelationen zwischen Labels � z.B. Untergruppen

oder gegenseitige Ausschlüsse � berücksichtigen, erwartungsweise bessere Vorhersageergebnisse [Read

et al., 2011]. Loza Mencía und Janssen [2015] stellten zuletzt einen Separate-and-Conquer Regellern-

Algorithmus zur Lösung von Problemen im Bereich der Multi-Label Klassi�zierung vor, der in der Lage

ist, Abhängigkeiten zwischen einzelnen Labels aufzudecken. Dies basiert auf dem Lernen von Regeln,

die teilweise oder vollständig von Labeln abhängen können, statt ausschließlich die Werte einzelner

Instanzen zu berücksichtigen. Die Autoren der genannten Arbeit befürworten den Einsatz von Regeller-

nern zur Lösung von Multi-Label Problemen, da Regeln eine natürliche und simple Form zum Ausdruck

eines gelernten Modells darstellen. Außerdem erlauben sie es, Korrelationen zwischen Labeln in einer

menschenlesbaren und -interpretierbaren Form aufzuzeigen. Allerdings erlauben die Regeln, die durch

den von Menćia und Janssen vorgestellten Algorithmus gelernt werden, lediglich das Vorliegen oder die

Abwesenheit eines einzelnen Labels vorherzusagen. Um diese Einschränkung zu überwinden, zielt die

vorliegende Arbeit darauf ab, den originalen Algorithmus so zu modi�zieren, dass sogenannte Multi-

Label Head Rules, die die Vorhersage mehrerer Labels erlauben, gelernt werden können. Eine Herausfor-

derung beim Lernen solcher Regeln besteht darin, dass die Anzahl der möglichen Label-Kombinationen,

die für jede Regel in Betracht gezogen werden müssen, exponentiell mit der Anzahl der verfügbaren

Label ansteigt. Dementsprechend liegt der Beitrag dieser Arbeit in erster Linie darin, eine Möglichkeit

zum ef�zienten Lernen von Multi-Label Head Rules, selbst wenn eine große Anzahl von Labels gege-

ben ist, zu erarbeiten. Um dies zu erreichen, basiert der vorgestellte Algorithmus auf der Ausnutzung

der sogenannten Anti-Monotonität bestimmter Evaluationsmetriken, die zur Einschätzung der Güte ge-

lernter Regeln verwendet werden. In dieser Arbeit wird aufgezeigt, wie besagte Eigenschaft ausgenutzt

werden kann, um die Komplexität einer Suche nach Multi-Label Head Rules zu reduzieren. Darüber

hinaus werden verschiedene Evaluationsmethoden, die üblicherweise für die Einschätzung der Klassi-

�kationsergebnisse bei Multi-Label Problemen verwendet werden, dahingehend untersucht, ob sie die

Eigenschaften der Anti-Monotonität erfüllen. Dies ist unabdingbar, um gültige Kon�gurationen des vor-

gestellten Algorithmus aufzuzeigen und erlaubt es, dessen Einschränkungen zu verstehen. Abschließend

werden die Auswirkung des Lernens von Multi-Label Head Rules aufgezeigt, indem der vorgestellte Algo-

rithmus auf verschiedene Datensätze angewandt wird und dessen Vorhersagen, sowie die Charakteristika

der gelernten Modelle, statistisch untersucht werden. Indem die Ergebnisse des Algorithmus zudem mit

denen anderer Ansätze zur Multi-Label Klassi�zierung verglichen werden, wird gezeigt, dass er in der

Lage ist, mit diesen in Bezug auf die Vorhersagegenauigkeit zu konkurrieren.
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1 Introduction

As an introduction to the work at hand, in this �rst chapter, an overview of the content and structure of

the present work should be given. This includes outlining the objectives and challenges of multi-label

classi�cation, as well as giving a rough overview of the following chapters' contents.

1.1 Challenges in Multi-Label Classi�cation

The objective of machine learning is to provide automatic, machine-driven tools and algorithms for

processing data in order to facilitate categorization, analysis and comprehension [Loza Mencía, 2012].

Classical and well-studied disciplines of this research area are binary and multi-class classi�cation. Both

aim at learning an universally applicable model from the assignments between objects and classes given

in a training data set. For example, such objects could represent newspaper articles, of which each one

is associated with a single topic such as �politics�, �economy�, �sports�, etc. The model, which is learned

by a classi�er, should be suited for predicting the class assignments of yet unseen objects. These are

given in form of a test data set. In order to be able to make predictions on unknown data, the learned

model must generalize on the respective type of data. The objects, which are contained in a data set

are referred to as instances or examples. Because in many practical scenarios the individual objects of a

data set can be associated with multiple classes at once, multi-label classi�cation problems have gained

increasing attention in the recent past [Loza Mencía, 2012]. For example, in case of assigning topics to

newspaper articles, an individual article can often be categorized by multiple interrelated topics at the

same time. For example, the topics �politics� and �economy� could both be associated with an article

about reforming tax laws.

Early attempts at solving multi-label classi�cation tasks were based on breaking down the original

problem into less complex binary classi�cation problems. These approaches � most notably the binary

relevance method � are referred to as problem transformation methods [Loza Mencía, 2012, Read et al.,

2011]. However, studies have revealed that exploiting correlations between labels may be bene�cial for

the predictive performance (cf. Dembczyński et al. [2012]). Common problem transformation methods

do only support this to some extent � either they do not consider correlations between labels at all,

or they suffer from high computational complexity when applied to data sets with large numbers of

labels. Possible label correlations are implications, subsumptions and exclusions. For example, in the

already mentioned scenario of assigning topics to newspaper articles, the topic �foreign affairs� could

be a subtopic of �politics�. Such subtopics are more likely to be associated with an instance, if the

superordinate topic is relevant as well. In order to bene�t from the exploitation of label dependencies,

while being able to handle a large number of labels at the same time, classi�cation algorithms, which

are designed with these goals in mind, are needed.

The exploitation of correlations between labels might not only be desired, because it potentially in-

creases the predictive performance. In some use cases, exposing dependencies between labels could

also be required for analyzing multi-label data. In such case, the learned model must be comprehen-

sible and interpretable by humans. In contrast to statistical classi�cation approaches, such as support

vector machines or neural networks, rule learning algorithms are well-suited to meet this requirement

[Loza Mencía and Janssen, 2015]. As rule learning is one of the oldest and best-researched areas of

machine learning, many different strategies and algorithms for the induction of classi�cation rules exist.

The rules, which result from the application of such approaches, can not only be used for classifying

unknown data, but also form an easily understandable representation of the learned model.

1.2 Organization of the Work

The list, which is given in the following, provides a rough overview of the present work's structure. In

order to highlight the main objectives of the next chapters, a brief summary of each of these chapters'

content is given.
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� Chapter 2: In this chapter, the fundamentals of multi-label classi�cation are introduced. This in-

cludes a formal de�nition of the problem domain, as well as a discussion of the most important

problem transformation methods (Section 2.1.1) and an argumentation for the need of exploit-

ing label dependencies (Section 2.1.2). Furthermore, the structure of separate-and-conquer rule

learning algorithms is introduced (Section 2.2.1) and it is discussed, how they can be used for

multi-class classi�cation by using binarization (Section 2.2.2). As the algorithm, which is proposed

in this work, is based on the separate-and-conquer algorithm, which was recently proposed by

Loza Mencía and Janssen [2015], this also includes a presentation of their work (Section 2.2.3).

Finally, the chapter concludes by giving an outlook on different methods, which can be used for

measuring the performance of multi-label rules. Besides introducing the mathematical notation,

which is used throughout this work (Section 2.3.1), this corresponds to the discussion of different

aggregation and averaging strategies (Section 2.3.2), as well as to the de�nition of commonly used

evaluation functions (Section 2.3.3).

� Chapter 3: Based on the fundamentals and notations, which are given in Chapter 2, in this chapter,

the properties of anti-monotonicity (Section 3.2) and decomposability (Section 3.3) are formally

de�ned. It is argued, that they can be exploited for pruning searches for multi-label head rules

and therefore enable to ef�ciently deduce such rules with respect to computational complexity. In

order to illustrate, how the proposed algorithm searches for multi-label heads, various examples

are given in this chapter as well.

� Chapter 4: At this point, the operation of the algorithm, which is proposed in the present work, is

discussed. As it is based on Loza Menćia and Janssen's separate-and-conquer algorithm, as previ-

ously introduced in Section 2.2.3, only aspects that differ from the original approach are considered

in this chapter. Most importantly, this includes the re�nement of rule conditions (Section 4.1), as

well as searching for the best possible multi-label head for an individual rule (Section 4.2). Fur-

thermore, different methods for measuring the performance of multi-label head rules are discussed

(Section 4.3) and it is explained, how the rules, which are learned by the algorithm, can be used

to classify the label associations of unknown instances (Section 4.4).

� Chapter 5: In the individual sections of this chapter, the evaluation functions, which are introduced

in Chapter 2, are examined in terms of anti-monotonicity and decomposability. Based on the formal

de�nitions, which are given in Chapter 3, it is mathematically proved or disproved, whether those

properties hold for the respective evaluation functions, or not.

� Chapter 6: The results of various empirical studies, which have been elaborated as part of this

work, are presented in this chapter. By evaluating the performance of the proposed algorithm on

different multi-label data sets and comparing the results to those of other multi-label classi�cation

approaches, it is possible to gain an impression of the algorithm's capabilities. The comparison

of different approaches also includes the binary relevance method and the algorithm for learning

single-label head rules by Loza Mencía and Janssen.

� Chapter 7: In this �nal chapter, the content and contributions of the present work are summarized.

Furthermore, an outlook on different aspects and enhancements of the proposed algorithm, which

may be addressed in the future, is given.
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2 Foundations of Multi-Label Classi�cation and Inductive Rule Learning

In this chapter, the fundamentals of multi-label classi�cation are introduced. Besides giving a formal

de�nition of the problem domain, this also includes a discussion of problem transformation methods,

which are commonly used for solving such problems, as well as emphasizing the importance of exploiting

label correlations. Furthermore � as the algorithm, which is presented in this work, is strongly related

to inductive rule learning �, the task of multi-label classi�cation is described with a strong focus on

that particular machine learning discipline. Because the algorithm is built on the separate-and-conquer

algorithm, which has recently been proposed by Loza Mencía and Janssen [2015], their novel approach

for learning multi-label classi�cation rules is also discussed at that point.

2.1 Multi-Label Classi�cation

In machine learning, classi�cation is the task of learning a model from a training data set T . Each of

the data set's instances consists of attribute-value pairs and is associated with one or several prede�ned

classes λi out of the �nite class space L := {λ1, ...,λn} with n= |L| being the number of available classes

[Loza Mencía, 2012, Loza Mencía and Janssen, 2015]. As each instance X j assigns concrete values vk to

the corresponding attributes Ak of the given data set, a single instance is de�ned as follows (cf. Janssen

[2012]), where D denotes the instance space and l corresponds to the total number of attributes. Note,

that in this work the terms �instance� and �example� are used as synonyms.

X j := 〈v1, ..., vl〉 ∈ D , with D= A1 × ...× Al (2.1

Instance

)

Attributes can either be nominal or numerical. Different types of attributes are possible as well, but

they are not relevant for the present work and therefore are not considered here. On the one hand,

the values of nominal attributes are discrete � e.g. true or false in case of a boolean attribute � and

cannot be ordered. On the other hand, the values of numerical attributes can be arbitrary numbers out

of a continuous value range and therefore are comparable [Fürnkranz, 1999, Janssen, 2012]. As already

mentioned, the instances of a data set are associated with classes. Consequently, the training data set T
of a classi�cation problem is de�ned as a sequence of tuples, denoted as follows (cf. Janssen [2012]). In

addition to the formal de�nition, a more descriptive illustration of a data set's structure � according to

the notation, which is used throughout this work � is shown in Table 1.

T := 〈(X1, Y1), ..., (Xm, Ym)〉 ⊆ D×L , with m= |T | (2.2

Data set

)

The tuples (X j, Yj), which are shown in the equation above, are used to map an individual instance

X j to a corresponding class vector Yj. Such a class vector speci�es the classes, which are associated with

the instance, by using the following notation (cf. Loza Mencía [2012], Loza Mencía and Janssen [2015]),

where each class attribute yi speci�es the absence (0) or presence (1) of the corresponding class λi:

Yj := 〈y1, ..., yn〉 ∈ {0, 1}n , with n= |L| (2.3

Class vector

)

The model, which is derived from a given training data set, can be viewed as the following classi�er

function, which maps a single instance X to a prediction Ŷ . The prediction is a class vector according to

the de�nition given in Equation 2.3 and therefore the classi�er function predicts the classes, which are

expected to be associated with an instance. Assuming, that such a classi�er function generalizes on the

given type of data, it can be used to predict the classes of yet unknown test instances.

h(X ) = Ŷ (2.4

Classi�er function

)
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Attributes Labels

A1 . . . Ak . . . Al λ1 . . . λi . . . λn

Instances

X1 . . . . . . Y1 . . . . . .
...

...
...

...
...

...
...

...

X j v1 . . . vk . . . vl Yj y1 . . . yi . . . yn
...

...
...

...
...

...
...

...

Xm . . . . . . Ym . . . . . .

Table 1: The structure of a multi-label data set according to the notation, which is used throughout this

work

In traditional binary or multi-class classi�cation, each instance is associated with exactly one class and

therefore only one class attribute of the class vector, which is predicted by the learned classi�er function,

is set to 1. If only two prede�ned classes are available (|L| = 2), the task is considered to be a binary

classi�cation problem. Accordingly, if more than two classes are given (|L|> 2), one does refer to such as
a multi-class classi�cation task [Loza Mencía, 2012, Tsoumakas and Katakis, 2006]. In contrast, inmulti-

label classi�cation, the instances can be related to an arbitrary number of distinct classes [Godbole and

Sarawagi, 2004, Loza Mencía, 2012, Loza Mencía and Janssen, 2015, Tsoumakas and Katakis, 2006]. As

a result, there are 2n potential predictions for an individual instance in such scenario (with n= |L| being
the total number of available classes) [Loza Mencía, 2012]. As this a drastic increase, when compared

to the n potential predictions in case of binary or multi-class classi�cation, multi-label classi�cation is

a particularly challenging research area. In the context of multi-label classi�cation, �classes� are often

referred to as �labels� (cf. Loza Mencía [2012]). Therefore said terminology is used throughout the

remainder of the present work. Accordingly, the terms �label vector� and �label attribute� are used

instead of �class vector� and �class attribute� in terms of multi-label classi�cation.

2.1.1 Problem Transformation Methods

One possible approach for solving multi-label classi�cation tasks is to use problem transformation meth-

ods. Such methods are based on breaking down a complex multi-label classi�cation problem into multi-

ple binary classi�cation problems, which can be solved individually by using common binary classi�ers

[Loza Mencía, 2012, Read et al., 2011]. The single-class predictions, which are obtained from the binary

classi�ers, can �nally be transformed into multi-label predictions in order to solve the original multi-

label classi�cation task [Read et al., 2011]. In the following the most common problem transformation

methods are discussed:

� Binary Relevance: This is the most common representative of problem transformation methods

for solving multi-label classi�cation tasks. It is based on learning a binary classi�er for predicting

the presence of each label of the original multi-label classi�cation problem. Therefore, a multi-

label problem with n labels is decomposed into n binary subproblems [Loza Mencía, 2012, Read

et al., 2011]. In order to use the trained binary classi�ers to determine the label vector of a yet

unknown test instance, the predictions of all of these classi�ers have to be queried. As the outcome

of each classi�er predicts the presence or absence of the corresponding label, the predictions can

be transformed into a label vector, which speci�es the labels that are assumed to be associated with

the given instance.

� Pairwise Decomposition: This approach has originally been designed for multi-label ranking

(which is not part of this work), but can also be applied as a problem transformation method

for solving multi-label problems [Fürnkranz et al., 2008, Read et al., 2011]. As it is based on

learning a binary classi�er for each pair of labels, the original problem is decomposed into
n(n−1)

2
subtasks. In order to predict the labels, which are relevant to a test instance, the predictions of all
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binary classi�ers must be obtained. Each of the obtained predictions can be interpreted as a vote

for one of the two corresponding labels [Loza Mencía, 2012]. By aggregating all obtained predic-

tions, the labels can be sorted by their relevance to the given test instance. Finally, by applying a

threshold, the labels, which should be included in the �nal multi-label prediction, can be separated

from those, which should not be included.

� Label Powerset: When using this problem transformation method, each possible label set is con-

sidered as a separate class. Given n labels, 2n potential label combinations exist. Therefore an

original multi-label classi�cation problem is transformed into a multi-class classi�cation task with

2n classes. The meta classi�cation task can either be solved by using a common multi-class clas-

si�er or by further decomposing it into binary classi�cation problems [Loza Mencía, 2012, Read

et al., 2011]. In order to classify a test instance, the label set that corresponds to the class, which

is predicted by the meta classi�er, is used as the resulting multi-label prediction.

Because the number of meta classi�ers, which have to be trained, when using the pairwise decomposition

or the label powerset method, grows drastically with increasing number of labels, both approaches suffer

from bad computational complexity, if applied to data sets with a large number of labels [Read et al.,

2011]. In contrast, the binary relevance method is able to handle data sets with a large number of

labels. However, it is not able to expose correlations between labels, as it will be discussed in Section

2.1.2 below.

2.1.2 Label Dependencies

When using the binary relevance method (cf. Section 2.1.1) for solving a multi-label classi�cation prob-

lem, a binary classi�er is trained per label and therefore the labels are implicitly considered to be inde-

pendent from each other. However, this assumption does not hold for most data sets and it has been

shown, that approaches, which are able to exploit dependencies between labels, may bene�t from an

enhanced classi�cation performance [Dembczyński et al., 2012, Loza Mencía, 2012, Loza Mencía and

Janssen, 2015, Read et al., 2011]. For example, imagine a multi-label data set with labels that represent

topics of newspaper articles. Given a label λu, referring to the topic �politics�, and another label λv , re-

ferring to its subtopic �foreign affairs�, it is obvious, that there is a dependency between both labels. I.e.,

if an instance is associated with λu, this implies that label λv is present as well (cf. Loza Mencía [2012],

Loza Mencía and Janssen [2015]). Unlike the binary relevance method, the label powerset method (cf.

Section 2.1.1) is able to model such label dependencies. Nevertheless, it suffers from an exponential

computational complexity, depending on the number of labels, and from a tendency towards over�tting.

This is due to the fact, that only label sets, which occur in the training data set, are included in the

deduced model [Read et al., 2011].

According to Dembczyński et al. [2012], two types of label correlations can be distinguished � namely

conditional and unconditional (or marginal) dependencies. Whereas unconditional dependencies do not

rely on speci�c instances, conditional dependencies do depend on the attributes of certain instances

[Dembczyński et al., 2012, Loza Mencía, 2012, Loza Mencía and Janssen, 2015]. For example, the

dependency between the labels λu and λv , used in the previously mentioned scenario, is unconditional

[Loza Mencía, 2012, Loza Mencía and Janssen, 2015]. When additionally taking into consideration the

newspaper article, a speci�c instance of the data set corresponds to, the probability for the labels to

be present has to be assessed differently: On the one hand, if the article's topic is strongly related to

politics, the conditional probability for both labels � as well as for the dependency between them � to be

present increases. On the other hand, if the article is not directly related to politics (e.g. an article about

fashion), both labels are very unlikely to be relevant to the given instance and they can be considered

to be conditionally independent, since the probability for one label to be present is independent of the

presence of the other label (cf. Loza Mencía [2012], Loza Mencía and Janssen [2015]).
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2.2 Inductive Rule Learning

As the aim of the work at hand is to present a rule learning algorithm, the fundamentals of this machine

learning discipline are introduced in this section. The individual rules, which are learned by a rule

learning algorithm, consist of a body, as well as of a head. The following syntax, where the head is

denoted as Ŷ and the body corresponds to B, is used throughout the remainder of this work (cf. Janssen

[2012], Loza Mencía and Janssen [2015]):

Ŷ ← B

The body of a rule contains one or several conditions, which are used to determine the instances, the

rule applies on. These instances are said to be �covered� by the rule (cf. Janssen [2012]). Similar to the

publication by Loza Mencía and Janssen [2015], only conjunctive, propositional rules, whose conditions

are concatenated using logical AND (∧) operations, are considered in this work. The conditions of a

propositional rule are tests on the instances' values, as de�ned in Equation 2.1. For nominal attributes,

equality (Ak = ck) or inequality tests (Ak 6= ck) are used. For numerical attributes, relational tests

(Ak < ck, Ak ≤ ck, Ak > ck or Ak ≥ ck) are available as well [Fürnkranz, 1999, Janssen, 2012]. Note, that

conditions, which perform equality or inequality checks on nominal attributes, are often abbreviated

using the notation ck, respectively ¬ck, in the remainder of this work. The head of a rule speci�es

the classes, which should be associated with the instances it covers. In case of binary or multi-class

classi�cation problems, the head contains a single predictive class attribute ( ŷi = 0 or ŷi = 1), which
speci�es the presence (1) or absence (0) of the corresponding class λi [Janssen, 2012]. Similar to the

shorthand notation, which is used for denoting tests on nominal attributes, predictive class attributes

are often abbreviated using the syntax ŷi for denoting the presence, respectively ¬ ŷi for denoting the

absence, of a class.

Head Body Example

Single-Label Head Rules

positive
label-independent

ŷ1← c1 ∧ c2 ∧ c3
negative ¬ ŷ1←¬c1 ∧ c2
positive

partially label-dependent
ŷ3← c1 ∧¬ ŷ1 ∧ ŷ2

negative ¬ ŷ3←¬c1 ∧¬ ŷ1 ∧ ŷ2
positive

fully label-dependent
ŷ3←¬ ŷ1 ∧ ŷ2

negative ¬ ŷ3← ŷ1 ∧¬ ŷ2

Multi-Label Head Rules

sparse
label-independent

ŷ1, ŷ2← c1 ∧ c2 ∧ c3
dense ŷ1,¬ ŷ2,¬ ŷ3← c1 ∧ c2 ∧ c3
sparse

partially label-dependent
ŷ3, ŷ4← c1 ∧¬ ŷ1 ∧ ŷ2

dense ŷ3,¬ ŷ4,¬ ŷ5←¬c1 ∧¬ ŷ1 ∧ ŷ2
sparse

fully label-dependent
ŷ3, ŷ4←¬ ŷ1 ∧ ŷ2

dense ŷ3,¬ ŷ4,¬ ŷ5← ŷ1 ∧¬ ŷ2

Table 2: Di�erent types of multi-label rules [Loza Mencía and Janssen, 2015, Table 1]

When inducing rules for handling multi-label classi�cation problems, � depending on the learner's im-

plementation � it is possible to include label conditions in the body of a rule [Loza Mencía and Janssen,

2015, Malerba et al., 1997]. In contrast to label-independent rules, such rules allow to expose correla-

tions between labels, as discussed in Section 2.1.2 [Loza Mencía and Janssen, 2015]. If a rule's body

exclusively consists of label conditions, it is considered to be fully label-dependent. Alternatively, if the

body contains label conditions, as well as regular attribute-value tests, the rule is said to be partially

label-dependent. Furthermore, individual rules may also contain several label assignments in their heads

[Loza Mencía and Janssen, 2015]. In contrast to single-label head rules, such rules are referred to as

multi-label head rules. In Table 2 different types of conjunctive rules for multi-label classi�cation are
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shown. Whereas the algorithm, which has been proposed by Loza Mencía and Janssen [2015], focuses

on inducing single-label head rules, the algorithm, which is presented in this work, aims at learning

multi-label head rules as well. Due to the additional expressiveness of such multi-label head rules, it

is hoped, that the resulting model is able to better illustrate label correlations. Global dependencies

between labels (cf. Section 2.1.2) are best described by using fully label-dependent single-label, respec-

tively multi-label, head rules. Local dependencies can be described by using partially label-dependent

bodies instead [Loza Mencía and Janssen, 2015]. Another criterion for categorizing multi-label rules

is, whether the presence (denoted as ŷi in Table 2) or absence (denoted as ¬ ŷi in Table 2) of labels

is used in a rule's body or head. Because labels tend to appear relatively infrequently, it is common to

only predict the presence of labels and therefore focus on learning rules with positive label conditions in

their head. In case of multi-label head rules, such rules are also referred to as sparse. Nevertheless, in

some scenarios, it might be bene�cial to learn negative, respectively dense, rules, for which reason the

algorithm, which is proposed in this work � such as its counterpart by Loza Mencía and Janssen [2015]

�, is able to induce such rules. Moreover, using conditions, which test the absence of labels, in the body

of a fully or partially label-dependent rule, enables to model exclusions in addition to implications and

subsumptions.

2.2.1 Separate-and-Conquer Rule Learning

Usually, multiple rules must be learned in order to be able to cover all training examples of the same

class (completeness), without covering any of those, that are associated with other classes (consistency)

[Fürnkranz, 1999]. In such case, the resulting rules r = (r1, ..., rn) ∈ R are united as a rule set R, which
represents the learned model [Loza Mencía and Janssen, 2015]. A widely used strategy for learning rule

sets is to use separate-and-conquer rule learning algorithms [Fürnkranz, 1999, Janssen, 2012, Janssen

and Fürnkranz, 2010]. As pointed out by Fürnkranz [1999], all of these algorithms share the same basic

structure, which is shown in Algorithm 1 below.

Require: Training data set T = 〈(X1, Y1), ..., (Xm, Ym)〉,
class attribute ŷi ∈ {0, 1}, evaluation function δ

1 R= ; Â Initialize empty decision list

2 while GETPOSITIVES(T, ŷi) 6= ; do Â Learn additional rules until no positive examples remain

3 (r, Tcov ered) = FINDBESTRULE(T, ŷi,δ)
4 R= R∪ r Â Add learned rule to decision list

5 T = T \ Tcov ered Â Remove covered examples from training data set

6 return decision list R

Algorithm 1: The basic structure of an iterative separate-and-conquer rule learning algorithm for solving

binary classi�cation problems (cf. [Fürnkranz, 1999, Figure 3])

Each separate-and-conquer rule learning algorithm starts with an empty rule set R [Fürnkranz, 1999,

Janssen, 2012, Janssen and Fürnkranz, 2010]. As the rules, which are added to the rule set during the

execution of the algorithm, are induced successively, it is also referred to as a decision list (cf. Janssen

[2012], Janssen and Fürnkranz [2010]). According to Algorithm 1, the algorithm takes the training data

set T , as well as a class attribute ( ŷi = 0 or ŷi = 1) and an evaluation function δ as arguments. The class

attribute ŷi speci�es the prediction � i.e. the heads � of the rules, which are induced by the algorithm.

Additional rules are learned iteratively by using the subroutine FINDBESTRULE. Whenever a new rule is

learned, it is added to the decision list and the training examples, which are covered by the rule, are

removed from the original training data set. The induction of new rules is continued until all examples

in T , for which the class attribute ŷi is true, are covered [Fürnkranz, 1999]. In order to classify a test

example, the rules of the learned decision list are processed in order of their induction. The head of the

�rst rule, which covers the respective example, is used for predicting its class.
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Require: Training data set T , class attribute ŷi, evaluation function δ

1 r = ŷi ← ; Â Start with most general rule

2 rbest = r
3 Tcov ered = T
4 while GETNEGATIVES(Tcov ered , ŷi) 6= ; do Â Re�ne rule as long as any negatives are covered

5 for each possible condition c do
6 rre f ined .body∪ c Â Add condition to rule's body

7 if EVALUATERULE(rre f ined , T,δ) > EVALUATERULE(rbest , T,δ) then
8 rbest = rre f ined
9 r = rbest
10 Tcov ered = GETCOVERED(r, T)
11 return best rule r, covered training examples Tcov ered

Algorithm 2: Algorithm FINDBESTRULE for inducing a rule, based on the current data set (cf. [Fürnkranz,

1999, Figure 3])

According to Algorithm 2, whenever a new rule is about to be induced, it is initialized with an empty

body and therefore initially covers all of the training examples. As long as a rule still covers examples,

for which the class prediction ŷi is wrong, the rule is specialized by adding additional conditions to its

body [Fürnkranz, 1999, Janssen, 2012, Janssen and Fürnkranz, 2010]. This results in fewer examples

being covered by the rule. The possible conditions are attribute-value tests, made up from all available

attributes and their corresponding values, as present in the training data set [Fürnkranz, 1999]. Among

all re�nements of the original rule, the one, which optimizes the given evaluation function δ � e.g.

the percentage of correctly classi�ed examples among all covered examples �, is considered to be the

best choice [Fürnkranz, 1999, Janssen, 2012, Janssen and Fürnkranz, 2010]. In Section 2.3.3 several

evaluation functions, which are relevant to the present work, are introduced. Finally, the subroutine

FINDBESTRULE returns the induced rule in order to add it to the decision list and causing all training

examples it covers to be removed from the current training data set, before the separate-and-conquer

algorithm continues with the next iteration.

In order to prevent over�tting � a situation where the learned model just re�ects the given training

examples and does not generalize on unseen data [Janssen, 2012] �, the completeness and consistency

constraints are usually relaxed. By either stopping the re�nement of rules according to some stopping

criterion (pre-pruning), or by post-processing the induced rules (post-pruning), the inclusion of too spe-

ci�c rules into the decision list can be avoided. This results in learning a more compact model, which is

neither complete, nor consistent, but is expected to be more predictive on yet unknown test examples

[Fürnkranz, 1999]. Moreover, it is also possible to use a bottom-up strategy, instead of the top-down

search, which is given in Algorithm 1. When using such a strategy, each new rule is initialized to

cover exactly one of the given training examples. In order to cover additional examples, it is iteratively

generalized by removing conditions from its body [Fürnkranz, 1999, Janssen, 2012].

2.2.2 Class Binarization

By default, the separate-and-conquer algorithm, which is discussed in Section 2.2.1, can only be used

for handling binary classi�cation problems. This is, because it is only able to discriminate between two

classes. Given such a binary classi�cation task, the less frequent of both available classes is usually used

as the target class for rule induction using the algorithm. When classifying an unknown test example

using the learned model, all rules of the decision list are applied to the example successively. As soon as

the �rst rule covers the example, its head is used for predicting the associated class. The remaining rules

must not be processed any further. If none of the decision list's rules covers the test example, a default

rule applies, predicting the more frequent class, no rules have been learned for [Janssen and Fürnkranz,

17



2010]. In order to be able to handle multi-class classi�cation problems by using the discussed algorithm,

class binarization is usually used [Fürnkranz, 2002, Janssen and Fürnkranz, 2010]. The most common

binarization techniques are discussed in the following:

� (Unordered) 1-vs-all Class Binarization: Given n prede�ned classes λ1, ...,λn, when using this

binarization technique, a multi-class classi�cation problem is decomposed into n binary subprob-

lems. As the classes are not ordered in any way, this method is considered to be �unordered�. For

each class λi, the separate-and-conquer algorithm given in Algorithm 1 is executed using the class

argument ŷi = 1. This causes the rules, which are induced by each meta classi�er, to cover the

examples, which are associated with the current class λi, while considering all other examples as

negatives. Finally, all learned rules are included in a joint rule set, which is used as a model for

the original multi-class classi�cation problem. Because the subproblems are solved in an undeter-

mined order, the rules in the resulting rule set are unordered and contradictive rules � i.e. rules

that predict different classes for the same test example � may exist. As a result, when classifying

an unseen example, all covering rules must be taken into consideration and con�icts have to be

resolved by using some kind of voting mechanism.

� Ordered 1-vs-all Class Binarization: This binarization technique is very similar to unordered

1-vs-all class binarization, as described above, except that the classes are ordered by ascending

frequency. At �rst the separate-and-conquer algorithm is applied to the whole training data set,

considering the examples of the least frequent class λ1 to be positives and those of the remaining

classes λ2, ...λn to be negatives. Afterwards, all training examples, which are associated with the

already considered class λ1, are removed from the data set and the procedure is continued by

using the second-least frequent class λ2 as the target class for applying the separate-and-conquer

algorithm again. Finally, the rules, which have been learned for each subproblem, are united in an

ordered rule set. For predicting the most frequent class, a default rule can be used. Hence no rules,

which cover that particular class, must be learned explicitly.

� Pairwise Class Binarization: As its name indicates, this binarization method is based on train-

ing a classi�er for each pair of classes, while leaving out the training examples, which are not

associated with either of both classes [Fürnkranz, 2002, Janssen, 2012]. As a result, an original

multi-class classi�cation problem with n classes is decomposed into
n(n−1)

2 subproblems [Janssen,

2012]. Although way more iterations are necessary to solve a classi�cation task that way, it has

been shown, that this approach can outperform 1-v-all binarization variants, when implemented

ef�ciently [Fürnkranz, 2002]. The predictions of the trained classi�ers can be considered as a vote

for one of the two corresponding classes. Therefore, when classifying an unknown test example,

the predictions of all classi�ers have to be obtained and must be transformed into a multi-class

prediction by utilizing a voting mechanism [Fürnkranz, 2002].

By using one of the previously discussed binarization techniques, the basic separate-and-conquer al-

gorithm, which is given in Algorithm 1, can �exibly be adapted for handling multi-class classi�cation

problems. However, a different approach for performing binarization is needed in case of multi-label

classi�cation. Due to its relevance to the present work, the particular binarization strategy, which has

been elaborated by Loza Mencía and Janssen [2015] as part of their work, is discussed in the following

section.

2.2.3 An Algorithm for Multi-Label Rule Learning

In this section the algorithm, the present work is based on, is discussed in detail. Both, the original

algorithm, as well as the modi�ed version presented in this work, share some similarities and under-

standing the operation of the original approach is crucial for the remainder of this work. If not marked

differently, all information given in this section is taken from the publication by Loza Mencía and Janssen
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[2015], the original algorithm has been proposed in for the �rst time. Said algorithm allows to induce

single-label head rules as shown in Table 2 at the beginning of Section 2.2. As it was designed with

the fundamentals of separate-and-conquer rule learning algorithms in mind, it is based on the struc-

ture previously discussed in Section 2.2.1. However, there are some differences when compared to

separate-and-conquer algorithms for solving binary or multi-class classi�cation tasks:

� Multi-Label Decision Lists: The algorithm learns a model in form of a decision list � i.e. for

classi�cation, the induced rules must be processed in a determinate order. When using a decision

list for single-class classi�cation, as previously discussed in Section 2.2.1, the prediction of the �rst

covering rule is used and all other rules must not be taken into consideration. However, in multi-

label classi�cation using single-label head rules, the predicted label vector of a test example must

be composed of multiple rules' predictions, because each rule does only predict the presence or

absence of a single label. As a result, in such case, the classi�cation process is not stopped when

an example is covered by a rule unless all of the example's labels are already predicted. Labels,

which remain unset after processing all rules, are considered to be irrelevant. This corresponds

to the concept of default rules, which is used when learning traditional decision lists for binary

and multi-class classi�cation. If a particular label is predicted differently by multiple rules, the

prediction of the �rst covering rule is assumed to be the correct one and its prediction cannot be

revoked by other rules afterwards. Additionally, it is possible to mark individual rules as stopping

rules. Whenever such a rule is encountered, the classi�cation of the current test example is stopped.

This may be useful to prevent the prediction of too many relevant labels and is discussed in a more

detailed manner in the course of this section.

� Re-inclusion of Training Examples: All separate-and-conquer rule learning algorithms are based

on iteratively removing covered examples from the training data set once a new rule is induced.

However, the algorithm, which is discussed in this section, uses a more complex strategy for re-

moving training examples. This is, because usually multiple single-label head rules have to be

learned in order to be able to model an example's full label vector. Consequently, even if a training

example is already covered by an induced rule, it must be retained for learning additional rules.

Only when the labels, which are associated with an example, are covered to at least some extent,

the respective example can be removed from the training data set.

Algorithm 3 illustrates how a multi-label decision list is learned in order to model the label assignments

of a training data set T . According to Equation 2.2, each entry of the data set is a tuple, consisting of

an instance X j and a corresponding label vector Yj. Instead of exposing the true label vectors to the

training algorithm, a copy Tcur rent of the given data set, with all labels set to be unknown, is created

initially (cf. Algorithm 3, line 2). After a new rule has been induced by the algorithm, the label, which

is predicted by the new rule, is added to the initially empty data set. The labels, which are marked as

already predicted, can be used in later iterations of the algorithm for learning label-dependent rules as

shown in Table 2. Besides the training data set, Algorithm 3, also takes targets G as a parameter. Targets

allow to specify, whether the induced rules should only predict the presence of labels (if G = {1}), or if
rules are also allowed to predict the absence of labels (if G = {0, 1}). In each of the algorithm's iterations

the subroutine FINDBESTGLOBALRULE is used to learn a new single-label head rule, covering some of the

training examples left in the current data set. The newly learned rule is then added to the decision list

and the examples it covers are either removed or re-included into the learning process, depending on

the results of the subroutines GETCOVEREDSETS and GETREADDSET. The re-inclusion of training examples

depends on the parameter τ, as well as on whether stopping rules should be used and whether examples,

whose label vectors are fully predicted by already induced rules, should be re-added. The induction of

additional rules is continued until only θ examples are left in the data set. Finally, the decision list R is

returned. It contains all rules, which have been induced during the algorithm's execution, and represent

the learned model.
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Require: Training data set T = 〈(X1, Y1), ..., (Xm, Ym)〉,
parameters θ , τ, evaluation function δ, targets G (either G = {1} or G = {0, 1}),
whether using stopping rules, whether re-inserting fully covered examples

1 R= ; Â Initialize empty multi-label decision list

2 Tcur rent = 〈(X1, Y1), ..., (Xm, Ym)〉 with X j ∈ T and Yj = (?, ..., ?), j = 1...m
3 while |T |/m≥ θ do Â Until, e.g., 95% of examples covered

4 r = FINDBESTGLOBALRULE(T, Tcur rent , G,δ) Â Get best possible rule regardless the head

5 R= R∪ r Â Add rule to decision list

6 (T, Tpar t , T f ul l) =GETCOVEREDSETS(T, Tcur rent , r) Â Separate T according covering by r
7 Tadd = GETREADDSET(Tpar t , T f ul l) Â Depending on user parameters

8 if Tadd = ; then
9 mark r as stopping rule Â Only uncovered examples in T of next round

10 else

11 T = T ∪ Tadd Â Add also some covered examples, do not remove them

12 return multi-label decision list R

Algorithm 3: Separate-and-conquer algorithm for learning single-label head rules [Loza Mencía and

Janssen, 2015, Fig. 3]

The subroutine FINDBESTGLOBALRULE, which is shown in Algorithm 4, is used to induce a new single-

label head rule in each one of the algorithm's iterations. It �rst learns a rule for each label and target

and �nally chooses the best rule among all labels, according to a performance measurement using the

evaluation function δ and the true label vectors of the original training data set. In order to search for the

best rule given a particular label-target combination, the subroutine FINDBESTRULE may be implemented

as a top-down or bottom-up search similar to the example shown in Algorithm 2. Due to the re-inclusion

of training examples, the same training examples may be used in subsequent iterations of the algorithm.

Without proper handling of such cases, the same rule as before would be returned by the subroutine

FINDBESTRULE, resulting in the training data set to not be altered for the next iteration either. In order

to prevent such in�nite loops, training examples, for which the current label is marked to be already

predicted in Tcur rent , are not exposed to the subroutine FINDBESTRULE.

Require: Original training data set T , current training data set Tcur rent ,

targets G, evaluation function δ

1 rbest = ; ← ;
2 for each possible label attribute ŷi ∈ G do Â Find best rule for each label and target

3 Ti = T\ all X j where Yi ∈ Tcur rent is already set Â Remove examples with label already predicted

4 (r, Tcov ered) = FINDBESTRULE(Ti, ŷi,δ) Â Find best body for target ŷi ∈ G
5 if EVALUATERULE(r, Ti,δ) > EVALUATERULE(rbest , Ti,δ) then
6 rbest = r Â Replace by better rule

7 return best rule rbest

Algorithm 4: Algorithm FINDBESTGLOBALRULE for inducing a single-label head rule, based on the current

data set [Loza Mencía and Janssen, 2015, Fig. 4]

Whenever a new rule is learned, the subroutines GETCOVEREDSETS and GETREADDSET are used in order to

decide, whether the examples, which are covered by the rule, should be removed from the training data

set, or re-added instead. The subroutine GETCOVEREDSETS, as shown in Algorithm 5, updates the labels,

which are predicted by a newly learned rule, in the data set Tcur rent and removes all covered examples

from the original training data set T . Depending on whether their label vectors are partially or fully set,

the instances are either added to the data set Tpar t or T f ul l .
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Require: Original training data set T , current training data set Tcur rent , rule r

1 Tpar t = ;, T f ul l = ;
2 for each example (X j, Yj) ∈ GETCOVERED(r, Tcur rent) do Â Compute covering status for each example

3 apply r.head on Yj Â Add prediction of r to corresponding label vector in Tcur rent
4 if Yj is fully set then

5 T f ul l = T f ul l ∪ (X j, Yj)
6 else

7 Tpar t = Tpar t ∪ (X j, Yj)
8 T = T \ (X j, Yj) Â Remove example; maybe it is re-added later

9 return uncovered examples T , partially covered examples Tpar t , fully covered examples T f ul l

Algorithm 5: Algorithm GETCOVEREDSETS for computing the examples, which are partially or fully covered

by a given rule [Loza Mencía and Janssen, 2015, Fig. 5]

Based on the data sets T f ul l and Tpar t , which are returned by the subroutine GETCOVEREDSETS, the algo-

rithm GETREADDSETS decides, whether previously removed examples should be re-added to the training

data set T , or not. As it can be seen in Algorithm 6, this decision strongly depends on the algorithm's in-

put parameters. If no stopping rules should be used, only partially covered examples are re-inserted into

the training process, whereas all fully covered examples are removed. However, it might be desirable to

leave the fully covered examples in the training process, since they may be bene�cial for the induction

of further rules. The possibility of retaining fully covered examples in the training data set is considered,

if the percentage of fully covered examples among all covered examples is less than a given parameter τ
(usually close to 1). In such case, all partially and fully covered examples are re-added and the recently

learned rule is marked as a stopping rule. Instead, if the required percentage is not reached yet, only the

partially covered examples are retained in the training process.

Require: Partially and fully covered examples Tpar t , T f ul l , parameter τ
whether using stopping rules, whether re-inserting fully covered examples

1 Tadd = ;
2 if use stopping rules then

3 if full coverage rate |T f ul l |/(|T f ul l |+ |Tpar t |)≥ τ then Â E.g. 90%

4 Tadd = ; Â Do not re-add any example although Tpar t , T f ul l are not empty

5 else Â Too many partially covered examples

6 Tadd = Tpar t Â Re-add partially covered examples

7 if re-insert fully covered examples then

8 Tadd = Tadd ∪ T f ul l Â Re-add also fully covered examples

9 else

10 Tadd = Tpar t Â No stopping rules: re-add partially covered examples

11 return examples Tadd to be re-added

Algorithm 6: Algorithm GETREADDSET for deciding, whether examples should be re-added to the training

data set depending on their covering status, or not [Loza Mencía and Janssen, 2015, Fig. 6]

In order to predict the labels of an unknown test example, the rules, which are contained in a learned

multi-label decision list, are applied to the test example successively. Algorithm 7 illustrates how the

predicted label vector is constructed by applying the heads of a decision list's rules. The rules are

processed in the order of induction. On the one hand, this is necessary with respect to stopping rules,

which cause the prediction to be stopped prematurely in order to prevent too many labels from being

predicted as relevant. On the other hand, this ensures, that the labels, which are contained in the bodies

of label-dependent rules, are already applied to the test example.
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Require: Test example X , multi-label decision list R

1 Ŷ = 〈?, ..., ?〉
2 for each rule r in decision list R do Â Apply rules in the order of induction

3 if r covers X then

4 apply head of r on Ŷ if corresponding value in Ŷ is unset

5 if r is marked as stopping rule or Ŷ is complete then

6 assume all remaining labels in Ŷ to be irrelevant

7 return prediction Ŷ
8 assume all remaining labels in Ŷ to be irrelevant

9 return prediction Ŷ

Algorithm 7: Algorithm for predicting the label vector of a test example, based on the rules of a multi-

label decision list [Loza Mencía and Janssen, 2015, Fig. 7]

According to Algorithm 7 � unless a stopping rule is encountered �, the prediction of a test example's

label vector is continued until no rules remain in the decision list or until all labels of the test example

are already predicted. Labels, which remain unset after the prediction process is �nished, are assumed

to be irrelevant.

2.3 Multi-Label Evaluation Metrics

For evaluating the quality of multi-label classi�cations, different evaluation methods than those that

are traditionally used in case of single-class data, are required [Loza Mencía, 2012, Maimon and

Rokach, 2005]. For this reason, various measures already known from multi-class classi�cation have

been adopted [Loza Mencía, 2012]. In this section, a selection of metrics, which are relevant to the

remainder of this work, are discussed. In general, two types of evaluation metrics can be distinguished:

i) bipartition and ii) ranking measures [Loza Mencía, 2012, Maimon and Rokach, 2005]. As label-ranking

approaches are not part of the present work, the latter are not considered in this section.

2.3.1 Bipartition Evaluation Functions

Bipartition evaluation functions are based on evaluating the differences between true label vectors �

also referred to as the ground truth (cf. [Maimon and Rokach, 2005]) � and predicted label vectors

[Maimon and Rokach, 2005]. Usually, bipartition evaluation metrics can be considered as functions on

two-dimensional confusion matrices [Koyejo et al., 2015, Loza Mencía and Janssen, 2015]. The elements

of such a confusion matrix represent the true positives (TP), false positives (FP), true negatives (TN) and

false negatives (FN) of a prediction [Koyejo et al., 2015, Loza Mencía, 2012]. Relevant labels are counted

as true positives, if they have been set correctly, respectively as false negatives, if they have not been

set despite their relevance. Accordingly, irrelevant labels are counted as true negatives, if they have not

been set by a prediction, or as false positives, if they have been set mistakenly. Equation 2.5, which is

discussed in the following, shows how the elements of a binary confusion matrix are computed in detail.

Moreover, in Table 3 the structure of a two-dimensional confusion matrix is illustrated.

C predicted not predicted

relevant T P FN
irrelevant F P T N

Table 3: The structure of a two-dimensional confusion matrix, consisting of true positives (TP), false posi-

tives (FP), true negatives (TN) and false negatives (FN) [Loza Mencía, 2012, Section 2.7.3]
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For a given instance X j and a label λi, the elements of an atomic confusion matrix C j
i are computed

as shown in Equation 2.5 below [Loza Mencía, 2012]. The variables yi and ŷi, which are used in said

equation, denote the presence (1) or absence (0) of the label λi in the true label vector, respectively in

the predicted one.

T P j
i =

¨

1, if yi = 1∧ ŷi = 1

0, otherwise
F P j

i =

¨

1, if yi = 0∧ ŷi = 1

0, otherwise

T N j
i =

¨

1, if yi = 0∧ ŷi = 0

0, otherwise
FN j

i =

¨

1, if yi = 1∧ ŷi = 0

0, otherwise

(2.5)

In the remainder of this work, the number of all relevant and irrelevant labels, which are contained in

a confusion matrix, are denoted as P, respectively N . Accordingly, the number of all labels, which are

assumed to be relevant by a prediction, is denotated as p, whereas n refers to the number of labels,

which are predicted to be irrelevant.

P := T P + FN N := F P + T N

p := T P + F P n := T N + FN
(2.6)

2.3.2 Aggregation and Averaging

When using bipartition functions for evaluating multi-label predictions, which have been made for m
instances with n prede�ned labels being available, m · n atomic confusion matrices can be computed

according to the de�nition of true positives, false positives, true negatives and false negatives given in

Equation 2.5 [Loza Mencía, 2012]. However, these individual matrices are not well suited for rating

the quality a previously learned model or a single rule. In order to overcome this de�ciency, a sin-

gle score must be calculated by aggregating the confusion matrices, which have been obtained using

a bipartition evaluation function δ, according to one of the following strategies: i) Micro-averaging is

based on aggregating all available information at �rst and applying the evaluation function afterwards.

ii) Macro-averaging refers to applying the evaluation function on each available piece of information

individually and �nally aggregating the results [Loza Mencía, 2012]. When using macro-averaging, an

example- or label-based evaluation is possible. The former is based on averaging evaluations, which have

been computed per example. When using the latter, evaluation metrics are calculated for individual la-

bels instead [Maimon and Rokach, 2005]. In favor of formally de�ning the different averaging strategies

in a mathematical way, the following two operators for aggregating, respectively averaging, a sequence

of confusion matrices Ci = (C1, ..., Cn) are declared (cf. [Loza Mencía, 2012]). The ⊕ symbol, which is

used in the equations below, refers to the cell-wise addition of multiple confusion matrices' elements.

n
∑

i=1

Ci := C1 ⊕ ...⊕ Cn

n
avg
i=1

Ci :=
1
n

n
∑

i=1

Ci

(2.7)

Using the aggregation and averaging operators given in Equation 2.7, the different averaging strategies,

which are available for evaluating multi-label predictions, can be de�ned as follows. The variable i is
used to iterate over all available labels λ1, ...λn, whereas the variable j iterates over all of the data set's

examples (X1, Y1), ..., (Xm, Ym).
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� (Label and Example-based) Micro-Averaging: A global confusion matrix is computed by adding

up the true positives, false positives, true negatives and false negatives of each example and la-

bel. Finally, a single score is calculated by applying the evaluation function δ on the aggregated

confusion matrix [Koyejo et al., 2015]. The label-, respectively example-wise, aggregation is com-

mutative, i.e. iterating over the examples at �rst is computationally equal to �rst iterating over the

labels [Loza Mencía, 2012].

δ

 

∑

j

∑

i

C j
i

!

≡ δ

 

∑

i

∑

j

C j
i

!

(2.8)

� Example-based (Macro-)Averaging: At �rst one confusion matrix is calculated per example by

adding up the true positives, false positives, true negatives and false negatives of each label.

Applying the evaluation function δ on each obtained confusion matrix afterwards results in m
individual values, i.e. one value per example. By calculating the arithmetic mean of these values,

the �nal score is obtained [Koyejo et al., 2015].

avg
j
δ

�

∑

i

C j
i

�

(2.9)

� Label-based (Macro-)Averaging: One confusion matrix is computed per label by aggregating the

true positives, false positives, true negatives and false negatives of each example. By applying the

evaluation function on each of the obtained confusion matrices, one value is calculated per label.

Finally, the arithmetic mean of all of these values is computed in order to obtain the overall score

[Koyejo et al., 2015].

avg
i
δ

 

∑

j

C j
i

!

(2.10)

� (Label- and Example-based) Macro-Averaging: At �rst the evaluation function δ is applied to

each atomic confusion matrix, computed as shown in Equation 2.5 for each example and label.

Afterwards, the �nal score is calculated by computing both the label- and example-wise arithmetic

mean of all values, which have been obtained this way. Calculating the mean of the obtained values

is commutative, i.e. iterating over the examples at �rst is computationally equal to �rst iterating

over the labels [Loza Mencía, 2012].

avg
j

avg
i
δ
�

C j
i

�

≡ avg
i

avg
j
δ
�

C j
i

�

(2.11)

When using micro-averaging, examples with a large number of associated labels have a greater in�uence

on the overall performance than those, which are associated with few labels. In contrast, using example-

based averaging causes all examples, regardless of their labels, to be weighted equally. Accordingly, when

evaluating predictions by using macro-averaging, labels that are associated with many instances have a

greater in�uence than those that only occur sporadically. If each label should be taken into account

equally, label-based averaging can be used instead [Loza Mencía, 2012].

In the remainder of this work the following short-hand notation is used in order to specify the av-

eraging technique, which is used together with a particular bipartition evaluation function δ. When

using micro-averaging, the evaluation function is referred to as δmm. Accordingly, the usage of macro-

averaging is denotated as δM M and example- or label-based averaging correspond to the notation δMm,

respectively δmM . The two-digit indices, which are used in this notation, specify whether micro- (m) or

macro-averaging (M) is used for the example-, respectively label-wise aggregation of confusion matrices.

The �rst symbol refers to the example-wise aggregation, the second one denotes the strategy, which is

used for label-wise aggregation, accordingly.
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2.3.3 Selected Evaluation Functions

Regardless of the used averaging strategy, choosing an appropriate evaluation function δ for calculating

comparable scores is crucial for evaluating multi-label predictions. Such functions are also often referred

to as heuristics (cf. Janssen [2012]). In this section, various types of evaluation functions are introduced.

All of them are further examined in Section 5. Moreover, they are used in order to statistically evaluate

the predictive performance of the algorithm, which is proposed in this work, in Section 6. The evaluation

functions, which are presented in the following, are de�ned in terms of true positives, false positives, true

negatives and false negatives of a confusion matrix according to the de�nitions and notations previously

given in Section 2.3.1. All of them are surjections N2x2 → R, mapping the confusion matrix, which

characterizes a rule's prediction, to a heuristic value h ∈ [0, 1]. As rules, which reach a higher value, are

considered to outperform those with lower values, the used metrics are referred to as gain metrics.

� Precision: Like most evaluation functions, which are discussed in this section, precision is a well-

known metric in the area of binary and multi-class classi�cation [Janssen, 2012, Janssen and

Fürnkranz, 2010, Maimon and Rokach, 2005]. Besides that, it can also be used for evaluating

multi-label predictions by calculating the percentage of correct predictions among all predicted

labels. It is de�ned according to the following equation [Koyejo et al., 2015, Loza Mencía, 2012]:

δprec :=
T P

T P + F P
≡

T P
p

(2.12)

� Recall: This evaluation function is used to measure the percentage of labels, which are assumed to

be relevant by a prediction, among all relevant labels according to the ground truth. It is de�ned

as follows [Loza Mencía, 2012]:

δrec :=
T P

T P + FN
≡

T P
P

(2.13)

� Hamming Accuracy: This is another evaluation function already known from binary and multi-

class classi�cation, where it is traditionally referred to as �Accuracy� [Janssen and Fürnkranz,

2010]. When being used for evaluating multi-label predictions, it calculates the percentage of

correctly predicted relevant and irrelevant labels among all labels and is de�ned according to the

equation below:

δhamm :=
T P + T N

T P + F P + T N + FN
≡

T P + T N
P + N

(2.14)

Hamming accuracy as used in this work is strongly related to the hamming loss metric, which

computes the percentage of misclassi�ed labels as shown below. Whereas hamming loss is used to

compute an error, hamming accuracy is equal to 1− δhammloss and therefore is the corresponding

gain metric [Koyejo et al., 2015]. As opposed to gain metrics, which must be maximized by a

classi�er in order to achieve a better predictive performance, loss metrics must be minimized.

δhammloss :=
F P + FN

T P + F P + T N + FN
≡

F P + FN
P + N

(2.15)

In the present work, hamming accuracy is preferred over hamming loss, because of its accor-

dance with all other used performance measures, which are gain metrics as well.

25



� F-Measure: As shown in Equation 2.16 below, the F-Measure is de�ned as the harmonic mean of

precision and recall. The parameter β ∈ [0,∞] allows to trade off between precision and recall. If

β < 1, precision has a greater impact on the measured performance. If β > 1, the metric becomes

more recall-oriented instead [Chinchor, 1992, Sasaki, 2007].

δF :=

�

β2 + 1
�

·δprec ·δrec

β2 ·δprec +δrec
=

β2 + 1
β2

δrec
+ 1
δprec

(2.16)

A commonly used variant of the F-Measure is the one that weights precision and recall equally

by setting β = 1. It is often referred to as the �F1-Measure� and calculates as follows [Sasaki,

2007]:

δF1 :=
2 ·δprec ·δrec

δprec +δrec
=

2
1
δrec
+ 1
δprec

(2.17)

� Subset Accuracy: This metric is slightly different from all other evaluation functions, which are

mentioned in this section, as it is only de�ned in terms of example-based averaging. It is based

on comparing the predicted and true label vectors Ŷj and Yj of each example X j. If the label

attributes of both vectors do exactly match, the performance for an individual example evaluates

to 1. If the vectors differ in at least one label attribute, the performance is measured as 0 instead

[Loza Mencía, 2012, Loza Mencía and Janssen, 2015, Zhu et al., 2005]. When calculating the

mean of the performances, which have been obtained for all m examples of a data set, as denoted

by Equation 2.18 below, subset accuracy corresponds to the percentage of perfectly predicted label

vectors among all examples [Loza Mencía, 2012].

δacc :=
1
m

m
∑

j=1

[Yj = Ŷj] , with [x] =

¨

1, if x is true

0, otherwise
(2.18)

The notation, which uses square brackets for denoting the conversion of boolean expressions into

integer values 0 or 1, as it can be seen in Equation 2.18 above, is known as �Iverson bracket

notation� [Knuth, 1992]. It is used various times throughout the remainder of the present work.
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3 Searching through the Label Space for �nding Multi-Label Heads

In order to induce multi-label head rules, the algorithm, which is proposed in this work, relies on �nding

the best multi-label head for a given rule's body. However, due to the exponential complexity of an

exhaustive search through the label space L= (λ1, ...,λn), which requires 2n steps [Loza Mencía, 2012],

it is not feasible to evaluate all possible heads, if many labels are available. For this reason, a way

for pruning the search by leaving out the evaluation of unpromising label combinations is required.

The algorithm, which is proposed in this work, is able to perform pruned searches through the label

space based on two different properties of multi-label evaluation metrics � namely anti-monotonicity and

decomposability. Prior to the presentation of the algorithm, which is given in Chapter 4, both of these

properties are formally de�ned in this chapter. Whereas anti-monotonicity is discussed in Section 3.2,

Section 3.3 focuses on decomposable evaluation metrics. In addition to the formal de�nitions, which are

given in this chapter, multiple examples, that illustrate the search for multi-label heads using different

pruning strategies, are given as well. Besides emphasizing the need for pruned searches, their purpose

is to demonstrate how the performances of multi-label head rules are measured. In this work, it is

distinguished, whether a rule-independent or rule-dependent evaluation strategy is used. Both strategies

are discussed in Section 3.1 below.

3.1 Rule-dependent vs. Rule-independent Evaluation

As already mentioned, the evaluation of a multi-label head rule depends on whether the rule-dependent

or rule-independent evaluation strategy should be used. This differentiation corresponds to the labels,

which are taken into account for measuring the rule's performance. The individual strategies are de�ned

as follows:

� Rule-independent: All labels λ1, ...,λn ∈ L are taken into account for measuring a rule's perfor-

mance, regardless of the rule's head. If the head does not contain a label attribute ŷi, corresponding

to a certain label λi, this is handled as if a label attribute ŷi = 0 would be included, i.e. as if the

label would be predicted as irrelevant.

� Rule-dependent: Only if a rule does contain a label attribute ŷi in its head, the corresponding

label λi is taken into account for measuring the rule's performance.

When using the rule-independent evaluation strategy, all labels are taken into account for measuring

the performance of a rule, regardless of whether they are included in the rule's head, or not. Labels,

which are not included, are assumed to be predicted as irrelevant. This assumption is based on how

a test example's label vector is constructed during the prediction process by successively applying the

rules, which are contained by a previously learned multi-label decision list. The prediction algorithm

(which is discussed in detail in Section 4.4) considers labels, that remain unset after all rules of the

decision list have been processed or after a stopping rule has been encountered, to be irrelevant. Using

the rule-independent evaluation strategy is expected to introduce a bias towards learning fully set heads,

which predict all available labels. However, when taking into consideration, that separate-and-conquer

algorithms aim at learning several rules, utilizing the rule-dependent evaluation strategy might be more

appropriate for evaluating an individual rule's performance. This is, because when predicting the labels

of a test example, usually multiple rules contribute to the predicted label vector, each one of them

predicting the absence or presence of only a few labels. When only taking the labels into account,

which are actually set by a particular rule, the performance of that particular rule exclusively depends

on these labels, instead of being affected by labels, which are out of the rule's scope and might be

predicted by other rules instead. Both evaluation strategies are examined in terms of anti-monotonicity

and decomposability in Chapter 5. Furthermore, the in�uence of using either the rule-dependent or

rule-independent evaluation strategy on the proposed algorithm's performance is discussed in Chapter

6. In the remainder of this work, the symbols |= and ��|= are used as a shorthand notation in order to

indicate, that the rule-independent, respectively rule-dependent, evaluation strategy is used.
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3.2 Anti-Monotonicity

In De�nition 3.1, the anti-monotonicity property is formally de�ned. If the de�nition holds for a speci�c

evaluation function, using a speci�c averaging and evaluation strategy, this basically guarantees, that

when adding a label attribute to a multi-label head rule's head causes the rule's performance to decrease,

the heads, which result from adding additional attributes, cannot reach the best possible performance

anymore. As a result, it is possible to leave out the evaluation of these unpromising heads without

risking, that the best possible head is not found. In addition, the applicability of pruning based on anti-

monotonicity is further restricted by requiring the properties of monotonicity, as given in De�nition 3.2,

to not be met. The motivation behind this additional restriction is discussed below.

De�nition 3.1 - Anti-Monotonicity: Let Ŷp ← B and Ŷs ← B denote two multi-label head rules consisting

of a common body B and head Ŷp, respectively Ŷs. Both heads contain label attributes ŷi ∈ G with G = {1}
or G = {0, 1}. It is further assumed, that the subset relationship Ŷp ⊂ Ŷs holds and therefore the head Ŷs

contains additional label attributes beyond those of Ŷp. Given a particular averaging strategy and using

either the rule-dependent or rule-independent evaluation strategy, an evaluation function δ is considered to

be anti-monotonous, if the following conditions are met:

i) When adding a label attribute to a multi-label head rule's head causes the rule's performance on a

data set T to decrease, by adding additional attributes the best possible performance hmax cannot be

reached anymore:

Ŷp ⊂ Ŷs ∧δ(Ŷs← B, T )< δ(Ŷp← B, T ) =⇒ δ(Ŷa← B, T )< hmax , ∀Ŷa(Ŷs ⊂ Ŷa)

ii) Regarding the given averaging and evaluation strategy, the evaluation function δ must not be

monotonous according to De�nition 3.2.

In order to illustrate, how searches through the label space, which aim at �nding the best multi-label

head for a given rule's body, can be pruned by exploiting the properties of anti-monotonous evaluation

functions, an example is given in the following. By showing all evaluations, which must be performed

by an exhaustive search, as well as by highlighting the evaluations, which can be left out by a pruned

search, the need to reduce the computational complexity is emphasized.

Example 3.1 - Pruning Searches Through the Label Space based on Anti-Monotonicity: In Table 4,

the label vectors of �ctional training examples are given. One-half of them is assumed to be covered by

a given body, the other half is not. The aim of a search through the label space, as it is discussed in this

example, is to �nd the multi- or single-label head rule, which models the labels of the covered examples

best. In order to be able to compare the possible rules with each other, a heuristic value is calculated per

rule by using a speci�c evaluation function, averaging strategy and evaluation strategy.

λ1 λ2 λ3 λ4

Not covered

Y1 0 1 1 1

Y2 1 1 1 1

Y3 0 1 0 0

Covered

Y4 0 1 1 0

Y5 1 1 0 0

Y6 1 1 0 0

Table 4: Exemplary label vectors of training examples used by Figure 1, as well as by Figure 2, and given

the label space L= (λ1,λ2,λ3,λ4). Some of the examples are assumed to be covered by a given

rule's body, some are not.

28



The search for �nding the best head for a given rule's body can be visualized as a search tree similar

to the one, which is shown in Figure 1 below. The nodes of the tree correspond to the evaluation of

label combinations. The root node represents an empty head with unde�ned performance. The edges

of such tree correspond to adding an additional label attribute to the head, which is represented by

the preceding node. Because equivalent heads are prevented from being evaluated multiple time, the

search tree is unbalanced. Whereas many label combinations are evaluated in the most-left branch of

the tree, the number of evaluations decreases from left to right. In the present example micro-averaged

hamming accuracy � as previously de�ned in Equation 2.8, respectively Equation 2.14 �, together with

the rule-independent evaluation strategy (cf. Section 3.1), is used for measuring the heuristic values

h of possible single- and multi-label head rules. When using an exhaustive search, all possible label

combinations must be evaluated. The resulting tree is independent of whether a breadth-�rst or depth-

�rst search is used. In Figure 1, increases of the measured performance, which result from adding an

additional label attribute to the rule's head, are indicated using green arrows (→). Decreases of the

performance are indicated by using red arrows (→) accordingly. If adding a label attribute does not

have an impact on the rule's performance at all, black arrows (→) are used. Note, that in the present

example only label attributes, which predict the presence of labels (i.e. attributes of the form ŷi = 1) are
considered. This corresponds to the target G = {1}. In general, by using the targets G = {0,1}, multi-

label heads can also predict the absence of labels (using attributes of the form ŷi = 0). This requires

both possible forms of a particular label attribute to be evaluated in each node of the search tree. The

variant, which reaches a higher performance according to the used evaluation function, is �nally added

to the rule's head and propagated to the child nodes.
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24
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h = 7

12
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Figure 1: Search through the label space for �nding the best multi-label rule head given the examples

in Table 4 and using micro-averaged hamming accuracy, together with the rule-independent

evaluation strategy, for performance evaluation. The dashed line ( ) indicates the label

combinations, which must not be considered, when pruning the search according to the anti-

monotonicity property, which is given in De�nition 3.1.
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According to the rule-independent evaluation strategy, which is used in the present example, all labels �

regardless of whether they are included in a rule's head, or not � are taken into account for calculating

a rule's performance h. Furthermore, as the head is only applied to examples, which are covered by the

rule's body, covered examples are treated differently than uncovered examples. On the one hand, rele-

vant labels of uncovered examples are counted as false negatives and irrelevant labels contribute to the

true negatives. On the other hand, the labels of covered examples are counted as true positives, if they

are predicted correctly, respectively as false positives, if they are predicted incorrectly. This contradicts

the de�nition, which is given in Equation 2.5, and aims at handling predicted labels equally, regardless

of whether they are relevant or irrelevant. The need for using the divergent de�nition is discussed more

detailed in Section 4.3, when discussing the proposed algorithm. For a better understanding of how the

performances of multi-label head rules are calculated, an exemplary calculation is shown below. It illus-

trates, how the performance of the rule with the head { ŷ1, ŷ3} is calculated. According to the notation,

which is shown in Table 1, the index j is used for iterating over the data set's examples, whereas the

index i iterates over the available labels. The colors, which are used in the equation for highlighting true

positives, false positives, true negatives and false negatives, correspond to the color highlighting used in

Table 4.

h ŷ1, ŷ3
=

∑

i

∑

j
T P j

i +
∑

i

∑

j
T N j

i

∑

i

∑

j
T P j

i +
∑

i

∑

j
F P j

i +
∑

i

∑

j
T N j

i +
∑

i

∑

j
FN j

i

=
6+ 4

6+ 6+ 4+ 8
=

5
12

According to Figure 1, the label combination { ŷ1, ŷ2}, which reaches a performance of 7
12 , is considered

to be the best choice. In order to induce multi-label head rules, which predict as many labels as possible,

heads that consist of more label attributes should be preferred over those with fewer attributes. The

dashed line ( ) in Figure 1 indicates the label combinations, which must not be considered when

pruning the search under the assumption, that the hamming accuracy metric ful�lls the properties of

anti-monotonicity when used together with micro-averaging and the rule-dependent evaluation strategy

(in Section 5.2.3 this assumption is proved to hold). As it can be seen, the highest rated label combination

{ ŷ1, ŷ2} is still discovered by a pruned search, despite the reduced search complexity.

De�nition 3.2 - Monotonicity: Let Ŷp ← B denote a multi-label head rule with body B and head Ŷp. The

head consists of an arbitrary number of label attributes using the targets G = {1} or G = {0, 1}. Given a

particular averaging strategy and using either the rule-dependent or rule-independent evaluation strategy,

an evaluation function δ is considered to be monotonous, if adding an additional label attribute, which is

not already contained by the head Ŷp, never causes the rule's performance on the data set T to decrease:

δ(Ŷa← B, T )≥ δ(Ŷp← B, T ) , ∀Ŷa

�

Ŷp ⊂ Ŷa

�

According to De�nition 3.1, anti-monotonous evaluation functions must not be monotonous. This is,

because otherwise, adding label attributes to a multi-label head would never cause the performance of

the corresponding rule to decrease. This would prevent any evaluations from being pruned, resulting in

a computational complexity, which is equal to that of an exhaustive search. Moreover, all rules, which are

induced using a monotonous evaluation function, would predict all available labels to be either relevant,

or irrelevant, which results in a bad predictive performance. An example of a monotonous evaluation

function is shown in the following example.

Example 3.2 - Monotonous Evaluation Functions: In Figure 2, a search through the label space

L= (λ1,λ2,λ3,λ4) is illustrated. The exemplary label vectors, which are given in Table 4, are reused

in the present example. For measuring the performances of possible multi-label head rules, the re-

call metric, which is given in Equation 2.13, is used together with example-based averaging as de�ned

in Equation 2.9. Furthermore, the rule-dependent evaluation strategy, as discussed in Section 3.1, is
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used in this example. Because the used evaluation function is monotonous (which is proved in Section

5.1.2.3), adding an additional label attribute to a multi-label head does never cause the measured per-

formance to decrease. Instead, the performance remains the same, which is indicated by using black

arrows (→) in Figure 2, or even increases as indicated by the green arrows (→). As a result, all potential

multi-label heads must be evaluated, resulting in a computational complexity of 2n. This corresponds

to the complexity of an exhaustive search. As the algorithm, which is proposed in this work, prefers

multi-label heads, which consist of more label attributes, over those that consist of fewer attributes, the

head { ŷ1, ŷ2, ŷ3, ŷ4}, which predicts all available labels as relevant, is considered to be the best choice.

However, when taking a look at the label vectors of the used training examples, it becomes obvious, that

predicting some labels to be irrelevant would be a better a choice. E.g. label λ4 is not associated with

any of the covered examples and therefore it should be predicted as irrelevant.
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{ ŷ2, ŷ4}
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Figure 2: Search through the label space for �nding the best multi-label rule head given the examples in

Table 4 and using example-based recall, together with the rule-dependent evaluation strategy,

for performance evaluation.

3.3 Decomposable Evaluation Metrics

In addition to the anti-monotonicity property, which is speci�ed in De�nition 3.1 of the previous sec-

tion, another property of evaluation functions, referred to as decomposability, is exploited in this work

for pruning searches through the label space as well. When using a so-called decomposable evaluation

metric, no deep searches through the label space must be performed in order to �nd the best multi-label

head for a given rule's body. Instead, given a label space L = (λ1, ...λn), the best multi-label head can

be deduced from the performance measurements, which are obtained by considering each of the n la-

bels individually. De�nition 3.3, which is given below, formally de�nes the properties of decomposable

evaluation functions.
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De�nition 3.3 - Decomposability: Let Ŷ ← B denote a multi-label head rule with body B and an arbitrary

head Ŷ . Given a particular averaging strategy and using either the rule-dependent or rule-independent

evaluation strategy, an evaluation function δ is considered to be decomposable, if the following conditions

are met:

i) If the multi-label head rule Ŷ ← B contains a label attribute ŷi ∈ Ŷ for which the corresponding

single-label head rule ŷi ← B does not reach the best possible performance hmax on the data set T ,
the multi-label head rule cannot reach that performance either. The other way around, if a multi-label

head rule does not reach the performance hmax , at least one of the corresponding single-label head

rules does not reach that performance either.

∃i
�

ŷi ∈ Ŷ ∧δ( ŷi ← B, T )< hmax

�

⇐⇒ δ(Ŷ ← B, T )< hmax

ii) If all single-label head rules ŷi ← B, which correspond to the label attributes, which are contained by

a multi-label head Ŷ , reach the best possible performance hmax on the data set T , the multi-label head

rule Ŷ ← B reaches that performance as well. The other way around, if a multi-label head rule reaches

the performance hmax , all corresponding single-label head rules also reach that performance.

δ( ŷi ← B, T ) = hmax , ∀ ŷi

�

ŷi ∈ Ŷ
�

⇐⇒ δ(Ŷ ← B, T ) = hmax

iii) Regarding the given averaging and evaluation strategy, the evaluation function δ must not be

monotonous according to De�nition 3.2.

The properties of decomposability, according to De�nition 3.3, are more restrictive than those of anti-

monotonicity, which are given in De�nition 3.1. As a result, if the de�nition of decomposability is met

by an evaluation function, the de�nition of anti-monotonicity is implied to be met by said evaluation

function as well. This kind of implicational relationship is expressed by Lemma 3.1, which is shown

below.

Lemma 3.1: If an evaluation function δ is decomposable according to De�nition 3.3, given a speci�c aver-

aging and evaluation strategy, this implies that it is also anti-monotonous according to De�nition 3.1.

Proof: On the one hand, if the property, which is given in De�nition 3.3 iii), is met, this implies the

corresponding property in De�nition 3.1 ii) to be met as well. On the other hand, if the properties,

which are given in De�nition 3.3 i) and ii), are ful�lled, it follows, that the property, which is given in

De�nition 3.1 i), holds as well due to the following equation:

Ŷp ⊂ Ŷs ∧δ(Ŷs← B, T )< δ(Ŷp← B, T )

=⇒δ(Ŷs← B, T )< hmax

w.r.t.
========⇒
De�nition 3.3 i)

∃
�

ŷi ∈ Ŷs ∧δ( ŷi ← B, T )< hmax

�

=⇒∃
�

ŷi ∈ Ŷa ∧δ( ŷi ← B, T )< hmax

�

, ∀Ŷa

�

Ŷs ⊂ Ŷa

�

=⇒δ(Ŷa← B, T )< hmax , ∀Ŷa

�

Ŷs ⊂ Ŷa

�

(3.1)

�

As a result of Lemma 3.1, if an evaluation function is proved to be decomposable according to De�nition

3.3, it can also be considered to be anti-monotonous according to De�nition 3.1. Consequently, when
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using such an evaluation strategy, searches through the label space can be pruned according to the

properties of anti-monotonicity as previously demonstrated in Example 3.1. However, if the properties

of decomposability are met, it is possible to prune searches even more extensively. This is illustrated by

the following example.

Example 3.3 - Pruning Searches through the Label Space based on Decomposability: In this exam-

ple, the rule-dependent evaluation strategy is utilized in order to measure the performances of multi-

label head rules using micro-averaged precision. It is further assumed, that the used evaluation function

is decomposable according to De�nition 3.3 (this assumption is proved to be true in Section 5.1.1.1).

The example is based on the training examples, which are shown in Table 5. Some of the examples are

assumed to be covered by a given rule's body and some are not.

λ1 λ2 λ3 λ4

Not covered

Y1 0 1 1 0

Y2 1 1 1 1

Y3 0 0 1 0

Covered

Y4 0 1 1 0

Y5 1 1 0 0

Y6 1 0 0 0

Table 5: Exemplary label vectors of training examples used by Figure 3 and given the label space

L= (λ1,λ2,λ3,λ4). Some examples are covered by a given rule's body, some are not.

Figure 3 shows the search tree, which results from an exhaustive search for the best multi-label head,

given the exemplary label vectors, which are shown in Table 5.
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Figure 3: Search through the label space for �nding the best multi-label rule head given the examples

in Table 5 and using micro-averaged precision, together with the rule-dependent evaluation

strategy, for performance evaluation. The dashed line ( ) indicates the label combinations,

whichmust not be evaluated according to the properties of decomposable evaluation functions,

which are given in De�nition 3.3.
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In Figure 3 � similar to the earlier examples in this chapter �, decreases in performance, which result from

adding additional label vectors to a head, are indicated in said �gure by using red arrows (→). Increases

are indicated by using green arrows (→) accordingly. Black arrows (→) are used, when adding a label

attribute does not affect the performance. According to Figure 3, the multi-label head { ŷ1, ŷ2}, which
reaches a performance of 2

3 , is considered to be the best choice. When only taking the single-label

heads { ŷ1}, { ŷ2}, { ŷ3} and { ŷ4} into account, the heads { ŷ1} and { ŷ2}, which both reach the best

possible performance of 2
3 , outperform the remaining single-label heads. According to the properties of

decomposable evaluation metrics, this allows to conclude, that the best multi-label head contains both of

these label attributes in its head. This is, because including at least one of the remaining label attributes

in the head causes the performance of the resulting multi-label head rule to be lower than the best

possible performance. As a result, it is possible to determine the best multi-label head without the need

to explicitly evaluate its performance.
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4 An Algorithm for Learning Multi-Label Head Rules

In this chapter, the algorithm, which is proposed in the work at hand, is presented. As already mentioned,

it is based on the separate-and-conquer algorithm for learning single-label head rules, which has recently

been proposed by Loza Mencía and Janssen [2015]. That underlying algorithm is discussed in detail in

Section 2.2.3. As the original algorithm, as well as the variant, which is presented at this point, are

both based on the paradigms of separate-and-conquer rule learning algorithms (cf. Section 2.2.1), they

share a common structure. The subroutines GETCOVEREDSETS (cf. Algorithm 5) and GETREADDSETS (cf.

Algorithm 6) are identical for both approaches and therefore they are not discussed here. According

to Algorithm 3, which illustrates the basic structure of both separate-and-conquer algorithms, a multi-

label decision list is learned by successively inducing rules. Whenever a new rule is induced, the training

examples it covers are eventually removed from the training data set, depending on the fraction of labels,

which are predicted by already learned rules. Despite these similarities, both approaches signi�cantly

differ in how individual rules are learned. Whereas the original algorithm is based on inducing single-

label head rules for each label individually and �nally choosing the best among them (cf. Algorithm 4),

for learning multi-label head rules a different approach is required. As such rules may contain several

labels in their heads, the available labels can not be handled in an isolated manner. Instead of �nding

the best body for given labels, the algorithm for inducing multi-head rules is based on �nding the best

head for potential bodies. The alternative implementation of the subroutine FINDBESTGLOBALRULE, which

is used by said approach, is shown in Algorithm 8 below.

Require: Original training data set T , current training data set Tcur rent
targets G (either G = {1} or G = {0,1}), evaluation function δ,
whether to use rule-dependent or rule-independent evaluation strategy,

the averaging strategy to use

1 rbest = ; ← ;
2 rbest .h= −∞ Â Initialize performance of new rule

3 improved = true

4 while improved do Â Until no improvements possible

5 r = REFINERULE(T, Tcur rent , rbest , G,δ) Â Re�ne rule by adding a condition and updating its head

6 if r.h> rbest .h then

7 rbest = r Â Replace by better rule

8 else

9 improved = false

10 return best rule rbest

Algorithm 8: Algorithm FINDBESTGLOBALRULE for inducing a new multi-label head rule, based on the

current training data set

The rule induction process, which is shown in Algorithm 8 above, corresponds to a top-down search,

starting with the most generic rule � i.e. a rule with no conditions in its body �, which covers all of

the training data set's examples. The rule is then iteratively re�ned by successively adding additional

conditions to its body and choosing a suitable multi-label head each time a condition is added. Adding

conditions to a rule's body causes the rule to become more speci�c, i.e. a subset of the originally covered

training examples is covered by the re�ned rule. This requires the head of the rule to be updated as

well, because predicting different labels might result in a higher predictive performance with respect to

the changes in covered examples. According to Algorithm 8, a rule is re�ned until no improvement in

terms of the measured performance can be achieved anymore. When this termination criterion is met,

the re�ned rule is returned and added to the decision list.
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4.1 Re�nement of Rule Conditions

As it can be seen in Algorithm 8, for re�ning a rule by adding additional conditions to its body, the sub-

routine REFINERULE is used. It is responsible for determining the best possible re�nement of a rule, as well

as for �nding a corresponding multi-label head. For this reason, each possible combination of re�nement

and corresponding multi-label head must be taken into consideration. Finally, the best rule among all

possible re�nements is chosen according to a performance evaluation on the given training data set. The

structure of the subroutine REFINERULE, as used by proposed algorithm, is shown in Algorithm 9 below.

Require: Original training data set T , current training data set Tcur rent ,

rule r, targets G, evaluation function δ,
whether to use rule-dependent or rule-independent evaluation strategy,

the averaging strategy to use

1 rbest = r
2 for each possible condition c ∈ GETATTRIBUTECONDITIONS(T) ∪ GETLABELCONDITIONS(Tcur rent) do

3 if c /∈ r.body then
4 rre f ined = r
5 rre f ined .body∪ c Â Add condition to rule's body

6 rre f ined = FINDBESTHEAD(T, Tcur rent , rre f ined , G,δ)
7 if rre f ined .h> rbest .h then

8 rbest = rre f ined Â Replace by re�ned rule

9 return best re�ned rule rbest

Algorithm 9: Algorithm REFINERULE for re�ning the body of a multi-label head rule by adding additional

conditions. Each re�nement requires to update the rule's head as well

The conditions, which are available for being added to a rule's body in order to re�ne it, result from the

attributes and labels of the given training data set. Whereas attribute conditions are tests on the training

examples' values, label conditions allow to check, whether particular labels are associated with examples,

or not. This enables to induce label-dependent rules (cf. Table 2, which are able to model correlations

between labels as previously discussed in Section 2.1.2. In Algorithm 9, the possible attribute and label

conditions are retrieved using the subroutine GETATTRIBUTECONDITIONS, respectively GETLABELCONDITIONS.

The operation of both of these subroutines is discussed in detail in the following two subsections.

4.1.1 Attribute Conditions

Algorithm 10 illustrates the operation of the subroutine GETATTRIBUTECONDITIONS, which can be used

to retrieve all possible attribute conditions for re�ning a rule's body. The algorithm takes all available

attributes of the given training data set T into consideration. The values, which are available for individ-

ual conditions, depend on whether the respective attribute is nominal or numeric. In case of a nominal

attribute, a condition is created for each of the attribute's values (e.g. the values true and false if

it is a boolean attribute). If the attribute is numeric instead, the conditions depend on the examples,

which are present in the given training data set. This requires the data set's examples to be sorted by

the respective attribute in ascending order, beforehand. Afterwards, for each pair of neighboring exam-

ples, a split point is calculated (cf. Algorithm 10, line 10). For each split point, two conditions � using

the ≤, respectively the ≥ operator, for comparing an example's value to a split point � are created (cf.

Algorithm 10, line 11). Note, that it is not necessary to create conditions for split points between two

neighboring examples, which are associated with an identical set of labels (cf. Algorithm 10, line 9).

This is, because the conditions of a rule are supposed to discriminate between examples for which the

rule's prediction is correct and those for which the prediction is incorrect. However, when choosing such

split point as a condition's value, the condition mistakenly discriminates between examples for which

the same prediction is correct.
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Require: Training data set T

1 C = ; Â Start with empty set of conditions

2 for each attribute Ak do

3 if Ak is nominal then Â Attribute is nominal

4 for each value v of Ak do Â Add condition for each nominal value

5 C = C ∪ (Ak = v )
6 else Â Attribute is numeric

7 sort examples (X j, Yj) ∈ T by values vk ∈ X j in increasing order

8 for each example (X j, Yj) ∈ T with j > 1∧ j < |T | do
9 if Yj−1 6= Yj then Â Only consider neighbours with different label vectors

10 v = vk−1 + (vk − vk−1)/2 with vk−1, vk ∈ X j Â Calculate split point between neighbours

11 C = C ∪ (Ak ≥ v )∪ (Ak ≤ v ) Â Add two conditions for each split point

12 return attribute conditions C

Algorithm 10: Algorithm GETATTRIBUTECONDITIONS for retrieving all possible conditions, which are based

on the training data set's attributes

4.1.2 Label Conditions

In order to be able to induce label-dependent rules, the labels, which are predicted by already learned

rules, can be used as the conditions of new rules. Algorithm 11 illustrates how the label conditions, which

are available at a particular point in the rule induction process, can be retrieved using the subroutine

GETLABELCONDITIONS. The labels, which are available for creating conditions, are taken from the current

training data set Tcur rent . Whenever a new rule is learned by the proposed algorithm, its head is applied

to the covered training examples (cf. Algorithm 5, line 3), which enables to keep track of already

predicted labels. For each of the available labels, two conditions � for testing the presence, respectively

the absence of the respective label � are created (cf. Algorithm 11, line 4).

Require: Current training data set Tcur rent

1 C = ; Â Start with empty set of conditions

2 for each example (X j, Yj) ∈ Tcur rent do

3 for each label attribute yi ∈ Yj with yi 6=? do
4 C = C ∪ (yi = 0)∪ (yi = 1) Â Add two conditions for each already learned prediction

5 return label conditions C

Algorithm 11: Algorithm GETLABELCONDITIONS for retrieving all possible conditions, which are based on

already predicted labels

The reason why only labels, which are already predicted by previously induced rules, are taken into

account, lies in how the decision list, which is learned by the proposed algorithm, is processed in order

to predict the labels of an unknown test example. During the prediction process, the rules, which are

contained by the decision list, are applied to the test example successively. Initially, all labels of the

given example are unset. Only if a rule covers the example, the labels, which correspond to the label

attributes in the rule's head, are set. This causes the number of set labels to increase as the decision list

is processed. If a rule would depend on a label, which is not set by any of its predecessors, there would

be no chance of the label being set once the rule is processed. As a result, the rule would not cover the

given example, rendering it useless. The application of a learned decision list for predicting the labels of

unknown examples is discussed in a more detailed manner in Section 4.4.
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4.2 Finding Best Head for a Rule

When using the subroutine REFINERULE, as given in Algorithm 9, for re�ning a rule, the subroutine FIND-

BESTHEAD is used to determine the multi-label head, which results in the best performance, regarding

the re�ned rule's body. In theory, this requires to evaluate the multi-label heads, which result from all

possible label combinations. However, as discussed in Chapter 3, such an exhaustive search through

the label space suffers from an exponential computational complexity and therefore is not feasible, if

many labels are available. For this reason, the proposed algorithm prunes searches according to the

anti-monotonicity property, respectively the properties of decomposable evaluation functions, which are

formally de�ned in Section 3.2 and Section 3.3. In order to perform as ef�cient as possible, the subrou-

tine FINDBESTHEAD must be able to decide, whether an anti-monotonous or a decomposable evaluation

metric is given. Algorithm 12 illustrates, how said subroutine opts for either executing the subroutine

PRUNEDSEARCH or DECOMPOSITE, depending on the given evaluation function δ, as well as the used eval-

uation and averaging strategies. The operation of these subroutines is discussed in the following two

subsections. Because the aim of the proposed algorithm is to learn multi-label head rules rather than

single-label head rules, both subroutines PRUNEDSEARCH and DECOMPOSITE prefer heads, that consist of

more label attributes, over heads with fewer attributes. In Chapter 5, selected multi-label evaluation

metrics are examined in terms of whether they meet the properties of anti-monotonicity, respectively

decomposability. Metrics, which neither ful�ll the properties of anti-monotonicity, nor the properties of

decomposability, are not supposed to be used by the proposed algorithm.

Require: Original training data set T , current training data set Tcur rent ,

current rule r, targets G, evaluation function δ,
whether to use rule-dependent or rule-independent evaluation strategy,

the averaging strategy to use

1 r.head= ;
2 if δ is decomposable using the given evaluation and averaging strategy then

3 return DECOMPOSITE(T, Tcur rent , r, G,δ)
4 else

5 return PRUNEDSEARCH(T, Tcur rent , r, G,δ,;)

Algorithm 12: Algorithm FINDBESTHEAD for �nding the best multi-label head for a given rule's body

4.2.1 Pruning based on Anti-Monotonicity

The subroutine PRUNEDSEARCH, which is shown in Algorithm 13, performs a depth-�rst search for �nding

the best multi-label head, regarding a given rule r. In theory, using a breadth-�rst search is feasible as

well. The targets G specify the types of label attributes, which are allowed to be contained by a rule's

head. If the target G = {1} is used, only attributes of the form ŷi = 1, which predict the presence of

labels, are taken into consideration. When using the targets G = {0, 1} instead, label attributes of the
form ŷi = 0, which predict the absence of labels, are considered as well. The search algorithm recursively

adds additional label attributes to the initially empty head of the given rule and keeps track of the head,

which reaches the highest performance. As it can be seen in Algorithm 13, the evaluation of unpromising

label combinations is avoided in two ways: On the one hand, when adding an additional label attribute

causes the performance of a rule to decrease, the subroutine PRUNEDSEARCH is not executed recursively

any further. This is based on the anti-monotonicity property, which states, that by adding additional

attributes, the best possible performance cannot be reached (cf. Section 3.2). On the other hand, heads,

which have already been evaluated, are added to the (initially empty) set H. This allows to prevent

equivalent heads from being unnecessarily evaluated again in later iterations. Note, that heads are

considered to be equivalent, if they contain the same label attributes, regardless of their values and
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order. By excluding supersets of the heads, which are already contained in H, from being evaluated in

later iterations as well, it is ensured, that pruned heads are left out in later iterations (cf. Algorithm 13,

line 10). If the targets G = {0, 1} are used, Algorithm 13 determines for each potential label attribute,

whether predicting the presence or absence of the corresponding label results in a better performance

(cf. Algorithm 13, line 12). Moreover, labels, which are used by the conditions in a rule's body, are not

available for being added to its head (cf. Algorithm 13, line 2).

Require: Original training data set T , current training data set Tcur rent ,

current rule r, targets G, evaluation function δ,
already considered heads H
whether to use rule-dependent or rule-independent evaluation strategy,

the averaging strategy to use

1 rbest = r
2 for each label λi not already contained in r.body do
3 rcur rent = r
4 rcur rent .h= −∞
5 for each target t ∈ G do Â For each label, all targets are taken into consideration

6 ŷi = t Â Currently considered label attribute

7 if label attribute ŷi is not already in r.head then
8 rre f ined = r
9 rre f ined .head∪ ŷi Â Add label attribute to head

10 if no head in H is a subset of rre f ined .head then Â Prunes the evaluation of label combinations

11 rre f ined .h= EVALUATERULE(T, Tcur rent , rre f ined ,δ)
12 if rre f ined .h> rcur rent .h then Â Determines the best prediction for each label

13 rcur rent = rre f ined
14 if rcur rent .h 6= −∞ then Â If label combination has not been pruned

15 if rcur rent .h≥ rbest .h then Â Recursively add label attributes, unless performance decreased

16 rrec = PRUNEDSEARCH(rcur rent , G, T,δ, H)

17 if rrec.h> rbest .h or (rrec.h== rbest .h and |rrec.head|> |rbest .head|) then
18 rbest = rrec Â Heads with more label attributes are prefered

19 H = H ∪ rcur rent .head
20 return rule rbest with best head

Algorithm 13: Algorithm PRUNEDSEARCH, which performs a pruned search through the label space,

according to the properties of anti-monotonicity

The depth-�rst search, which is performed by Algorithm 13, can be visualized as a search tree, similar

to the one shown in Figure 1. The nodes of such a tree correspond to the evaluation of particular label

combinations, whereas the edges correspond to adding an additional label attribute to the head, which

is represented by the preceding node. Because heads are prevented from being evaluated multiple times,

the search tree is unbalanced.

4.2.2 Exploiting Decomposable Evaluation Metrics

If a decomposable evaluation metric is used for evaluating the performances of multi-label head rules,

no deep search for �nding the best multi-label head for a given rule's body is necessary. Instead, deter-

mining the best multi-label head comes at linear costs in such case, because it can be derived from the

performances of all potential single-label head rules. Given n labels, only n, respectively 2·n, single-label
head rules must be evaluated, depending on whether the targets G = {1} or G = {0,1} are used. The

best multi-label head rule �nally results from the single-label head rules, which reach the maximum per-

formance. If only one single-label head rule reaches the best performance, according to the properties
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of decomposable evaluation metrics, it is guaranteed, that no rule, which contains containing multiple

label attributes in its head, can reach that performance as well (cf. Section 3.3). Instead, if multiple

single-label head rules reach the best performance, the best multi-label head results from the label at-

tributes, which are contained in those single-label head rules' heads. The subroutine DECOMPOSITE, which

is shown in Algorithm 14 below, illustrates how these properties can be exploited in order to ef�ciently

determine the best multi-label head, regarding the body of a given rule r. It measures the performance

of all potential single-label head rules and keeps track of those rules, which reach the performance,

which is known to be the current maximum. If a rule outperforms that performance, the resulting multi

label head is replaced by the rule's single-label head (cf. Algorithm 14, line 12). If a rule reaches the

performance, which is the maximum so far, the label attribute, which is contained by its head, is added

to the resulting multi-label head (cf. Algorithm 14, line 14). The process continues until all potential

single-label head rules, depending on the given targets G, have been considered. When using the targets

B = {0, 1}, it is ensured that only one label attribute, which corresponds to the same label, is contained

by a head (cf. Algorithm 14, line 10). Also, label attributes, which correspond to the labels, a rule's body

depends on, are excluded from being added to its head (cf. Algorithm 14, line 2).

Require: Original training data set T , current training data set Tcur rent ,

current rule r, targets G, evaluation function δ,
whether to use rule-dependent or rule-independent evaluation strategy,

the averaging strategy to use

1 rbest = r
2 for each label λi not already contained in r.body do
3 rcur rent = r

4 rcur rent .h= −∞
5 for each target t ∈ G do Â For each label, all targets are taken into consideration

6 ŷi = t Â Currently considered label attribute

7 if label attribute ŷi is not already in r.head then
8 rsingle = ŷi ← r.body
9 rsingle.h= EVALUATERULE(T, Tcur rent , rsingle,δ)
10 if rsingle.h> rcur rent .h then Â Determines the best prediction for each label

11 rcur rent = rsingle
12 if rcur rent .h> rbest .h then Â If best performance is outperformed, the previous head is discarded

13 rbest = rcur rent
14 else if rcur rent .h= rbest .h then Â If best performance is reached, label attribute is added to head

15 rbest .head∪ rcur rent .head
16 return rule rbest with best head

Algorithm 14: Algorithm DECOMPOSITE, which exploits the properties decomposable evaluation metrics to

determine the best possible multi-label head for a speci�c rule

4.3 Measuring the Performance of Multi-Label Head Rules

Algorithm 13 and 14 both depend on the subroutine EVALUATERULE for measuring the performances of

multi-label head rules, in order to be able to compare them to each other. The evaluation of an individ-

ual rule depends on the following input parameters: The evaluation function δ, the averaging strategy,

which should be used, and whether a rule-dependent or rule-independent evaluation strategy should be

utilized (cf. Section 3.1). The subroutine EVALUATERULE, which is shown in Algorithm 15 below, mea-

sures the performance of a given multi-label head rule r on the training data set T , depending on these

parameters. The evaluation strategy, which should be used, is taken into account by the subroutine

GETRELEVANTLABELS. It returns the labels, which should be taken into account by the performance eval-
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uation. Based on these labels, the performance is calculated by one of the subroutines MICROAVERAGING,

LABELBASEDAVERAGING, EXAMPLEBASEDAVERAGING or MACROAVERAGING.

Require: Original training data set T , current training data set Tcur rent ,

rule r, evaluation function δ,
whether to use rule-dependent or rule-independent evaluation strategy,

the averaging strategy to use

1 L = GETRELEVANTLABELS(r)
2 if use micro-averaging then

3 MICROAVERAGING(T, Tcur rent , r,δ, L)
4 else if use label-based averaging then

5 LABELBASEDAVERAGING(T, Tcur rent , r,δ, L)
6 else if use example-based averaging then

7 EXAMPLEBASEDAVERAGING(T, Tcur rent , r,δ, L)
8 else if use macro-averaging then

9 MACROAVERAGING(T, Tcur rent , r,δ, L)

Algorithm 15: Algorithm EVALUATERULE for measuring the performance of a multi-label head rule

In order to be able to compare different multi-label head rules with each other, it is useful to take

additional criteria besides solely relying on the heuristic values, which are calculated according to the

given evaluation function, averaging strategy and evaluation strategy, into consideration. However,

in favor of simplicity, this is not shown in Algorithm 15. Some criteria can be taken from heuristics,

which turned out to be useful in separate-and-conquer rule learning for solving single- and multi-class

classi�cation problems. For example, as separate-and-conquer algorithms aim at iteratively cover the

examples of a training data set, it is needless to induce rules, that do not cover any of these examples,

although they may reach very high performances according to some evaluation functions. Furthermore,

a strategy for comparing rules, which reach the same performance, is required. This is often referred to

as �tie breaking�. Common approaches for handling rules, which evaluate to equal performances, are

based on preferring those, that cover more true positives or contain fewer conditions in their bodies. If

the performances of multiple rules are equal, even when taking additional criteria into consideration,

one of these rules must be chosen randomly [Janssen, 2012].

Require: Rule r, whether to use rule-dependent or rule-independent evaluation strategy

1 if use rule-dependent evaluation strategy then

2 return {λi|λi ∈ L∧ ŷi ∈ r.head} Â Return labels, which are predicted by the given rule

3 else

4 return {λi|λi ∈ L} Â Return all available labels

Algorithm 16: Algorithm GETRELEVANTLABELS for retrieving all relevant labels according to the used

evaluation strategy

Prior to measuring a multi-label head rule's performance, the subroutine GETRELEVANTLABELS, which is

shown in Algorithm 16, is used to retrieve the labels, which must be taken into account by the eval-

uation. The labels, which are returned by said algorithm, depend on whether the rule-dependent or

rule-independent evaluation strategy should be used. It is based on the de�nitions of both variants, as

given in Section 3.1: If a rule-dependent evaluation strategy should be used, only the labels, which are

predicted by the given rule r are returned. If a rule-independent evaluation strategy should be used

instead, all labels of the respective data set T are returned, regardless of the given rule.

In Algorithm 17, the operation of the subroutine AGGREGATE is shown. It is used by each of the subrou-

tines MICROAVERAGING, LABELBASEDAVERAGING, EXAMPLEBASEDAVERAGING and MACROAVERAGING in order to
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build confusion matrices. The algorithm decides, whether the prediction of a rule r for a given training

example and label is considered as a true positive, false positive, true negative or false negative. A con-

fusion matrix C , which is passed to said algorithm as an argument, is altered accordingly. According to

Algorithm 17, the output of the subroutine AGGREGATE depends on whether the given example is covered

by the rule, or not. On the one hand, if the example is not covered, the rule's head is not applied, re-

sulting in no labels being set. Therefore, in such case relevant labels are counted as false negatives and

irrelevant labels contribute to the true negatives of a confusion matrix. On the other hand, if the example

is covered by the rule, the outcome depends on the rule's prediction for the given label. If the label is

predicted correctly, the true positives of the given confusion matrix are increased. If the prediction is

incorrect, this affects the false positives of the confusion matrix instead.

Require: Rule r, training example (X j, Yj), label λi, confusion matrix C

1 if r covers X j then

2 if h.head contains a label attribute ŷi then

3 if ŷi 6= yi ∈ Yj then

4 C .fp+=1 Â Prediction is incorrect

5 else

6 C .tp+=1 Â Prediction is correct

7 else Â Does only occur when using label-independent evaluation strategy

8 if yi ∈ Yj is set then

9 C .fp+=1 Â Relevant label predicted as irrelevant

10 else

11 C .tp+=1 Â Irrelevant label predicted as irrelevant

12 else

13 if yi ∈ Yj is set then

14 C .fn+=1
15 else

16 C .tn+=1

Algorithm 17: Algorithm AGGREGATE for aggregating the true positives, false positives, true negatives and

false negatives of a confusion matrix

The way Algorithm 17 treads true positives, false positives, true negatives and false negatives, contra-

dicts the de�nition, which is given in Equation 2.5. That de�nition is exclusively meant to be used for

evaluating the performance of a learned model on a test data set. When evaluating the performances

of individual rules during the rule induction process by using Algorithm 17, correctly predicted labels

are always counted as true positives, regardless of whether the label is relevant or irrelevant, whereas

incorrectly predicted labels are always counted as false positives. The reason for using this divergent se-

mantic is, that all label attributes of a rule's head should be handled equally, regardless of whether they

predict the presence or absence of a label. If the traditional semantic according to Equation 2.5 would

be used instead, the evaluation of individual label attributes would depend on whether they are of the

form ŷi = 1 or ŷi = 0. For example, when using the precision metric, which is exclusively calculated

from true positives and false positives, label attributes of the form ŷi = 0 would never have a positive

impact on the overall performance of a rule, as they only produce true negatives and false negatives.

4.3.1 Micro-Averaging

When using micro-averaging, the performance of a multi-label head rule is calculated using the soubrou-

tine MICROAVERAGING as shown in Algorithm 18. The operation of the algorithm corresponds to the

de�nition of micro-averaging given in Equation 2.8.
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Require: Original training data set T , current training data set Tcur rent ,

rule r, evaluation function δ, relevant labels L

1 C = (0,0,0,0) Â Initialize global confusion matrix

2 for each example (X j, Yj) ∈ T do

3 if r does not cover X j or not all labels ŷi ∈ r.head are set in Yj ∈ Tcur rent then

4 for each relevant label λi ∈ L do

5 AGGREGATE(r, (X j, Yj),λi, C)
6 h= δ(C) Â Apply evaluation function on confusion matrix

7 return performance h

Algorithm 18: Algorithm MICROAVERAGING for measuring the performance of a multi-label head rule using

micro-averaging

As it can be seen in Algorithm 18, the current training data set Tcur rent is used to check, whether labels

are already predicted by previously induced rules, or not (cf. Algorithm 18, line 3). Covered examples,

for which all labels, that are predicted by a rule, are marked as already set (cf. Algorithm 5, line 3), are

not taken into consideration for building the aggregated confusion matrix. In the subroutines LABELBASE-

DAVERAGING, EXAMPLEBASEDAVERAGING and MACROAVERAGING, which are discussed in the following, similar

checks can be found. All of them correspond to a mechanism, which is used in the original separate-and-

conquer algorithm by Loza Mencía and Janssen [2015] in order to prevent identical rules from being

learned in subsequent iterations of the algorithm. In theory, this might occur when no examples are

removed from the training data set after inducing a new rule, because the examples' label vectors are

not considered to be covered to a suf�cient extend by subroutine GETREADDSET. As the original algo-

rithm focuses on learning single-label head rules, only one label is considered at once. This enables it

to temporarily remove the examples, for which the current label is marked as already predicted, from

the training data set (cf. Algorithm 4, line 3). However, this strategy cannot be used by the algorithm,

which is proposed in this work, because the induction of multi-label head rules requires to consider all

available labels simultaneously. As an alternative, instances, for which a rule does not predict yet unset

labels, are not taken into account for measuring the rule's performance.

4.3.2 Label-based Averaging

Algorithm 19 illustrates the operation of the subroutine LABELBASEDAVERAGING, which is used for measur-

ing the performance of multi-label head rules, when using label-based averaging. This corresponds to

the averaging strategy, which is de�ned in Equation 2.9.

Require: Original training data set T , current training data set Tcur rent ,

rule r, evaluation function δ, relevant labels L

1 h= 0
2 for each relevant label λi ∈ L do

3 C = (0,0, 0,0) Â Initialize confusion matrix for each label

4 for each example (X j, Yj) ∈ T do

5 if r does not cover X j or not all labels ŷi ∈ r.head are set in Yj ∈ Tcur rent then

6 AGGREGATE(r, (X j, Yj),λi, C)
7 h+=δ(C) Â Apply evaluation function on confusion matrix

8 h= h/|L| Â Average performance label-wise

9 return performance h

Algorithm 19: Algorithm LABELBASEDAVERAGING for measuring the performance of a multi-label head rule

using label-based averaging
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The algorithm, which is shown above, �rst calculates an individual heuristic value for each relevant

label. These values result from building one confusion matrix per label using the subroutine AGGREGATE

and applying the given evaluation function δ on it. The true positives, false positives, true negatives, and

false negatives of each confusion matrix are counted by applying the rule r on all training examples and

aggregating the predictive result for the corresponding label. Finally, the given rule's overall performance

calculates as the arithmetic mean of the heuristic values, which have been obtained for each relevant

label. Such as discussed in the previous section, examples, for which no yet unset labels are predicted,

are excluded from the performance evaluation.

4.3.3 Example-based Averaging

When using example-based averaging, the subroutine EXAMPLEBASEDAVERAGING is used for measuring the

performance of a rule. It is similar to the subroutine LABELBASEDAVERAGING, which is discussed in the pre-

vious section, but instead of aggregating true positives, false positives, true negatives and false negatives

label-wise, an example-wise aggregation is used. This corresponds to the de�nition of said averaging

strategy as given in Equation 2.9. Algorithm 20 illustrates how the example-based performance of a

multi-label rule r is measured. It calculates a heuristic value for each training example by applying

the evaluation function δ on confusion matrices, which are built from the given rule's prediction for

all relevant labels. By averaging the heuristic values, which have been obtained for each example, the

overall performance of the given multi-label head rule is �nally calculated. Similar to Algorithm 18 and

Algorithm 19, if all labels, which are predicted by a rule, are marked as already predicted by previously

induced rules, the respective example is excluded from the performance evaluation.

Require: Original training data set T , current training data set Tcur rent ,

rule r, evaluation function δ, relevant labels L

1 h= 0
2 for each example (X j, Yj) ∈ T do

3 if r does not cover X j or not all labels ŷi ∈ r.head are set in Yj ∈ Tcur rent then

4 C = (0,0, 0,0) Â Initialize confusion matrix for each example

5 for each relevant label λi ∈ L do

6 AGGREGATE(r, (X j, Yj),λi, C)
7 h+=δ(C) Â Apply evaluation function on confusion matrix

8 h= h/|T | Â Average performance example-wise

9 return performance h

Algorithm 20: Algorithm EXAMPLEBASEDAVERAGING for measuring the performance of a multi-label head

rule using example-based averaging

4.3.4 Macro-Averaging

The subroutine MACROAVERAGING, which is shown in Algorithm 21 below, is used for measuring the

performance of a multi-label head rule r using macro-averaging as de�ned in Equation 2.11. As it

can be seen in the algorithm, for each training example and relevant label an individual confusion

matrix is created. It speci�es, whether the prediction of the rule r for a particular example and label

combination is considered as a true positive, false positive, true negative or false negative. By applying

the evaluation function δ on each of these confusion matrices, a heuristic value is obtained for each

example and relevant label. The overall performance of the rule �nally calculates as the label- and

example-wise arithmetic mean of all of these values. According to Equation 2.11, averaging the obtained

values is commutative, i.e. �rst calculating the label-wise arithmetic mean and then averaging the values

example-wise is computationally equal to performing the calculation the other way round.
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Require: Original training data set T , current training data set Tcur rent ,

rule r, evaluation function δ, relevant labels L

1 h= 0
2 for each example (X j, Yj) ∈ T do

3 if r does not cover X j or not all labels ŷi ∈ r.head are set in Yj ∈ Tcur rent then

4 h j = 0
5 for each relevant label λi ∈ L do

6 C = (0, 0,0, 0) Â Initialize confusion matrix for each example and label

7 AGGREGATE(r, (X j, Yj),λi, C)
8 h j+=δ(C) Â Apply evaluation function on confusion matrix

9 h+=h j/|L| Â Average performance label-wise

10 h= h/|T | Â Average performance example-wise

11 return performance h

Algorithm 21: Algorithm MACROAVERAGING for measuring the performance of a multi-label head rule

using macro-averaging

4.4 Application of Multi-Label Head Rules

The prediction process for applying a model, which has been deduced from a training data set by using

the proposed algorithm, on an unknown test example is similar to the prediction process of the original

algorithm by Loza Mencía and Janssen [2015] as discussed in Section 2.2.3. In both cases, the rules,

which are contained by a learned multi-label decision list, are applied to the test example in the order

of induction until all rules are processed or a stopping rule is encountered. However, as the algorithm,

which is proposed is the present work, allows to induce multi-label head rules, several labels can be set

by a single rule. In line 4 of Algorithm 22, the loop, which is used to set all labels, which correspond

to the label attributes of a multi-label head, is shown. Similar to the original prediction algorithm given

in Algorithm 7, labels are only set, if they have not already been set by previously processed rules. This

prevents the predictions of rules from being altered by other rules, which have been learned at a later

point of the rule induction process. Algorithm 22 continues until all labels of the test example are set

or until no rules remain in the decision list. Labels, which remain unset after the prediction process is

�nished, are assumed to be irrelevant.

Require: Test example X , multi-label decision list R

1 Ŷ = 〈?, ..., ?〉
2 for each rule r in decision list R do

3 if r covers X then

4 for each label attribute ŷi ∈ r.head do
5 apply label attribute ŷi on Ŷ if corresponding value in Ŷ is unset

6 if r is marked as stopping rule or Ŷ is complete then

7 assume all remaining labels in Ŷ to be irrelevant

8 return prediction Ŷ
9 assume all remaining labels in Ŷ to be irrelevant

10 return prediction Ŷ

Algorithm 22: Algorithm for predicting the label vector of a test example, based on the multi-label head

rules of a multi-label decision list
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5 Anti-Monotonicity and Decomposability of Multi-Label Evaluation Metrics

In this chapter, the evaluation functions, which are given in Section 2.3.3, are examined in terms of

anti-monotonicity and decomposability. In Section 5.1, the evaluation functions are examined with re-

spect to the rule-dependent evaluation strategy, which is introduced in Section 3.1. In Section 5.2 the

rule-independent evaluation strategy is considered accordingly. In both sections, for each evaluation

function and averaging strategy, it is mathematically proved or disproved, whether the de�nition of

anti-monotonicity, respectively decomposability, is met, or not. For reasons of simplicity �if not stated

otherwise �, the monotonicity property according to De�nition 3.2 is assumed to not be ful�lled by eval-

uation functions. In each case, that de�nition can easily be disproved by giving a simple counterexample.

Throughout the proofs, which are given in the present chapter, evaluation functions are considered as

surjections, which map the predictive results of a rule r on a data set T to a heuristic value h ∈ [0,1]:

δ : r, T → R (5.1)

According to Section 2.3.3, the evaluation functions are de�ned as functions, which operate on the

elements of confusion matrices. In order to denote these elements, the following surjections r, T → N
are used throughout this chapter to retrieve the number of true positives, false positives, true negatives

and false negatives a rule r covers on a data set T . In accordance with Chapter 5, these elements are

calculated as shown in Algorithm 17, instead of using the de�nition in Equation 2.5. The indices i and j
specify the label λi and example X j, the value should be obtained for.

T P j
i : r, T → N F P j

i : r, T → N

T N j
i : r, T → N FN j

i : r, T → N
(5.2)

According to the shorthand notations, which are introduced in Equation 2.6, the following surjections

r, T → N are used to denote the number of relevant and irrelevant labels according to the ground truth,

respectively to a particular prediction:

P j
i (r, T ) := T P j

i (r, T ) + FN j
i (r, T ) N j

i (r, T ) := F P j
i (r, T ) + T N j

i (r, T )

p j
i (r, T ) := T P j

i (r, T ) + F P j
i (r, T ) n j

i (r, T ) := T N j
i (r, T ) + FN j

i (r, T )
(5.3)

In order to simplify the notation of the mathematical proofs, the following function is used throughout

this chapter. It returns the subset of a data set T , that only contains the instances (X j, Yj), which are

covered by a given rule r:

C(r, T ) :=
�

(X j, Yj) ∈ T | r covers X j

	

(5.4)

In many cases, the readability of mathematical proof is further increased by omitting the parameters r
and T of the functions, which are given above, in favor of simplicity. This is possible, if only one rule r
and one data set T take part in an equation. However, if multiple rules are used in a single equation, the

subscript notation, which is shown below, is used to unambiguously denote the rule Ŷ ← B and data set

T , which should be used for evaluating the left-hand expression f .

f |Ŷ←B,T (5.5)
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5.1 Rule-dependent Evaluation

In the following subsections, the evaluation functions precision, recall, hamming accuracy, F-measure

and subset accuracy are examined in terms of anti-monotonicity and decomposability regarding the

rule-dependent evaluation strategy. When using said evaluation strategy, according to Section 3.1, only

the labels, which are predicted by a rule, are taken into account by a performance evaluation. In some

of the following subsections, the following lemma is examined in order to prove the de�nition of decom-

posability to be met. If said lemma holds for a particular evaluation function and averaging strategy, the

de�nition of decomposability is implied to be met as well.

Lemma 5.1: Let Ŷ ← B denote a multi-label head rule, consisting of a body B and a head Ŷ . Given a

particular averaging strategy and using a rule-dependent evaluation strategy, an evaluation function δ is

decomposable according to De�nition 3.3, if the performance of the rule is equal to the arithmetic mean of

the performances, which are obtained by considering each label attribute ŷi ∈ Ŷ individually:

δ(Ŷ ← B) =
1

|Ŷ |
·
∑

ŷi←B

δ( ŷi ← B)

Proof: Such as all Pythagorean means, the arithmetic mean has two well-known properties, which are

referred to as �averaging� and �value preservation� in the following [Heath, 1921]. Because of these

properties, the de�nition of decomposability is met, if the performance of a rule calculates as shown in

Lemma 5.1 above. On the one hand, the precondition, which is given in De�nition 3.3 i), is met because

of the arithmetic mean's averaging property:

min(x1, ..., xn)<
1
n
·

n
∑

i=1

x i < max(x1, ..., xn) (5.6

Averaging

)

On the other hand, the precondition, which is given in De�nition 3.3 ii), is met because of the value

preservation property:

1
n
·

n
∑

i=1

x i = x1 = ...= xn , with x1 = ...= xn (5.7

Value preservation

)

�

5.1.1 Precision

According to the de�nition, which is given in Equation 2.12, the precision metric measures the percent-

age of correctly predicted labels (true positives) among all labels, which are predicted by a rule (true

positives and false positives). Due to the fact, that the precision metric only takes true positives and

false positives into account, the performance of a rule solely depends on the examples it covers. This

is, because for covered examples the predicted labels are counted as true positives or false positives,

whereas the labels of uncovered examples contribute to the true negatives and false negatives (cf. Algo-

rithm 17). In the following subsections, it is proved, that the precision metrics ful�lls the de�nition of

decomposability according to De�nition 3.3, if the rule-dependent evaluation strategy is utilized. As it

is shown in the individual subsections, the properties of decomposability are met, regardless of whether

micro-averaging, label-based averaging or macro-averaging is used.
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5.1.1.1 Micro-Averaging

In the following, it is proved, that micro-averaged precision meets the requirements of decomposability,

when using the rule-dependent evaluation strategy. In Figure 3 of Chapter 3, an example, which uses

micro-averaged precision for measuring the rule-dependent performances of multi-label head rules, is

given. The proof is based on how the micro-averaged precision of a single-label head rule is calculated.

Equation 5.8 shows such calculation for a rule, which contains a single label attribute ŷi in its head. As

the equation reveals, the precision of a single-label head rule calculates as the fraction of true positives

among the number of all predicted labels. As the prediction of a rule is only applied to covered exam-

ples, the number of predictions equals the number of examples, which are covered by the rule's body

B. According to the shorthand notation, which is introduced in Equation 5.4, the number of covered

examples is denoted as |C |.

δprec,mm,�|=

( ŷi ← B, T ) =

∑

j
T P j

i

∑

j
p j

i

, with
∑

j

p j
i = |C |

=

∑

j
T P j

i

|C |

(5.8)

Proof of Decomposability: The proof, which is given in Equation 5.9 below, shows Lemma 5.1 to be

hold, when using micro-averaged precision together with the rule-dependent evaluation strategy for

measuring the performance of a multi-label head rule Ŷ ← B. As required by Lemma 5.1, the perfor-

mance calculation can be rewritten in terms of measuring the performances of single-label head rules

ŷi ← B with ŷi ∈ Ŷ and averaging the obtained results afterwards by using the arithmetic mean opera-

tion. Rewriting the equation is possible, because all of the single-label head rules share the same body

B and therefore cover the same number of examples |C |. This observation corresponds to Equation 5.8,

which is given above.

δprec,mm,�|=

(Ŷ ← B, T ) =

∑

ŷi∈Ŷ

∑

j
T P j

i

∑

ŷi∈Ŷ

∑

j
p j

i

, with
∑

j

p j
i = |C | , ∀i

=

∑

ŷi∈Ŷ

∑

j
T P j

i

|Ŷ | · |C |

=
1

|Ŷ |
·

∑

ŷi∈Ŷ

∑

j
T P j

i

|C |

=
1

|Ŷ |
·
∑

ŷi∈Ŷ

∑

j
T P j

i

|C |
Â c.f (5.8), last line

≡
1

|Ŷ |
·
∑

ŷi∈Ŷ

δprec,mm,�|=

( ŷi ← B, T )

(5.9)

48



Equation 5.9 proves Lemma 5.1 to be met, when micro-averaged precision is used together with the

rule-dependent evaluation strategy. As a result, said evaluation function is implied to be decomposable

according to De�nition 3.3. Furthermore � because of Lemma 3.1 �, the evaluation function can be

considered to be anti-monotonous according to De�nition 3.1 as well. �

5.1.1.2 Label-based Averaging

When using label-based averaging together with the rule-dependent evaluation strategy, the calculation

of a multi-label head rule's performance is in accordance with Lemma 5.1 per se. This is, because of said

averaging strategy's de�nition, which is given in Equation 2.10. It states, that a label-based performance

calculates as the label-wise arithmetic mean of the performances, which are obtained for each label

individually. Such as Lemma 5.1 requires, this corresponds to single-label head rules ŷi ← B with ŷi ∈ Ŷ .
However, the proof, which is given in the following, shows, that utilizing label-based averaging for

measuring the precision of a multi-label head rule Ŷ ← B is even equivalent to using micro-averaging,

as discussed in the previous section.

Proof of Decomposability: Equation 5.12 is based on the fact, that the precision of a single-label head

rule ŷi ← B is calculated according to Equation 5.8, regardless of whether micro-averaging or label-

based averaging is used. This enables to rewrite the calculation of label-based precision in terms of using

micro-averaged precision, as shown in the second line of Equation 5.10. As the rewritten term equals

the last line of Equation 5.9, label-based precision and micro-averaged precision can be considered to be

equivalent when using the rule-dependent evaluation strategy.

δprec,mM ,�|=

(Ŷ ← B, T ) =
1

|Ŷ |
·
∑

ŷi∈Ŷ

∑

j
T P j

i

∑

j
P j

i

, with
∑

j

p j
i = |C | , ∀i Â cf. (5.8), �rst line

≡
1

|Ŷ |
·
∑

ŷi∈Ŷ

δprec,mm,�|=

( ŷi ← B, T ) Â cf. (5.9), last line

≡δprec,mm,�|=

(Ŷ ← B, T )

(5.10)

Equation 5.10 shows, that label-based precision is equivalent to micro-averaged precision, when using

the rule-dependent evaluation strategy. As the latter variant is proved to be decomposable in Section

5.1.1.1, its label-based counterpart is implied to be decomposable as well. �

5.1.1.3 Example-based Averaging

When using example-based averaging for measuring the performance of a rule, according to Equation

2.9, a heuristic value is calculated for each of the data set's examples at �rst. Finally, the overall perfor-

mance results from the arithmetic mean of all obtained values. Equation 5.11 shows, how the example-

based precision of a single-label head rule ŷi ← B is calculated according to that de�nition. As only one

label takes part in the equation, a single prediction is made for each covered example. For examples,

which are not covered by the rule, no predictions are made at all. Consequently, the heuristic values,
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which are obtained for uncovered examples, always evaluate to 0. Because of this, the calculation can

be rewritten to solely depend on the number of true positives, as it is shown in Equation 5.11 below.

δprec,Mm,�|=

( ŷi ← B, T ) =
1
m
·
∑

j

T P j
i

p j
i

, with
p j

i=1 , ∀ j(X j∈C)
T P j

i =0 , ∀ j(X j /∈C)

=
1
m
·
∑

j

T P j
i

=
∑

j

T P j
i

m

(5.11)

Proof of Decomposability: Equation 5.12 shows, how the example-based precision of a multi-label

head rule Ŷ ← B, which contains an arbitrary number of label attributes ŷi in its head Ŷ , is calcu-

lated. By rewriting the equation to solely depend on true positives � similar as shown in Equation 5.11

above �, it can be proved that the performance calculation is in accordance with Lemma 5.1. Rewriting

the equation is based the following observation: On the one hand, for examples, which are covered by

the body B, exactly |Ŷ | predictions are made. This corresponds to number of label attributes, which are

contained by the rule's head. On the other hand, if an example is not covered by the rule, no prediction

is made and the corresponding heuristic value evaluates to 0.

δprec,Mm,�|=

(Ŷ ← B, T ) =
1
m
·
∑

j

∑

ŷi∈Ŷ

T P j
i

∑

ŷi∈Ŷ

p j
i

, with

∑

ŷi∈Ŷ
p j

i=|Ŷ | , ∀ j(X j∈C)
∑

ŷi∈Ŷ
T P j

i =0 , ∀ j(X j /∈C)

=
1
m
·
∑

j

∑

ŷi∈Ŷ

T P j
i

|Ŷ |

=
1
m
·
∑

ŷi∈Ŷ

∑

j

T P j
i

|Ŷ |

=
1

|Ŷ |
·
∑

ŷi∈Ŷ

∑

j

T P j
i

m
Â c.f (5.11), last line

≡
1

|Ŷ |
·
∑

ŷi∈Ŷ

δprec,Mm,�|=

( ŷi ← B, T )

(5.12)

According to Equation 5.12, example-based precision can be rewritten in terms of measuring the per-

formances of single-label head rules ŷi ← B with ŷi ∈ Ŷ and averaging the obtained heuristic values

afterwards. This corresponds to the equation, which is given in Lemma 5.1. Because the lemma is shown

to be met, it follows, that example-based precision is decomposable according to De�nition 3.3. More-

over � because of Lemma 3.1 �, said evaluation function can also be considered to be anti-monotonous

according to De�nition 3.1. �
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5.1.1.4 Macro-Averaging

According to the de�nition of macro-averaging, which is given in Equation 2.11, when using said aver-

aging strategy, a heuristic value is obtained for each example and label at �rst. All of the values, which

are obtained in that way, are �nally aggregated to a single performance by either �rst calculating the

example-wise arithmetic mean and then calculating the label-wise arithmetic mean, or vice versa. The

�rst of both orders is utilized in the following in order to show, that the use of macro-averaging is equiva-

lent to the use of example-based averaging, as considered in Section 5.1.1.3. Such as all considerations,

which are made in the current section, this corresponds to measuring the performance of multi-label

head rules using the precision metric and utilizing the rule dependent evaluation strategy.

Proof of Decomposability: In Equation 5.13, the calculation of a multi-label head rule's performance,

according to the de�nition of the precision metric and macro-averaging, is given. As already mentioned,

the calculation is based on averaging �rst example-wise and then label-wise. Because for each example

and label the performance either evaluates to 0 or 1, depending on whether a true positive is covered,

or not, it is possible to rewrite the calculation to solely depend on true positives. As the second line of

Equation 5.13 illustrates, the rewritten variant of the calculation is in accordance with Equation 5.12.

Because of this, it follows, that macro-averaged precision is equivalent to example-based precision, when

using the rule-dependent evaluation strategy.

δprec,M M ,�|=

(Ŷ ← B, T ) =
1

|Ŷ |
·
∑

ŷi∈Ŷ

 

1
m
·
∑

j

T P j
i

p j
i

!

, with
T P j

i

p j
i

= T P j
i , ∀i∀ j

=
1

|Ŷ |
·
∑

ŷi∈Ŷ

∑

j

T P j
i

m
Â c.f (5.12), line 4

≡δprec,Mm,�|=

(Ŷ ← B, T )

(5.13)

Equation 5.13 shows, that macro-averaged precision is equivalent to example-based precision, when us-

ing the rule-dependent evaluation strategy. The example-based variant of the precision metric is proved

to be decomposable in Section 5.1.1.3. Because of this, the its macro-averaged counterpart is implied to

ful�ll the properties of decomposability, which are given in De�nition 3.3, as well. �

5.1.2 Recall

The recall metric measures the percentage of labels, which are predicted to be relevant by a rule, among

all labels, which are relevant according to the ground truth. According to Equation 2.13, this corresponds

to the percentage of true positives among true positives and false negatives. In contrast to precision,

when using the recall metric for measuring the performance of a rule, uncovered examples have an

impact on the resulting performance. This is, because false negatives are taken into account by the

performance evaluation. According to Algorithm 17, false negatives result from the relevant labels

of the examples, which are not covered by a rule. As no predictions are made for these uncovered

examples, their relevant labels are not predicted despite their relevance. In the following subsections,

the recall metric is examined in terms of anti-monotonicity, respectively decomposability, when using

micro-averaging, label-based averaging or macro-averaging together with the rule-dependent evaluation

strategy.
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5.1.2.1 Micro-Averaging

The proof, which is shown in the following, is based on the fact, that the micro-averaged recall of a

multi-label head rule Ŷ ← B can be calculated as the mediant of the performances, which are obtained

for corresponding single-label head rules ŷi ← B with ŷi ∈ Y . In mathematics, the mediant of two or

more fractions
a1
b1

, ..., an
bn

with ai ≥ 0 and bi > 0 is de�ned as the fraction, which results from summing

up the numerators and denominators of the given fractions [Bensimhoun, 2013]:

m
�

a1

b1
, ...,

an

bn

�

=
a1 + ...+ an

b1 + ...+ bn
, with ai, bi ∈ N (5.14

Mediant

)

A well-known property of the mediant, which is called �mediant inequality�, states, that the mediant

strictly lies between the fractions it is calculated from. According to this property, the following inequality

holds [Bensimhoun, 2013]:

min
�

a1

b1
, ...,

an

bn

�

< m
�

a1

b1
, ...,

an

bn

�

< max
�

a1

b1
, ...,

an

bn

�

(5.15

Mediant inequality

)

As a special case, if all of the fractions
a1
b1

, ..., an
bn

are equal, their mediant is equal to all of the fractions

as well. With respect to the property of the arithmetic mean, which is introduced in Equation 5.7, this is

referred to as the mediant's �value preservation� property in the following.

m
�

a1

b1
, ...,

an

bn

�

=
a1

b1
= ...=

an

bn
, with

a1

b1
= ...=

an

bn
(5.16

Value preservation

)

In the following it is proved, that the properties, which are given in Equation 5.15 and 5.16, apply to

the calculation of the micro-averaged recall, when using the rule-dependent evaluation strategy. As the

mediant inequality corresponds to the property, which is given in De�nition 3.3 i), whereas the mediant's

value preservation property corresponds to De�nition 3.3 ii), this is suf�cient to proof the de�nition of

decomposability to be met.

Proof of Decomposability: Equation 5.17 shows, how the micro-averaging recall of a multi-label head

rule Ŷ ← B is calculated, when using the rule-dependent evaluation strategy. In order to prove the

mediant inequality according to Equation 5.15 to be met, it is assumed without loss of generality, that

the performance of the single-label head rule ŷb← B with ŷb ∈ Ŷ is the best among all single-label head

rules, whose label attribute is contained in the multi-label head Ŷ . As the ½ operator indicates, in order

to prove the value preservation property according to Equation 5.16 to be hold, the premise of the proof

at hand can simply be adapted by assuming, that all single-label head rules reach the same performance.

δrec,mm,�|=

(Ŷ ← B, T ) =

∑

ŷi∈Ŷ

∑

j
T P j

i

∑

ŷi∈Ŷ

∑

j
P j

i

, with

∑

j
T P j

b

∑

j
P j

b

½

∑

j
T P j

a
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As it can be seen in Equation 5.17, the micro-averaged recall of the multi-label head rule Ŷ ← B is calcu-

lated by summing up the denominators and numerators of the fractions, which denote the performances

of the corresponding single-label head rules. This corresponds to the de�nition of the mediant operation

given in Equation 5.14. According to the premise of the proof, the single-head rule ŷb← B is considered

to reach the best performance, whereas the remaining single-label head rules ŷa ← B reach a lower

performance.
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In order to prove the properties of decomposability to be met, it must be shown, that the recall of the

multi-label head rule Ŷ ← B is less than the recall of the best single-label head rule ŷb ← B. This

corresponds to De�nition 3.3 i). In order to prove De�nition 3.3 ii) to be met, it must be shown, that

the performance of the multi-label head rule Ŷ ← B is equal to the recall of all single-label head rules

ŷb← B and ŷa← B accordingly.
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(Ŷ ← B, T )µδrec,mm,�|=
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In order to prove Equation 5.18 to be hold, it is rewritten in terms of a single fraction by converting both

fractions, which take part in the original form of the equation, to like quantities. For this reason, the de-

nominators of both fractions are multiplied with each other and the numerators are adapted accordingly.

As a result, the equation can be proved to be hold by showing, that the fraction's numerator is positive �

respectively equal to 0. The formula, which �nally proves the assumption given in Equation 5.18 to be

true, is shown in Equation 5.19 below. It is based on the proof's premise, which is originally introduced

in Equation 5.17. By using cross-multiplication, the equation can be converted into an inequality � re-

spectively an equality when proving 3.3 ii) to be met � similar to the numerator of the fraction, which is

shown in Equation 5.18 above.
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ŷa, ŷb ∈ Ŷ ∧ a 6= b
�

Â c.f (5.17)

∑

j

T P j
b ·
∑

j

P j
a ½

∑

j

T P j
a ·
∑

j

P j
b , ∀a

�
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As Equation 5.18 is shown to be hold, the recall metric is proved to meet the properties of decompos-

ability according to De�nition 3.3, when used together with micro averaging and the rule-dependent

evaluation strategy. Because of Lemma 3.1, it can also be considered to be anti-monotonous in such

case. �
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5.1.2.2 Label-based Averaging

As mentioned earlier, when using label-based averaging together with the rule-dependent evaluation

strategy for measuring the performance of multi-label head rules, the utilized evaluation function can be

considered to be decomposable per se. This is due to the de�nition of label-based averaging as given in

Equation 2.10. The proof, which is shown in the following, con�rms that.

Proof of Anti-Monotonicity: When using label-based averaging, the recall of a multi-label head rule

Ŷ ← B is calculated by obtaining a heuristic value per label and averaging the results afterwards. If a

rule-dependent evaluation is used, this corresponds to the calculation, which is shown in Equation 5.20.
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As the calculation, which is shown above, corresponds to the equation, which is given as part of Lemma

5.1, label-based recall is implied to be decomposable when using the rule-dependent evaluation strategy.

Note, that unlike label-based and micro-averaged precision, which are proved to be equivalent in Section

5.1.1, when using said evaluation strategy, label-based and micro-averaged recall are not equivalent. �

5.1.2.3 Example-based Averaging

In the following it is shown, that example-based recall is neither decomposable, nor anti-monotonous,

when using the rule-dependent evaluation strategy, because it ful�lls the requirements of monotonicity

according to De�nition 3.2. In Figure 2 of Chapter 3 an exemplary search through the label space, which

uses said evaluation strategy, is given. According to De�nition 3.3 and De�nition 3.1, monotonous

evaluation functions cannot be decomposable, respectively anti-monotonous.

Disproof of Anti-Monotonicity: Equation 5.21 shows, how the recall of a multi-label head rule Ŷ ← B is

calculated using example-based averaging and the rule-dependent evaluation strategy. According to the

de�nition of example-based averaging, which is given in Equation 2.9, the overall performance of the rule

is calculated by averaging the heuristic values, which are obtained for each example individually. The

performance for an individual example evaluates to 0, if no true positives are covered. As predictions

are only made for examples, which are covered by the rule's body B, this applies on all uncovered

examples. Furthermore, if at least one true positive is covered, the performance for an example evaluates

to 1. As a result, the performances, which are obtained for individual examples, may either be 0 or 1.

This particularity becomes more obvious when taking a look at the rewritten form of the performance

calculation, which is shown in the last line of Equation 5.21. It uses the Iverson bracket notation as

introduced in Equation 2.18.
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P j

i =
∑
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According to Equation 5.21, by adding additional label attributes to the head of a multi-label head rule,

the overall performance cannot decrease. If the performance for an example was 0 before, adding the

label attribute may either cause the performance to remain the same, or to become 1, if adding the label

attribute causes a true positive to be covered. If the performance was 1 instead, it is guaranteed to remain

the same, because at least one true positive was already covered before and will still be covered after

adding the additional label attribute. Consequently, no heuristic value, which is obtained for an example,

can decrease as the result of adding a label attribute to the head. Furthermore, because of the properties

of the arithmetic mean (cf. Equation 5.6 and 5.7), the overall performance cannot decrease either. As

a result, example-based recall meets the de�nition of monotonicity, which is given in De�nition 3.2, if

used together with the rule-dependent evaluation strategy. This implies De�nition 3.3 and De�nition 3.1

to not be met. �

5.1.2.4 Macro-Averaging

When using macro-averaging, the performance of a multi-label head rule is calculated by obtaining

heuristic values for each example and label at �rst. Afterwards, the overall performance is calculated

by averaging the obtained values �rst example-wise and then label-wise, or vice versa. The �rst of both

averaging orders is used to in the following in order to prove, that the recall metric is equivalent to the

precision metric, when using macro-averaging and the rule-dependent evaluation strategy.

Proof of Decomposability: The calculation of the macro-averaged recall, when �rst averaging example-

wise and then label-wise, is shown in Equation 5.22 below. Such as all considerations, which are made

in this section, the calculation corresponds to using the rule-dependent evaluation strategy. According

to Equation 5.22, the heuristic value, which is obtained for each example and label is either 0 or 1,

depending on whether a true positive is covered, or not. A similar observation is made in Section

5.1.1.4, which deals with macro-averaged precision. In fact, as Equation 5.22 reveals, the formula for

calculating the macro-averaged recall can be rewritten to match the calculation of the macro-averaged

precision according to Equation 5.13. This shows, that both evaluation metrics are equivalent, if macro-

averaging and the rule-dependent evaluation strategy is used.
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≡δprec,M M(Ŷ ← B, T )

≡δprec,Mm(Ŷ ← B, T )

(5.22)

As a result of Equation 5.22, the recall metric is proved to be decomposable according to De�nition 3.3,

when using macro-averaging and the rule-dependent evaluation strategy. This is due to the equivalence

to its macro-averaged counterpart, which is shown to be decomposable in Section 5.1.1.4. Besides that,

macro-averaged recall can be considered to be equivalent to example-based precision as well, because

the macro-averaged and example-based variants of the precision metric are shown to be interchangeable,

when using the rule-dependent evaluation, in that section as well. �
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5.1.3 Hamming Accuracy

Hamming accuracy, as introduced in Equation 2.14, calculates the percentage of correctly predicted rel-

evant and irrelevant labels among all labels. Unlike the precision metric, it does also take true negatives

and false negatives into account and therefore uncovered instances have an impact on the performance

of a rule. In the following subsections, hamming accuracy is proved to be decomposable regarding

the rule-dependent evaluation strategy, regardless of whether it is used together with micro-averaging,

label-based averaging, example-based averaging or macro-averaging.

5.1.3.1 Micro-Averaging

In this section, micro-averaged hamming accuracy is examined in terms of anti-monotonicity, respectively

decomposability. The proof, which is shown in the following, is similar to the one, that is used in Section

5.1.1.1 in order to prove the precision metric to be decomposable, when using micro-averaging together

with the rule-dependent evaluation strategy. It is based on Equation 5.23, which shows how the micro-

averaged hamming accuracy of a rule ŷi ← B, which contains a single label attribute ŷi in its head, is

calculated.
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Proof of Decomposability: The proof, which is given in Equation 5.24 below, is based on showing, that

Lemma 5.1 is met. For this reason, said equation, which denotes hows the micro-averaged hamming ac-

curacy of a multi-label head rule Ŷ ← B is calculated, is rewritten in terms of averaging the performances

of single-label head rules ŷi ← B with ŷi ∈ Ŷ .
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Rewriting Equation 5.24 to be in accordance with Lemma 5.1 is possible, because � as shown in Equa-

tion 5.23 � the performance for each predicted label calculates as the percentage of true positives and

true negatives among all labels. The total number of labels equals the number of examples, which are

available in the data set, and is denoted as m. As a result of Equation 5.24, which shows Lemma 5.1 to

be met, micro-averaged hamming accuracy is implied to be decomposable according to De�nition 3.3,

when using the rule-dependent evaluation strategy. With respect to Lemma 3.1, it further follows, that

said evaluation function can also be considered to be anti-monotonous according to De�nition 3.1. �

5.1.3.2 Label-based Averaging

When using label-based averaging together with the rule-dependent evaluation strategy, the used eval-

uation function is always decomposable. As mentioned earlier, this is due to that averaging strategy's

de�nition, which is given in Equation 2.10 and which is in accordance with Lemma 5.1. The following

proof does not only show the properties of decomposability to be met, but does also prove label-based

averaging to be equivalent to micro-averaging, when using the hamming accuracy metric for a rule-

dependent evaluation.

Proof of Decomposability: In Equation 5.25 the calculation of a multi-label head rule's performance,

using label-based hamming accuracy and the rule-dependent evaluation strategy, is illustrated. Accord-

ing to the de�nition of said averaging strategy, a heuristic value is �rst calculated per relevant label at

�rst. The obtained values are then averaged by using the arithmetic mean operation in order to obtain

a single performance. As Equation 5.25 shows, when using label-based averaging, the heuristic value

for an individual label is calculated in the same way as if micro-averaging was used. In Section 5.1.3.1

it is shown, that the micro-averaged hamming accuracy of a multi-label head rule Ŷ ← B can be calcu-

lated by averaging the performances of single-label head rules ŷi ← B with ŷi ∈ Ŷ . This does not only
correspond to Lemma 5.1, but is also equal to the second line of Equation 5.25 below. As a result, the

micro-averaged and label-based variants of the hamming accuracy can be considered to be equivalent.
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Equation 5.25 shows, that micro-averaged and label-based hamming accuracy are equivalent, when

used for a rule-dependent evaluation. As a result, the label-based variant is implied to be decomposable

according to De�nition 3.3. This is a result of the proof, which is given in Section 5.1.3.1 in order to

prove micro-averaged hamming accuracy to be decomposable. �

5.1.3.3 Example-based Averaging

When using example-based averaging, according to Equation 2.9, for each example of the data set a

heuristic value is calculated at �rst. By averaging all of these values using the arithmetic mean operation,

a single performance is �nally obtained. The following proof shows, that the example-based variant of

the hamming accuracy metric is not only decomposable, when using the rule-dependent evaluation

strategy, but that it is also equivalent to its micro-averaged counterpart.
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Proof of Decomposability: Equation 5.26 shows, how the example-based hamming accuracy of a multi-

label head rule Ŷ ← B is calculated, when using a rule-dependent evaluation. According to the de�nition

of example-based averaging, the evaluation function is applied to each example individually. According

to Equation 2.14, hamming accuracy measures the percentage of true positives and true negatives among

all labels. When using the rule-dependent evaluation strategy, the total number of relevant labels per

example equals the number labels, which are contained in the head Ŷ . As a result, Equation 5.26 can be

rewritten by using the term |Ŷ | for denoting the number of labels. By further exploiting the �rst-order

homogeneity of the arithmetic mean operation, the equation can be converted into a form, which is equal

to the fourth line of Equation 5.24. Consequently, example-based averaging is proved to be equivalent

to its micro-averaged counterpart, when using the rule-dependent evaluation strategy.
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From the equivalence, which is shown in Equation 5.26, two conclusions follow: On the one hand,

example-based averaging can not only be considered to be equivalent to micro-averaged hamming ac-

curacy, when using the rule-dependent evaluation strategy, but it is also implied to be equivalent to the

label-based variant. This is, because the use of label-based averaging is shown to be equivalent to using

micro-averaging in Section 5.1.3.2. On the other hand, example-based hamming accuracy is implied to

meet the properties of decomposable evaluation functions. This implication is based on Section 5.1.3.1

in which it is shown, that micro-averaged hamming accuracy ful�lls De�nition 3.3. �

5.1.3.4 Macro-Averaging

According to Equation 2.11, when using macro-averaging, the evaluation function is �rst applied to each

example and label individually. In order to obtain a single heuristic value, the performances, which are

calculated in that way, are �nally averaged by using the arithmetic mean operation �rst example-wise
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and then label-wise, or vice versa. The �rst of both averaging orders is used in the following in order

to prove macro-averaging to be equivalent to micro-averaging, when used together with the hamming

accuracy metric and the rule-dependent evaluation strategy.

Proof of Decomposability: Hamming accuracy measures the percentage of correctly predicted relevant

and irrelevant labels among all labels. When using macro-averaging, the evaluation function is applied

to each example and label individually. As it is shown in Equation 5.27 below, the total number of

labels evaluates to 1 in such case. By exploiting the �rst-order homogeneity of the arithmetic mean

operation, the equation can be rewritten as shown in the third line of Equation 5.27. The rewritten form

of the equation corresponds to the fourth line of Equation 5.24. As a result, macro-averaged hamming

accuracy and its micro-averaged counterpart are shown to be equivalent, when used together with the

rule-dependent evaluation strategy.
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|Ŷ |
·
∑
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As a result of Equation 5.27, which proves macro-averaged hamming accuracy to be equivalent to micro-

averaged hamming accuracy, when using the rule-dependent evaluation strategy, the macro-averaged

variant is implied to be decomposable according to De�nition 3.3. This is, because micro-averaged

hamming accuracy is shown to be decomposable in Section 5.1.3.1. Furthermore, as the use of label-

based, as well as example-based averaging is shown to be equivalent to using micro-averaging in Section

5.1.3.2, respectively in Section 5.1.3.3, it follows that macro-averaged hamming accuracy is equivalent

to both of these variants as well. As a conclusion it can be stated, that all averaging strategies � namely

micro-averaging, label-based averaging, example-based averaging and macro-averaging � are equivalent

when used together with the hamming accuracy metric and the rule-dependent evaluation strategy. �

5.1.4 F-Measure

According to Equation 2.16, the F-Measure is de�ned as the weighted harmonic mean of precision and

recall, where the weight of the recall is β2-times the weight of the precision. If β = 0, the F-Measure is

equal to the precision metric and therefore the considerations in this section focus on scenarios where

β > 0. In general, the harmonic mean of two positive real numbers x1 and x2 with weights w1 and w2
is de�ned as follows:

H(x1, x2) :=
w1 +w2
w1
x1
+ w2

x2

(5.28

Harmonic mean

)
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Such as the arithmetic mean, the harmonic mean is one of the Pythagorean means and therefore both

operations share some common properties [Heath, 1921]. If w1, w2 > 0, the weighted harmonic mean

strictly lies between the values it is calculated from. In the remainder of this work, this is referred to as

the �averaging� property of the harmonic mean:

min(x1, x2)< H(x1, x2)< max(x1, x2) (5.29

Averaging

)

Furthermore, if the harmonic mean is calculated from two equal values, its �value preservation� property

applies. Said property states, that the harmonic mean of two identical values equals the given values,

regardless of their weights:

H(x1, x2) = x1 = x2 , with x1 = x2 (5.30

Value preservation

)

The F-Measure can be rewritten in terms of the harmonic mean function H, where the recall has a weight

of β2 and the precision has a weight of 1 (cf. 2.16). As a result, if β > 0, the �averaging� and �value

preservation� properties, which are introduced in Equation 5.29, respectively Equation 5.30, also apply

to the F-Measure.

5.1.4.1 Micro-Averaging

The following proof shows, that the micro-averaged F-Measure is decomposable, when using the rule-

dependent evaluation strategy. The proof is based on micro-averaged recall and precision being proved to

be decomposable in Section 5.1.2.1, respectively in Section 5.1.1.1, when using said evaluation strategy.

As multiple evaluation functions take part in the proof, different notations are necessary to distinguish

between the best possible performance according to different evaluation functions. For example, the best

possible performance according to the F-Measure is denoted by using the following syntax:

hF
max (5.31)

Furthermore, the following proof is based on the fact, that the best possible performance according to

the F-Measure can not be greater than the maximum of the best performances according to recall and

precision. This inequality is denotated by Equation 5.32 below:

hF
max ≤ max

�

hrec
max , hprec

max

�

(5.32)

Proof of Decomposability: Equation 5.34 proves the �rst property of decomposability, which is given in

De�nition 3.3 i), to be met. By rewriting the F-Measure in terms of the harmonic mean operation H, the

equation is converted to solely depend on micro-averaged recall and precision. Both of these metrics are

shown to ful�ll the property, which is given in De�nition 3.3 i), in Section 5.1.2.1, respectively in Section

5.1.1.1. Furthermore, as the premise of the proof, it is assumed, that the best possible performance

according to the recall metric is greater or equal than the best possible performance according to the

precision metric:

hrec
max ≥ hprec

max (5.33)
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This assumption can be made without loss of generality, because the Equation 5.34 can easily be adapted

to the opposite, i.e. to a premise, where the best possible performance according to the precision metric

is greater or equal than the best possible performance according to the recall metric.
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max ≤ hrec

max

�

≡∃i
�

ŷi ∈ Ŷ ∧H
�

δrec,mm,�|=

( ŷi ← B, T ),δprec,mm,�|=

( ŷi ← B, T )
�

< hrec
max

�

w.r.t. (5.30)
=====⇒
and (5.29)

∃i
�

ŷi ∈ Ŷ ∧
�

δrec,mm,�|=

( ŷi ← B, T )< hrec
max ∧δprec,mm,�|=

( ŷi ← B, T )< hrec
max

�

∨
�

δprec,mm,�|=

( ŷi ← B, T )< hrec
max ∧δrec,mm,�|=

( ŷi ← B, T )≤ hrec
max

��

w.r.t. decomposability of
=============⇒
δrec,mm,�|= and δprec,mm,�|=

�

δrec,mm,�|=

(Ŷ ← B, T )< hrec
max ∧δprec,mm,�|=

(Ŷ ← B, T )< hrec
max

�

∨
�

δprec,mm,�|=

(Ŷ ← B, T )< hrec
max ∧δrec,mm,�|=

(Ŷ ← B, T )≤ hrec
max

�

w.r.t. (5.30)
=====⇒
and (5.29)

H
�

δrec,mm,�|=

(Ŷ ← B, T ),δprec,mm,�|=

(Ŷ ← B, T )
�

< hF
max ≤ hrec

max

≡δF,mm,�|=

(Ŷ ← B, T )< hF
max

(5.34)

In Equation 5.34 is assumed, that the F-Measure of a single-label head rule ŷi ← B is less then the

best possible performance (cf. Equation 5.34, line 1 and 2). This is in accordance with the equation,

which is given in De�nition 3.3 i). Note, that �according to the premise of the proof � the best possible

performance hF
max cannot be greater than hrec

max . Because the F-Measure can be rewritten as the harmonic

mean H of precision and recall, it follows from the averaging and value preservation properties of the

harmonic mean operation (cf. Equation 5.29 and Equation 5.30), that either the recall or the precision

of the single-label rule ŷi ← B must be less than the best possible performance hF
max , respectively hrec

max .

Due to the inequality, which is given in Equation 5.33, hrec
max can be considered as an upper limit for

both recall, as well as precision (cf. Equation 5.34, line 3). Furthermore, from the decomposability of

the precision and recall metric, it follows, that a multi-label head rule Ŷ ← B, which contains the label

attribute ŷi in its head, cannot outperform the best possible performance hF
max (cf. Equation 5.34, line

5, 7 and 8). In order to prove the second property of decomposability to be met, Equation 5.35 uses a

similar approach. However, it is not based on the premise, which is given in Equation 5.33.

δF,mm,�|=

( ŷi ← B, T ) = hF
max , ∀ ŷi

�

ŷi ∈ Ŷ
�

≡H
�

δrec,mm,�|=

( ŷi ← B, T ),δprec,mm,�|=

( ŷi ← B, T )
�

= hF
max , ∀ ŷi

�

ŷi ∈ Ŷ
�

w.r.t. (5.30)
=====⇒
and (5.29)

δrec,mm,�|=
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�

ŷi ∈ Ŷ
�
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=============⇒
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δrec,mm,�|=

(Ŷ ← B, T ) = δprec,mm,�|=

(Ŷ ← B, T ) = hF
max

w.r.t. (5.30)
=====⇒
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H
�
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(Ŷ ← B, T ),δprec,mm,�|=

(Ŷ ← B, T )
�

= hF
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≡δF,mm,�|=

(Ŷ ← B, T ) = hF
max

(5.35)
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From Equation 5.34 and Equation 5.35 follows, that the F-Measure meets the properties of decomposable

evaluation functions according to De�nition 3.3, when using micro-averaging together with the rule-

dependent evaluation strategy. Although the given proof does only apply if β > 0, the evaluation function
can be considered to be decomposable regardless of the β-parameter's value. This is, because the F-

Measure is equivalent to the precision metric, if β = 0. Precision is shown to be decomposable, regarding

micro-averaging and the rule-dependent evaluation strategy, in Section 5.1.1.1.

�

5.1.4.2 Label-based Averaging

Proof of Decomposability: As already mentioned, when using label-based averaging for measuring the

rule-dependent performance of multi-label head rules, the used evaluation function is always decompos-

able. This does also apply, when using the label-based F-Measure. In Equation 5.36 the calculation of

multi-label head rule's performance according to said evaluation function and using the rule-dependent

evaluation strategy is illustrated. As it can be seen, a heuristic value is obtain for each relevant label at

�rst. The overall performance of the given rule �nally results from averaging all obtained values using

the arithmetic mean operation.

δF,mM ,�|=

(Ŷ ← B, T ) =
1
n
·
∑

ŷi∈Ŷ

δF,mM ,�|=

( ŷi ← B, T ) (5.36)

The calculation, which is shown in Equation 5.36, corresponds to the equation, which is part of Lemma

5.1. As the ful�llment of Lemma 5.1 is suf�cient for De�nition 3.3 to be met, the label-based variant of

the F-Measure can be considered to be decomposable, if the rule-dependent evaluation strategy is used.

The given proof does apply, regardless of which β-parameter is used to trade-off between precision and

recall.

�

5.1.4.3 Example-based Averaging

In this section, the F-Measure is examined in terms of anti-monotonicity, respectively decomposability,

when using example-based averaging together with the rule-dependent evaluation strategy. The proof,

which is given in the following, is based on rewriting the calculation of a multi-label head rule's per-

formance according to Equation 5.37. The equation uses the (weighted) harmonic mean operation H
in order to denote the F-Measure of an individual example of a training data set. It is further based

on the observation, that recall and precision both evaluate to 0, if no true positives are covered for an

example. If at least one true positive is covered, the recall always evaluates to 1, instead. In such case,

the F-Measure, which is obtained for an individual example, can be denoted as the harmonic mean of 1

and the heuristic value, which is calculated by using the precision metric. Because the recall is constant,

for examples for which any true positives are covered, the F-Measure solely depends on the precision

metric in such case.

δF,Mm,�|=

(Ŷ ← B, T ) =
1
m
·
∑

j















H



1,

∑

ŷi∈Ŷ
T P j

i

∑

ŷi∈Ŷ
p j

i



 , if
∑

ŷi∈Ŷ

T P j
i > 0

0, otherwise

(5.37)

Proof of Decomposability: In Equation 5.38 and Equation 5.37, the F-Measure is proved to meet the

properties of decomposability, when using example-based averaging and a rule-dependent evaluation. In

Equation 5.38, the �rst property of decomposable evaluation functions, which is given in De�nition 3.3
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i), is shown to be met. In Equation 5.39, the property which corresponds to De�nition 3.3 ii), is proved to

be ful�lled accordingly. Both equations are based on the observation, that the example-based F-Measure

of a rule primarily depends on the precision metric, as revealed by Equation 5.37. Consequently, if the

F-Measure of a single-label head rule ŷi ← B is less than the best possible performance hmax , it follows

from the averaging and value preservation properties of the harmonic mean (cf. Equation 5.29 and

Equation 5.30), that the precision of that rule is less than hmax as well (cf. Equation 5.38, line 1 and 2).

The example-based variant of the precision metric is shown to be decomposable in Section 5.1.1.3, when

using the rule-dependent evaluation strategy. Therefore it is implied, that the precision of a multi-label

head rule Ŷ ← B is less than hmax , if one of the corresponding single-label head rules with heads ŷi ∈ Ŷ
does not reach that performance (cf. Equation 5.38, line 3). As the F-Measure calculates as the harmonic

mean of recall and precision and because the recall is always 1 � respectively 0, if the precision is 0

as well � from the averaging and value preservation properties of the harmonic mean follows, that the

F-Measure of a multi-label head rule Ŷ ← B is less than hmax in such case as well (cf. Equation 5.38, line

5 and 6).

∃i
�

ŷi ∈ Ŷ ∧δF,Mm,�|=
( ŷi ← B, T )< hmax

�

w.r.t. (5.30), (5.29)
=========⇒

and (5.37)
∃i
�

ŷi ∈ Ŷ ∧δprec,Mm,�|=

( ŷi ← B, T )< hmax

�

w.r.t. decomposability of
============⇒

δprec,Mm,�|=

δprec,Mm,�|=

(Ŷ ← B, T )< hmax

w.r.t. (5.30), (5.29)
=========⇒

and (5.37)
H
�

δrec,Mm,�|=

(Ŷ ← B, T ),δprec,Mm,�|=

(Ŷ ← B, T )
�

< hmax

≡δF,Mm,�|=

(Ŷ ← B, T )< hmax

(5.38)

In order to prove the second property of decomposability, which is given in De�nition 3.3 ii), to be met

by the example-based F-Measure, Equation 5.39 is used. It is based on similar implications as discussed

above.

δF,Mm,�|=

( ŷi ← B, T ) = hmax , ∀ ŷi

�

ŷi ∈ Ŷ
�

w.r.t. (5.30), (5.29)
=========⇒

and (5.37)
δprec,Mm,�|=

( ŷi ← B, T ) = hmax , ∀ ŷi

�

ŷi ∈ Ŷ
�

w.r.t. decomposability of
============⇒

δprec,Mm,�|=

δprec,Mm,�|=

(Ŷ ← B, T ) = hmax

w.r.t. (5.30), (5.29)
=========⇒

and (5.37)
H
�

δrec,Mm,�|=

(Ŷ ← B, T ),δprec,Mm,�|=

(Ŷ ← B, T )
�

= hmax

≡δF,Mm,�|=

(Ŷ ← B, T ) = hmax

(5.39)

Equation 5.38 and Equation 5.39 prove, that the properties of decomposability, according to De�nition

3.3, are met, when using example-based F-Measure together with the rule-dependent evaluation strategy

for measuring the performance of multi-label head rules. The proof, which is given in this section, is

independent of the used β-parameter. �
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5.1.4.4 Macro-Averaging

When using macro-averaging for measuring the performance of a multi-label head rule, a heuristic value

is obtained per example and label beforehand. By averaging the obtained values �rst example-wise and

then label-wise, or vice versa, a single performance can be calculated afterwards. Based on the �rst of

both averaging orders, the following proof shows, that the macro-averaged F-Measure is equivalent to

macro-averaged recall and precision, when using the rule-dependent evaluation strategy.

Proof of Decomposability: Equation 5.40 shows, how the macro-averaged F-Measure of a multi-label

head rule Ŷ ← B is calculated, when using the rule-dependent evaluation strategy. The equation is

written in terms of the (weighted) harmonic mean operation H, which is used to trade-off between

recall and precision.

δF,M M ,�|=

(Ŷ ← B, T ) =
1

|Ŷ |
·
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ŷi∈Ŷ
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Â (5.30) applies

=
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|Ŷ |
·
∑

ŷi∈Ŷ

∑

j

T P j
i

m
Â c.f (5.13), line 2 and (5.22), line 2

≡δrec,M M ,�|=

(Ŷ ← B, T )

≡δprec,M M ,�|=

(Ŷ ← B, T )

≡δprec,Mm,�|=

(Ŷ ← B, T )

(5.40)

As shown in Equation 5.40 above, for each example and label, recall and precision both evaluate to

either 0 or 1, depending on whether a true positive is covered, or not. This particularity corresponds

to observations, which are made in Section 5.1.2.4 and Section 5.1.1.4. As a result, due to its value

preservation property (cf. Equation 5.30), the harmonic mean � and consequently the F-Measure � of

the heuristic values, which are obtained for each example and label, is always identical to recall and

precision. This implies, that the F-Measure is equivalent to both, the recall and precision metric, when

using macro-averaging together with the rule-dependent evaluation strategy. Due to this equivalence,

the macro-averaged F-Measure is proven to be decomposable according to De�nition 3.3, if the rule-

dependent evaluation strategy is used. This is, because the macro-averaged variants of the recall and

precision metrics are shown to ful�ll said de�nition in Section 5.1.2.4, respectively Section 5.1.1.4.

Furthermore, macro-averaged precision is shown to be equivalent to example-based precision in Section

5.1.1.4. As a result, the macro-averaged F-Measure is implied to be equivalent to that evaluation strategy

as well. The equivalences, which are shown in Equation 5.40, are independent of the β-parameter's

value. �

5.1.5 Subset Accuracy

According to the de�nition of subset accuracy, which is given in Equation 2.18, this evaluation metric

measures the percentage of perfectly predicted label vectors among all examples of a data set. When

using the rule-dependent evaluation strategy, a label vector is considered to be predicted perfectly, if all
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labels, which are set by a rule, are predicted correctly. The labels, which are not predicted by a rule, are

not taken into account in such case. As already mentioned in Section 2.3.3, the subset accuracy metric is

only de�ned in terms of using example-based averaging. Therefore the remaining averaging strategies,

which are discussed in Section 2.3.2, must not be considered at this point. In the following proof,

which shows, that subset accuracy meets the properties of anti-monotonicity, the evaluation function is

written in terms of true positives and true negatives as shown in Equation 5.41 below. According to said

equation, the performance for an individual example evaluates to 1, if the number of correctly predicted

labels (true positives and true negatives) equals the number of labels, which are predicted by a rule. If

the sum of true positives and false negatives is less than the number of predicted labels, at least one label

is predicted incorrectly and the performance therefore evaluates to 0.

δacc,�|=

(Ŷ ← B, T ) =
1
m
·
∑

j
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ŷi∈Ŷ
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T P j
i + T N j

i

�

= |Ŷ |



 (5.41)

Proof of Decomposability: The proof, which is shown below, proves the properties of anti-monotonicity,

according to De�nition 3.1, to be met by the subset accuracy metric, when using the rule-dependent

evaluation strategy. In Equation 5.42 two multi-label head rules Ŷp ← B and Ŷs ← B take part. In

accordance with the equation, which is given in De�nition 3.1, both rules share a common body B and

the head Ŷs is assumed to contain additional label attributes besides those of Ŷp. Furthermore, it is

assumed, that the rule Ŷp← B outperforms the rule Ŷs← B.
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(Ŷs← B, T )< δacc,�|=
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Ŷp←B,T

= 1







=⇒∃ ŷi∃ j
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Ŷa←B,T

�

, ∀Ŷa
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�

=⇒
1
m
·
∑

j





∑
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(5.42)
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In Equation 5.42 it is concluded, that when using the rule Ŷs ← B, the performance for at least one

example is less, than when using the rule Ŷp ← B (cf. Equation 5.42, third line). As the performance

for an individual example may either be 0 or 1, the performance for said example must evaluate to 0,

when evaluated against the rule Ŷs ← B, respectively to 1, when considering the rule Ŷp ← B. Because
the performance only becomes 0, if the number of correctly predicted labels is less than the number of

predicted labels, this leads to the conclusion, that the head Ŷp contains at least one label attribute ŷi,

which predicts the corresponding label λi of the respective example incorrectly. By adding additional

label attributes, the label λ1 will still be predicted incorrectly. Therefore, for all multi-label head rules

Ŷa ← B, which result from adding additional label attributes to the head Ŷs, the performance of the

respective example evaluates to 0. This implies, that by adding additional label attributes to the rule

Ŷs ← B, neither the performance of the rule Ŷp ← B, nor the best possible performance hmax , can be

reached. As this is in accordance with De�nition 3.1, the properties of anti-monotonicity are shown to

be met by the subset accuracy metric, when using the rule-dependent evaluation strategy. �

5.2 Rule-independent Evaluation

In this section, the evaluation functions, which are given in Section 2.3.3, are examined in terms of anti-

monotonicity and decomposability, when using the rule-independent evaluation strategy. As discussed

in Section 3.1, all labels, regardless of whether they are predicted by a rule, or not, must be taken into

account by a rule-independent evaluation. If a label is not set by a rule, it is assumed to be predicted

as irrelevant. In order to simplify the notation of the proofs, which are shown throughout this section,

the following functions r, T → N are used. The function T P i
max returns the maximum number of true

positives a rule r may cover, regarding the label λi of a data set T . The return value of that function

solely depends on the examples, which are covered by the rule's body. It does not take the rule's head

into account, but returns the maximum number of true positives the best possible head could reach.

T P i
max(r, T ) := max





∑

(X j ,Yj)∈C

�

yi ∈ Yj = 1
�

,
∑

(X j ,Yj)∈C

�

yi ∈ Yj = 0
�



 (5.43)

The function T Pmax is similar to the function, which is given above. It returns the maximum number of

true positives, which can be reached by a rule r on a data set T . Unlike the function T P i
max , which does

only consider a single label, the return value of the function T Pmax depends on all available labels.

T Pmax(r, T ) :=
∑

i

T P i
max (5.44)

In addition to the functions, which are shown above, the variable hmax is used to denote the best possible

performance, which can be reached on a data set, using a speci�c evaluation function and averaging

strategy. This corresponds to the semantic of the variable hmax as used in De�nition 3.1 and De�nition

3.3. In the following proofs, the variable hmax is used as a �symbolic� value. The actual value, which

depends on the used evaluation function and averaging strategy, is usually not given. Moreover, in the

context of label-based averaging, the variable hi
max is used to denote the best possible performance,

which can be reached for an individual label λi.

5.2.1 Precision

In this section, the precision metric is examined in terms of anti-monotonicity, when used together with

the rule-independent evaluation strategy. As shown in the following subsections, said evaluation function

meets the properties of anti-monotonicity, regardless of whether micro-averaging, label-based averaging,

example-based averaging or macro-averaging is used.
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5.2.1.1 Micro-Averaging

Equation 5.45 illustrates, how the micro-averaged precision of a multi-label head rule Ŷ ← B is cal-

culated, when using the rule-independent evaluation strategy. According to Equation 2.12, precision

measures the percentage of true positives among the labels of all covered examples. Whereas the num-

ber of covered examples is denoted as |C |, the number of labels corresponds to the variable n.

δprec,mm, |= (Ŷ ← B, T ) =
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j
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i
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j
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i
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∑
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j

p j
i = n · |C |

=

∑

i

∑

j
T P j

i

n · |C |

(5.45)

Proof of Anti-Monotonicity: In Equation 5.46, the precision metric is shown to meet the properties of

anti-monotonicity, when using the rule-independent evaluation strategy. In accordance with De�nition

3.1, which formally speci�es the properties of anti-monotonicity, two multi-label head rules Ŷp ← B and

Ŷs← B take part in the equation.
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=⇒

∑

i

∑

j
T P j

i

n · |C |

�

�

�

�

�

�

�
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Ŷs←B,T

<
∑

i

∑

j

T P j
i

�

�

�

�

�
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�

Ŷs ⊂ Ŷa

�

=⇒

∑

i

∑

j
T P j

i

n · |C |

�

�

�

�

�

�

�
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Whereas the rules Ŷp ← B and Ŷs ← B, which take part in Equation 5.46, share a common body B,
their heads differ. The head Ŷs is assumed to contain additional label attributes besides those of the

head Ŷp. Moreover � in accordance with De�nition 3.1 �, the rule Ŷp ← B is assumed to reach a higher

performance than the rule Ŷs ← B. In the second line of Equation 5.46, the performance calculations

regarding the rules Ŷp ← B and Ŷs ← B are rewritten with respect to Equation 5.45. As both of the

resulting fractions share a common denominator n · |C |, it is implied, that the difference between both

rules' performances exclusively results from the true positives they cover. Because the performance of

the rule Ŷs ← B is assumed to be less than the performance of the rule Ŷp ← B, the �rst rule is implied

to cover less true positives than the latter. As a consequence, the rule Ŷs ← B cannot reach the best

possible performance hmax (cf. Equation 5.46, line 3). If the maximum number of true positives is not

reached by a rule, this is, because for at least one label less true positives than possible are covered � i.e.

for a label λi the rule Ŷs ← B does not reach T P i
max (cf. Equation 5.46, line 4). By adding additional

label attributes to the head Ŷs, the maximum number of true positives T Pmax cannot be covered either,

because the label for which T P i
max is not reached, is still contained in the head (cf. Equation 5.46, line

5 and 6). As a result, no rule Ŷa ← B, which results from adding additional label attributes to the head

of the rule Ŷs ← B, are able to reach the best possible heuristic value hmax . As this is in accordance with

De�nition 3.1, the de�nition of anti-monotonicity is met. Consequently, the precision metric is shown to

be anti-monotonous, when used together with micro-averaging and a rule-independent evaluation. �

5.2.1.2 Label-based Averaging

Proof of Anti-Monotonicity: Equation 5.47, which is shown below, proves the use of label-based av-

eraging to be equivalent to the use of micro-averaging, regarding the precision metric and a rule-

independent evaluation.

δprec,mM , |= (Ŷ ← B, T ) =
1
n
·
∑

i

∑

j
T P j

i

∑

j
p j

i

, with
∑

j

p j
i = |C | , ∀i

=

∑

i

∑

j
T P j

i

n · |C |
Â c.f (5.45), last line

≡δprec,mm, |= (Ŷ ← B, T )

(5.47)

As Equation 5.47 illustrates, when using label-based averaging, a heuristic value is calculated for each

available label. By averaging the obtained values, a single performance can be computed afterwards. The

heuristic value, which is obtained for each label, calculates as the percentage of true positives among

all covered examples |C |. This particularity can be exploited in order to rewrite the calculation to be in

accordance with Equation 5.45. As Equation 5.45 corresponds to the use of micro-averaging, it follows,

that label-based precision is equivalent to micro-averaged precision, when using the rule-independent

evaluation strategy. Moreover, as the latter variant is shown to be anti-monotonous in Section 5.2.1.1,

label-based precision is implied to meet the de�nition of anti-monotonicity as well. �

5.2.1.3 Example-based Averaging

The proof, which is given in the following, in order to prove example-based precision to be anti-

monotonous, when using the rule-independent evaluation strategy, is similar to the one, which is given
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in Section 5.2.1.1 above. It is based on Equation 5.48, which shows, how the performance of a multi-

label rule Ŷ ← B is calculated. According to the de�nition of example-based averaging, which is given in

Equation 2.9, heuristic values are obtained for each example at �rst. According to the precision metric,

these values measure the number of true positives among all labels n. The overall performance of a

rule �nally results from the arithmetic mean of the heuristic values, which have been obtained for the

individual examples. The variable m is used to denote the total number of examples, which are available

in a data set.
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1
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j
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i
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i
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i
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i

, with
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i

p j
i = n , ∀ j
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j
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i

n ·m

(5.48)

Proof of Anti-Monotonicity: Equation 5.49 shows, that the equation, which is given in De�nition 3.1

is met, when using example-based precision together with the rule-independent evaluation strategy. In

accordance with De�nition 3.1, it includes two multi-label head rules Ŷp← B and Ŷs← B, which share a

common body B.
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(5.49)
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In Equation 5.49, the rule Ŷs ← B is assumed to contain additional label attributes beyond those of the

rule Ŷp← B in its head. It is further assumed to reach a lower performance than the rule Ŷp← B. When

rewriting the performance calculations, which are given in the �rst line of Equation 5.49, with respect

to Equation 5.48, it follows from the premise of the proof, that the rule Ŷs← B covers less true positives

than the rule Ŷp ← B. This further implies, that the number of true positives, which are covered by the

rule Ŷs← B, is less than the maximum number of true positives T Pmax (cf. Equation 5.49, line 3). When

considering each label individually, it can be stated, that for at least one label λi the maximum number

of true positives T P i
max is not reached by the rule Ŷs← B (cf. Equation 5.49, line 4). When creating rules

Ŷa ← B by adding additional label attributes to the head Ŷs of said rule, all of these rules still predict

the same value for label λi and therefore are not able to reach the maximum number of true positives

T P i
max either (cf. Equation 5.49, line 5). As a result, all rules, which result from adding additional label

attributes, do not cover as many true positives as the best possible rule is able to cover and therefore

none of them reaches the best possible performance hmax . As this is in accordance with De�nition 3.1,

the precision metric is proved to be anti-monotonous, when used together with example-based averaging

and the rule-independent evaluation strategy. �

5.2.1.4 Macro-Averaging

Proof of Anti-Monotonicity: When using macro-averaging for measuring the performance of a rule,

heuristic values are obtained for each example and label at �rst. Afterwards, a single performance

is calculated by �rst example-wise and then label-wise averaging the obtained values, or vice versa.

Equation 5.50, which is shown below, illustrates the calculation of a multi-label head rule's precision,

when using the �rst of both averaging orders together with the rule-independent evaluation strategy.

δprec,M M , |= (Ŷ ← B, T ) =
1
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·
∑

i

 

1
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·
∑

j
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p j
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i , ∀i∀ j
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∑

i

∑

j
T P j

i

n ·m
Â c.f (5.48), last line

≡δprec,Mm, |= (Ŷ ← B, T )

(5.50)

When using macro-averaged precision, the heuristic value, which is obtained for each example and label,

is either 0 or 1, depending on whether a true positive is covered, or not. This enables to rewrite Equa-

tion 5.50 to be in accordance with Equation 5.48. As Equation 5.48 corresponds to the example-based

variant of the precision metric, macro-averaged precision is shown to be equivalent to its example-based

counterpart, when using the rule-independent evaluation strategy. Because example-based precision

is proved to meet De�nition 3.1 in Section 5.2.1.3, macro-averaged precision is implied to meet that

de�nition as well. It therefore can be considered to be anti-monotonous. �

5.2.2 Recall

In the following subsections, the recall metric, as given in Equation 2.13, is examined in terms of anti-

monotonicity, when using micro-averaging, label-based averaging, example-based averaging or macro-

averaging together with the rule-independent evaluation strategy. Unlike the precision metric, recall also

takes the false negatives, which are covered by a rule, into account. As a result, the performance of a

rule does not only depend on the covered examples, but also on the examples, which are not covered by

the rule.
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5.2.2.1 Micro-Averaging

Equation 5.51 shows, how the micro-averaged recall of a multi-label rule Ŷ ← B is calculated, when

using the rule-independent evaluation strategy. As the equation illustrates, the recall metric measures

the percentage of true positives among all relevant labels (true positives and false negatives).

δrec,mm, |= (Ŷ ← B, T ) =

∑

i

∑

j
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i
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i
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j
T P j

i +
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i

∑

j
FN j

i

(5.51)

In order to show, that micro-averaged recall is anti-monotonous, Lemma 5.2 is utilized. Said lemma

states, that the micro-averaged recall of a rule is greater than the performance of another rule, if the �rst

rule covers more true positives � but the same number of false negatives � than the second one. Note, that

two rules cover the same number of false positives, if they share a common body and therefore cover

the same examples. This is, because the false negatives result from the relevant labels of uncovered

instances, regardless of a rule's head.

Lemma 5.2: If there are two multi-label head rules, which cover the same number of false negatives, but a

different number of true positives, the rule, which covers T P∆ more true positives than the other rule, reaches

a higher performance according to the recall metric, when using micro-averaging and a rule-dependent

evaluation:
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(5.52)

Proof: In order to prove the inequality, which is given in Lemma 5.2, to be hold, it is rewritten in terms

of a single fraction at �rst. As Equation 5.53 shows, rewriting the inequality is based on converting both

fractions of the original equation to like quantities by multiplying their denominators with each other

and adapting the numerators accordingly.
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(5.53)

By proving, that the denominator of the fraction, which is shown in the last line of Equation 5.53, is

greater than zero, the inequality, which is part of Equation 5.53, is shown to hold. The denominator is

shown to be positive by Equation 5.54 below. It is based on the fact, that the performance of the rule,

which covers less true positives than its counterpart, must be less than 1. In this context, the value 1 can
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be written as
T P∆
T P∆

. By using cross-multiplication, the inequality, which is given in Equation 5.54, can be

converted to be in accordance with the denominator of the fraction given above.
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(5.54)
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Proof of Anti-Monotonicity: Equation 5.55 shows, that micro-averaged recall meets the de�nition of

anti-monotonicity, when using the rule-independent evaluation strategy. In accordance with said de�-

nition, which is given in De�nition 3.1, two multi-label head rules Ŷp ← B and Ŷs ← B take part in the

equation. The latter of both rules is assumed to contain additional label attributes, beyond those of the

head Ŷp, in its head. Furthermore, it is assumed to have a lower performance than the rule Ŷp← B.
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Both rules Ŷp ← B and Ŷs ← B, which take part in Equation 5.55, have an identical body B. Because

of this, they cover the same examples. This further implies, that they cover the same number of false

negatives. As a result, the difference in their performances must result from the number of true positives

each of the rules covers. With respect to Lemma 5.2, it can be stated, that the performance of the rule

Ŷs← B is less than the performance of the rule Ŷp← B, because it covers less true positives (cf. Equation
5.55, line 3). When considering each label individually, it follows, that there is at least one label λi, for

which the rule Ŷs ← B does not cover the maximum number of true positives T P i
max (cf. Equation 5.55,

line 4). When adding additional label attributes to the rule's head, the prediction for that particular label

remains the same. Therefore no rule Ŷa← B, which results from adding additional label attributes to the

head of the rule Ŷs← B, is able to reach the maximum number of true positives T Pmax or the maximum

performance hmax (cf. Equation 5.55, line 6 and 7). This corresponds to the anti-monotonicity property

as speci�ed in De�nition 3.1. Equation 5.55 therefore shows, that De�nition 3.1 is met, when using the

recall metric, together with micro-averaging and the rule-independent evaluation strategy, for measuring

the performances of multi-label head rules. As a result, said evaluation strategy is proved to meet the

properties of anti-monotonicity. �

5.2.2.2 Label-based Averaging

When using label-based averaging, the performance of a rule is calculated by �rst obtaining a heuristic

value per label and averaging the obtained values afterwards. Equation 5.56 shows, how the recall

of a multi-label head rule Ŷ ← B is calculated, when using said averaging strategy together with a

rule-independent evaluation.

δrec,mM , |= (Ŷ ← B, T ) =
1
n
·
∑

i

∑

j
T P j

i

∑

j
P j

i

(5.56)

Proof of Anti-Monotonicity: The proof, which is given in Equation 5.57, shows, that the recall metric is

anti-monotonous, when used together with label-based averaging and the rule-independent evaluation

strategy. It is based on the consideration, that the prediction for at least one label must be non-optimal,

if the overall performance of a rule is less than the best possible performance hmax . According to the

de�nition of anti-monotonicity, which is given in De�nition 3.1, Equation 5.57 includes two multi-label

head rules Ŷp ← B and Ŷs ← B of which the �rst one is assumed to outperform the latter one. This

implies, that the rule Ŷs← B � whose head contains additional label attributes beyond those of the head

Ŷp � cannot reach the best possible performance hmax (cf. Equation 5.57, line 2). Consequently, there is

a label λi, for which the rule Ŷs← B does not reach the performance hi
max . When adding additional label

attributes to the rule's head, the prediction for the label λi remains unchanged. This implies, that the

performance, which is reached by a rule Ŷa ← B, which results from adding additional label attributes

to the head Ŷs, is still less than hi
max and therefore not optimal (cf. Equation 5.57, line 4). Because of

this, it is shown, that by adding additional label attributes to the head of rule Ŷs ← B, the best possible
performance hmax cannot be reached. As this is in accordance with the equation, which is given as part

of De�nition 3.1, Equation 5.57 proves the properties of anti-monotonicity to be met in case of using

label-based recall together with the rule-dependent evaluation strategy.
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5.2.2.3 Example-based Averaging

According to the de�nition of example-based averaging, which is given in Equation 2.9, the performance

of a rule is calculated by �rst obtaining a heuristic value for each example and averaging the results af-

terwards. The example, which is given in the following, reveals, that the properties of anti-monotonicity

are not met, when using said averaging strategy for measuring the rule-independent recall of multi-label

head rules.

Disproof of Anti-Monotonicity: The counterexample, which is given in the following, is based on the

exemplary label vectors, which are shown in Table 6. The label space, which is used in the example,

includes four labels L = {λ1,λ2,λ3,λ4}. Similar to previous examples, some of the examples in Table 6

are assumed to be covered by a rule's body and some are not.

λ1 λ2 λ3 λ4

Not covered

Y1 0 1 1 1

Y2 1 1 1 1

Y3 0 1 0 0

Covered

Y4 1 0 0 0

Y5 1 0 0 0

Y6 0 0 1 1

Table 6: Exemplary label vectors of training examples used by Figure 4 and given the label space

L= (λ1,λ2,λ3,λ4). Some examples are assumed to be covered by a given body, some are not.
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In Figure 4, a search tree, which corresponds to an exhaustive search through the label space

L= {λ1,λ2,λ3,λ4} is shown. The search is based on the training examples, which are shown in Ta-

ble 6. For evaluating potential multi-label heads, example-based recall is used together with the rule-

independent evaluation strategy. Whenever adding a label attribute to a head causes the performance

of the resulting rule to decrease, the corresponding edge in Figure 4 is highlighted by using a red arrow

(→). If the performance increases or remains constant instead, green (→) and black arrows (→) are

used accordingly.
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Figure 4: Search through the label space for �nding the best multi-label rule head given the examples

in Table 6 and using label-based recall, together with the rule-independent evaluation strategy,

for performance evaluation. The dashed line ( ) indicates the label combinations, which are

left out, when pruning the search according to the properties of anti-monotonicity as given in

De�nition 3.1.

According to Figure 4, the label combination { ŷ1, ŷ2, ŷ3, ŷ4}, which reaches a performance of 1
2 , is con-

sidered to be the best solution. However, when pruning the search according to the anti-monotonicity

property � as indicated by the dashed line ( ) �, this particular label combination is not found. This is,

because the performance decreases from 1
2 to 1

3 , when adding the label attribute ŷ2 to the head { ŷ1}. Ac-
cording to the anti-monotonicity property, the heads, which result from adding additional label attributes

� namely the head{ ŷ1, ŷ2, ŷ3}, as well as { ŷ1, ŷ2, ŷ4} and { ŷ1, ŷ2, ŷ3, ŷ4} �, cannot reach the best possible

performance. Therefore these label combinations are not considered by a pruned search. However, as

Figure 4 shows, adding the label attribute ŷ3 to the head { ŷ1, ŷ2} causes the best possible performance

of 1
2 to be reach, which contradicts the de�nition of anti-monotonicity. Because of this, the recall metric

is disproved to be anti-monotonous according to De�nition 3.1, when used together with example-based

averaging and when utilizing the rule-independent evaluation strategy. �
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5.2.2.4 Macro-Averaging

According to Equation 2.11, the macro-averaged performance of a rule is calculated by obtaining a

heuristic value for each example and label at �rst. By �rst calculating the example-wise arithmetic mean

and then the label wise arithmetic mean, or vice versa, the individual heuristic values are �nally averaged

in order to obtain a single performance. The proof, which is given in the following, uses the �rst of both

averaging orders in order to show, that macro-averaged recall is equivalent to macro-averaged precision,

when using a rule-independent evaluation.

Proof of Anti-Monotonicity: In Equation 5.58, the calculation of a multi-label head rule's recall, when

using macro-averaging and the rule-independent evaluation strategy, is illustrated.
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≡δprec,M M , |= (Ŷ ← B, T )

≡δprec,Mm, |= (Ŷ ← B, T )

(5.58)

As illustrated by Equation 5.58, the heuristic value, which is calculated for an individual example and

label, is either 0 or 1, depending on whether a true positive is covered, or not. Because of this, the

equation can be converted into a single fraction, which is in accordance with the second line of Equation

5.50. Said equation corresponds to the calculation of a rule's performance according to macro-averaged

precision. Consequently, it follows, that using macro-averaged recall for measuring the performance of a

rule is equivalent to using macro-averaged precision, if the rule-independent evaluation strategy is used.

Because, macro-averaged precision is proved to be anti-monotonous in Section 5.2.1.4, when using a

rule-independent evaluation, the macro-averaged variant of the recall metric is implied to meet De�ni-

tion 3.1 as well. Furthermore, it can also be considered to be equivalent to example-based precision,

because the latter is shown to be equivalent to the macro-averaged variant of the precision metric in

Section 5.2.1.4 as well. �

5.2.3 Hamming Accuracy

In this section, the accuracy metric is examined in terms of anti-monotonicity, when using the rule-

independent evaluation strategy. The consideration, which are given in this section, are similar to the

ones, which are given in Section 5.2.1 with respect to the precision metric. As the proofs, which are given

in the following subsections, reveal, hamming accuracy meets the de�nition of anti-monotonicity regard-

less of whether micro-averaging, label-based averaging, example-based averaging or macro-averaging is

used.

5.2.3.1 Micro-Averaging

According to Equation 2.14, the hamming accuracy metric measures the percentage of correctly pre-

dicted relevant and irrelevant labels among all labels. An example of using that evaluation strategy for

searches through the label space is given in Figure 1 of Chapter 3. Equation 5.59, which is shown below,

illustrates, how the performance of a multi-label head rule Ŷ ← B is calculated when using said evalua-

tion function together with micro-averaging and the rule-independent evaluation strategy. The equation
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can be converted to only depend on true positives and true negatives, because the number of all labels

equals the number of examples m, which are contained by the respective data set, times the number of

available labels n. Furthermore, the number of true negatives, which are covered by two rules, is equal,

if both rules share an identical body. This is, because the true negatives depend on examples, which

are not covered by a rule's body, whereas the true positives result from a rules' predictions on covered

examples.
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Proof of Anti-Monotonicity: Equation 5.60 shows, that anti-monotonicity, as speci�ed in De�nition 3.1,

is met by micro-averaged hamming accuracy, when used together with the rule-independent evaluation

strategy. According to the equation, which is given in De�nition 3.1, in Equation 5.60 two multi-label

head rules Ŷp← B and Ŷs← B take part.
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�

=⇒

∑

i

∑

j

�

T P j
i + T N j

i

�

n ·m

�

�

�

�

�

�

�
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Whereas both rules Ŷp ← B and Ŷs ← B, which take part in Equation 5.60, share the same body B,
the head Ŷs is assumed to contain additional label attributes besides those, the head Ŷp consists of.

Furthermore, the rule Ŷp ← B is assumed to outperform the rule Ŷp ← B, which implies that the latter

cannot reach the best possible performance hmax (cf. Equation 5.60, line 1 and 2). When writing the

calculation of both rules' performances according to Equation 5.59, the performances are denotated as

fractions with identical denominators. Because of this, the difference in both rules' performances can

only result from the true positives and true negatives, the respective numerators are calculated from.

However, as two rules with identical bodies cover the same number of true negatives, it follows, that the

reason for the performance of the rule Ŷs ← B to be lower than that of the rule Ŷ ← B must be, that it

covers less true positives (cf. Equation 5.60, line 3). When considering each available label individually,

this implies, that for at least one label λi the maximum number of true positives T P i
max is not reached

by the rule Ŷs ← B (cf. Equation 5.60, line 4). Even when adding additional label attributes to the head

of said rule, the prediction for the label λi remains unchanged and therefore the maximum number of

true positives T Pmax cannot be reached by such rule Ŷa ← B either (cf. Equation 5.60, line 5 and 6).

From that observation follows, that no rule Ŷa← B, which results from adding additional label attributes

to the head of the rule Ŷs ← B, is able to reach the best possible performance hmax (cf. Equation 5.60,

line 7 and 8). This corresponds to anti-monotonicity property as given in De�nition 3.1. Consequently,

Equation 5.60 proves the de�nition of anti-monotonicity to be met, if micro-averaged hamming accuracy

is used for measuring the performance of multi-label head rules using the rule-independent evaluation

strategy. �

5.2.3.2 Label-based Averaging

When using label-based averaging according to Equation 2.10 for measuring the performance of a multi-

label head rule, a heuristic value is obtained per available label at �rst. The overall performance of the

rule �nally calculates as the arithmetic mean of all obtained values. The following proof shows, that

using said averaging strategy for measuring the rule-independent performance of a rule, according the

hamming accuracy metric, is equivalent to using micro-averaging.

Proof of Anti-Monotonicity: In Equation 5.61, the calculation of a multi-label head rule's performance,

using the label-based hamming accuracy metric together with the rule-independent evaluation strategy,

is illustrated.
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Â c.f (5.59), last line

≡δhamm,mm, |= (Ŷ ← B, T )

(5.61)
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According to Equation 5.61, the heuristic value, which is calculated for an individual label, measures

the percentage of examples for which the respective label is predicted correctly. It can be written as

a fraction, whose numerator consists of the covered true positives and true negatives, whereas the de-

nominator represents the number of examples m. By further rewriting the equation, it can be converted

to be in accordance with the last line of Equation 5.59, which corresponds to using the micro-averaged

variant of the hamming accuracy metric. As a result, label-based and micro-averaged hamming accu-

racy are shown to be equivalent, when used in terms of the rule-independent evaluation strategy. As

the latter is shown to meet the properties of anti-monotonicity, the label-based variant is implied to be

anti-monotonous according to De�nition 3.1 as well. �

5.2.3.3 Example-based Averaging

According to the de�nition of example-based averaging, which is given in Equation 2.9, when using said

averaging strategy, a heuristic value is calculated for each example at �rst. Afterwards, by averaging the

obtained values, the overall performance of a rule is computed. Such as the prove, which is given in the

previous section, the proof, which is given in the following, shows, that using example-based averaging

for measuring the rule-independent hamming accuracy of a rule is equivalent to using micro-averaging.

Proof of Anti-Monotonicity: Equation 5.62 shows, how the performance of a multi-label head rule Ŷ ←
B is calculated according to the hamming accuracy metric, when using example-based averaging together

with the rule-independent evaluation strategy. According to Equation 5.62, the heuristic value, which is

calculated for an individual example, measures the percentage of labels, which are predicted correctly

by the rule. This corresponds to a fraction, whose numerator consists of the covered true positives and

true negatives, whereas the denominator equals the number of available labels n (cf. Equation 5.62, line

2). By rewriting the equation, it can be converted to the same form as used in the last line of Equation

5.59. This proves, that the example-based hamming accuracy of a rule is equal to the micro-averaged

hamming accuracy, when using the rule-independent evaluation strategy.
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Â c.f (5.59), last line

≡δhamm,mm, |= (Ŷ ← B, T )

≡δhamm,mM , |= (Ŷ ← B, T )

(5.62)

From Equation 5.62 follows, that the example-based variant of the hamming accuracy metric is equiva-

lent to its micro-averaged counterpart, if the rule-dependent evaluation strategy is used. As the latter of

both evaluation functions is shown to be anti-monotonous in Section 5.2.3.1, when using example-based

averaging, it is implied, that the de�nition of anti-monotonicity, which is given in De�nition 3.1, is met

as well. Furthermore, as it is shown in Section 5.2.3.2, that using label-based averaging for measuring

the rule-independent hamming accuracy of a rule is equivalent to using micro-averaging, example-based

averaging is also equivalent to that variant. �
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5.2.3.4 Macro-Averaging

According to Equation 2.11, when using macro-averaging for measuring the performance of a rule, a

heuristic value is obtained per example and label at �rst. In order to calculate the overall performance

of the rule, the obtained values are �rst example-wise averaged and then label-wise averaged, or vice

versa. The �rst of both orders is used by the following proof to show the equivalence of macro- and micro-

averaging, when used together with the hamming accuracy metric and the rule-independent evaluation

strategy.

Proof of Anti-Monotonicity: Equation 5.63 shows, how the macro-averaged hamming accuracy of a

multi-label head rule Ŷ ← B calculates, when using a rule-independent evaluation. The heuristic value,

which is obtained for each example and label either evaluates to 1, if a true positive or true negative

is covered, or to 0 otherwise. This allows to eliminate the denominator of the fraction, which is shown

in the �rst line of Equation 5.63. By further converting the equation, it can be rewritten to match the

term, which is shown in the last line of Equation 5.59. This proves micro- and macro-averaging to be

equivalent, if used for measuring the rule-independent hamming accuracy of a multi-label head rule.
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≡δhamm,mm, |= (Ŷ ← B, T )

≡δhamm,mM , |= (Ŷ ← B, T )

≡δhamm,Mm, |= (Ŷ ← B, T )

(5.63)

As a result of Equation 5.63, which shows micro- and macro-averaging to be equivalent, when being

used for measuring the rule-independent hamming accuracy of multi-label head rules, the latter of both

variants is implied to be anti-monotonous. This is, because micro-averaged hamming accuracy is shown

to meet De�nition 3.1 in Section 5.2.3.1. Furthermore, using the label-based or example-based aver-

aging hamming accuracy metric together with the rule-independent evaluation strategy is shown to be

equivalent to using the micro-averaging variant in Section 5.2.3.2, respectively Section 5.2.3.3. Con-

sequently, the macro-averaged variant of the hamming accuracy is equivalent to using these averaging

strategies as well. �
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5.2.4 F-Measure

In the individual subsections of this section, the F-Measure is examined in terms of anti-monotonicity,

depending on whether micro-averaging, label-based averaging, example-based averaging or macro-

averaging is used. As already mentioned in Section 5.1.4, the F-Measure is de�ned as the weighted

harmonic mean of precision and recall. As the F-Measure is equivalent to the precision metric, if its β-
parameter is set to 0, only cases where β > 0 are considered in the present section. In the proofs, which

are given throughout the following subsections, the F-Measure is often written in terms of the harmonic

mean operation H as de�ned in Equation 5.28. Such as all Pythagorean means, the harmonic mean

operation meets the averaging property (cf. Equation 5.29), as well as the value preservation property

(cf. Equation 5.30).

5.2.4.1 Micro-Averaging

The proof, which is given below, shows, that the micro-averaged variant of the F-Measure meets the anti-

monotonicity property, when used together with the rule-independent evaluation strategy. It is based on

the fact, that micro-averaged recall and precision are anti-monotonous as well, when used for a rule-

independent evaluation, as it is proved in Section 5.2.2, respectively Section 5.2.1. Furthermore it uses

the notation, which is given in Equation 5.31, for denoting the best possible performance according to a

certain evaluation function.

Proof of Anti-Monotonicity: As the premise of the proof at hand, the best possible performance accord-

ing to the recall metric is assumed to be greater or equal than the best possible performance according

to the precision metric. Equation 5.64, which is given below, illustrates this assumption. It can be made

without loss of generality, because the proof, which is given in the following, can easily be adopted to an

alternative premise: If the best performance according to the precision metric is assumed to be greater or

equal than the best possible performance according to the recall metric, the corresponding proof would

be similar.

hrec
max ≥ hprec

max (5.64)

Furthermore, as already pointed out by Equation 5.32, the best possible performance according to the

F-Measure cannot be greater than the maximum of the best possible performances according to recall

and precision. Consequently, the inequality, which is given in Equation 5.65 below, holds.

hF
max ≤ max

�

hrec
max , hprec

max

�

(5.65)

Equation 5.66 proves the equation, which is given in De�nition 3.1, to be met in case of micro-averaged

F-Measure, when using the rule-independent evaluation strategy. It is based on rewriting the F-Measure

of two multi-label head rules Ŷp ← B and Ŷs ← B in terms of the harmonic mean operation H (cf.

Equation 5.66, line 2). In accordance with the equation, which is given in De�nition 3.1, both multi-

label head rules Ŷp← B and Ŷs← B share a common body B. However, the �rst of both rules is assumed

to outperform the second one due to their dissimilar heads: The head Ŷs is assumed to contain additional

label attributes beyond those of the head Ŷp and therefore the subset relationship Ŷp ⊂ Ŷs holds.
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Ŷp ⊂ Ŷs ∧δF,mm, |= (Ŷs← B, T )< δF,mm, |= (Ŷp← B, T )

≡Ŷp ⊂ Ŷs ∧H
�

δrec,mm, |= (Ŷs← B, T ),δprec,mm, |= (Ŷs← B, T )
�

< H
�
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�

w.r.t. (5.30)
=====⇒
and (5.30)
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==============⇒
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δrec,mm, |= (Ŷa← B, T )< hrec
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≡δF,mm, |= (Ŷa← B, T )< hF
max , ∀Ŷa
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Ŷs ⊂ Ŷa
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(5.66)

As already mentioned, the F-Measure calculates as the harmonic mean of precision and recall. As a

result, the averaging and value preservation properties (cf. Equation 5.29 and Equation 5.30) are given.

Because of this, either the recall or the precision of the rule Ŷs← B must be lower than the corresponding

heuristic value of the rule Ŷp ← B (cf. Equation 5.66, line 4 and 5). In Section 5.2.2 and Section

5.2.1 it is shown that both, the recall metric, as well as the precision metric, ful�ll the properties of

anti-monotonicity, when using the rule-independent evaluation strategy. Consequently, if the recall or

precision of the rule Ŷs ← B is less than that of the rule Ŷp ← B, the recall, respectively precision, of

any multi-label head rule Ŷa ← B, which result from adding additional label attribute to the head Ŷs,

cannot reach the best possible performance hF
max . Furthermore, due to the premise of the proof, the

best possible performance hrec
max can be considered as an upper border for the performance of the rule

Ŷa← B, regardless of it is measured by using the recall or precision metric (cf. Equation 5.66, line 6 and

7). From the averaging and value preservation properties of the harmonic mean operation follows, that

the F-Measure of the rule Ŷa ← B cannot reach the performance hrec
max . As the performance hF

max cannot

be greater than hrec
max due to Equation 5.65, the F-Measure of said rule is further guaranteed to be less

than hF
max (cf. Equation 5.66, line 8 and 9). According to the given argumentation, the de�nition of

anti-monotonicity is ful�lled, because if the performance of a rule decreases after adding an additional

label attribute to its head, by adding even more label attributes, the best performance hF
max cannot be

reached anymore. The F-Measure is therefore shown to be anti-monotonous, according to De�nition 3.1,

if it is used together with micro-averaging and the rule-independent evaluation strategy and if the β-
parameter is set to a value greater than 0. If β = 0 instead, the micro-averaged F-Measure is equivalent

to the micro-averaged variant of the precision metric, which is proved to be anti-monotonous in Section

5.2.1.1. �

82



5.2.4.2 Label-based Averaging

Proof of Anti-Monotonicity: In Equation 5.67, a prove, which shows, that the label-based F-Measure

meets the de�nition of anti-monotonicity, when used for measuring the rule-independent performance

of a multi-label head rule, is given. It is similar to the proof, which is shown in Equation 5.66 of the

previous section. Such as that proof, Equation 5.67 is based on the premise, which is given in Equation

5.64. It states without loss of generality, that the best performance according to the recall metric is

greater or equal than the best performance according to the precision metric.

Ŷp ⊂ Ŷs ∧δF,mM , |= (Ŷs← B, T )< δF,mM , |= (Ŷp← B, T )

≡Ŷp ⊂ Ŷs ∧H
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=====⇒
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(5.67)

Such as Equation 5.66, Equation 5.67 is based on rewriting the F-Measure in terms of the harmonic

mean of recall and precision. As both, label-based recall, as well as label-based precision, are shown

to be anti-monotonous in Section 5.2.2, respectively Section 5.2.1, it follows, that the F-Measure meets

De�nition 3.1 as well. As a result, if β > 0, the micro-averaged F-Measure can considered to be anti-

monotonous, when using the rule-independent evaluation strategy. When setting β = 0, the label-

based F-Measure is equivalent to the label-based precision metric. A proof, which shows, that the latter

evaluation strategy is anti-monotonous, when using the rule-independent evaluation strategy, can be

found in Section 5.2.1.2. �

5.2.4.3 Example-based Averaging

In the following, it is proved, that example-based F-Measure is anti-monotonous when using the rule-

independent evaluation strategy. The proof is based on rewriting the calculation of a multi-label head

rule's performance according to said evaluation strategy in terms of the weighted harmonic mean H as

shown in Equation 5.68. As the equation reveals, the recall and precision of an individual example both

evaluate to 0, if no true positives are covered for that particular example. If at least on true positive is

covered, the recall evaluates to 1 instead. As a consequence, the recall is constant for all examples for
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which true positives are covered, resulting in the F-Measure for these examples to be greater than the

precision, due to the averaging property of the harmonic mean operation (cf. Equation 5.29).
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(5.68)

Proof of Anti-Monotonicity: Equation 5.69 proves, that the F-Measure meets the de�nition of anti-

monotonicity, when used together with example-based averaging and a rule-independent evaluation.

According to the equation, which is given in De�nition 3.1, two multi-label head rules Ŷp ← B and

Ŷs← B take part in Equation 5.69. It is assumed, that the �rst of both rules outperforms the second one

and that the head Ŷs contains other label attributes in addition to those of the head Ŷp. Furthermore, the

proof is based on the premise, that the F-Measure of the rule Ŷp ← B is greater than the F-Measure of

the rule Ŷs ← B. This implies, that the precision of the �rst rule must be greater than that of the latter

one as well(cf. Equation 5.69, line 2). This implication is based on Equation 5.68, which states, that the

harmonic mean of the recall and precision, which are obtained for individual examples, solely depends

on the precision: If the precision is 0, the recall is 0 as well, resulting in the harmonic mean to evaluate

to 0. If the precision is greater than 0 instead, the recall is always 1, resulting in the harmonic mean to

solely depend on the measured precision. Because in Section 5.2.1.3 the example-based precision metric

is shown to be anti-monotonous, when used together with the rule-independent evaluation strategy, the

performance of any multi-label head rule Ŷa ← B, which results from adding additional label attributes

to the head of the rule Ŷs← B, must be less than the best possible performance hmax (cf. Equation 5.69,

line 3). Consequently, due to its averaging property, the harmonic mean of precision and recall must be

less than hmax as well (cf. Equation 5.69, line 4).

Ŷp ⊂ Ŷs ∧δF,Mm, |= (Ŷs← B, T )< δF,Mm, |= (Ŷp← B, T )

w.r.t. (5.30), (5.29)
=========⇒

and (5.69)
δprec,Mm, |= (Ŷs← B, T )< δprec,Mm, |= (Ŷp← B, T )

w.r.t. anti-monotonicity
===========⇒

of δprec,Mm, |=

δprec,Mm, |= (Ŷa← B, T )< hmax , ∀Ŷa

�

Ŷs ⊂ Ŷa

�

w.r.t. (5.30)
=====⇒
and (5.29)

H
�

δrec,Mm, |= (Ŷa← B),δprec,Mm, |= (Ŷa← B)
�

< hmax , ∀Ŷa

�

Ŷs ⊂ Ŷa

�

≡δF,Mm, |= (Ŷa← B, T )< hmax , ∀Ŷa

�

Ŷs ⊂ Ŷa

�

(5.69)

Equation 5.69 proves, that the equation, which is given in De�nition 3.1, holds in case of using the

example-based F-Measure for measuring the rule-independent performance of multi-label head rules.

Consequently, if the β-parameter is set to a value greater than 0, said evaluation strategy can be con-

sidered to be anti-monotonous. If the β-parameter is set to 0, the F-Measure is equivalent to precision.

The example-based variant of the precision metric is shown to be anti-monotonous, when using the

rule-independent evaluation strategy, in Section 5.2.1.3. �
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5.2.4.4 Macro-Averaging

According to the de�nition of macro-averaging, which is given in Equation 2.11, when using said aver-

aging strategy, a heuristic value is calculated for each example and label at �rst. Afterwards, in order to

compute the overall performance of a multi-label head rule, the obtained values are averaged example-

and label-wise, or vice versa. The �rst of both averaging orders is used in the following proof. It shows,

that the macro-averaged F-Measure is anti-monotonous, when used together the with rule-independent

evaluation strategy.

Proof of Anti-Monotonicity: Equation 5.70 shows, how the rule-independent performance of a multi-

label head rule Ŷ ← B is calculated according to the F-Measure, when using macro-averaging. The

heuristic value, which is obtained for each example and label corresponds to the (weighted) harmonic

mean of recall and precision. As already mentioned in Section 5.2.2.4 and Section 5.2.1.4, both, recall

and precision, either evaluate to 0 or 1 for an individual example and label, depending on whether a true

positive is covered, or not (cf. Equation 5.70, line 2). Because of this, for each example and label, recall

and precision are equal and therefore � due to the value preservation property of the harmonic mean

operation (cf. Equation 5.30) � the F-Measure evaluates to the same heuristic value as well. As a result,

Equation 5.70 can be rewritten as the fraction of true positives among all labels, which are contained

in the data set (cf. Equation 5.70, line 3). As the rewritten equation is in accordance with the second

line of Equation 5.58, as well as with the second line of Equation 5.50, the macro-averaged F-Measure

is implied to be equivalent to macro-averaged recall and precision, when using the rule-independent

evaluation strategy.
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Â c.f (5.50), line 2 and (5.58), line 2

≡δrec,M M , |= (Ŷ ← B, T )

≡δprec,M M , |= (Ŷ ← B, T )

≡δprec,Mm, |= (Ŷ ← B, T )

(5.70)

As a consequence of Equation 5.70, which proves the F-Measure to be equivalent to recall and precision,

when using macro-averaging together with the rule-independent evaluation strategy, the �rst one of

these evaluation functions is implied to be anti-monotonous according to De�nition 3.1. This is, because

the variants using the recall metric, respectively the precision metric, are shown to meet said de�nition

in Section 5.2.2.4 and Section 5.2.1.4. Furthermore, as the use of macro-averaging is shown to be

equivalent to the use of example-based averaging, when measuring the rule-independent performance

of multi-label head rules according to the precision metric, it follows, that the macro-averaged F-Measure

is equivalent to that evaluation strategy as well. The equivalences, which are shown in this section, are

independent of the F-Measure's β-parameter. �
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5.2.5 Subset Accuracy

In this section, the subset accuracy metric, as de�ned in Equation 2.18, is examined in terms of anti-

monotonicity, when using the rule-independent evaluation strategy. According to the discussion in

Section 2.3.3, when using subset accuracy, the performance of a multi-label head rule is calculated

by using example-based averaging per de�nition. Therefore, other averaging strategies � namely micro-

averaging, label-based averaging and macro-averaging � must not be considered at this point. In the

following it is proved, that the anti-monotonicity property, which is given in De�nition 3.1, is not ful-

�lled by the subset accuracy metric. The proof is given in form of an exemplary search through the label

space, which refutes the de�nition to be met.

Disproof of anti-monotonicity: Figure 5 shows the search tree, which corresponds to an exhaustive

search through the label space, given the examples, which are shown in table 7. It uses the subset

accuracy metric together with the rule-dependent evaluation strategy for performance evaluation. The

dashed line ( ) indicates the nodes, which are left out, when pruning the search tree under the as-

sumption, that the anti-monotonicity property, according to De�nition 3.1, is met by the used evaluation

function. In Figure 5, increases of the measured performance are indicated by using green arrows (→).

If the performance decreases as result of adding an additional label attribute to the head, which is rep-

resented by the preceding node, red arrows (→) are used accordingly. If adding a label attributes does

not affect the performance of a multi-label head rule, this is indicated by using black arrows (→).
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{ ŷ2}
h = 1

6
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Figure 5: Search through the label space for �nding the best multi-label rule head given the examples

in Table 7 and using subset accuracy, together with the rule-dependent evaluation strategy, for

performance evaluation. The dashed line ( ) indicates the label combinations, which must not

be considered, when pruning the search according to the anti-monotonicity property given in

De�nition 3.1.

86



Figure 5 is based on the exemplary label vectors, which are shown in Table 7. Similar to earlier examples,

which are given in this work, one half of the examples is assumed to be covered by a rule, whereas the

others are not.

λ1 λ2 λ3 λ4

Not covered

Y1 0 1 1 0

Y2 1 1 1 1

Y3 0 0 0 0

Covered

Y4 1 0 1 1

Y5 1 0 1 1

Y6 1 0 0 0

Table 7: Exemplary label vectors of training examples used by Figure 5 and given the label space

L= (λ1,λ2,λ3,λ4). Some examples are assumed to be covered by a given body, some are not.

As it can be seen in Figure 5, pruning the search prevents the label combination { ŷ1, ŷ3, ŷ4}, which
reaches the best performance 1

2 , from being found. Instead, a pruned search results in the head { ŷ1} to be
considered best, although it only reaches a performance of 1

3 . This is, because the measured performance

decreases, when adding the label attribute ŷ3 to the head { ŷ1}. According to the de�nition of anti-

monotonicity, label combinations, which result from adding additional labels, must not be considered, as

it is assumed, that the performances of the resulting multi-label head rules cannot reach the best possible

performance. However, the given counterexample reveals, that this is not always guaranteed, when using

the subset accuracy metric together with the rule-independent evaluation strategy. As adding the label

attribute ŷ4 to the head { ŷ1, ŷ3} not only causes the performance to increase, but also results in the best

possible performance among all possible heads, De�nition 3.1 is proved to not be met. Consequently,

the subset accuracy metric must be considered to not be anti-monotonous, when used together with the

rule-independent evaluation strategy. �
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6 Evaluation

In order to statistically evaluate the outcome of the algorithm, which is proposed in the present work,

an implementation of the algorithm has been tested on different multi-label data sets. The implementa-

tion utilizes the SECO-framework1 for rule learning, which has been developed at Technische Universität

Darmstadt [Janssen and Fürnkranz, 2010, Janssen and Zopf, 2012], and reuses parts of the imple-

mentation, which has been elaborated by Loza Mencía and Janssen [2015] as part of their work. The

implementation is meant to be a proof-of-concept, rather than focusing on high-performance compu-

tations, for which reason it is not applicable on very large data sets. The data sets, which have been

chosen for being used in the statistical experiments, are listed in Table 8 below. All of these multi-label

data sets are provided for free use by the developers of MULAN
2 � a Java library for multi-label learning

[Mulan Development Team, 2016]. The selection of data sets, which is shown in Table 8, consists of data

sets from different domains and includes data sets with nominal attributes, as well as with numerical

attributes.

Name Domain Instances Nominal Numeric Labels Cardinality Density Distinct

MEDICAL Text 978 1449 0 45 1.245 0.028 94

EMOTIONS Music 593 0 72 6 1.869 0.311 27

GENBASE Biology 662 1186 0 27 1.252 0.046 32

SCENE Image 2407 0 294 6 1.074 0.179 15

BIRDS Audio 645 2 258 19 1.014 0.053 133

Table 8: Characteristics of the data sets, which are used for the statistical evaluation of rule learning al-

gorithms [Mulan Development Team, 2016]. The columns from left to right specify the name of

the datasets, the domain of the input instances, the number of instances, the number of nom-

inal and numeric features, the total number of unique labels, the average number of labels per

instance (cardinality), the average percentage of relevant labels (label density) and the number

of distinct labelsets in the data (cf. [Loza Mencía and Janssen, 2015, Table 4]).

In order to train different rule learning algorithms on the selected data sets and to evaluate the learned

models on a test data set afterwards, the examples of the data sets, which are shown in Table 8, have

been separated into distinguished training and test examples beforehand. For separating the data sets

into training and test data, a ratio of 2:1 has been used. For all of the selected data sets, pre-separated

variants according to said ratio are available [Mulan Development Team, 2016].

Based on the data sets, which are shown in Table 8, different variants of rule learning algorithms

have been studied. In the remainder of this chapter, the outcome of these variants is compared to each

other in terms of predictive performance and characteristics of the learned models. One difference of

the tested rule learners corresponds to the heuristic, which is used for measuring the performance of

candidate rules during the rule induction process. Except for the recall metric, all heuristics, which are

given in Section 2.3.3, have been considered. Recall has not been used, because it is expected to result

in a bad predictive performance, when used for selecting candidate rules. This is, because it does not

penalize wrong predictions, which assess irrelevant labels as relevant. As a result, too many labels are

expected to be predicted as relevant, when using that metric. However, the recall metric has an in�uence

on measurements, which are based on the F-Measure, as it trades off between precision and recall. For

variants of rule learners, which use the F-Measure, the β-parameter has been set to 0.5, This results in

the measurement to be more precision-oriented. The decision for introducing a bias towards precision

has been made in order to prevent the prediction of too many labels as relevant with respect to the

characteristics of the recall metric as discussed previously.

1 More information about the SeCo-framework for rule learning can be found online at http://www.ke.tu-darmstadt.

de/resources/SeCo.
2 The website of the Java library �Mulan� is available at http://mulan.sourceforge.net.
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One aim of this chapter is to compare the algorithm, which is discussed in the present work, to other

multi-label classi�cation approaches. For this reason, a rule learner, which uses the binary relevance

method, and the algorithm for learning single-label head rules by Loza Mencía and Janssen [2015],

have been tested as well. The following list provides an overview of the titles, which are used for

referring to the different variants in the following, as well as a description of the respective rule learning

approaches:

� �BR�: This variant corresponds to the binary relevance problem transformation method. It is based

on transforming the original multi-label classi�cation task into multiple single-class classi�cation

problems (cf. Section 2.1.1). For solving the individual subproblems, a separate-and-conquer rule

learning algorithm, as provided by the SECO-framework, has been used. The separate-and-conquer

algorithm utilizes a top-down search.

� �Single�: The separate-and-conquer algorithm for learning single-label head rules, which has been

proposed by Loza Mencía and Janssen [2015] (cf. Section 2.2.3). For reasons of computational per-

formance, the authors use a variant of said algorithm, which internally uses JRip for the induction

of rules, for the statistical evaluations, which are part of their work. JRip is a rule learner for solv-

ing single-class classi�cation problems, based on the famous C4.5 algorithm [Quinlan, 2014]. It is

provided for free use as part of the WEKA
3 machine learning software. Besides its computational

ef�ciency, the use of JRip enables to post-process the learned rules, which tends to be bene�cial in

terms of predictive performance. Mencía and Janssen's multi-label classi�cation algorithm is able

to use JRip, because it considers only one label at once. However, in order to be able to induce

multi-label head rules, the algorithm, which is proposed in this work, cannot use JRip. Because

of this, � in order to ensure a fair comparison of predictive performances � a variant of Mencía

and Janssen's separate-and-conquer algorithm, which uses a top-down search based on the SECO-

framework, rather than JRip, has been used for the statistical evaluations, which are discussed at

this point.

� �Multi�: The title �Multi� is used in the following to refer to the separate-and-conquer algorithm

for learning multi-label head rules as proposed in the work at hand (cf. Chapter 4). In order

to measure the performance of individual rules during the rule induction process, different aver-

aging strategies can be used. In the following, the used averaging strategy is indicated by using

the subscript notation Multimm in case of micro-averaging, MultimM for label-based averaging and

MultiMm, respectively MultiM M , for example-based or macro-averaging. Furthermore, when using

an algorithm, which is able to induce multi-label head rules, using the subset accuracy metric (cf.

Equation 2.18) for selecting candidate rules, is a viable option. This is, because when using such

algorithm, all available labels are taken into account whenever inducing a new rule. When using

the binary relevance method or an algorithm for learning single-label head rules instead, only one

label is considered at once. In such case, subset accuracy is equivalent to the example-based ham-

ming accuracy metric (cf. Equation 2.14), which measures the percentage of correctly classi�ed

labels among all labels per instance.

By default, the separate-and-conquer algorithm by Loza Mencía and Janssen [2015] only induces rules,

which predict the presence of labels (when using the target G = {1}, cf. Algorithm 4). In addition,

it also offers the possibility to learn rules, which predict the absence of labels (when using the targets

G = {0,1}). As the algorithm for learning multi-label head rules, which is proposed in this work, is

based on said algorithm, it also provides the possibility to induce both types of rules (cf. Algorithm 13

and Algorithm 14). In the following, the symbol + is used to denominate approaches, which only predict

the presence of labels, whereas the symbol ± denotes variants, which also take rules, that predict the

absence of labels, into consideration.

3 The Weka machine learning software can be downloaded at https://sourceforge.net/projects/weka.
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The operation of both multi-label algorithms � the one for learning single-label head rules, as well as the

one for learning multi-label head rules � heavily depends on the strategy, which is used for re-inserting

training examples into the training process. In addition to using variants, which do not re-include

fully-covered training examples, variants, which provide fully covered examples to later iterations of

the respective separate-and-conquer algorithm, have been tested. For variants, which are based on an

re-inserting fully covered examples, the τ-parameter was set to 0.01. In the remainder of this chapter,

these variants are identi�ed by using the keyword stop.

6.1 Predictive Performance

One important goal of the statistical evaluations, which are discussed in this section, was to investigate

the predictive performance of different multi-label classi�cation approaches. To be able to compare the

individual approaches with each other, their performances according to the following evaluation metrics

have been obtained:

� �Hamm. Acc.�: This metric corresponds to hamming accuracy, as introduced in Equation 2.14.

The hamming accuracy of a learned model has been calculated by obtaining the predictive perfor-

mances, the model reaches for each example of a test set, and averaging the results example-wise.

� �Subset Acc.�: According to Equation 2.18, the subset accuracy of a model corresponds to the

percentage of test examples, whose label vectors have been predicted perfectly.

� �Ex.-based Prec.�: This corresponds to the example-based precision metric. According to Equation

2.12, for each test example, the percentage of correctly predicted relevant labels among all labels,

which are predicted as relevant, have been calculated. Finally, the obtained performances have

been averaged example-wise.

� �Ex.-based Rec.�: This metric corresponds to the example-based recall. According to Equation

2.13, for each test example, it measures the fraction of predicted relevant labels among all relevant

labels. The performances, which have been obtained for each test example, have been averaged

example-wise.

� �Ex.-based F1�: The F1-Measure, as introduced in Equation 2.17, trades of between precision

and recall. Because the β-parameter is set to 1, both metrics are weighted equally. When using

the example-based variant of the F1-Measure, a performance is obtained per test example at �rst.

Afterwards, the results are averaged example-wise.

� �Mi. Prec.�: This corresponds to the micro-averaged variant of the precision metric. According

to the de�nition of micro-averaging, the evaluation metric has been applied to the true positives,

false positives, true negatives and false negatives, which have been aggregated over the whole test

data set (cf. Equation 2.8).

� �Mi. Rec.�: When using this evaluation metric, according to the de�nition of micro-averaging, the

predictive outcome of a model on a test data set is aggregated at �rst. Afterwards, the recall metric

is applied to the aggregated information.

� �Mi. F1�: This corresponds to the micro-averaged variant of the F1-Measure.

The performances of the tested classi�cation approaches, according to the evaluation metrics, which are

discussed above, are given in Appendix A. The statistical experiments have been carried out with help

of the �Lichtenberg� high performance computer at Technische Universität Darmstadt4. For variants of

the approaches Multi+ and Multi±, which use the same evaluation function and averaging strategies

and which can be considered to be equivalent according to the examinations in Chapter 5, only one

representative has been tested.

4 For information about the �Lichtenberg� high performance computer, refer to http://www.hhlr.tu-darmstadt.de.

90

http://www.hhlr.tu-darmstadt.de


In the following, the predictive performances, which are shown in Table 12, 13, 14, 15 and 16, are

summarized and analyzed. Each of these tables corresponds to the results, which have been obtained

on one of the data sets MEDICAL, EMOTIONS, GENBASE, BIRDS and SCENE. The approaches Multi+ and

Multi± have been con�gured to use a rule-dependent evaluation strategy for candidate selection during

the rule induction process (cf. Chapter 3). Variants of said approaches, which used the rule-independent

evaluation strategy for inducing multi-label head rules, are discussed separately in the course of this

section.

� On most of the considered data sets, the binary relevance algorithm performs moderately. When

compared to other approaches, which use the same evaluation function for candidate selection, it

never reaches the lowest performance. However, it is almost always outperformed by one or several

variants of the algorithms Single+/± or Multi+/±, which are able to exploit label dependencies.

Only on the data set GENBASE � when using the F-Measure or hamming accuracy � the BR approach

is able to outdo its competitors. This could be, because said data set contains only very weak label

dependencies [Loza Mencía and Janssen, 2015].

� In the majority of cases, the approach Single± reaches a better predictive performance, than its

counterpart Single+, which does not induce rules for predicting irrelevant labels. The available

statistics do not reveal a clear tendency, whether the use of stopping rules is bene�cial or disad-

vantageous for these algorithms. In many cases, when using the variant Single±, the performance

of the learned model does not even change, depending on whether stopping rules are used, or not.

The variants of the approach Single± often rank among the best rated algorithms. Although they

do not work well with the hamming accuracy metric on the data sets MEDICAL and EMOTIONS, these

variants are often even able to reach the best performance among all approaches, if the correct

heuristic is used. Especially on the data set BIRDS, they reach very good results, when compared to

their competitors.

� When using example-based averaging or macro-averaging together with the Multi+/± approaches,

the resulting performance is almost always worse than when using the micro-averaging or label-

based counterpart. This does not include the use of the hamming accuracy metric, for which all

averaging variants are equivalent. Also, when using the precision metric on the data set EMOTIONS,

the example-based and macro-averaged variants of the Multi+stop approach are ranked higher than

the micro-averaged and macro-averaged variants.

� On average, the algorithm, which is proposed in this work, seems to bene�t from learning rules,

which predict irrelevant labels. This is based on the observation, that the best Multi± approach

outperforms the best Multi+ variant most of the time. However, when using the Multi±Mm and

Multi±M M approaches, the performances of the learned model, according to the precision, recall

and F1 metric, often evaluate to 0%. This indicates, that only associations of irrelevant labels are

modeled in these cases. As no rules predict the presence of labels, such models are useless.

� Based on the available statistics, it is hard to tell, if the use of stopping rules has a positive impact on

the resulting performances of the Multi+/± approaches, or not. The respective outcomes heavily

depend on the used evaluation function and data set.

� Except for the data set GENBASE, at least one variant of the proposed algorithm is always able to

outperform the BR approach, regardless of the used evaluation function. In many cases � depend-

ing on the data set and used evaluation function �, variants of the algorithm even allow to reach

the highest rank among all approaches. Most notable, by applying the approaches Multi±stop,mm
or Multi±stop,mM on the data set EMOTIONS, the highest performances can be reached, regardless of

the evaluation function, which is used for selecting candidate rules.
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� Unlike the binary relevance method and the multi-label classi�cation approach by Loza Mencía and

Janssen, the algorithm for learning multi-label head rules, which is proposed in the present work,

is able to use the subsect accuracy metric for selecting candidate rules during the rule induction

process. As the available statistics reveal, the performances, which result from using said metric,

can most of the time compete with the results of the other approaches. Only on the data set SCENE

there is signi�cant difference between the performances, which can be reached by using the subset

accuracy metric, and those of the highest ranked approaches.

In addition to using a rule-dependent evaluation, the performance of the algorithm for learning multi-

label head rules has also been investigated, when using the rule-independent evaluation strategy. The

results of these experiments are shown in Table 17, 18, 19, 20 and 21 of Appendix A.

� When compared to the performances of models, which have been learned by using the rule-

dependent evaluation strategy, the predictive performance seems to suffer from using rule-

independent evaluations. Regardless of the used data set, variants of the algorithm, which rely

on the rule-independent evaluation strategy for candidate selection, almost always reach worse

performances on average, than their rule-dependent counterparts. Whereas this is especially evi-

dent for the metrics subset accuracy, precision and F1-Measure, the rule-independent approaches

often reach a hamming accuracy, which is comparable to those of their rule-dependent counter-

parts. Furthermore, in many cases, they even reach a higher performance according to the recall

metric. This could possibly be an indicator, that using the rule-independent evaluation strategy

often results in too many labels being predicted as relevant.

� Except for the data sets EMOTIONS and SCENE, the Multi± approaches, which use the rule-

independent evaluation strategy and are able to predict the irrelevance of labels, did not �nish

in time. This is, because in such case, the algorithm tends to induce rules, which predict fully set

label vectors. This prevents searches through the label space from being pruned early and therefore

results in a high computational complexity. However, from the statistical results of the approaches,

which did �nish in time, it can be seen, that precision, recall and F1-Measure often evaluation to

0%. As already discussed, this is an indicator, that only rules, which predict irrelevant labels, are

learned in such case.

� According to the examinations in Section 5.2.5, the subset accuracy metric does not meet the

de�nition of anti-monotonicity, when using the rule-dependent evaluation strategy. Because of

this, it does not allow to prune searches through the label space and therefore it has not been used

in the statistical experiments.

6.2 Characteristics of Learned Models

In addition to the comparison of the predictive performances of different multi-label classi�cation ap-

proaches, the models, which have been learned by the separate-and-conquer algorithm by Loza Mencía

and Janssen [2015], as well as by the algorithm for learning multi-label head rules, are compared to

each other in this section. The rules, which have been learned by using the binary relevance method, are

not considered at this point. This is, because such approaches are based on training multiple single-class

classi�ers, rather than learning single decision list. In order to statistically investigate the characteristics

of learned models, the following properties have been taken in consideration. The statistics, which have

been obtained with respect to these properties, are shown in Appendix B.

� �# Rules�: The number of rules a model consists of. This does not include stopping rules.

� �# Stopping Rules�: The number of stopping rules, which have been created during the rule

induction process.
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� �# Label Conditions�: The number of label conditions among all induced rules of a model.

� �% Full Label-dependent�: The percentage of rules, which exclusively contain label conditions in

their bodies.

� �% Partially Label-dependent�: The percentage of rules, which contain label conditions, as well

as attribute conditions, in their bodies.

� �% Not Label-dependent�: The percentage of rules, whose bodies do not contain any label con-

ditions.

� �# Multi-Label Head Rules�: The number multi-label head rules, which are contained by the

learned model.

� �% Multi-Label Head Rules�: The percentage of multi-label head rules among all induced rules.

� �Avg. # Labels per Head�: The number of label attributes, the induced rules contain in their

heads on average.

In Table 22, 23, 24, 25 and 26, the characteristics of the models, which have been learned by using the

rule-dependent evaluation strategy, are shown. Each of these tables corresponds to one of the data sets

MEDICAL, EMOTIONS, GENBASE, BIRDS and SCENE. Based on the obtained data, the following conclusions

can be made:

� When using example-based averaging or macro-averaging together with the F-Measure or the preci-

sion metric for measuring the performance of candidate rules, the Multi+/± approaches on average

induce far less rules, than when using micro-averaging or label-based averaging. As mentioned in

the previous section, these approaches also tend to result in poor predictive performance. Prob-

ably this is, because the few rules, which are learned by said approaches, overgeneralize on the

training data and therefore are not able to model label associations in a very differentiated way.

Furthermore, if only few rules are learned by an algorithm, these rules are unlikely to contain label

conditions in their bodies.

� On average, the percentage of rules, which either partially or fully depend on label conditions,

seems to increase when using the Single± approaches, rather than the variants of the Single+
approach. This does also apply to the Multi± variants, which tendentially result in more label-

dependent rules being learned, than when using the Multi+ approaches. The amounts of label-

dependent rules, which have been induced by using the algorithm by Loza Menćia and Janssen,

respectively by the algorithm for learning multi-label head rules, are close to each other for the

most time, if micro- or label-based averaging is used by the latter algorithm. However, when using

the precision metric, the label-dependent rules, which are induced by the �rst of both algorithms,

outnumber those that are learned by the latter one. A possible explanation of this particularity

could be, that the latter algorithm results in many multi-label head rules being learned in these

cases. Because multi-label head rules are also able to model label correlations, they might be

preferred over label-dependent rules.

� In general, signi�cantly more multi-label head rules are induced by the Multi+/± approaches,

when using the precision metric, rather than the F-Measure, hamming accuracy or subset accuracy,

for selecting candidate rules. Also, the learned multi-label head rules tend to consist of more label

attributes in those cases. The reasons for this behavior are discussed more detailed in the following.

As the statistical evaluation of the learned models revealed, only few multi-label head rules are induced

when using any evaluation metric other than the precision metric together with a rule-dependent evalua-

tion. In the following, this phenomenon is explained by giving an example. The example is based on the
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exemplary label vectors of �ctional training examples, which are shown in Table 9. Two of the examples,

which are given in said table, are assumed to be covered by a rule, whereas the remaining examples

are assumed to be uncovered. According to Table 9, the labels λ1 and λ2 are both associated with the

covered examples, whereas the other labels are irrelevant. It seems obvious, that a multi-label head,

which predicts both, the label λ1, as well as the label λ2 as relevant, models the label associations of

the covered examples best. However, only if the precision metric is used for measuring the performance

of potential heads, such a multi-label head is chosen. Using a different evaluation function results in a

single-label head to be chosen instead.

λ1 λ2 λ3 λ4

Not covered

Y1 0 0 1 0

Y2 0 0 1 1

Y3 0 1 1 0

Y4 0 0 1 1

Covered
Y5 1 1 0 0

Y6 1 1 0 0

Table 9: Exemplary label vectors of training examples referred to in Table 10 and given the label space

L= (λ1,λ2,λ3,λ4). Some examples are covered by a potential rule's body, some are not.

In Table 10, the performances of the single-label heads { ŷ1} and { ŷ2}, as well as of the multi-label head

{ ŷ1, ŷ2}, according to different evaluation functions, are shown. Only if the precision metric is used,

the multi-label head { ŷ1, ŷ2} is preferred over the single-label head { ŷ1}. The given performances are

calculated by using micro-averaging and the rule-dependent evaluation strategy. However, when using a

different averaging strategy, the performance evaluations would result in a similar outcome.

Precision Recall Hamming Accuracy
F-Measure

(β = 0.5) Subset Accuracy

{ ŷ1} 1 1 1 1 1

{ ŷ2} 1 5
6

2
3

10
11

5
6

{ ŷ1, ŷ2} 1 11
12

4
5

20
21

5
6

Table 10: Performance of the multi-label heads { ŷ1}, { ŷ2} and { ŷ1, ŷ2} according to di�erent evaluation

functions and given the label vectors in Table 9. In this example micro-averaging is used to-

gether with the rule-dependent evaluation strategy. The performance of the best rated head

according to each evaluation function is circled.

As Table 10 reveals, the use of recall, hamming accuracy, F-Measure or subset accuracy does not result

in a multi-label head rule to be chosen, because the single-label head rule { ŷ1} is rated higher in all of

these cases. This is, because all of these evaluation functions take true negatives or false negatives into

account and therefore depend on the uncovered examples. The label λ2 is set in the label vector Y3, but

it is never predicted as relevant, because the given rule does not cover the corresponding example. The

label is therefore counted as a false negative. When using the rule-dependent evaluation strategy, this

causes the performance of a rule, which predicts label λ2 as relevant, to decrease in comparison to a

rule, which only predicts label λ1. This is, because, when only predicting the label λ1, the predictions

for that label are considered as perfect. According to the rule-dependent evaluation strategy, the label

λ2 is not taken into account at all in such case. If the label λ2 is predicted in addition, it is taken into

account by the performance evaluation and causes the overall performance of the rule to suffer, because

the predictions are not considered as perfect in case of the label vector Y3.
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In the following, the characteristics of models, which have been learned by using the rule-independent

evaluation strategy, are analyzed. This corresponds to the statistics, which are shown in Table 27, 28,

29, 30 and 31 of Appendix B.

� The models of approaches, which utilize the rule-independent evaluation strategy, tend to consist

of more multi-label head rules than those of corresponding approaches using a rule-dependent

evaluation. The number of induced rules � and therefore the chance of multi-label head rules

being learned � strongly depends on the used averaging strategy. When using micro-averaging

or label-based averaging, tendentially more rules are learned, than when using example-based

averaging or macro averaging. This does not apply to the hamming accuracy metric, because all

averaging strategies are equivalent in that case. Moreover, the use of stopping rules seems to have

an impact on the size of the learned models as well. Approaches, which make use of stopping

rules, often result in more rules being learned, than corresponding approaches, which do not use

stopping rules.

� When using the rule-independent evaluation strategy, while allowing to model the associations

of irrelevant labels, all induced rules are multi-label head rules. Furthermore, all of these rules

predict a fully set label vector, i.e. for all available labels a prediction is made. When micro-

averaging or label-based averaging is used together with the precision metric, a large number of

rules is induced. This allows to conclude, that the Multi± approaches tend to over�tting in such

case. This is, because the rules only cover few examples and predict their full label vectors. When

using different averaging strategies or evaluation functions, only very few rules are learned. Such

rules are prone to overgeneralize, as they cover a lot of examples and predict a full label vector,

instead of differentiating between the labels, which are associated with individual examples.
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7 Conclusion

As the conclusion of this work, a summary of its most important contributions is given in this last chapter.

On the one hand, this includes an overview of the previous chapters' contents. On the other hand,

possible improvements of the proposed algorithm and further investigations, which are not part of this

work, are pointed out as well.

7.1 Summary

In this work, a separate-and-conquer rule learning algorithm, which is able to induce multi-label head

rules, was proposed. As it is based on the separate-and-conquer algorithm for multi-label classi�cation

by Loza Mencía and Janssen [2015], it reuses some aspects, which have been elaborated as part of the

original algorithm's publication. Such as the original algorithm, the approach, which was presented in

this work, optionally enables to use stopping rules and is able to model associations of irrelevant labels

in addition to those of relevant labels. In order to be able to implement the search for multi-label head

rules in an ef�cient way, the properties of anti-monotonous and decomposable evaluation functions were

formally de�ned. As it was illustrated in this work, by exploiting these properties, searches through the

label space can be pruned by leaving out the evaluation of unpromising label combinations. Furthermore,

common metrics for measuring the performance of multi-label head rules � namely precision, recall,

hamming accuracy, subset accuracy and the F-Measure � were examined in terms of anti-monotonicity

and decomposability. As the examinations revealed, most of these metrics are suited for being used for

pruned searches. When using a rule-dependent evaluation strategy, most metrics meet the de�nition of

decomposability. No deep searches through the label space are required in such cases at all. When using

a rule-independent evaluation instead, most metrics meet the de�nition of anti-monotonicity, which

enables to prune searches less extensively. An overview of whether the considered metrics ful�ll the

de�nitions of anti-monotonicity and decomposability, according to the examinations, which were part

of this work, is given in Table 7.2. By statistically evaluating the outcome of the proposed algorithm

on different multi-label data set, its predictive performance was compared to those of other multi-label

classi�cation approaches. As the experiments revealed, the algorithm is able to outperform the popular

binary relevance method, if correlations between labels are given in a data set. This is, because the

algorithm is able to model such correlations by using label-dependent rules, as well as by rules, which

contain multiple label predictions in their heads. It was further shown, that the presented algorithm can

compete with the algorithm for learning single-label head rules by Loza Menćia and Janssen in terms

of predictive performance. Especially when using the rule-dependent evaluation strategy together with

micro-averaging or example-based averaging, the algorithm results in reliable predictions. Depending

on the data set, as well as on the used heuristic for selecting candidate rules, the original algorithm could

even be outperformed in some cases.

7.2 Future Work

Besides the evaluation metrics, which were considered in this work, other heuristics � e.g. the Jaccard

metric [Gjorgjioski et al., 2011] � are suited to be used by the proposed algorithm as well. In order to

use different metrics than those, which were considered in this work, they must be examined in terms

of anti-monotonicity, respectively decomposability, beforehand. This is necessary to ensure, that they

are suited for being used for pruned searches through the label space. However, the examination of

additional metrics is left for future work, if necessary.

During the elaboration of this work, there were considerations to utilize a beam-search for re�ning

the conditions of potential rules. This idea was motivated by the fact, that in each re�nement step, the

proposed algorithm only chooses one single rule. At �rst, only rules, which contain a single condition in

their body, are considered. Among these rules, the one, which reaches the best performance, is chosen.

Afterwards, all possible re�nements, which result from adding an additional condition to the chosen

rule's body, are evaluated. Among these re�nements, only the highest rated rule is chosen again. This
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process continues until no re�nements result in a higher performance being reached anymore. In theory,

the rules which are discarded during the re�nement process, might outperform the rule, which is �nally

chosen by the algorithm, because their performances might increase when adding additional conditions

to their body. As re�ning all potential rules would require to perform an exhaustive with exponential

computational complexity, this is not feasible in practice. As an alternative, a beam-search would allow

to keep track of the most β promising rules and re�ne all of them (where β ∈ N is a beam width greater

or equal to 1). However, although a beam search was implemented, the effects of using such approach

were not further investigated. As a possible topic of a future work, it might be interesting to evaluate,

whether the use of a beam-search has the potential to increase the algorithm's predictive performance

and therefore justi�es the negative impact it has in terms of computational complexity.

As the empirical studies on different data sets have revealed, when selecting candidate rules based

on a heuristic other than the precision metric, multi-label head rules are unlikely to be induced. This

is, because these metrics take true negatives and false negatives into account and therefore uncovered

examples have an impact on the measured performance. In order to introduce a bias towards learning

multi-label head rules, when using such heuristics, it would be possible to weight the performances of

rules, depending on the number of labels they predict. Rules, which predict more labels should be rated

better than those, that predict less labels. For example, this could be achieved by introducing a parameter

k ∈ R (e.g. k = 1.1), which affects the performance h of a multi-label head rule Ŷ ← B according to the

following equation. However, as the use of such weights directly affects the performances of rules, the

effects on the anti-monotonicity and decomposability properties of individual evaluation functions must

further be investigated.

h= δ(Ŷ ← B, T ) · k|Ŷ |−1 , with k ≥ 1

When using a rule-dependent evaluation, the best multi-label head of a rule is derived from the per-

formances of single-label head rules. The labels, which are predicted by single-label head rules, which

reach the highest performance, are combined in order to make up the best multi-label head. By default,

the predictions of single-label head rules are only combined, if those rules reach the exact same per-

formance. By relaxing this constraint, it would be possible to introduce a bias towards the induction

of multi-label head rules. This could be achieved by introducing a parameter ε ∈ R (e.g. ε = 0.05),
which speci�es a tolerance limit. Even if the performance h of a single-head rule is less than the best

performance hmax , its prediction is taken into account for making up the best multi-label head rule, if

hbest − h ≤ ε. Investigating the effects of introducing a bias towards the induction of multi-label head

rules on the predictive performance and learned models of the proposed algorithm is left for future work.
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Evaluation Function Evaluation Strategy Averaging Strategy
Anti-Monotonicity /

Decomposability

Precision

Rule-dependent

Micro-Averaging Yes / Yes 1

Label-based Averaging Yes / Yes 1

Example-based Averaging Yes / Yes 2

Macro-Averaging Yes / Yes 2

Rule-independent

Micro-Averaging Yes / - 3

Label-based Averaging Yes / - 3

Example-based Averaging Yes / - 4

Macro-Averaging Yes / - 4

Recall

Rule-dependent

Micro-Averaging Yes / Yes

Label-based Averaging Yes / Yes

Example-based Averaging - / -

Macro-Averaging Yes / Yes 2

Rule-independent

Micro-Averaging Yes / -

Label-based Averaging Yes / -

Example-based Averaging - / -

Macro-Averaging Yes / - 4

Hamming Accuracy

Rule-dependent

Micro-Averaging Yes / Yes 5

Label-based Averaging Yes / Yes 5

Example-based Averaging Yes / Yes 5

Macro-Averaging Yes / Yes 5

Rule-independent

Micro-Averaging Yes / - 6

Label-based Averaging Yes / - 6

Example-based Averaging Yes / - 6

Macro-Averaging Yes / - 6

F-Measure

Rule-dependent

Micro-Averaging Yes / Yes

Label-based Averaging Yes / Yes

Example-based Averaging Yes / Yes

Macro-Averaging Yes / Yes 2

Rule-independent

Micro-Averaging Yes / -

Label-based Averaging Yes / -

Example-based Averaging Yes / -

Macro-Averaging Yes / - 4

Subset Accuracy
Rule-dependent

Example-based Averaging
Yes / -

Rule-independent - / -

Table 11: Anti-monotonicity and decomposability of selected evaluation functions, regarding di�erent

averaging and evaluation strategies. The numbers at the right indicate equivalent variants.
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A Results of Performance Evaluations

Approach

F-Measure

BR 98.60% 5 55.81% 5 71.30% 5 76.07% 11 71.65% 6 74.38% 3 75.13% 11 74.75% 5 5

97.34% 13 22.17% 13 52.71% 13 75.45% 12 59.96% 13 51.26% 13 73.75% 15 60.48% 13 15

Single+ 98.17% 10 45.58% 10 67.65% 10 87.88% 5 73.47% 4 61.97% 10 87.38% 5 72.51% 8 6

98.45% 8.5 53.80% 8.5 68.70% 8.5 74.11% 16.5 69.45% 11.5 71.15% 8.5 73.38% 16.5 72.25% 9.5 11.5

98.45% 8.5 53.80% 8.5 68.70% 8.5 74.11% 16.5 69.45% 11.5 71.15% 8.5 73.38% 16.5 72.25% 9.5 11.5

18.77% 20.5 0.00% 17.5 3.24% 16.5 98.14% 1.5 6.23% 16.5 3.21% 16.5 95.75% 1.5 6.22% 16.5 16.5

18.77% 20.5 0.00% 17.5 3.24% 16.5 98.14% 1.5 6.23% 16.5 3.21% 16.5 95.75% 1.5 6.22% 16.5 16.5

98.00% 11.5 45.12% 11.5 64.89% 11.5 82.58% 6.5 69.66% 9.5 60.04% 11.5 81.88% 6.5 69.28% 11.5 9.5

98.00% 11.5 45.12% 11.5 64.89% 11.5 82.58% 6.5 69.66% 9.5 60.04% 11.5 81.88% 6.5 69.28% 11.5 9.5

56.02% 18.5 0.00% 17.5 5.56% 14.5 93.70% 3.5 10.41% 14.5 5.55% 14.5 93.38% 3.5 10.48% 14.5 13.5

56.02% 18.5 0.00% 17.5 5.56% 14.5 93.70% 3.5 10.41% 14.5 5.55% 14.5 93.38% 3.5 10.48% 14.5 13.5

98.79% 1 62.79% 1 75.45% 1 78.19% 10 75.26% 1 78.21% 2 77.63% 10 77.92% 1 1

98.78% 2 59.69% 4 72.51% 4 74.96% 15 72.23% 5 79.92% 1 74.63% 12 77.18% 2 4

98.63% 3.5 59.84% 2.5 73.68% 2.5 79.84% 8.5 74.89% 2.5 73.32% 6.5 79.00% 8.5 76.05% 3.5 2.5

98.63% 3.5 59.84% 2.5 73.68% 2.5 79.84% 8.5 74.89% 2.5 73.32% 6.5 79.00% 8.5 76.05% 3.5 2.5

97.24% 15.5 0.00% 17.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 20.5

97.24% 15.5 0.00% 17.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 18.5

98.57% 6.5 55.66% 6.5 70.17% 6.5 75.19% 13.5 70.80% 7.5 73.95% 4.5 74.50% 13.5 74.22% 6.5 7.5

98.57% 6.5 55.66% 6.5 70.17% 6.5 75.19% 13.5 70.80% 7.5 73.95% 4.5 74.50% 13.5 74.22% 6.5 7.5

97.24% 15.5 0.00% 17.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 20.5

97.24% 14.5 0.00% 17.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 18.5

Hamming Accuracy

BR 98.48% 15 54.57% 15 68.89% 15 73.80% 11 69.46% 17 72.11% 15 73.38% 11 72.74% 13 17

97.58% 20 29.61% 20 56.99% 20 77.93% 5 63.59% 20 54.35% 20 76.50% 6 63.55% 20 20

Single+ 97.07% 21 20.00% 21 49.50% 21 77.49% 6 57.84% 21 48.11% 21 77.75% 5 59.44% 21 21

98.60% 10.5 58.29% 2.5 73.32% 2.5 77.11% 8.5 73.27% 2.5 74.17% 10.5 75.75% 8.5 74.95% 2.5 2.5

98.60% 10.5 58.29% 2.5 73.32% 2.5 77.11% 8.5 73.27% 2.5 74.17% 10.5 75.75% 8.5 74.95% 2.5 2.5

98.60% 10.5 58.29% 2.5 73.32% 2.5 77.11% 8.5 73.27% 2.5 74.17% 10.5 75.75% 8.5 74.95% 2.5 2.5

98.60% 10.5 58.29% 2.5 73.32% 2.5 77.11% 8.5 73.27% 2.5 74.17% 10.5 75.75% 8.5 74.95% 2.5 2.5

98.32% 17.5 48.53% 17.5 67.32% 17.5 78.58% 2.5 70.22% 14.5 66.60% 17.5 78.25% 2.5 71.95% 17.5 14.5

98.32% 17.5 48.53% 17.5 67.32% 17.5 78.58% 2.5 70.22% 14.5 66.60% 17.5 78.25% 2.5 71.95% 17.5 14.5

98.32% 17.5 48.53% 17.5 67.32% 17.5 78.58% 2.5 70.22% 14.5 66.60% 17.5 78.25% 2.5 71.95% 17.5 14.5

98.32% 17.5 48.53% 17.5 67.32% 17.5 78.58% 2.5 70.22% 14.5 66.60% 17.5 78.25% 2.5 71.95% 17.5 14.5

98.50% 13.5 55.35% 13.5 68.94% 13.5 70.90% 20.5 68.30% 18.5 74.02% 13.5 70.50% 20.5 72.22% 14.5 18.5

98.50% 13.5 55.35% 13.5 68.94% 13.5 70.90% 20.5 68.30% 18.5 74.02% 13.5 70.50% 20.5 72.22% 14.5 18.5

98.64% 4.5 57.52% 8.5 70.63% 8.5 72.87% 15.5 70.23% 8.5 76.82% 4.5 72.50% 15.5 74.60% 8.5 8.5

98.64% 4.5 57.52% 8.5 70.63% 8.5 72.87% 15.5 70.23% 8.5 76.82% 4.5 72.50% 15.5 74.60% 8.5 8.5

98.64% 4.5 57.52% 8.5 70.63% 8.5 72.87% 15.5 70.23% 8.5 76.82% 4.5 72.50% 15.5 74.60% 8.5 8.5

98.64% 4.5 57.52% 8.5 70.63% 8.5 72.87% 15.5 70.23% 8.5 76.82% 4.5 72.50% 15.5 74.60% 8.5 8.5

98.64% 4.5 57.52% 8.5 70.63% 8.5 72.87% 15.5 70.23% 8.5 76.82% 4.5 72.50% 15.5 74.60% 8.5 8.5

98.64% 4.5 57.52% 8.5 70.63% 8.5 72.87% 15.5 70.23% 8.5 76.82% 4.5 72.50% 15.5 74.60% 8.5 8.5

98.64% 4.5 57.52% 8.5 70.63% 8.5 72.87% 15.5 70.23% 8.5 76.82% 4.5 72.50% 15.5 74.60% 8.5 8.5

98.64% 4.5 57.52% 8.5 70.63% 8.5 72.87% 15.5 70.23% 8.5 76.82% 4.5 72.50% 15.5 74.60% 8.5 8.5

Precision

BR 97.65% 7 31.47% 7 49.56% 7 56.25% 15 50.25% 7 57.47% 7 56.25% 14 56.85% 7 7

96.91% 14 24.65% 10 45.75% 10 56.72% 14 48.29% 8 45.11% 10 55.88% 15 49.92% 10 11

Single+ 95.91% 15 17.98% 11 39.46% 11 67.91% 6 46.33% 11 36.80% 11 67.63% 5 47.67% 11 8

97.22% 12.5 29.77% 8.5 47.63% 8.5 52.07% 16.5 47.71% 9.5 49.52% 8.5 51.75% 16.5 50.61% 8.5 9.5

97.22% 12.5 29.77% 8.5 47.63% 8.5 52.07% 16.5 47.71% 9.5 49.52% 8.5 51.75% 16.5 50.61% 8.5 9.5

18.77% 20.5 0.00% 17.5 3.24% 16.5 98.14% 1.5 6.23% 16.5 3.21% 16.5 97.75% 1.5 6.22% 16.5 16.5

18.77% 20.5 0.00% 17.5 3.24% 16.5 98.14% 1.5 6.23% 16.5 3.21% 16.5 97.75% 1.5 6.22% 16.5 16.5

95.67% 16.5 14.57% 12.5 38.09% 12.5 65.79% 9.5 44.58% 12.5 34.85% 12.5 65.88% 7.5 45.59% 12.5 12.5

95.67% 16.5 14.57% 12.5 38.09% 12.5 65.79% 9.5 44.58% 12.5 34.85% 12.5 65.88% 7.5 45.59% 12.5 12.5

56.02% 18.5 0.00% 17.5 5.56% 14.5 93.70% 3.5 10.41% 14.5 5.55% 14.5 93.38% 3.5 10.48% 14.5 14.5

56.02% 18.5 0.00% 17.5 5.56% 14.5 93.70% 3.5 10.41% 14.5 5.55% 14.5 93.38% 3.5 10.48% 14.5 14.5

98.34% 1 49.92% 3 66.23% 1 68.86% 5 65.70% 1 70.92% 1 67.38% 6 69.10% 1 1

98.20% 6 45.74% 6 62.16% 4 65.74% 11 62.14% 4 68.10% 6 65.38% 9 66.71% 4 4

98.26% 2.5 51.47% 1.5 64.55% 2.5 65.87% 7.5 63.69% 2.5 70.29% 2.5 63.88% 10.5 66.93% 2.5 2.5

98.26% 2.5 51.47% 1.5 64.55% 2.5 65.87% 7.5 63.69% 2.5 70.29% 2.5 63.88% 10.5 66.93% 2.5 2.5

97.24% 9.5 0.00% 17.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 19.5

97.24% 9.5 0.00% 17.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 19.5

98.21% 4.5 49.77% 4.5 62.15% 5.5 63.62% 12.5 61.44% 5.5 69.76% 4.5 62.00% 12.5 65.65% 5.5 5.5

98.21% 4.5 49.77% 4.5 62.15% 5.5 63.62% 12.5 61.44% 5.5 69.76% 4.5 62.00% 12.5 65.65% 5.5 5.5

97.24% 9.5 0.00% 17.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 19.5

97.24% 9.5 0.00% 17.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 19.5

Subset Accuracy

98.55% 1 58.76% 1 72.12% 1 75.25% 2 72.09% 1 73.42% 1 74.25% 2 73.83% 1 1

98.24% 2 46.82% 2 65.96% 2 78.50% 1 69.26% 2 65.04% 2 78.38% 1 71.09% 2 2

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

Hamm.
Acc.

Subset
Acc.

Ex.-based
Prec.

Ex.-based
Rec.

Ex.-based
F1

Mi.
Prec.

Mi.
Rec

Mi.
F1

Avg.
Rank

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,Mm

Multi+Mm

Multi±stop,Mm

Multi±Mm

Table 12: Predictive performance of di�erent multi-label classi�cation approaches on the data set

MEDICAL using the rule-dependent evaluation strategy. Some approaches did not �nish in time.

The missing values are indicated by using the label �n/a�.
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Approach

F-Measure

BR 72.94% 3 18.81% 7 57.03% 1 53.22% 13 51.89% 5 59.83% 3 54.14% 14 56.84% 5 3

65.26% 16 9.41% 12 47.52% 12 59.32% 8 49.68% 13 47.79% 12 59.65% 8 53.07% 13 13

Single+ 64.11% 17 10.89% 10 45.25% 13 67.16% 7 50.79% 12 46.85% 13 67.17% 7 55.20% 10 12

71.62% 8.5 14.36% 8.5 55.07% 4.5 55.69% 9.5 51.67% 6.5 57.11% 8.5 55.39% 9.5 56.23% 8.5 8.5

71.62% 8.5 14.36% 8.5 55.07% 4.5 55.69% 9.5 51.67% 6.5 57.11% 8.5 55.39% 9.5 56.23% 8.5 8.5

33.17% 19.5 0.00% 17.5 33.04% 15.5 100.00% 2.5 48.59% 15.5 33.00% 15.5 100.00% 2.5 49.63% 15.5 15.5

33.17% 19.5 0.00% 17.5 33.04% 15.5 100.00% 2.5 48.59% 15.5 33.00% 15.5 100.00% 2.5 49.63% 15.5 15.5

68.65% 10.5 9.41% 12 53.45% 10.5 70.54% 5.5 56.66% 1.5 51.75% 10.5 70.43% 5.5 59.66% 1.5 4.5

68.65% 10.5 9.41% 12 53.45% 10.5 70.54% 5.5 56.66% 1.5 51.75% 10.5 70.43% 5.5 59.66% 1.5 4.5

33.17% 19.5 0.00% 17.5 33.04% 15.5 100.00% 2.5 48.59% 15.5 33.00% 15.5 100.00% 2.5 49.63% 15.5 15.5

33.17% 19.5 0.00% 17.5 33.04% 15.5 100.00% 2.5 48.59% 15.5 33.00% 15.5 100.00% 2.5 49.63% 15.5 15.5

73.27% 1.5 19.31% 5.5 55.03% 6.5 52.48% 16.5 51.02% 10.5 60.50% 1.5 54.14% 14 57.14% 3.5 6.5

73.27% 1.5 19.31% 5.5 55.03% 6.5 52.48% 16.5 51.02% 10.5 60.50% 1.5 54.14% 14 57.14% 3.5 6.5

72.52% 4.5 21.29% 1.5 56.19% 2.5 55.45% 11.5 52.79% 3.5 58.92% 4.5 54.64% 11.5 56.70% 6.5 1.5

72.52% 4.5 21.29% 1.5 56.19% 2.5 55.45% 11.5 52.79% 3.5 58.92% 4.5 54.64% 11.5 56.70% 6.5 1.5

67.08% 13.5 0.00% 17.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 20.5

67.08% 13.5 0.00% 17.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 18.5

71.70% 6.5 20.79% 3.5 54.91% 8.5 53.05% 14.5 51.21% 8.5 57.65% 6.5 52.88% 16.5 55.16% 11.5 10.5

71.70% 6.5 20.79% 3.5 54.91% 8.5 53.05% 14.5 51.21% 8.5 57.65% 6.5 52.88% 16.5 55.16% 11.5 10.5

67.08% 13.5 0.00% 17.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 20.5

67.08% 12.5 0.00% 17.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 18.5

Hamming Accuracy

BR 71.53% 11 15.35% 11 53.99% 13 54.62% 11 50.22% 10 57.03% 11 54.89% 11 55.94% 13 13

36.55% 21 0.99% 21 34.61% 21 94.47% 1 48.38% 19 33.51% 21 94.24% 1 49.44% 21 21

Single+ 59.65% 16 6.93% 20 45.16% 20 76.07% 6 53.55% 5 43.64% 16 77.44% 2 55.83% 14 16

71.29% 13.5 10.89% 15.5 54.24% 10.5 58.75% 8.5 53.01% 7.5 56.06% 13.5 59.15% 8.5 57.56% 2.5 10.5

71.29% 13.5 10.89% 15.5 54.24% 10.5 58.75% 8.5 53.01% 7.5 56.06% 13.5 59.15% 8.5 57.56% 2.5 10.5

71.29% 13.5 10.89% 15.5 54.24% 10.5 58.75% 8.5 53.01% 7.5 56.06% 13.5 59.15% 8.5 57.56% 2.5 10.5

71.29% 13.5 10.89% 15.5 54.24% 10.5 58.75% 8.5 53.01% 7.5 56.06% 13.5 59.15% 8.5 57.56% 2.5 10.5

57.26% 18.5 10.89% 15.5 46.21% 17.5 77.39% 3.5 54.09% 2.5 41.90% 18.5 77.19% 4.5 54.32% 18.5 16

57.26% 18.5 10.89% 15.5 46.21% 17.5 77.39% 3.5 54.09% 2.5 41.90% 18.5 77.19% 4.5 54.32% 18.5 16

57.26% 18.5 10.89% 15.5 46.21% 17.5 77.39% 3.5 54.09% 2.5 41.90% 18.5 77.19% 4.5 54.32% 18.5 16

57.26% 18.5 10.89% 15.5 46.21% 17.5 77.39% 3.5 54.09% 2.5 41.90% 18.5 77.19% 4.5 54.32% 18.5 16

74.34% 9.5 17.82% 9.5 53.96% 14.5 46.62% 20.5 47.41% 20.5 65.60% 9.5 46.37% 20.5 54.33% 15.5 19.5

74.34% 9.5 17.82% 9.5 53.96% 14.5 46.62% 20.5 47.41% 20.5 65.60% 9.5 46.37% 20.5 54.33% 15.5 19.5

74.83% 4.5 18.81% 4.5 58.25% 4.5 48.02% 15.5 49.84% 14.5 65.99% 4.5 48.62% 15.5 55.99% 8.5 4.5

74.83% 4.5 18.81% 4.5 58.25% 4.5 48.02% 15.5 49.84% 14.5 65.99% 4.5 48.62% 15.5 55.99% 8.5 4.5

74.83% 4.5 18.81% 4.5 58.25% 4.5 48.02% 15.5 49.84% 14.5 65.99% 4.5 48.62% 15.5 55.99% 8.5 4.5

74.83% 4.5 18.81% 4.5 58.25% 4.5 48.02% 15.5 49.84% 14.5 65.99% 4.5 48.62% 15.5 55.99% 8.5 4.5

74.83% 4.5 18.81% 4.5 58.25% 4.5 48.02% 15.5 49.84% 14.5 65.99% 4.5 48.62% 15.5 55.99% 8.5 4.5

74.83% 4.5 18.81% 4.5 58.25% 4.5 48.02% 15.5 49.84% 14.5 65.99% 4.5 48.62% 15.5 55.99% 8.5 4.5

74.83% 4.5 18.81% 4.5 58.25% 4.5 48.02% 15.5 49.84% 14.5 65.99% 4.5 48.62% 15.5 55.99% 8.5 4.5

74.83% 4.5 18.81% 4.5 58.25% 4.5 48.02% 15.5 49.84% 14.5 65.99% 4.5 48.62% 15.5 55.99% 8.5 4.5

Precision

BR 69.22% 6 11.88% 6 43.73% 10 47.11% 17 41.84% 17 53.69% 6 47.37% 17 50.33% 11 11

62.71% 14 5.45% 10 44.71% 7 58.33% 8 47.53% 13 45.01% 10 59.90% 8 51.40% 10 10

Single+ 56.35% 17 4.95% 11 43.72% 11 80.69% 5 53.06% 1 41.71% 11 81.95% 5 55.28% 3 6

66.50% 12.5 10.40% 8 44.50% 8.5 47.52% 15.5 43.52% 15.5 49.13% 8.5 49.62% 15.5 49.38% 16.5 16.5

66.50% 12.5 10.40% 8 44.50% 8.5 47.52% 15.5 43.52% 15.5 49.13% 8.5 49.62% 15.5 49.38% 16.5 16.5

33.17% 19.5 0.00% 17.5 33.04% 15.5 100.00% 2.5 48.59% 10.5 33.00% 15.5 100.00% 2.5 49.63% 13.5 13.5

33.17% 19.5 0.00% 17.5 33.04% 15.5 100.00% 2.5 48.59% 10.5 33.00% 15.5 100.00% 2.5 49.63% 13.5 13.5

56.77% 15.5 2.97% 12.5 41.74% 12.5 76.32% 6.5 50.45% 5.5 41.63% 12.5 77.94% 6.5 54.28% 7.5 8

56.77% 15.5 2.97% 12.5 41.74% 12.5 76.32% 6.5 50.45% 5.5 41.63% 12.5 77.94% 6.5 54.28% 7.5 8

33.17% 19.5 0.00% 17.5 33.04% 15.5 100.00% 2.5 48.59% 10.5 33.00% 15.5 100.00% 2.5 49.63% 13.5 13.5

33.17% 19.5 0.00% 17.5 33.04% 15.5 100.00% 2.5 48.59% 10.5 33.00% 15.5 100.00% 2.5 49.63% 13.5 13.5

71.53% 3 12.87% 5 54.46% 5 54.29% 9 51.14% 4 57.34% 3 52.88% 11 55.02% 4 3

69.06% 7 10.40% 8 47.85% 6 49.67% 14 45.72% 14 53.17% 7 50.38% 14 51.74% 9 8

71.53% 3 16.83% 3.5 55.73% 1.5 54.21% 10.5 51.67% 2.5 57.14% 4.5 54.14% 9.5 55.60% 1.5 1.5

71.53% 3 16.83% 3.5 55.73% 1.5 54.21% 10.5 51.67% 2.5 57.14% 4.5 54.14% 9.5 55.60% 1.5 1.5

67.08% 9.5 0.00% 17.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 19.5

67.08% 9.5 0.00% 17.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 19.5

71.53% 3 17.82% 1.5 55.49% 3.5 51.24% 12.5 50.23% 7.5 57.42% 1.5 52.38% 12.5 54.78% 5.5 4.5

71.53% 3 17.82% 1.5 55.49% 3.5 51.24% 12.5 50.23% 7.5 57.42% 1.5 52.38% 12.5 54.78% 5.5 4.5

67.08% 9.5 0.00% 17.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 19.5

67.08% 9.5 0.00% 17.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 19.5

Subset Accuracy

72.28% 3 14.85% 3 55.75% 2 58.58% 2 53.64% 1 57.63% 3 59.65% 2 58.62% 1 2

56.77% 4 11.88% 4 45.30% 4 75.91% 1 53.25% 2 41.45% 4 75.94% 1 53.63% 4 3.5

75.66% 1 18.81% 1 56.27% 1 49.42% 3 49.83% 3 67.33% 1 50.63% 3 57.80% 2 1

75.17% 2 17.82% 2 54.25% 3 48.27% 4 48.23% 4 66.55% 2 49.37% 4 56.69% 3 3.5

Hamm.
Acc.

Subset
Acc.

Ex.-based
Prec.

Ex.-based
Rec.

Ex.-based
F1

Mi.
Prec.

Mi.
Rec

Mi.
F1

Avg.
Rank

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,Mm

Multi+Mm

Multi±stop,Mm

Multi±Mm

Table 13: Predictive performance of di�erent multi-label classi�cation approaches on the data set

EMOTIONS using the rule-dependent evaluation strategy.
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Approach

F-Measure

BR 99.91% 1 97.99% 1 99.25% 7 98.91% 6 98.91% 5 99.59% 1 98.37% 4 98.97% 1 1

98.46% 13 58.79% 13 80.68% 13 99.58% 1 87.03% 13 75.00% 13 99.18% 1 85.41% 13 10

Single+ 99.11% 12 75.88% 12 90.98% 12 97.99% 11 92.98% 12 85.82% 12 96.33% 11 90.77% 12 13

99.85% 6.5 96.98% 4.5 99.25% 7 98.49% 9.5 98.64% 6.5 99.17% 8.5 97.55% 8.5 98.35% 6.5 6.5

99.85% 6.5 96.98% 4.5 99.25% 7 98.49% 9.5 98.64% 6.5 99.17% 8.5 97.55% 8.5 98.35% 6.5 6.5

22.93% 20.5 0.00% 17.5 5.50% 16.5 99.16% 2.5 10.28% 16.5 5.50% 16.5 98.37% 4 10.43% 16.5 14.5

22.93% 20.5 0.00% 17.5 5.50% 16.5 99.16% 2.5 10.28% 16.5 5.50% 16.5 98.37% 4 10.43% 16.5 14.5

99.26% 10.5 80.40% 10.5 92.21% 10.5 97.57% 12.5 93.36% 10.5 88.97% 10.5 95.51% 12.5 92.13% 10.5 11.5

99.26% 10.5 80.40% 10.5 92.21% 10.5 97.57% 12.5 93.36% 10.5 88.97% 10.5 95.51% 12.5 92.13% 10.5 11.5

52.08% 18.5 0.00% 17.5 8.18% 14.5 97.19% 14.5 14.86% 14.5 8.18% 14.5 93.06% 14.5 15.04% 14.5 16.5

52.08% 18.5 0.00% 17.5 8.18% 14.5 97.19% 14.5 14.86% 14.5 8.18% 14.5 93.06% 14.5 15.04% 14.5 16.5

99.89% 2.5 96.98% 4.5 99.58% 3.5 99.08% 4.5 99.13% 1.5 99.18% 6.5 98.37% 4 98.77% 2.5 2.5

99.89% 2.5 96.98% 4.5 99.58% 3.5 99.08% 4.5 99.13% 1.5 99.18% 6.5 98.37% 4 98.77% 2.5 2.5

99.87% 4.5 96.98% 4.5 99.75% 1.5 98.83% 7.5 99.05% 3.5 99.58% 2.5 97.55% 8.5 98.56% 4.5 4.5

99.87% 4.5 96.98% 4.5 99.75% 1.5 98.83% 7.5 99.05% 3.5 99.58% 2.5 97.55% 8.5 98.56% 4.5 4.5

95.44% 15.5 0.00% 17.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 19.5

95.44% 15.5 0.00% 17.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 19.5

99.57% 8.5 89.45% 8.5 99.25% 7 95.85% 16.5 97.02% 8.5 99.55% 4.5 91.02% 16.5 95.10% 8.5 8.5

99.57% 8.5 89.45% 8.5 99.25% 7 95.85% 16.5 97.02% 8.5 99.55% 4.5 91.02% 16.5 95.10% 8.5 8.5

95.44% 15.5 0.00% 17.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 19.5

95.44% 15.5 0.00% 17.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 19.5

Hamming Accuracy

BR 99.91% 7 97.99% 7 99.75% 7 99.16% 8 99.25% 7 99.59% 7 98.37% 8 98.97% 7 7

98.40% 20 57.29% 20 80.43% 20 99.33% 1 86.72% 20 74.46% 20 98.78% 1 84.91% 20 16

Single+ 94.38% 21 27.14% 21 55.13% 21 98.91% 15 66.30% 21 44.69% 21 97.96% 15 61.38% 21 21

99.91% 7 97.99% 7 99.75% 7 99.16% 8 99.25% 7 99.59% 7 98.37% 8 98.97% 7 7

99.91% 7 97.99% 7 99.75% 7 99.16% 8 99.25% 7 99.59% 7 98.37% 8 98.97% 7 7

99.91% 7 97.99% 7 99.75% 7 99.16% 8 99.25% 7 99.59% 7 98.37% 8 98.97% 7 7

99.91% 7 97.99% 7 99.75% 7 99.16% 8 99.25% 7 99.59% 7 98.37% 8 98.97% 7 7

99.26% 17.5 80.40% 17.5 92.21% 17.5 97.57% 19.5 93.36% 17.5 88.97% 17.5 95.51% 19.5 92.13% 17.5 18.5

99.26% 17.5 80.40% 17.5 92.21% 17.5 97.57% 19.5 93.36% 17.5 88.97% 17.5 95.51% 19.5 92.13% 17.5 18.5

99.26% 17.5 80.40% 17.5 92.21% 17.5 97.57% 19.5 93.36% 17.5 88.97% 17.5 95.51% 19.5 92.13% 17.5 18.5

99.26% 17.5 80.40% 17.5 92.21% 17.5 97.57% 19.5 93.36% 17.5 88.97% 17.5 95.51% 19.5 92.13% 17.5 18.5

99.80% 14.5 94.97% 14.5 98.99% 14.5 97.99% 16.5 98.29% 14.5 99.16% 14.5 96.33% 16.5 97.72% 14.5 14.5

99.80% 14.5 94.97% 14.5 98.99% 14.5 97.99% 16.5 98.29% 14.5 99.16% 14.5 96.33% 16.5 97.72% 14.5 14.5

99.91% 7 97.99% 7 99.75% 7 99.16% 8 99.25% 7 99.59% 7 98.37% 8 98.97% 7 7

99.91% 7 97.99% 7 99.75% 7 99.16% 8 99.25% 7 99.59% 7 98.37% 8 98.97% 7 7

99.91% 7 97.99% 7 99.75% 7 99.16% 8 99.25% 7 99.59% 7 98.37% 8 98.97% 7 7

99.91% 7 97.99% 7 99.75% 7 99.16% 8 99.25% 7 99.59% 7 98.37% 8 98.97% 7 7

99.91% 7 97.99% 7 99.75% 7 99.16% 8 99.25% 7 99.59% 7 98.37% 8 98.97% 7 7

99.91% 7 97.99% 7 99.75% 7 99.16% 8 99.25% 7 99.59% 7 98.37% 8 98.97% 7 7

99.91% 7 97.99% 7 99.75% 7 99.16% 8 99.25% 7 99.59% 7 98.37% 8 98.97% 7 7

99.91% 7 97.99% 7 99.75% 7 99.16% 8 99.25% 7 99.59% 7 98.37% 8 98.97% 7 7

Precision

BR 99.70% 8 92.46% 9 98.74% 8 96.78% 13 97.43% 9 99.57% 4 93.88% 10 96.64% 8 9

98.03% 13 53.77% 13 78.23% 13 96.19% 14 84.17% 13 71.79% 13 93.47% 11 81.21% 13 13

Single+ 99.40% 10 86.93% 10 94.47% 12 95.94% 15 94.23% 10 94.19% 10 92.65% 15 93.42% 10 10

99.81% 2.5 95.48% 4.5 98.74% 8 97.65% 8.5 97.94% 7.5 99.58% 2.5 96.33% 7.5 97.93% 2.5 4.5

99.81% 2.5 95.48% 4.5 98.74% 8 97.65% 8.5 97.94% 7.5 99.58% 2.5 96.33% 7.5 97.93% 2.5 4.5

22.93% 20.5 0.00% 17.5 5.50% 16.5 99.16% 1.5 10.28% 16.5 5.50% 16.5 98.37% 2 10.43% 16.5 14.5

22.93% 20.5 0.00% 17.5 5.50% 16.5 99.16% 1.5 10.28% 16.5 5.50% 16.5 98.37% 2 10.43% 16.5 14.5

99.11% 11.5 85.93% 11.5 94.64% 10.5 94.10% 16.5 92.68% 11.5 91.56% 11.5 88.57% 16.5 90.04% 11.5 11.5

99.11% 11.5 85.93% 11.5 94.64% 10.5 94.10% 16.5 92.68% 11.5 91.56% 11.5 88.57% 16.5 90.04% 11.5 11.5

52.08% 18.5 0.00% 17.5 8.18% 14.5 97.19% 11.5 14.86% 14.5 8.18% 14.5 93.06% 13 15.04% 14.5 16.5

52.08% 18.5 0.00% 17.5 8.18% 14.5 97.19% 11.5 14.86% 14.5 8.18% 14.5 93.06% 13 15.04% 14.5 16.5

99.85% 1 96.48% 2 98.99% 6 99.08% 3 98.81% 3 98.37% 5 98.37% 2 98.37% 1 1

99.68% 9 94.47% 8 100.00% 1 97.36% 10 98.22% 6 100.00% 1 93.06% 13 96.41% 9 8

99.80% 4.5 96.48% 2 99.16% 4.5 98.99% 4.5 98.86% 1.5 97.56% 8.5 97.96% 4.5 97.76% 4.5 2.5

99.80% 4.5 96.48% 2 99.16% 4.5 98.99% 4.5 98.86% 1.5 97.56% 8.5 97.96% 4.5 97.76% 4.5 2.5

95.44% 15.5 0.00% 17.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 19.5

95.44% 15.5 0.00% 17.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 19.5

99.76% 6.5 94.97% 6.5 99.45% 2.5 98.49% 6.5 98.77% 4.5 98.33% 6.5 96.33% 7.5 97.32% 6.5 6.5

99.76% 6.5 94.97% 6.5 99.45% 2.5 98.49% 6.5 98.77% 4.5 98.33% 6.5 96.33% 7.5 97.32% 6.5 6.5

95.44% 15.5 0.00% 17.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 19.5

95.44% 15.5 0.00% 17.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 19.5

Subset Accuracy

99.91% 2 97.99% 2 99.75% 2 99.16% 2 99.25% 2 99.59% 2 98.37% 2 98.97% 2 2

97.95% 4 46.23% 4 75.82% 4 97.74% 4 82.84% 4 70.15% 4 95.92% 4 81.03% 4 4

99.91% 2 97.99% 2 99.75% 2 99.16% 2 99.25% 2 99.59% 2 98.37% 2 98.97% 2 2

99.91% 2 97.99% 2 99.75% 2 99.16% 2 99.25% 2 99.59% 2 98.37% 2 98.97% 2 2

Hamm.
Acc.

Subset
Acc.

Ex.-based
Prec.

Ex.-based
Rec.

Ex.-based
F1

Mi.
Prec.

Mi.
Rec

Mi.
F1

Avg.
Rank

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,Mm

Multi+Mm

Multi±stop,Mm

Multi±Mm

Table 14: Predictive performance of di�erent multi-label classi�cation approaches on the data set

GENBASE using the rule-dependent evaluation strategy.
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Approach

F-Measure

BR 93.91% 7 41.49% 9 56.87% 5 56.04% 9 55.22% 6 40.56% 5 41.85% 10 41.85% 8 4

89.93% 14 2.48% 16 14.27% 16 19.39% 21 15.56% 16 22.12% 12 38.66% 17 38.66% 15 19

Single+ 84.41% 17 0.31% 18 9.43% 17 23.47% 20 12.73% 17 15.96% 15 48.24% 7 48.24% 5 18

93.48% 12.5 39.94% 11.5 54.23% 8.5 55.74% 10.5 53.49% 8.5 37.24% 10.5 40.58% 13.5 40.58% 11.5 12.5

93.48% 12.5 39.94% 11.5 54.23% 8.5 55.74% 10.5 53.49% 8.5 37.24% 10.5 40.58% 13.5 40.58% 11.5 12.5

5.39% 20.5 0.31% 18 5.39% 20.5 53.25% 12.5 9.41% 20.5 5.12% 18.5 100.00% 1.5 9.37% 16.5 20.5

5.39% 20.5 0.31% 18 5.39% 20.5 53.25% 12.5 9.41% 20.5 5.12% 18.5 100.00% 1.5 9.37% 16.5 20.5

86.18% 15.5 32.51% 14.5 42.34% 14.5 60.53% 1.5 45.92% 14.5 20.51% 13.5 59.42% 5.5 59.42% 3.5 10.5

86.18% 15.5 32.51% 14.5 42.34% 14.5 60.53% 1.5 45.92% 14.5 20.51% 13.5 59.42% 5.5 59.42% 3.5 10.5

32.69% 18.5 0.00% 20.5 6.72% 18.5 49.07% 14.5 11.49% 18.5 6.63% 16.5 93.29% 3.5 93.29% 1.5 15.5

32.69% 18.5 0.00% 20.5 6.72% 18.5 49.07% 14.5 11.49% 18.5 6.63% 16.5 93.29% 3.5 93.29% 1.5 15.5

94.02% 6 39.32% 13 55.46% 7 56.79% 8 54.57% 7 41.35% 4 41.21% 11.5 41.21% 9.5 5

94.10% 5 41.18% 10 56.79% 6 57.56% 7 55.65% 5 42.02% 3 41.21% 11.5 41.21% 9.5 3

93.87% 8.5 43.03% 6.5 59.58% 1.5 59.33% 3.5 57.90% 1.5 40.54% 6.5 43.13% 8.5 43.13% 6.5 1.5

93.87% 8.5 43.03% 6.5 59.58% 1.5 59.33% 3.5 57.90% 1.5 40.54% 6.5 43.13% 8.5 43.13% 6.5 1.5

94.92% 1.5 47.06% 1.5 47.37% 10.5 47.21% 16.5 47.27% 10.5 66.67% 1.5 0.64% 18.5 1.27% 18.5 9

94.92% 1.5 47.06% 1.5 47.37% 10.5 47.21% 16.5 47.27% 10.5 66.67% 1.5 0.64% 18.5 1.27% 18.5 8

93.74% 10.5 43.03% 6.5 57.60% 3.5 58.11% 5.5 56.44% 3.5 38.73% 8.5 38.98% 15.5 38.98% 13.5 6.5

93.74% 10.5 43.03% 6.5 57.60% 3.5 58.11% 5.5 56.44% 3.5 38.73% 8.5 38.98% 15.5 38.98% 13.5 6.5

94.90% 3.5 46.75% 3.5 46.75% 12.5 46.75% 18.5 46.75% 12.5 0.00% 20.5 0.00% 20.5 0.00% 20.5 15.5

94.90% 3.5 46.75% 3.5 46.75% 12.5 46.75% 18.5 46.75% 12.5 0.00% 20.5 0.00% 20.5 0.00% 20.5 15.5

Hamming Accuracy

BR 93.16% 15 39.01% 11 52.59% 11 53.51% 15 51.66% 11 51.66% 11 39.62% 7 37.13% 5 11

67.05% 21 1.55% 20 12.41% 20 28.78% 20 15.06% 20 15.06% 20 56.23% 1 14.83% 21 20

Single+ 85.25% 20 0.00% 21 10.84% 21 25.03% 21 14.42% 21 14.42% 21 47.28% 6 24.65% 20 21

93.29% 12.5 37.46% 13.5 51.68% 13.5 51.34% 17.5 50.16% 13.5 50.16% 13.5 35.14% 9.5 34.81% 17.5 17.5

93.29% 12.5 37.46% 13.5 51.68% 13.5 51.34% 17.5 50.16% 13.5 50.16% 13.5 35.14% 9.5 34.81% 17.5 17.5

93.29% 12.5 37.46% 13.5 51.68% 13.5 51.34% 17.5 50.16% 13.5 50.16% 13.5 35.14% 9.5 34.81% 17.5 17.5

93.29% 12.5 37.46% 13.5 51.68% 13.5 51.34% 17.5 50.16% 13.5 50.16% 13.5 35.14% 9.5 34.81% 17.5 17.5

92.10% 17.5 34.06% 17.5 49.35% 17.5 55.00% 12.5 50.06% 17.5 50.06% 17.5 47.92% 3.5 38.22% 2.5 13.5

92.10% 17.5 34.06% 17.5 49.35% 17.5 55.00% 12.5 50.06% 17.5 50.06% 17.5 47.92% 3.5 38.22% 2.5 13.5

92.10% 17.5 34.06% 17.5 49.35% 17.5 55.00% 12.5 50.06% 17.5 50.06% 17.5 47.92% 3.5 38.22% 2.5 13.5

92.10% 17.5 34.06% 17.5 49.35% 17.5 55.00% 12.5 50.06% 17.5 50.06% 17.5 47.92% 3.5 38.22% 2.5 13.5

94.25% 1.5 46.44% 1.5 59.83% 1.5 56.37% 1.5 56.72% 1.5 56.72% 1.5 31.95% 20.5 36.17% 14.5 1.5

94.25% 1.5 46.44% 1.5 59.83% 1.5 56.37% 1.5 56.72% 1.5 56.72% 1.5 31.95% 20.5 36.17% 14.5 1.5

94.18% 6.5 44.27% 6.5 58.46% 6.5 55.52% 6.5 55.58% 6.5 55.58% 6.5 32.91% 15.5 36.59% 9.5 6.5

94.18% 6.5 44.27% 6.5 58.46% 6.5 55.52% 6.5 55.58% 6.5 55.58% 6.5 32.91% 15.5 36.59% 9.5 6.5

94.18% 6.5 44.27% 6.5 58.46% 6.5 55.52% 6.5 55.58% 6.5 55.58% 6.5 32.91% 15.5 36.59% 9.5 6.5

94.18% 6.5 44.27% 6.5 58.46% 6.5 55.52% 6.5 55.58% 6.5 55.58% 6.5 32.91% 15.5 36.59% 9.5 6.5

94.18% 6.5 44.27% 6.5 58.46% 6.5 55.52% 6.5 55.58% 6.5 55.58% 6.5 32.91% 15.5 36.59% 9.5 6.5

94.18% 6.5 44.27% 6.5 58.46% 6.5 55.52% 6.5 55.58% 6.5 55.58% 6.5 32.91% 15.5 36.59% 9.5 6.5

94.18% 6.5 44.27% 6.5 58.46% 6.5 55.52% 6.5 55.58% 6.5 55.58% 6.5 32.91% 15.5 36.59% 9.5 6.5

94.18% 6.5 44.27% 6.5 58.46% 6.5 55.52% 6.5 55.58% 6.5 55.58% 6.5 32.91% 15.5 36.59% 9.5 6.5

Precision

BR 92.50% 11 38.70% 11 51.02% 7 52.87% 11 50.35% 7 30.81% 9 37.70% 8.5 37.70% 8.5 7

89.23% 14 2.48% 16 14.83% 16 20.06% 21 15.88% 16 20.21% 12 37.70% 8.5 37.70% 8.5 17

Single+ 74.71% 17 0.31% 18 7.20% 17 31.42% 20 11.08% 19 11.97% 15 62.30% 5 62.30% 5 21

92.29% 12.5 34.67% 12.5 48.53% 8.5 50.17% 12.5 47.68% 8.5 28.49% 10.5 33.87% 10.5 33.87% 10.5 10.5

92.29% 12.5 34.67% 12.5 48.53% 8.5 50.17% 12.5 47.68% 8.5 28.49% 10.5 33.87% 10.5 33.87% 10.5 10.5

5.39% 20.5 0.31% 18 5.39% 20.5 53.25% 9.5 9.41% 20.5 5.12% 18.5 100.00% 1.5 100.00% 1.5 14.5

5.39% 20.5 0.31% 18 5.39% 20.5 53.25% 9.5 9.41% 20.5 5.12% 18.5 100.00% 1.5 100.00% 1.5 14.5

85.92% 15.5 33.75% 14.5 42.78% 14.5 57.08% 6.5 45.63% 14.5 17.63% 13.5 47.92% 6.5 47.92% 6.5 12.5

85.92% 15.5 33.75% 14.5 42.78% 14.5 57.08% 6.5 45.63% 14.5 17.63% 13.5 47.92% 6.5 47.92% 6.5 12.5

32.69% 18.5 0.00% 20.5 6.72% 18.5 49.07% 14.5 11.49% 17.5 6.63% 16.5 93.29% 3.5 93.29% 3.5 19.5

32.69% 18.5 0.00% 20.5 6.72% 18.5 49.07% 14.5 11.49% 17.5 6.63% 16.5 93.29% 3.5 93.29% 3.5 19.5

94.15% 6 45.51% 8.5 58.23% 6 56.68% 8 56.26% 6 40.80% 4 32.59% 17 32.59% 17 6

94.43% 5 45.51% 8.5 59.29% 1 57.62% 5 57.12% 3 43.93% 3 33.55% 13 33.55% 13 1

93.32% 9.5 45.51% 8.5 59.28% 2.5 58.47% 3.5 56.93% 4.5 34.10% 7.5 33.23% 15.5 33.23% 15.5 4.5

93.32% 9.5 45.51% 8.5 59.28% 2.5 58.47% 3.5 56.93% 4.5 34.10% 7.5 33.23% 15.5 33.23% 15.5 4.5

94.92% 1.5 47.06% 1.5 47.37% 10.5 47.21% 16.5 47.27% 10.5 66.67% 1.5 0.64% 18.5 0.64% 18.5 8.5

94.92% 1.5 47.06% 1.5 47.37% 10.5 47.21% 16.5 47.27% 10.5 66.67% 1.5 0.64% 18.5 0.64% 18.5 8.5

93.79% 7.5 46.44% 5.5 58.24% 4.5 59.34% 1.5 57.21% 1.5 37.77% 5.5 33.55% 13 33.55% 13 2.5

93.79% 7.5 46.44% 5.5 58.24% 4.5 59.34% 1.5 57.21% 1.5 37.77% 5.5 33.55% 13 33.55% 13 2.5

94.90% 3.5 46.75% 3.5 46.75% 12.5 46.75% 18.5 46.75% 12.5 0.00% 20.5 0.00% 20.5 0.00% 20.5 17

94.90% 3.5 46.75% 3.5 46.75% 12.5 46.75% 18.5 46.75% 12.5 0.00% 20.5 0.00% 20.5 0.00% 20.5 17

Subset Accuracy

93.30% 3 38.39% 3 52.51% 3 53.13% 3 51.46% 3 35.24% 3 37.38% 2 36.28% 4 3

91.49% 4 30.65% 4 46.03% 4 52.42% 4 46.93% 4 29.63% 4 48.56% 1 36.80% 1 4

94.18% 1.5 44.27% 1.5 58.46% 1.5 55.52% 1.5 55.58% 1.5 41.20% 1.5 32.91% 3.5 36.59% 2.5 1.5

94.18% 1.5 44.27% 1.5 58.46% 1.5 55.52% 1.5 55.58% 1.5 41.20% 1.5 32.91% 3.5 36.59% 2.5 1.5

Hamm.
Acc.

Subset
Acc.

Ex.-based
Prec.

Ex.-based
Rec.

Ex.-based
F1

Mi.
Prec.

Mi.
Rec

Mi.
F1

Avg.
Rank

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,Mm

Multi+Mm

Multi±stop,Mm

Multi±Mm

Table 15: Predictive performance of di�erent multi-label classi�cation approaches on the data set BIRDS

using the rule-dependent evaluation strategy.
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Approach

F-Measure

BR 83.04% 8 83.04% 5 45.41% 9 45.41% 13 47.97% 12 53.06% 8 53.06% 11 53.92% 9 9

78.55% 14 78.55% 9 44.38% 10 44.38% 14 50.02% 10 43.46% 10 43.46% 14 50.91% 12 10

Single+ 80.39% 13 80.39% 8 47.13% 8 47.13% 12 53.76% 3 47.16% 9 47.16% 13 56.02% 8 8

84.11% 6.5 84.11% 3.5 51.24% 4.5 51.24% 9.5 53.93% 1.5 55.72% 6.5 55.72% 7.5 57.62% 5.5 5.5

84.11% 6.5 84.11% 3.5 51.24% 4.5 51.24% 9.5 53.93% 1.5 55.72% 6.5 55.72% 7.5 57.62% 5.5 5.5

18.53% 19.5 0.17% 16.5 18.14% 15.5 99.41% 1.5 30.37% 15.5 18.12% 15.5 99.46% 1.5 30.65% 15.5 15.5

18.53% 19.5 0.17% 16.5 18.14% 15.5 99.41% 1.5 30.37% 15.5 18.12% 15.5 99.46% 1.5 30.65% 15.5 15.5

76.84% 15.5 76.84% 10.5 44.19% 11.5 44.19% 15.5 52.46% 6.5 42.04% 11.5 42.04% 15.5 53.55% 10.5 13.5

76.84% 15.5 76.84% 10.5 44.19% 11.5 44.19% 15.5 52.46% 6.5 42.04% 11.5 42.04% 15.5 53.55% 10.5 13.5

19.52% 17.5 0.17% 16.5 18.33% 13.5 99.08% 3.5 30.60% 13.5 18.26% 13.5 99.08% 3.5 30.83% 13.5 11.5

19.52% 17.5 0.17% 16.5 18.33% 13.5 99.08% 3.5 30.60% 13.5 18.26% 13.5 99.08% 3.5 30.83% 13.5 11.5

86.55% 2 86.55% 2 51.94% 3 51.94% 8 52.13% 8 65.90% 2 65.90% 6 58.92% 1 1

86.72% 1 86.72% 1 50.71% 6 50.71% 11 50.67% 9 67.47% 1 67.47% 5 58.37% 4 2

n/a n/a n/a n/a n/a n/a n/a n/a

85.49% 5 40.22% 14 48.86% 7 52.26% 7 49.36% 11 62.03% 5 51.19% 12 56.09% 7 7

81.90% 10.5 0.00% 19.5 0.00% 18.5 0.00% 18.5 0.00% 18.5 0.00% 18.5 0.00% 18.5 0.00% 18.5 19.5

81.90% 10.5 81.90% 6.5 0.00% 18.5 0.00% 18.5 0.00% 18.5 0.00% 18.5 0.00% 18.5 0.00% 18.5 17.5

86.54% 3.5 46.07% 12.5 53.41% 1.5 54.47% 5.5 53.11% 4.5 65.87% 3.5 53.19% 9.5 58.86% 2.5 3.5

86.54% 3.5 46.07% 12.5 53.41% 1.5 54.47% 5.5 53.11% 4.5 65.87% 3.5 53.19% 9.5 58.86% 2.5 3.5

81.90% 10.5 0.00% 19.5 0.00% 18.5 0.00% 18.5 0.00% 18.5 0.00% 18.5 0.00% 18.5 0.00% 18.5 19.5

81.90% 10.5 81.90% 6.5 0.00% 18.5 0.00% 18.5 0.00% 18.5 0.00% 18.5 0.00% 18.5 0.00% 18.5 17.5

Hamming Accuracy

BR 78.47% 15 20.65% 15 20.65% 15 51.38% 11 39.33% 11 42.13% 15 50.65% 11 46.00% 12 20

66.92% 21 18.90% 16 18.90% 16 71.66% 6 45.46% 10 31.81% 21 72.36% 6 44.19% 13 21

Single+ 70.57% 16 14.13% 17 14.13% 17 73.41% 5 47.29% 5 34.93% 16 72.52% 5 47.15% 5 7

81.56% 12.5 34.36% 2.5 34.36% 4.5 56.06% 8.5 49.62% 2.5 49.18% 12.5 55.35% 8.5 52.08% 2.5 2.5

81.56% 12.5 34.36% 2.5 34.36% 4.5 56.06% 8.5 49.62% 2.5 49.18% 12.5 55.35% 8.5 52.08% 2.5 2.5

81.56% 12.5 34.36% 2.5 34.36% 4.5 56.06% 8.5 49.62% 2.5 49.18% 12.5 55.35% 8.5 52.08% 2.5 2.5

81.56% 12.5 34.36% 2.5 34.36% 4.5 56.06% 8.5 49.62% 2.5 49.18% 12.5 55.35% 8.5 52.08% 2.5 2.5

69.50% 18.5 8.78% 19.5 8.78% 19.5 74.50% 2.5 46.54% 7.5 34.24% 18.5 74.44% 2.5 46.91% 7.5 9.5

69.50% 18.5 8.78% 19.5 8.78% 19.5 74.50% 2.5 46.54% 7.5 34.24% 18.5 74.44% 2.5 46.91% 7.5 9.5

69.50% 18.5 8.78% 19.5 8.78% 19.5 74.50% 2.5 46.54% 7.5 34.24% 18.5 74.44% 2.5 46.91% 7.5 9.5

69.50% 18.5 8.78% 19.5 8.78% 19.5 74.50% 2.5 46.54% 7.5 34.24% 18.5 74.44% 2.5 46.91% 7.5 9.5

85.40% 1.5 28.18% 5.5 34.56% 1.5 35.20% 12.5 34.14% 12.5 69.10% 1.5 34.95% 12.5 46.42% 10.5 5.5

85.40% 1.5 28.18% 5.5 34.56% 1.5 35.20% 12.5 34.14% 12.5 69.10% 1.5 34.95% 12.5 46.42% 10.5 5.5

84.70% 6.5 24.58% 10.5 24.58% 10.5 30.89% 17.5 29.82% 17.5 66.95% 6.5 30.56% 17.5 41.97% 17.5 15.5

84.70% 6.5 24.58% 10.5 24.58% 10.5 30.89% 17.5 29.82% 17.5 66.95% 6.5 30.56% 17.5 41.97% 17.5 15.5

84.70% 6.5 24.58% 10.5 24.58% 10.5 30.89% 17.5 29.82% 17.5 66.95% 6.5 30.56% 17.5 41.97% 17.5 15.5

84.70% 6.5 24.58% 10.5 24.58% 10.5 30.89% 17.5 29.82% 17.5 66.95% 6.5 30.56% 17.5 41.97% 17.5 15.5

84.70% 6.5 24.58% 10.5 24.58% 10.5 30.89% 17.5 29.82% 17.5 66.95% 6.5 30.56% 17.5 41.97% 17.5 15.5

84.70% 6.5 24.58% 10.5 24.58% 10.5 30.89% 17.5 29.82% 17.5 66.95% 6.5 30.56% 17.5 41.97% 17.5 15.5

84.70% 6.5 24.58% 10.5 24.58% 10.5 30.89% 17.5 29.82% 17.5 66.95% 6.5 30.56% 17.5 41.97% 17.5 15.5

84.70% 6.5 24.58% 10.5 24.58% 10.5 30.89% 17.5 29.82% 17.5 66.95% 6.5 30.56% 17.5 41.97% 17.5 15.5

Precision

BR 78.09% 13 78.09% 9 35.56% 10 51.63% 14 39.63% 10 41.34% 9 41.34% 9 45.34% 7 9

77.63% 14 77.63% 10 40.06% 9 47.70% 15 41.98% 7 40.01% 10 40.01% 10 43.31% 10 10

Single+ 51.90% 15 51.90% 11 25.44% 13 79.35% 5 36.14% 13 24.36% 11 24.36% 11 37.21% 11 11

78.58% 11.5 78.58% 7.5 40.41% 7.5 46.24% 16.5 41.78% 8.5 41.64% 7.5 41.64% 7.5 43.55% 8.5 7.5

78.58% 11.5 78.58% 7.5 40.41% 7.5 46.24% 16.5 41.78% 8.5 41.64% 7.5 41.64% 7.5 43.55% 8.5 7.5

18.53% 20.5 18.53% 20.5 18.14% 16.5 99.41% 1.5 30.37% 16.5 18.12% 16.5 18.12% 16.5 30.65% 16.5 16.5

18.53% 20.5 18.53% 20.5 18.14% 16.5 99.41% 1.5 30.37% 16.5 18.12% 16.5 18.12% 16.5 30.65% 16.5 16.5

51.38% 16.5 51.38% 12.5 25.89% 11.5 78.22% 6.5 36.24% 11.5 23.95% 12.5 23.95% 12.5 36.60% 12.5 12.5

51.38% 16.5 51.38% 12.5 25.89% 11.5 78.22% 6.5 36.24% 11.5 23.95% 12.5 23.95% 12.5 36.60% 12.5 12.5

19.52% 18.5 19.52% 18.5 18.33% 14.5 99.08% 3.5 30.60% 14.5 18.26% 14.5 18.26% 14.5 30.83% 14.5 14.5

19.52% 18.5 19.52% 18.5 18.33% 14.5 99.08% 3.5 30.60% 14.5 18.26% 14.5 18.26% 14.5 30.83% 14.5 14.5

85.56% 6 85.56% 2 51.73% 6 53.97% 11 51.74% 6 61.81% 6 61.81% 2 57.05% 6 4

85.76% 5 85.76% 1 52.31% 5 54.77% 10 52.37% 3 62.42% 5 62.42% 1 57.66% 5 3

86.40% 2 47.32% 14.5 54.58% 1.5 55.73% 8.5 54.28% 1.5 64.75% 1.5 54.58% 3 59.23% 1.5 1.5

86.64% 1 47.32% 14.5 54.58% 1.5 55.73% 8.5 54.28% 1.5 64.75% 1.5 54.58% 4 59.23% 1.5 1.5

81.90% 8.5 81.90% 4.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 19.5

81.90% 8.5 81.90% 4.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 19.5

86.13% 3.5 45.57% 16.5 52.95% 3.5 53.34% 12.5 52.32% 4.5 64.45% 3.5 52.19% 5.5 57.68% 3.5 5.5

86.13% 3.5 45.57% 16.5 52.95% 3.5 53.34% 12.5 52.32% 4.5 64.45% 3.5 52.19% 5.5 57.68% 3.5 5.5

81.90% 8.5 81.90% 4.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 19.5

81.90% 8.5 81.90% 4.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 0.00% 19.5 19.5

Subset Accuracy

81.76% 3 34.95% 1 47.09% 1 55.73% 2 49.34% 1 49.65% 3 54.73% 2 52.07% 1 1

69.16% 4 8.95% 4 36.14% 2 74.46% 1 46.37% 2 33.95% 4 74.44% 1 46.64% 2 2

84.77% 1.5 24.75% 2.5 30.22% 3.5 30.98% 3.5 29.90% 3.5 67.40% 1.5 30.72% 3.5 42.20% 3.5 3.5

84.77% 1.5 24.75% 2.5 30.22% 3.5 30.98% 3.5 29.90% 3.5 67.40% 1.5 30.72% 3.5 42.20% 3.5 3.5

Hamm.
Acc.

Subset
Acc.

Ex.-based
Prec.

Ex.-based
Rec.

Ex.-based
F1

Mi.
Prec.

Mi.
Rec

Mi.
F1

Avg.
Rank

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,Mm

Multi+Mm

Multi±stop,Mm

Multi±Mm

Table 16: Predictive performance of di�erent multi-label classi�cation approaches on the data set SCENE

using the rule-dependent evaluation strategy. Some approaches did not �nish in time. The

missing values are indicated by using the label �n/a�.
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Approach

F-Measure

4.78% 8 0.00% 4.5 2.86% 8 99.84% 1 5.53% 8 2.81% 8 99.88% 1 5.47% 8 8

28.78% 5 0.00% 4.5 3.71% 5 97.91% 4 7.11% 5 3.64% 5 97.50% 4 7.02% 5 5

25.02% 6 0.00% 4.5 3.49% 6 98.76% 2 6.71% 6 3.50% 6 98.50% 2 6.75% 6 6

25.00% 7 0.00% 4.5 3.48% 7 98.53% 3 6.69% 7 3.48% 7 98.13% 3 6.73% 7 7

64.78% 2 0.00% 4.5 8.76% 2 90.70% 8 14.82% 2 6.57% 2 89.13% 8 12.24% 2 3

69.86% 1 0.00% 4.5 9.91% 1 91.63% 7 16.83% 1 7.75% 1 91.13% 7 14.29% 1 1

58.08% 3 0.00% 4.5 5.81% 3 93.62% 5 10.87% 3 5.81% 3 93.50% 5 10.95% 3 2

58.00% 4 0.00% 4.5 5.75% 4 93.07% 6 10.76% 4 5.76% 4 92.63% 6 10.84% 4 4

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

Hamming Accuracy

96.39% 6.5 12.56% 6.5 46.06% 6.5 82.12% 6.5 56.69% 6.5 41.99% 6.5 81.63% 6.5 55.46% 6.5 6.5

96.39% 6.5 12.56% 6.5 46.06% 6.5 82.12% 6.5 56.69% 6.5 41.99% 6.5 81.63% 6.5 55.46% 6.5 6.5

96.39% 6.5 12.56% 6.5 46.06% 6.5 82.12% 6.5 56.69% 6.5 41.99% 6.5 81.63% 6.5 55.46% 6.5 6.5

96.39% 6.5 12.56% 6.5 46.06% 6.5 82.12% 6.5 56.69% 6.5 41.99% 6.5 81.63% 6.5 55.46% 6.5 6.5

97.01% 2.5 25.58% 2.5 53.96% 2.5 88.24% 2.5 63.28% 2.5 47.68% 2.5 87.50% 2.5 61.73% 2.5 2.5

97.01% 2.5 25.58% 2.5 53.96% 2.5 88.24% 2.5 63.28% 2.5 47.68% 2.5 87.50% 2.5 61.73% 2.5 2.5

97.01% 2.5 25.58% 2.5 53.96% 2.5 88.24% 2.5 63.28% 2.5 47.68% 2.5 87.50% 2.5 61.73% 2.5 2.5

97.01% 2.5 25.58% 2.5 53.96% 2.5 88.24% 2.5 63.28% 2.5 47.68% 2.5 87.50% 2.5 61.73% 2.5 2.5

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a
Precision

96.90% 1.5 26.36% 1.5 38.06% 1.5 36.51% 7.5 36.07% 1.5 42.33% 1.5 34.50% 7.5 38.02% 1.5 1.5

96.90% 1.5 26.36% 1.5 38.06% 1.5 36.51% 7.5 36.07% 1.5 42.33% 1.5 34.50% 7.5 38.02% 1.5 1.5

25.00% 7.5 0.00% 6.5 3.48% 7.5 98.53% 1.5 6.69% 7.5 3.48% 8 98.13% 1.5 6.73% 7.5 7.5

25.00% 7.5 0.00% 6.5 3.48% 7.5 98.53% 1.5 6.69% 7.5 3.48% 8 98.13% 1.5 6.73% 7.5 7.5

94.20% 3.5 9.15% 3.5 28.51% 3.5 60.65% 5.5 35.29% 3.5 25.94% 3.5 59.50% 5.5 36.13% 3.5 3.5

94.20% 3.5 9.15% 3.5 28.51% 3.5 60.65% 5.5 35.29% 3.5 25.94% 3.5 59.50% 5.5 36.13% 3.5 3.5

58.00% 5.5 0.00% 6.5 5.75% 5.5 93.07% 3.5 10.76% 5.5 5.76% 8 92.63% 3.5 10.84% 5.5 6

58.00% 5.5 0.00% 6.5 5.75% 5.5 93.07% 3.5 10.76% 5.5 5.76% 5 92.63% 3.5 10.84% 5.5 5

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

Subset Accuracy

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

Hamm.
Acc.

Subset
Acc.

Ex.-based
Prec.

Ex.-based
Rec.

Ex.-based
F1

Mi.
Prec.

Mi.
Rec

Mi.
F1

Avg.
Rank

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,Mm

Multi+Mm

Multi±stop,Mm

Multi±Mm

Table 17: Predictive performance of di�erent multi-label classi�cation approaches on the data set

MEDICAL using the rule-independent evaluation strategy. Some approaches did not �nish in

time. The missing values are indicated by using the label �n/a�.
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Approach

F-Measure

34.90% 11 0.00% 11.5 33.61% 3 99.34% 6 49.10% 3 33.53% 7 99.50% 6 50.16% 3 3

32.92% 14 0.00% 11.5 32.92% 6 100.00% 3 48.48% 6 32.92% 10 100.00% 3 49.53% 6 8

32.92% 14 0.00% 11.5 32.92% 6 100.00% 3 48.48% 6 32.92% 10 100.00% 3 49.53% 6 8

32.92% 14 0.00% 11.5 32.92% 6 100.00% 3 48.48% 6 32.92% 10 100.00% 3 49.53% 6 8

52.97% 10 1.49% 5.5 41.43% 2 91.34% 8 55.21% 2 40.55% 6 91.98% 8 56.29% 2 2

54.37% 9 1.49% 5.5 42.82% 1 92.00% 7 56.40% 1 41.37% 5 92.48% 7 57.16% 1 1

32.92% 14 0.00% 11.5 32.92% 6 100.00% 3 48.48% 6 32.92% 10 100.00% 3 49.53% 6 8

32.92% 14 0.00% 11.5 32.92% 6 100.00% 3 48.48% 6 32.92% 10 100.00% 3 49.53% 6 8

72.03% 1.5 8.42% 1.5 13.86% 9.5 17.33% 9.5 15.10% 9.5 77.78% 3.5 21.05% 9.5 33.14% 9.5 4.5

70.71% 3.5 5.45% 3.5 9.08% 11.5 10.89% 11.5 9.80% 11.5 83.33% 1.5 13.78% 11.5 23.66% 11.5 11.5

67.08% 6.5 0.00% 11.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 14.5

67.08% 6.5 0.00% 11.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 14.5

72.03% 1.5 8.42% 1.5 13.86% 9.5 17.33% 9.5 15.10% 9.5 77.78% 3.5 21.05% 9.5 33.14% 9.5 4.5

70.71% 3.5 5.45% 3.5 9.08% 11.5 10.89% 11.5 9.80% 11.5 83.33% 1.5 13.78% 11.5 23.66% 11.5 11.5

67.08% 6.5 0.00% 11.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 14.5

67.08% 6.5 0.00% 11.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 14.5

Hamming Accuracy

44.97% 14.5 0.99% 12.5 37.54% 14.5 91.91% 6.5 51.17% 14.5 36.63% 14.5 91.98% 6.5 52.39% 14.5 14.5

44.97% 14.5 0.99% 12.5 37.54% 14.5 91.91% 6.5 51.17% 14.5 36.63% 14.5 91.98% 6.5 52.39% 14.5 14.5

44.97% 14.5 0.99% 12.5 37.54% 14.5 91.91% 6.5 51.17% 14.5 36.63% 14.5 91.98% 6.5 52.39% 14.5 14.5

44.97% 14.5 0.99% 12.5 37.54% 14.5 91.91% 6.5 51.17% 14.5 36.63% 14.5 91.98% 6.5 52.39% 14.5 14.5

56.19% 10.5 0.99% 12.5 43.00% 10.5 92.00% 2.5 56.98% 2.5 42.45% 10.5 92.98% 2.5 58.29% 2.5 2.5

56.19% 10.5 0.99% 12.5 43.00% 10.5 92.00% 2.5 56.98% 2.5 42.45% 10.5 92.98% 2.5 58.29% 2.5 2.5

56.19% 10.5 0.99% 12.5 43.00% 10.5 92.00% 2.5 56.98% 2.5 42.45% 10.5 92.98% 2.5 58.29% 2.5 2.5

56.19% 10.5 0.99% 12.5 43.00% 10.5 92.00% 2.5 56.98% 2.5 42.45% 10.5 92.98% 2.5 58.29% 2.5 2.5

75.58% 4.5 24.75% 4.5 58.42% 4.5 53.30% 12.5 52.57% 8.5 66.78% 4.5 51.38% 12.5 58.07% 8.5 8.5

75.58% 4.5 24.75% 4.5 58.42% 4.5 53.30% 12.5 52.57% 8.5 66.78% 4.5 51.38% 12.5 58.07% 8.5 8.5

75.58% 4.5 24.75% 4.5 58.42% 4.5 53.30% 12.5 52.57% 8.5 66.78% 4.5 51.38% 12.5 58.07% 8.5 8.5

75.58% 4.5 24.75% 4.5 58.42% 4.5 53.30% 12.5 52.57% 8.5 66.78% 4.5 51.38% 12.5 58.07% 8.5 8.5

75.58% 4.5 24.75% 4.5 58.42% 4.5 53.30% 12.5 52.57% 8.5 66.78% 4.5 51.38% 12.5 58.07% 8.5 8.5

75.58% 4.5 24.75% 4.5 58.42% 4.5 53.30% 12.5 52.57% 8.5 66.78% 4.5 51.38% 12.5 58.07% 8.5 8.5

75.58% 4.5 24.75% 4.5 58.42% 4.5 53.30% 12.5 52.57% 8.5 66.78% 4.5 51.38% 12.5 58.07% 8.5 8.5

75.58% 4.5 24.75% 4.5 58.42% 4.5 53.30% 12.5 52.57% 8.5 66.78% 4.5 51.38% 12.5 58.07% 8.5 8.5

Precision

68.89% 5.5 20.79% 1.5 49.65% 5.5 48.43% 11.5 46.80% 11.5 52.99% 5.5 48.87% 11.5 50.85% 7.5 7.5

68.89% 5.5 20.79% 1.5 49.65% 5.5 48.43% 11.5 46.80% 11.5 52.99% 5.5 48.87% 11.5 50.85% 7.5 7.5

32.92% 14.5 0.00% 12.5 32.92% 10.5 100.00% 2.5 48.48% 8.5 32.92% 10.5 100.00% 2.5 49.53% 10.5 10.5

32.92% 14.5 0.00% 12.5 32.92% 10.5 100.00% 2.5 48.48% 8.5 32.92% 10.5 100.00% 2.5 49.53% 10.5 10.5

47.28% 11.5 4.46% 7.5 38.77% 7.5 88.53% 5.5 50.89% 1.5 37.26% 7.5 87.97% 5.5 52.35% 1.5 5.5

47.28% 11.5 4.46% 7.5 38.77% 7.5 88.53% 5.5 50.89% 1.5 37.26% 7.5 87.97% 5.5 52.35% 1.5 5.5

32.92% 14.5 0.00% 12.5 32.92% 10.5 100.00% 2.5 48.48% 8.5 32.92% 10.5 100.00% 2.5 49.53% 10.5 10.5

32.92% 14.5 0.00% 12.5 32.92% 10.5 100.00% 2.5 48.48% 8.5 32.92% 10.5 100.00% 2.5 49.53% 10.5 10.5

69.88% 2.5 16.83% 4.5 51.07% 2.5 51.90% 8.5 49.11% 4.5 54.67% 2.5 49.87% 8.5 52.16% 4.5 2.5

69.88% 2.5 16.83% 4.5 51.07% 2.5 51.90% 8.5 49.11% 4.5 54.67% 2.5 49.87% 8.5 52.16% 4.5 2.5

67.08% 8.5 0.00% 12.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 14.5

67.08% 8.5 0.00% 12.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 14.5

69.88% 2.5 16.83% 4.5 51.07% 2.5 51.90% 8.5 49.11% 4.5 54.67% 2.5 49.87% 8.5 52.16% 4.5 2.5

69.88% 2.5 16.83% 4.5 51.07% 2.5 51.90% 8.5 49.11% 4.5 54.67% 2.5 49.87% 8.5 52.16% 4.5 2.5

67.08% 8.5 0.00% 12.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 14.5

67.08% 8.5 0.00% 12.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 0.00% 14.5 14.5

Subset Accuracy

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

Hamm.
Acc.

Subset
Acc.

Ex.-based
Prec.

Ex.-based
Rec.

Ex.-based
F1

Mi.
Prec.

Mi.
Rec

Mi.
F1

Avg.
Rank

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,Mm

Multi+Mm

Multi±stop,Mm

Multi±Mm

Table 18: Predictive performance of di�erent multi-label classi�cation approaches on the data set

EMOTIONS using the rule-independent evaluation strategy.
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Approach

F-Measure

77.86% 3 31.66% 3.5 41.25% 3 97.57% 4 45.95% 3 16.12% 3 92.65% 7 27.47% 3 3.5

59.30% 4 31.66% 3.5 36.58% 4 98.53% 3 40.26% 4 9.71% 4 95.51% 3 17.63% 4 3.5

22.93% 7.5 0.00% 6.5 5.50% 7.5 99.16% 1.5 10.28% 7.5 5.50% 7.5 98.37% 1.5 10.43% 7.5 7.5

22.93% 7.5 0.00% 6.5 5.50% 7.5 99.16% 1.5 10.28% 7.5 5.50% 7.5 98.37% 1.5 10.43% 7.5 7.5

98.38% 1.5 74.87% 1.5 89.36% 1.5 97.11% 7.5 90.32% 1.5 76.69% 1.5 92.65% 7 83.92% 1.5 1.5

98.38% 1.5 74.87% 1.5 89.36% 1.5 97.11% 7.5 90.32% 1.5 76.69% 1.5 92.65% 7 83.92% 1.5 1.5

52.08% 5.5 0.00% 6.5 8.18% 5.5 97.19% 5.5 14.86% 5.5 8.18% 5.5 93.06% 4.5 15.04% 5.5 5.5

52.08% 5.5 0.00% 6.5 8.18% 5.5 97.19% 5.5 14.86% 5.5 8.18% 5.5 93.06% 4.5 15.04% 5.5 5.5

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

Hamming Accuracy

85.32% 6.5 39.70% 6.5 50.76% 6.5 99.16% 2.5 57.68% 6.5 23.49% 6.5 98.37% 2.5 37.92% 6.5 6.5

85.32% 6.5 39.70% 6.5 50.76% 6.5 99.16% 2.5 57.68% 6.5 23.49% 6.5 98.37% 2.5 37.92% 6.5 6.5

85.32% 6.5 39.70% 6.5 50.76% 6.5 99.16% 2.5 57.68% 6.5 23.49% 6.5 98.37% 2.5 37.92% 6.5 6.5

85.32% 6.5 39.70% 6.5 50.76% 6.5 99.16% 2.5 57.68% 6.5 23.49% 6.5 98.37% 2.5 37.92% 6.5 6.5

98.90% 2.5 77.39% 2.5 87.77% 2.5 92.84% 6.5 88.54% 2.5 87.20% 2.5 88.98% 6.5 88.08% 2.5 2.5

98.90% 2.5 77.39% 2.5 87.77% 2.5 92.84% 6.5 88.54% 2.5 87.20% 2.5 88.98% 6.5 88.08% 2.5 2.5

98.90% 2.5 77.39% 2.5 87.77% 2.5 92.84% 6.5 88.54% 2.5 87.20% 2.5 88.98% 6.5 88.08% 2.5 2.5

98.90% 2.5 77.39% 2.5 87.77% 2.5 92.84% 6.5 88.54% 2.5 87.20% 2.5 88.98% 6.5 88.08% 2.5 2.5

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

Precision

98.31% 1.5 73.87% 1.5 75.38% 1.5 74.54% 7.5 74.79% 1.5 98.73% 1.5 63.67% 7.5 77.42% 1.5 1.5

98.31% 1.5 73.87% 1.5 75.38% 1.5 74.54% 7.5 74.79% 1.5 98.73% 1.5 63.67% 7.5 77.42% 1.5 1.5

22.93% 7.5 0.00% 6.5 5.50% 7.5 99.16% 1.5 10.28% 7.5 5.50% 7.5 98.37% 1.5 10.43% 7.5 7.5

22.93% 7.5 0.00% 6.5 5.50% 7.5 99.16% 1.5 10.28% 7.5 5.50% 7.5 98.37% 1.5 10.43% 7.5 7.5

98.25% 3.5 71.86% 3.5 74.62% 3.5 75.04% 5.5 74.44% 3.5 95.76% 3.5 64.49% 5.5 77.07% 3.5 3.5

98.25% 3.5 71.86% 3.5 74.62% 3.5 75.04% 5.5 74.44% 3.5 95.76% 3.5 64.49% 5.5 77.07% 3.5 3.5

52.08% 5.5 0.00% 6.5 8.18% 5.5 97.19% 3.5 14.86% 5.5 8.18% 5.5 93.06% 3.5 15.04% 5.5 5.5

52.08% 5.5 0.00% 6.5 8.18% 5.5 97.19% 3.5 14.86% 5.5 8.18% 5.5 93.06% 3.5 15.04% 5.5 5.5

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a
Subset Accuracy

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

Hamm.
Acc.

Subset
Acc.

Ex.-based
Prec.

Ex.-based
Rec.

Ex.-based
F1

Mi.
Prec.

Mi.
Rec

Mi.
F1

Avg.
Rank

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,Mm

Multi+Mm

Multi±stop,Mm

Multi±Mm

Table 19: Predictive performance of di�erent multi-label classi�cation approaches on the data set

GENBASE using the rule-independent evaluation strategy. Some approaches did not �nish in

time. The missing values are indicated by using the label �n/a�.
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Approach

F-Measure

22.83% 5 0.00% 4.5 5.99% 6 52.09% 3 10.38% 6 6.08% 3 97.76% 3 11.44% 3 3.5

13.65% 6 0.00% 4.5 7.03% 3 49.05% 5 10.96% 5 4.97% 8 87.86% 6 9.40% 8 8

5.10% 7.5 0.00% 4.5 5.10% 7.5 53.25% 1.5 9.13% 7.5 5.10% 6.5 100.00% 1.5 9.71% 6.5 6.5

5.10% 7.5 0.00% 4.5 5.10% 7.5 53.25% 1.5 9.13% 7.5 5.10% 6.5 100.00% 1.5 9.71% 6.5 6.5

31.22% 3 0.00% 4.5 7.25% 2 45.85% 7 11.64% 3 5.83% 5 82.43% 8 10.89% 5 5

31.12% 4 0.00% 4.5 7.42% 1 45.60% 8 11.89% 1 5.98% 4 84.98% 7 11.18% 4 3.5

31.61% 2 0.00% 4.5 6.48% 5 49.07% 4 11.16% 4 6.49% 2 93.29% 4 12.13% 2 2

36.14% 1 0.00% 4.5 6.83% 4 48.27% 6 11.66% 2 6.85% 1 91.37% 5 12.74% 1 1

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

Hamming Accuracy

64.62% 2.5 10.22% 2.5 16.72% 2.5 47.50% 2.5 19.73% 2.5 10.33% 2.5 77.32% 4.5 18.23% 2.5 2.5

64.62% 2.5 10.22% 2.5 16.72% 2.5 47.50% 2.5 19.73% 2.5 10.33% 2.5 77.32% 4.5 18.23% 2.5 2.5

64.62% 2.5 10.22% 2.5 16.72% 2.5 47.50% 2.5 19.73% 2.5 10.33% 2.5 77.32% 4.5 18.23% 2.5 2.5

64.62% 2.5 10.22% 2.5 16.72% 2.5 47.50% 2.5 19.73% 2.5 10.33% 2.5 77.32% 4.5 18.23% 2.5 2.5

63.92% 6.5 1.24% 6.5 6.56% 6.5 38.44% 6.5 10.07% 6.5 10.15% 6.5 77.32% 4.5 17.94% 6.5 6.5

63.92% 6.5 1.24% 6.5 6.56% 6.5 38.44% 6.5 10.07% 6.5 10.15% 6.5 77.32% 4.5 17.94% 6.5 6.5

63.92% 6.5 1.24% 6.5 6.56% 6.5 38.44% 6.5 10.07% 6.5 10.15% 6.5 77.32% 4.5 17.94% 6.5 6.5

63.92% 6.5 1.24% 6.5 6.56% 6.5 38.44% 6.5 10.07% 6.5 10.15% 6.5 77.32% 4.5 17.94% 6.5 6.5

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a
Precision

90.34% 1.5 4.33% 1.5 15.27% 1.5 14.78% 7.5 13.68% 1.5 17.44% 1.5 23.96% 7.5 20.19% 1.5 1.5

90.34% 1.5 4.33% 1.5 15.27% 1.5 14.78% 7.5 13.68% 1.5 17.44% 1.5 23.96% 7.5 20.19% 1.5 1.5

5.10% 7.5 0.00% 6.5 5.10% 7.5 53.25% 1.5 9.13% 7.5 5.10% 7.5 100.00% 1.5 9.71% 7.5 7.5

5.10% 7.5 0.00% 6.5 5.10% 7.5 53.25% 1.5 9.13% 7.5 5.10% 7.5 100.00% 1.5 9.71% 7.5 7.5

70.46% 3.5 2.48% 3.5 10.93% 3.5 26.60% 5.5 13.41% 3.5 7.96% 3.5 45.37% 5.5 13.54% 3.5 3.5

70.46% 3.5 2.48% 3.5 10.93% 3.5 26.60% 5.5 13.41% 3.5 7.96% 3.5 45.37% 5.5 13.54% 3.5 3.5

36.14% 5.5 0.00% 6.5 6.83% 5.5 48.27% 3.5 11.66% 5.5 6.85% 5.5 91.37% 3.5 12.74% 5.5 5.5

36.14% 5.5 0.00% 6.5 6.83% 5.5 48.27% 3.5 11.66% 5.5 6.85% 5.5 91.37% 3.5 12.74% 5.5 5.5

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a
Subset Accuracy

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

Hamm.
Acc.

Subset
Acc.

Ex.-based
Prec.

Ex.-based
Rec.

Ex.-based
F1

Mi.
Prec.

Mi.
Rec

Mi.
F1

Avg.
Rank

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,Mm

Multi+Mm

Multi±stop,Mm

Multi±Mm

Table 20: Predictive performance of di�erent multi-label classi�cation approaches on the data set BIRDS

using the rule-independent evaluation strategy. Some approaches did not �nish in time. The

missing values are indicated by using the label �n/a�.
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Approach

F-Measure

19.59% 11 0.00% 9.5 18.43% 3 99.83% 5.5 30.84% 3 18.35% 3 99.77% 6 31.00% 3 3

19.37% 12 0.00% 9.5 18.40% 4 99.83% 5.5 30.79% 4 18.32% 4 99.85% 5 30.95% 4 4

18.10% 14.5 0.00% 9.5 18.10% 6.5 100.00% 2.5 30.42% 6.5 18.10% 6.5 100.00% 2.5 30.65% 6.5 6.5

18.10% 14.5 0.00% 9.5 18.10% 6.5 100.00% 2.5 30.42% 6.5 18.10% 6.5 100.00% 2.5 30.65% 6.5 6.5

62.70% 9 6.19% 2 34.60% 2 84.78% 8 46.30% 2 30.59% 2 83.60% 8 44.79% 2 2

62.28% 10 6.61% 1 34.64% 1 87.00% 7 47.13% 1 30.72% 1 86.37% 7 45.32% 1 1

18.10% 14.5 0.00% 9.5 18.10% 6.5 100.00% 2.5 30.42% 6.5 18.10% 6.5 100.00% 2.5 30.65% 6.5 6.5

18.10% 14.5 0.00% 9.5 18.10% 6.5 100.00% 2.5 30.42% 6.5 18.10% 6.5 100.00% 2.5 30.65% 6.5 6.5

81.90% 4.5 0.00% 9.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 12.5

81.90% 4.5 0.00% 9.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 12.5

81.90% 4.5 0.00% 9.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 12.5

81.90% 4.5 0.00% 9.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 12.5

81.90% 4.5 0.00% 9.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 12.5

81.90% 4.5 0.00% 9.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 12.5

81.90% 4.5 0.00% 9.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 12.5

81.90% 4.5 0.00% 9.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 0.00% 12.5 12.5

Hamming Accuracy

62.64% 14.5 9.28% 10.5 28.08% 14.5 60.74% 6.5 35.47% 14.5 26.69% 14.5 60.89% 6.5 37.11% 14.5 14.5

62.64% 14.5 9.28% 10.5 28.08% 14.5 60.74% 6.5 35.47% 14.5 26.69% 14.5 60.89% 6.5 37.11% 14.5 14.5

62.64% 14.5 9.28% 10.5 28.08% 14.5 60.74% 6.5 35.47% 14.5 26.69% 14.5 60.89% 6.5 37.11% 14.5 14.5

62.64% 14.5 9.28% 10.5 28.08% 14.5 60.74% 6.5 35.47% 14.5 26.69% 14.5 60.89% 6.5 37.11% 14.5 14.5

65.43% 10.5 7.69% 14.5 35.66% 10.5 82.19% 2.5 47.14% 10.5 32.15% 10.5 81.91% 2.5 46.17% 10.5 10.5

65.43% 10.5 7.69% 14.5 35.66% 10.5 82.19% 2.5 47.14% 10.5 32.15% 10.5 81.91% 2.5 46.17% 10.5 10.5

65.43% 10.5 7.69% 14.5 35.66% 10.5 82.19% 2.5 47.14% 10.5 32.15% 10.5 81.91% 2.5 46.17% 10.5 10.5

65.43% 10.5 7.69% 14.5 35.66% 10.5 82.19% 2.5 47.14% 10.5 32.15% 10.5 81.91% 2.5 46.17% 10.5 10.5

84.03% 4.5 46.07% 4.5 51.84% 4.5 48.95% 12.5 49.92% 4.5 57.04% 4.5 47.73% 12.5 51.97% 4.5 4.5

84.03% 4.5 46.07% 4.5 51.84% 4.5 48.95% 12.5 49.92% 4.5 57.04% 4.5 47.73% 12.5 51.97% 4.5 4.5

84.03% 4.5 46.07% 4.5 51.84% 4.5 48.95% 12.5 49.92% 4.5 57.04% 4.5 47.73% 12.5 51.97% 4.5 4.5

84.03% 4.5 46.07% 4.5 51.84% 4.5 48.95% 12.5 49.92% 4.5 57.04% 4.5 47.73% 12.5 51.97% 4.5 4.5

84.03% 4.5 46.07% 4.5 51.84% 4.5 48.95% 12.5 49.92% 4.5 57.04% 4.5 47.73% 12.5 51.97% 4.5 4.5

84.03% 4.5 46.07% 4.5 51.84% 4.5 48.95% 12.5 49.92% 4.5 57.04% 4.5 47.73% 12.5 51.97% 4.5 4.5

84.03% 4.5 46.07% 4.5 51.84% 4.5 48.95% 12.5 49.92% 4.5 57.04% 4.5 47.73% 12.5 51.97% 4.5 4.5

84.03% 4.5 46.07% 4.5 51.84% 4.5 48.95% 12.5 49.92% 4.5 57.04% 4.5 47.73% 12.5 51.97% 4.5 4.5

Precision

79.65% 5.5 36.54% 1.5 40.89% 1.5 40.05% 7.5 40.04% 1.5 43.09% 1.5 38.65% 7.5 40.75% 1.5 1.5

79.65% 5.5 36.54% 1.5 40.89% 1.5 40.05% 7.5 40.04% 1.5 43.09% 1.5 38.65% 7.5 40.75% 1.5 1.5

18.10% 10.5 0.00% 8.5 18.10% 6.5 100.00% 2.5 30.42% 6.5 18.10% 6.5 100.00% 2.5 30.65% 6.5 6.5

18.10% 10.5 0.00% 8.5 18.10% 6.5 100.00% 2.5 30.42% 6.5 18.10% 6.5 100.00% 2.5 30.65% 6.5 6.5

47.91% 7.5 4.60% 3.5 24.54% 3.5 77.80% 5.5 34.58% 3.5 22.37% 3.5 75.98% 5.5 34.56% 3.5 3.5

47.91% 7.5 4.60% 3.5 24.54% 3.5 77.80% 5.5 34.58% 3.5 22.37% 3.5 75.98% 5.5 34.56% 3.5 3.5

18.10% 10.5 0.00% 8.5 18.10% 6.5 100.00% 2.5 30.42% 6.5 18.10% 6.5 100.00% 2.5 30.65% 6.5 6.5

18.10% 10.5 0.00% 8.5 18.10% 6.5 100.00% 2.5 30.42% 6.5 18.10% 6.5 100.00% 2.5 30.65% 6.5 6.5

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

81.90% 2.5 0.00% 8.5 0.00% 10.5 0.00% 10.5 0.00% 10.5 0.00% 10.5 0.00% 10.5 0.00% 10.5 10.5

81.90% 2.5 0.00% 8.5 0.00% 10.5 0.00% 10.5 0.00% 10.5 0.00% 10.5 0.00% 10.5 0.00% 10.5 10.5

n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a

81.90% 2.5 0.00% 8.5 0.00% 10.5 0.00% 10.5 0.00% 10.5 0.00% 10.5 0.00% 10.5 0.00% 10.5 10.5

81.90% 2.5 0.00% 8.5 0.00% 10.5 0.00% 10.5 0.00% 10.5 0.00% 10.5 0.00% 10.5 0.00% 10.5 10.5

Subset Accuracy

- - - - - - - -

- - - - - - - -

- - - - - - - -

- - - - - - - -

Hamm.
Acc.

Subset
Acc.

Ex.-based
Prec.

Ex.-based
Rec.

Ex.-based
F1

Mi.
Prec.

Mi.
Rec

Mi.
F1

Avg.
Rank

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,Mm

Multi+Mm

Multi±stop,Mm

Multi±Mm

Table 21: Predictive performance of di�erent multi-label classi�cation approaches on the data set SCENE

using the rule-independent evaluation strategy. Some approaches did not �nish in time. The

missing values are indicated by using the label �n/a�.
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B Results of Model Analyses

Approach # Rules

F-Measure

102 75 2 0.98% 0.98% 98.04% 0 0.00% 1.00
Single+ 56 0 1 1.79% 0.00% 98.21% 0 0.00% 1.00

101 70 2 0.99% 0.99% 98.02% 0 0.00% 1.00

101 70 2 0.99% 0.99% 98.02% 0 0.00% 1.00

18 1 0 0.00% 0.00% 100.00% 6 33.00% 2.11

18 1 0 0.00% 0.00% 100.00% 6 33.00% 2.11

65 0 2 3.08% 0.00% 96.92% 0 0.00% 1.00

65 0 2 3.08% 0.00% 96.92% 0 0.00% 1.00

15 0 0 0.00% 0.00% 100.00% 3 20.00% 1.40

15 0 0 0.00% 0.00% 100.00% 3 20.00% 1.40

116 7 12 2.59% 5.17% 92.24% 0 0.00% 1.00

110 0 11 1.82% 5.45% 92.73% 0 0.00% 1.00

164 8 19 4.88% 5.49% 89.63% 3 1.83% 1.05

164 8 19 4.88% 5.49% 89.63% 3 1.83% 1.05

19 1 0 0.00% 0.00% 100.00% 7 36.84% 2.37

19 1 0 0.00% 0.00% 100.00% 7 36.84% 2.37

157 0 16 3.82% 5.10% 91.08% 3 1.91% 1.06

157 0 16 3.82% 5.10% 91.08% 3 1.91% 1.06

19 0 0 0.00% 0.00% 100.00% 7 36.84% 2.37

19 0 0 0.00% 0.00% 100.00% 7 36.84% 2.37
Hamming Accuracy

83 50 1 1.20% 0.00% 98.80% 0 0.00% 1.00

Single+ 64 0 3 3.13% 1.56% 95.31% 0 0.00% 1.00

78 39 0 0.00% 0.00% 100.00% 1 1.28% 1.01

78 39 0 0.00% 0.00% 100.00% 1 1.28% 1.01

78 39 0 0.00% 0.00% 100.00% 1 1.28% 1.01

78 39 0 0.00% 0.00% 100.00% 1 1.28% 1.01

68 0 0 0.00% 0.00% 100.00% 1 1.47% 1.01

68 0 0 0.00% 0.00% 100.00% 1 1.47% 1.01

68 0 0 0.00% 0.00% 100.00% 1 1.47% 1.01

68 0 0 0.00% 0.00% 100.00% 1 1.47% 1.01

89 1 5 0.00% 4.49% 95.51% 0 0.00% 1.00

89 0 5 0.00% 4.49% 95.51% 0 0.00% 1.00

111 12 4 0.00% 2.70% 97.30% 2 1.80% 1.09

111 12 4 0.00% 2.70% 97.30% 2 1.80% 1.09

111 12 4 0.00% 2.70% 97.30% 2 1.80% 1.09

111 12 4 0.00% 2.70% 97.30% 2 1.80% 1.09

111 0 4 0.00% 2.70% 97.30% 2 1.80% 1.09

111 0 4 0.00% 2.70% 97.30% 2 1.80% 1.09

111 0 4 0.00% 2.70% 97.30% 2 1.80% 1.09

111 0 4 0.00% 2.70% 97.30% 2 1.80% 1.09

Precision

266 196 7 1.50% 1.13% 97.37% 0 0.00% 1.00
Single+ 192 0 6 3.10% 0.00% 96.90% 0 0.00% 1.00

227 203 0 0.00% 0.00% 100.00% 48 21.15% 1.22

227 203 0 0.00% 0.00% 100.00% 48 21.15% 1.22

18 1 0 0.00% 0.00% 100.00% 6 33.33% 2.11

18 1 0 0.00% 0.00% 100.00% 6 33.33% 2.11

177 0 4 2.26% 0.00% 97.74% 44 24.86% 1.27

177 0 4 2.26% 0.00% 97.74% 44 24.86% 1.27

15 0 0 0.00% 0.00% 100.00% 3 20.00% 1.40

15 0 0 0.00% 0.00% 100.00% 3 20.00% 1.40

408 10 75 18.38% 0.00% 81.62% 0 0.00% 1.00

403 0 75 18.61% 0.00% 81.39% 0 0.00% 1.00

57 14 8 5.26% 8.77% 85.97% 53 92.98% 13.67

57 14 8 5.26% 8.77% 85.97% 53 92.98% 13.67

19 1 0 0.00% 0.00% 100.00% 7 36.84% 2.37

19 1 0 0.00% 0.00% 100.00% 7 36.84% 2.37

53 0 7 3.77% 9.43% 86.80% 51 96.23% 14.55

53 0 7 3.77% 9.43% 86.80% 51 96.23% 14.55

19 0 0 0.00% 0.00% 100.00% 7 36.84% 2.37

19 0 0 0.00% 0.00% 100.00% 7 36.84% 2.37
Subset Accuracy

82 44 1 1.22% 0.00% 98.78% 3 3.66% 1.04

68 0 2 2.94% 0.00% 97.06% 3 4.41% 1.04

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

# Stopping
Rules

# Label
Conditions

% Full Label-
Dependent

% Partially Label-
Dependent

% Not Label-
Dependent

# Multi-Label
Head Rules

% Multi-Label
Head Rules

Avg. # Labels
Per Head

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,Mm

Multi+Mm

Multi±stop,Mm

Multi±Mm

Table 22:Model analysis of di�erent multi-label classi�cation approaches on the data set MEDICAL using

the rule-dependent evaluation strategy. Some approaches did not �nish in time. The missing

values are indicated by using the label �n/a�.

109



Approach # Rules

F-Measure

106 50 1 0.00% 0.94% 99.06% 0 0.00% 1.00
Single+ 36 0 6 2.86% 14.29% 82.85% 0 0.00% 1.00

115 54 2 0.00% 1.74% 98.26% 0 0.00% 1.00

115 54 2 0.00% 1.74% 98.26% 0 0.00% 1.00

6 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

6 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

41 0 2 0.00% 4.88% 95.12% 0 0.00% 1.00

41 0 2 0.00% 4.88% 95.12% 0 0.00% 1.00

6 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

6 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

48 5 9 0.00% 16.67% 83.33% 0 0.00% 1.00

48 0 9 0.00% 16.67% 83.33% 0 0.00% 1.00

61 6 8 0.00% 11.48% 88.52% 0 0.00% 1.00

61 6 8 0.00% 11.48% 88.52% 0 0.00% 1.00

6 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

6 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

61 0 9 0.00% 13.11% 86.89% 0 0.00% 1.00

61 0 9 0.00% 13.11% 86.89% 0 0.00% 1.00

6 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

6 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

Hamming Accuracy

97 41 1 0.00% 1.03% 98.97% 0 0.00% 1.00
Single+ 69 0 3 1.45% 2.90% 95.65% 0 0.00% 1.00

205 93 0 0.00% 0.00% 100.00% 0 0.00% 1.00

205 93 0 0.00% 0.00% 100.00% 0 0.00% 1.00

205 93 0 0.00% 0.00% 100.00% 0 0.00% 1.00

205 93 0 0.00% 0.00% 100.00% 0 0.00% 1.00

107 0 3 0.00% 2.80% 97.20% 0 0.00% 1.00

107 0 3 0.00% 2.80% 97.20% 0 0.00% 1.00

107 0 3 0.00% 2.80% 97.20% 0 0.00% 1.00

107 0 3 0.00% 2.80% 97.20% 0 0.00% 1.00

20 2 2 0.00% 10.00% 90.00% 0 0.00% 1.00

20 0 2 0.00% 10.00% 90.00% 0 0.00% 1.00

51 11 3 0.00% 3.92% 96.08% 0 0.00% 1.00

51 0 3 0.00% 3.92% 96.08% 0 0.00% 1.00

51 0 3 0.00% 3.92% 96.08% 0 0.00% 1.00

51 0 3 0.00% 3.92% 96.08% 0 0.00% 1.00

51 0 3 0.00% 3.92% 96.08% 0 0.00% 1.00

51 0 3 0.00% 3.92% 96.08% 0 0.00% 1.00

51 0 3 0.00% 3.92% 96.08% 0 0.00% 1.00

51 0 3 0.00% 3.92% 96.08% 0 0.00% 1.00

Precision

355 171 1 0.00% 0.28% 99.72% 0 0.00% 1.00
Single+ 153 0 1 0.00% 0.65% 99.35% 0 0.00% 1.00

268 201 0 0.00% 0.00% 100.00% 116 42.28% 1.50

268 201 0 0.00% 0.00% 100.00% 116 42.28% 1.50

6 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

6 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

135 0 0 0.00% 0.00% 100.00% 52 38.52% 1.44

135 0 0 0.00% 0.00% 100.00% 52 38.52% 1.44

6 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

6 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

262 9 11 4.20% 0.00% 95.80% 0 0.00% 1.00

245 0 16 6.53% 0.00% 93.47% 0 0.00% 1.00

100 33 0 0.00% 0.00% 100.00% 98 98.00% 4.34

100 33 0 0.00% 0.00% 100.00% 98 98.00% 4.34

6 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

6 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

94 0 0 0.00% 0.00% 100.00% 92 97.87% 4.59

94 0 0 0.00% 0.00% 100.00% 92 97.87% 4.59

6 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

6 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

Subset Accuracy

197 108 1 0.00% 0.51% 99.49% 0 0.00% 1.00

109 0 3 0.00% 2.75% 97.25% 0 0.00% 1.00

108 16 1 0.00% 0.93% 99.07% 0 0.00% 1.00

84 0 1 0.00% 1.19% 98.81% 0 0.00% 1.00

# Stopping
Rules

# Label
Conditions

% Full Label-
Dependent

% Partially Label-
Dependent

% Not Label-
Dependent

# Multi-Label
Head Rules

% Multi-Label
Head Rules

Avg. # Labels
Per Head

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,Mm

Multi+Mm

Multi±stop,Mm

Multi±Mm

Table 23:Model analysis of di�erent multi-label classi�cation approaches on the data set EMOTIONS using

the rule-dependent evaluation strategy.
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Approach # Rules

F-Measure

30 16 1 3.33% 0.00% 96.67% 0 0.00% 1.00

Single+ 24 0 1 4.17% 0.00% 95.83% 0 0.00% 1.00

32 17 0 0.00% 0.00% 100.00% 0 0.00% 1.00

32 17 0 0.00% 0.00% 100.00% 0 0.00% 1.00

20 1 0 0.00% 0.00% 100.00% 1 5.00% 1.10

20 1 0 0.00% 0.00% 100.00% 1 5.00% 1.10

24 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

24 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

14 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

14 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

54 1 2 1.85% 1.85% 96.30% 0 0.00% 1.00

54 0 2 1.85% 1.85% 96.30% 0 0.00% 1.00

56 3 1 1.79% 0.00% 98.21% 1 1.79% 1.02

56 3 1 1.79% 0.00% 98.21% 1 1.79% 1.02

22 1 0 0.00% 0.00% 100.00% 3 13.64% 1.23

22 1 0 0.00% 0.00% 100.00% 3 13.64% 1.23

53 0 1 1.89% 0.00% 98.11% 1 1.89% 1.02

53 0 1 1.89% 0.00% 98.11% 1 1.89% 1.02

22 0 0 0.00% 0.00% 100.00% 3 13.64% 1.23

22 0 0 0.00% 0.00% 100.00% 3 13.64% 1.23

Hamming Accuracy

29 15 0 0.00% 0.00% 100.00% 0 0.00% 1.00

Single+ 23 0 2 8.70% 0.00% 91.30% 0 0.00% 1.00

28 13 0 0.00% 0.00% 100.00% 0 0.00% 1.00

28 13 0 0.00% 0.00% 100.00% 0 0.00% 1.00

28 13 0 0.00% 0.00% 100.00% 0 0.00% 1.00

28 13 0 0.00% 0.00% 100.00% 0 0.00% 1.00

24 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

24 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

24 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

24 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

52 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

52 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

54 3 3 0.00% 3.70% 96.30% 1 1.85% 1.02

54 3 3 0.00% 3.70% 96.30% 1 1.85% 1.02

54 3 3 0.00% 3.70% 96.30% 1 1.85% 1.02

54 3 3 0.00% 3.70% 96.30% 1 1.85% 1.02

54 0 3 0.00% 3.70% 96.30% 1 1.85% 1.02

54 0 3 0.00% 3.70% 96.30% 1 1.85% 1.02

54 0 3 0.00% 3.70% 96.30% 1 1.85% 1.02

54 0 3 0.00% 3.70% 96.30% 1 1.85% 1.02

Precision

53 38 1 1.89% 0.00% 98.11% 0 0.00% 1.00
Single+ 15 0 1 6.67% 0.00% 93.33% 0 0.00% 1.00

37 25 0 0.00% 0.00% 100.00% 5 13.51% 1.16

37 25 0 0.00% 0.00% 100.00% 5 13.51% 1.16

20 1 0 0.00% 0.00% 100.00% 1 5.00% 1.10

20 1 0 0.00% 0.00% 100.00% 1 5.00% 1.10

14 0 0 0.00% 0.00% 100.00% 4 28.57% 1.36

14 0 0 0.00% 0.00% 100.00% 4 28.57% 1.36

14 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

14 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

72 10 9 12.68% 0.00% 87.32% 0 0.00% 1.00

51 0 8 15.69% 0.00% 84.31% 0 0.00% 1.00

23 9 4 0.00% 17.39% 82.61% 16 69.57% 12.57

23 9 4 0.00% 17.39% 82.61% 16 69.57% 12.57

22 1 0 0.00% 0.00% 100.00% 3 13.64% 1.23

22 1 0 0.00% 0.00% 100.00% 3 13.64% 1.23

15 0 4 0.00% 26.67% 73.33% 14 93.33% 18.40

15 0 4 0.00% 26.67% 73.33% 14 93.33% 18.40

22 0 0 0.00% 0.00% 100.00% 3 13.64% 1.23

22 0 0 0.00% 0.00% 100.00% 3 13.64% 1.23

Subset Accuracy

28 13 0 0.00% 0.00% 100.00% 0 0.00% 1.00

24 0 6 25.00% 0.00% 75.00% 6 25.00% 1.25

54 2 6 5.56% 5.56% 88.88% 54 100.00% 3.30

54 0 6 5.56% 5.56% 88.88% 54 100.00% 3.30

# Stopping
Rules

# Label
Conditions

% Full Label-
Dependent

% Partially Label-
Dependent

% Not Label-
Dependent

# Multi-Label
Head Rules

% Multi-Label
Head Rules

Avg. # Labels
Per Head

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,Mm

Multi+Mm

Multi±stop,Mm

Multi±Mm

Table 24:Model analysis of di�erent multi-label classi�cation approaches on the data set GENBASE using

the rule-dependent evaluation strategy.
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Approach # Rules

F-Measure

155 85 3 0.65% 1.29% 98.06% 0 0.00% 1.00
Single+ 135 0 8 2.96% 2.96% 94.08% 0 0.00% 1.00

149 73 1 0.67% 0.00% 99.33% 2 1.34% 1.01

149 73 1 0.67% 0.00% 99.33% 2 1.34% 1.01

14 1 0 0.00% 0.00% 100.00% 5 0.36% 1.36

14 1 0 0.00% 0.00% 100.00% 5 0.36% 1.36

132 0 5 3.79% 0.00% 96.21% 2 1.52% 1.02

132 0 5 3.79% 0.00% 96.21% 2 1.52% 1.02

11 0 0 0.00% 0.00% 100.00% 3 27.27% 1.27

11 0 0 0.00% 0.00% 100.00% 3 27.27% 1.27

81 4 2 0.00% 2.47% 97.53% 0 0.00% 1.00

80 0 2 0.00% 2.50% 97.50% 0 0.00% 1.00

136 6 1 0.00% 0.74% 99.26% 0 0.00% 1.00

136 6 1 0.00% 0.74% 99.26% 0 0.00% 1.00

16 2 0 0.00% 0.00% 100.00% 6 37.50% 1.56

16 2 0 0.00% 0.00% 100.00% 6 37.50% 1.56

131 0 1 0.00% 0.76% 99.24% 0 0.00% 1.00

131 0 1 0.00% 0.76% 99.24% 0 0.00% 1.00

14 0 0 0.00% 0.00% 100.00% 5 35.71% 1.36

14 0 0 0.00% 0.00% 100.00% 5 35.71% 1.36
Hamming Accuracy

167 63 5 1.20% 18.00% 80.80% 0 0.00% 1.00

Single+ 155 0 7 2.58% 1.94% 95.48% 0 0.00% 1.00

160 54 3 0.00% 1.88% 98.12% 0 0.00% 1.00

160 54 3 0.00% 1.88% 98.12% 0 0.00% 1.00

160 54 3 0.00% 1.88% 98.12% 0 0.00% 1.00

160 54 3 0.00% 1.88% 98.12% 0 0.00% 1.00

156 0 4 0.64% 1.92% 97.44% 0 0.00% 1.00

156 0 4 0.64% 1.92% 97.44% 0 0.00% 1.00

156 0 4 0.64% 1.92% 97.44% 0 0.00% 1.00

156 0 4 0.64% 1.92% 97.44% 0 0.00% 1.00

48 2 1 0.00% 2.08% 97.92% 0 0.00% 1.00

48 0 1 0.00% 2.08% 97.92% 0 0.00% 1.00

130 19 1 0.77% 0.00% 99.23% 0 0.00% 1.00

130 19 1 0.77% 0.00% 99.23% 0 0.00% 1.00

130 19 1 0.77% 0.00% 99.23% 0 0.00% 1.00

130 19 1 0.77% 0.00% 99.23% 0 0.00% 1.00

130 0 1 0.77% 0.00% 99.23% 0 0.00% 1.00

130 0 1 0.77% 0.00% 99.23% 0 0.00% 1.00

130 0 1 0.77% 0.00% 99.23% 0 0.00% 1.00

130 0 1 0.77% 0.00% 99.23% 0 0.00% 1.00

Precision

240 129 6 2.08% 0.42% 97.50% 0 0.00% 1.00
Single+ 194 0 20 10.31% 0.00% 89.69% 0 0.00% 1.00

165 133 0 0.00% 0.00% 100.00% 58 35.15% 1.53

165 133 0 0.00% 0.00% 100.00% 58 35.15% 1.53

14 1 0 0.00% 0.00% 100.00% 5 35.71% 1.36

14 1 0 0.00% 0.00% 100.00% 5 35.71% 1.36

151 0 0 0.00% 0.00% 100.00% 55 36.42% 1.53

151 0 0 0.00% 0.00% 100.00% 55 36.42% 1.53

11 0 0 0.00% 0.00% 100.00% 3 27.27% 1.27

11 0 0 0.00% 0.00% 100.00% 3 27.27% 1.27

227 1 5 2.20% 0.00% 97.80% 0 0.00% 1.00

210 0 5 2.38% 0.00% 97.62% 0 0.00% 1.00

55 6 0 0.00% 0.00% 100.00% 55 100.00% 11.45

55 6 0 0.00% 0.00% 100.00% 55 100.00% 11.45

16 2 0 0.00% 0.00% 100.00% 6 37.50% 1.56

16 2 0 0.00% 0.00% 100.00% 6 37.50% 1.56

53 0 0 0.00% 0.00% 100.00% 53 100.00% 11.60

53 0 0 0.00% 0.00% 100.00% 53 100.00% 11.60

14 0 0 0.00% 0.00% 100.00% 5 35.71% 35.71

14 0 0 0.00% 0.00% 100.00% 5 35.71% 35.71
Subset Accuracy

158 57 4 0.00% 2.53% 97.47% 0 0.00% 1.00

156 0 5 1.92% 1.28% 96.80% 5 3.21% 1.03

130 19 1 0.77% 0.00% 99.23% 0 0.00% 1.00

130 0 1 0.77% 0.00% 99.23% 0 0.00% 1.00

# Stopping
Rules

# Label
Conditions

% Full Label-
Dependent

% Partially Label-
Dependent

% Not Label-
Dependent

# Multi-Label
Head Rules

% Multi-Label
Head Rules

Avg. # Labels
Per Head

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,Mm

Multi+Mm

Multi±stop,Mm

Multi±Mm

Table 25:Model analysis of di�erent multi-label classi�cation approaches on the data set BIRDS using the

rule-dependent evaluation strategy.
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Approach # Rules

F-Measure

152 119 0 0.00% 0.00% 100.00% 0 0.00% 1.00
Single+ 30 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

149 115 0 0.00% 0.00% 100.00% 0 0.00% 1.00

149 115 0 0.00% 0.00% 100.00% 0 0.00% 1.00

6 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

6 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

45 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

45 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

6 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

6 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

56 6 6 1.79% 5.36% 92.85% 0 0.00% 1.00

55 0 5 1.81% 5.45% 92.74% 0 0.00% 1.00

n/a n/a n/a n/a n/a n/a n/a n/a n/a

55 7 10 0.00% 10.91% 89.09% 0 0.00% 1.00

6 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

6 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

51 0 8 1.96% 9.80% 88.24% 0 0.00% 1.00

51 0 8 1.96% 9.80% 88.24% 0 0.00% 1.00

6 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

6 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

Hamming Accuracy

251 213 0 0.00% 0.00% 100.00% 0 0.00% 1.00

Single+ 114 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

321 273 0 0.00% 0.00% 100.00% 0 0.00% 1.00

321 273 0 0.00% 0.00% 100.00% 0 0.00% 1.00

321 273 0 0.00% 0.00% 100.00% 0 0.00% 1.00

321 273 0 0.00% 0.00% 100.00% 0 0.00% 1.00

148 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

148 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

148 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

148 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

23 2 2 0.00% 8.70% 91.30% 0 0.00% 1.00

23 0 2 0.00% 8.70% 91.30% 0 0.00% 1.00

58 10 3 5.17% 0.00% 94.83% 0 0.00% 1.00

58 10 3 5.17% 0.00% 94.83% 0 0.00% 1.00

58 10 3 5.17% 0.00% 94.83% 0 0.00% 1.00

58 10 3 5.17% 0.00% 94.83% 0 0.00% 1.00

58 0 3 5.17% 0.00% 94.83% 0 0.00% 1.00

58 0 3 5.17% 0.00% 94.83% 0 0.00% 1.00

58 0 3 5.17% 0.00% 94.83% 0 0.00% 1.00

58 0 3 5.17% 0.00% 94.83% 0 0.00% 1.00
Precision

483 408 0 0.00% 0.00% 100.00% 0 0.00% 1.00

Single+ 288 0 4 1.39% 0.00% 98.61% 0 0.00% 1.00

443 384 0 0.00% 0.00% 100.00% 20 4.51% 1.05

443 384 0 0.00% 0.00% 100.00% 20 4.51% 1.05

6 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

6 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

326 0 1 0.31% 0.00% 99.69% 10 3.07% 1.03

326 0 1 0.31% 0.00% 99.69% 10 3.07% 1.03

6 0 1 16.67% 0.00% 83.33% 0 0.00% 1.00

6 0 1 16.67% 0.00% 83.33% 0 0.00% 1.00

358 21 29 8.10% 0.00% 91.90% 0 0.00% 1.00

338 0 25 7.40% 0.00% 92.60% 0 0.00% 1.00

144 66 0 0.00% 0.00% 100.00% 143 99.31% 3.95

144 66 0 0.00% 0.00% 100.00% 143 99.31% 3.95

6 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

6 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

133 0 0 0.00% 0.00% 100.00% 132 99.25% 4.02

133 0 0 0.00% 0.00% 100.00% 132 99.25% 4.02

6 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

6 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00
Subset Accuracy

325 274 0 0.00% 0.00% 100.00% 0 0.00% 1.00

153 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

60 10 3 0.00% 5.00% 95.00% 0 0.00% 1.00

60 0 3 0.00% 5.00% 95.00% 0 0.00% 1.00

# Stopping
Rules

# Label
Conditions

% Full Label-
Dependent

% Partially Label-
Dependent

% Not Label-
Dependent

# Multi-Label
Head Rules

% Multi-Label
Head Rules

Avg. # Labels
Per Head

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Single+stop

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Single±stop

Single±
Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,Mm

Multi+Mm

Multi±stop,Mm

Multi±Mm

Table 26:Model analysis of di�erent multi-label classi�cation approaches on the data set SCENE using the

rule-dependent evaluation strategy. Some approaches did not �nish in time. The missing values

are indicated by using the label �n/a�.
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Approach # Rules

F-Measure

117 1 111 82.05% 8.55% 9.40% 47 40.17% 1.74

86 2 7 8.14% 0.00% 91.86% 41 47.67% 1.51

35 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

35 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

27 0 15 25.93% 29.63% 44.44% 0 0.00% 1.00

20 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

20 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

20 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

Hamming Accuracy

183 95 56 2.73% 27.32% 69.95% 67 36.61% 1.55

183 95 56 2.73% 27.32% 69.95% 67 36.61% 1.55

183 95 56 2.73% 27.32% 69.95% 67 36.61% 1.55

183 95 56 2.73% 27.32% 69.95% 67 36.61% 1.55

44 0 11 9.09% 15.90% 75.01% 6 13.64% 1.14

44 0 11 9.09% 15.90% 75.01% 6 13.64% 1.14

44 0 11 9.09% 15.90% 75.01% 6 13.64% 1.14

44 0 11 9.09% 15.90% 75.01% 6 13.64% 1.14

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

Precision

223 223 0 0.00% 0.00% 100.00% 58 26.01% 1.26

223 223 0 0.00% 0.00% 100.00% 58 26.01% 1.26

35 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

35 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

223 0 0 0.00% 0.00% 100.00% 58 26.01% 1.26

223 0 0 0.00% 0.00% 100.00% 58 26.01% 1.26

20 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

20 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a  n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a  n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

Subset Accuracy

- - - - - - - - -

- - - - - - - - -

- - - - - - - - -

- - - - - - - - -

# Stopping
Rules

# Label
Conditions

% Full Label-
Dependent

% Partially Label-
Dependent

% Not Label-
Dependent

# Multi-Label
Head Rules

% Multi-Label
Head Rules

Avg. # Labels
Per Head

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,Mm

Multi+Mm

Multi±stop,Mm

Multi±Mm

Table 27:Model analysis of di�erent multi-label classi�cation approaches on the data set MEDICAL using

the rule-independent evaluation strategy. Some approaches did not �nish in time. The missing

values are indicated by using the label �n/a�.
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Approach # Rules

F-Measure

12 1 4 16.67% 16.67% 66.66% 7 58.33% 1.75

16 1 5 31.25% 0.00% 68.75% 9 56.25% 1.69

6 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

6 1 3 50.00% 0.00% 50.00% 0 0.00% 1.00

8 0 0 0.00% 0.00% 100.00% 5 62.50% 1.63

9 0 0 0.00% 0.00% 100.00% 3 33.33% 1.33

5 0 2 40.00% 0.00% 60.00% 2 40.00% 1.60

5 0 1 20.00% 0.00% 80.00% 2 40.00% 1.60

2 2 0 0.00% 0.00% 100.00% 2 100.00% 6.00

2 2 0 0.00% 0.00% 100.00% 2 100.00% 6.00

1 1 0 0.00% 0.00% 100.00% 1 100.00% 6.00

1 1 0 0.00% 0.00% 100.00% 1 100.00% 6.00

2 0 0 0.00% 0.00% 100.00% 2 100.00% 6.00

2 0 0 0.00% 0.00% 100.00% 2 100.00% 6.00

1 0 0 0.00% 0.00% 100.00% 1 100.00% 6.00

1 0 0 0.00% 0.00% 100.00% 1 100.00% 6.00
Hamming Accuracy

86 29 34 0.00% 38.37% 61.63% 64 74.42% 1.91

86 29 34 0.00% 38.37% 61.63% 64 74.42% 1.91

86 29 34 0.00% 38.37% 61.63% 64 74.42% 1.91

86 29 34 0.00% 38.37% 61.63% 64 74.42% 1.91

17 0 1 0.00% 5.88% 94.12% 13 76.47% 1.94

17 0 1 0.00% 5.88% 94.12% 13 76.47% 1.94

17 0 1 0.00% 5.88% 94.12% 13 76.47% 1.94

17 0 1 0.00% 5.88% 94.12% 13 76.47% 1.94

6 6 0 0.00% 0.00% 100.00% 6 100.00% 6.00

6 0 0 0.00% 0.00% 100.00% 6 100.00% 6.00

6 0 0 0.00% 0.00% 100.00% 6 100.00% 6.00

6 0 0 0.00% 0.00% 100.00% 6 100.00% 6.00

6 0 0 0.00% 0.00% 100.00% 6 100.00% 6.00

6 0 0 0.00% 0.00% 100.00% 6 100.00% 6.00

6 0 0 0.00% 0.00% 100.00% 6 100.00% 6.00

6 0 0 0.00% 0.00% 100.00% 6 100.00% 6.00

Precision

266 245 0 0.00% 0.00% 100.00% 175 65.79% 1.76

266 245 0 0.00% 0.00% 100.00% 175 65.79% 1.76

6 1 3 50.00% 0.00% 50.00% 0 0.00% 1.00

6 1 3 50.00% 0.00% 50.00% 0 0.00% 1.00

246 0 0 0.00% 0.00% 100.00% 155 63.01% 1.68

246 0 0 0.00% 0.00% 100.00% 155 63.01% 1.68

5 0 1 20.00% 0.00% 80.00% 2 40.00% 1.60

5 0 1 20.00% 0.00% 80.00% 2 40.00% 1.60

223 223 0 0.00% 0.00% 100.00% 223 100.00% 6.00

223 223 0 0.00% 0.00% 100.00% 223 100.00% 6.00

1 1 0 0.00% 0.00% 100.00% 1 100.00% 6.00

1 1 0 0.00% 0.00% 100.00% 1 100.00% 6.00

223 0 0 0.00% 0.00% 100.00% 223 100.00% 6.00

223 0 0 0.00% 0.00% 100.00% 223 100.00% 6.00

1 0 0 0.00% 0.00% 100.00% 1 100.00% 6.00

1 0 0 0.00% 0.00% 100.00% 1 100.00% 6.00

Subset Accuracy

- - - - - - - - -

- - - - - - - - -

- - - - - - - - -

- - - - - - - - -

# Stopping
Rules

# Label
Conditions

% Full Label-
Dependent

% Partially Label-
Dependent

% Not Label-
Dependent

# Multi-Label
Head Rules

% Multi-Label
Head Rules

Avg. # Labels
Per Head

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,Mm

Multi+Mm

Multi±stop,Mm

Multi±Mm

Table 28:Model analysis of di�erent multi-label classi�cation approaches on the data set EMOTIONS using

the rule-independent evaluation strategy.
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Approach # Rules

F-Measure

24 4 7 16.67% 12.50% 70.83% 11 45.83% 2.25

21 2 0 0.00% 0.00% 100.00% 0 0.00% 1.00

22 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

22 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

12 0 1 8.33% 0.00% 91.67% 3 25.00% 1.42

12 0 1 8.33% 0.00% 91.67% 3 25.00% 1.42

14 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

14 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

Hamming Accuracy

186 32 148 32.80% 34.41% 32.79% 138 74.19% 1.94

186 32 148 32.80% 34.41% 32.79% 138 74.19% 1.94

186 32 148 32.80% 34.41% 32.79% 138 74.19% 1.94

186 32 148 32.80% 34.41% 32.79% 138 74.19% 1.94

13 0 2 15.38% 0.00% 84.62% 4 30.77% 1.38

13 0 2 15.38% 0.00% 84.62% 4 30.77% 1.38

13 0 2 15.38% 0.00% 84.62% 4 30.77% 1.38

13 0 2 15.38% 0.00% 84.62% 4 30.77% 1.38

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a
Precision

222 222 0 0.00% 0.00% 100.00% 17 7.66% 1.08

222 222 0 0.00% 0.00% 100.00% 17 7.66% 1.08

22 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

22 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

222 0 0 0.00% 0.00% 100.00% 17 7.66% 1.08

222 0 0 0.00% 0.00% 100.00% 17 7.66% 1.08

14 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

14 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a  n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a  n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

Subset Accuracy

- - - - - - - - -

- - - - - - - - -

- - - - - - - - -

- - - - - - - - -

# Stopping
Rules

# Label
Conditions

% Full Label-
Dependent

% Partially Label-
Dependent

% Not Label-
Dependent

# Multi-Label
Head Rules

% Multi-Label
Head Rules

Avg. # Labels
Per Head

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,Mm

Multi+Mm

Multi±stop,Mm

Multi±Mm

Table 29:Model analysis of di�erent multi-label classi�cation approaches on the data set GENBASE using

the rule-independent evaluation strategy. Some approaches did not �nish in time. The missing

values are indicated by using the label �n/a�.
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Approach # Rules

F-Measure

47 2 11 14.89% 6.38% 78.73% 7 14.89% 1.15

38 1 4 10.53% 0.00% 89.47% 0 0.00% 1.00

19 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

19 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

18 0 1 0.00% 5.56% 94.44% 0 0.00% 1.00

18 0 0 0.00% 0.00% 100.00% 1 5.56% 1.06

14 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

13 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

Hamming Accuracy

194 59 57 0.00% 29.38% 70.62% 104 53.61% 1.89

194 59 57 0.00% 29.38% 70.62% 104 53.61% 1.89

194 59 57 0.00% 29.38% 70.62% 104 53.61% 1.89

194 59 57 0.00% 29.38% 70.62% 104 53.61% 1.89

144 0 10 1.39% 5.56% 93.05% 58 40.28% 1.69

144 0 10 1.39% 5.56% 93.05% 58 40.28% 1.69

144 0 10 1.39% 5.56% 93.05% 58 40.28% 1.69

144 0 10 1.39% 5.56% 93.05% 58 40.28% 1.69

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a
Precision

137 134 1 0.73% 0.00% 99.27% 60 43.80% 1.58

137 134 1 0.73% 0.00% 99.27% 60 43.80% 1.58

19 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

19 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

135 0 1 0.74% 0.00% 99.26% 59 43.70% 1.57

135 0 1 0.74% 0.00% 99.26% 59 43.70% 1.57

13 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

13 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a  n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a  n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

Subset Accuracy

- - - - - - - - -

- - - - - - - - -

- - - - - - - - -

- - - - - - - - -

# Stopping
Rules

# Label
Conditions

% Full Label-
Dependent

% Partially Label-
Dependent

% Not Label-
Dependent

# Multi-Label
Head Rules

% Multi-Label
Head Rules

Avg. # Labels
Per Head

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,Mm

Multi+Mm

Multi±stop,Mm

Multi±Mm

Table 30:Model analysis of di�erent multi-label classi�cation approaches on the data set BIRDS using the

rule-independent evaluation strategy. Some approaches did not �nish in time. The missing

values are indicated by using the label �n/a�.
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Approach # Rules

F-Measure

14 1 0 0.00% 0.00% 100.00% 2 14.29% 1.14

13 1 0 0.00% 0.00% 100.00% 1 7.69% 1.08

6 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

6 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

9 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

8 0 0 0.00% 0.00% 100.00% 0 0.00% 1.00

6 0 1 16.67% 0.00% 83.33% 0 0.00% 1.00

6 0 1 16.67% 0.00% 83.33% 0 0.00% 1.00

1 1 0 0.00% 0.00% 100.00% 1 100.00% 6.00

1 1 0 0.00% 0.00% 100.00% 1 100.00% 6.00

1 1 0 0.00% 0.00% 100.00% 1 100.00% 6.00

1 1 0 0.00% 0.00% 100.00% 1 100.00% 6.00

1 0 0 0.00% 0.00% 100.00% 1 100.00% 6.00

1 0 0 0.00% 0.00% 100.00% 1 100.00% 6.00

1 0 0 0.00% 0.00% 100.00% 1 100.00% 6.00

1 0 0 0.00% 0.00% 100.00% 1 100.00% 6.00
Hamming Accuracy

398 312 1 0.00% 0.25% 99.75% 43 10.80% 1.11

398 312 1 0.00% 0.25% 99.75% 43 10.80% 1.11

398 312 1 0.00% 0.25% 99.75% 43 10.80% 1.11

398 312 1 0.00% 0.25% 99.75% 43 10.80% 1.11

34 0 0 0.00% 0.00% 100.00% 1 2.94% 1.03

34 0 0 0.00% 0.00% 100.00% 1 2.94% 1.03

34 0 0 0.00% 0.00% 100.00% 1 2.94% 1.03

34 0 0 0.00% 0.00% 100.00% 1 2.94% 1.03

18 18 0 0.00% 0.00% 100.00% 18 100.00% 6.00

18 0 0 0.00% 0.00% 100.00% 18 100.00% 6.00

18 0 0 0.00% 0.00% 100.00% 18 100.00% 6.00

18 0 0 0.00% 0.00% 100.00% 18 100.00% 6.00

18 0 0 0.00% 0.00% 100.00% 18 100.00% 6.00

18 0 0 0.00% 0.00% 100.00% 18 100.00% 6.00

18 0 0 0.00% 0.00% 100.00% 18 100.00% 6.00

18 0 0 0.00% 0.00% 100.00% 18 100.00% 6.00
Precision

368 368 0 0.00% 0.00% 100.00% 22 5.98% 1.06

368 368 0 0.00% 0.00% 100.00% 22 5.98% 1.06

6 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

6 1 0 0.00% 0.00% 100.00% 0 0.00% 1.00

368 0 0 0.00% 0.00% 100.00% 22 5.98% 1.06

368 0 0 0.00% 0.00% 100.00% 22 5.98% 1.06

6 0 1 16.67% 0.00% 83.33% 0 0.00% 1.00

6 0 1 16.67% 0.00% 83.33% 0 0.00% 1.00

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

1 1 0 0.00% 0.00% 100.00% 1 100.00% 6.00

1 1 0 0.00% 0.00% 100.00% 1 100.00% 6.00

n/a n/a n/a n/a n/a n/a n/a n/a n/a

n/a n/a n/a n/a n/a n/a n/a n/a n/a

1 0 0 0.00% 0.00% 100.00% 1 100.00% 6.00

1 0 0 0.00% 0.00% 100.00% 1 100.00% 6.00
Subset Accuracy

- - - - - - - - -

- - - - - - - - -

- - - - - - - - -

- - - - - - - - -

# Stopping
Rules

# Label
Conditions

% Full Label-
Dependent

% Partially Label-
Dependent

% Not Label-
Dependent

# Multi-Label
Head Rules

% Multi-Label
Head Rules

Avg. # Labels
Per Head

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,mm

Multi+stop,mM

Multi+stop,Mm

Multi+stop,MM

Multi+mm

Multi+mM

Multi+Mm

Multi+MM

Multi±stop,mm

Multi±stop,mM

Multi±stop,Mm

Multi±stop,MM

Multi±mm

Multi±mM

Multi±Mm

Multi±MM

Multi+stop,Mm

Multi+Mm

Multi±stop,Mm

Multi±Mm

Table 31:Model analysis of di�erent multi-label classi�cation approaches on the data set SCENE using the

rule-independent evaluation strategy. Some approaches did not �nish in time. The missing

values are indicated by using the label �n/a�.
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