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Abstract

In this paper, we discuss a technique for han-
dling multi-class problems with binary classi-
fiers, namely to learn one classifier for each pair
of classes. Although this idea is known in the
literature, it has not yet been thoroughly inves-
tigated in the context of inductive rule learning.
We present an empirical evaluation of the method
as a wrapper around the Ripper rule learning al-
gorithm on 20 multi-class datasets from the UCI
database repository. Our results show that the
method is very likely to improve Ripper’s classi-
fication performance without having a high risk
of decreasing it. In addition, we give a theoret-
ical analysis of the complexity of the approach
and show that its training time is within a small
constant factor of the training time of the sequen-
tial class binarization technique that is currently
used in Ripper.

1. Introduction

Pairwise classification is a technique for reducing a multi-
class problem to multiple 2-class problems by learning a
classifier for each pair of classes. It has been previously
applied to various problems, mostly in the support vector
machines community (see Section 7), but we are not aware
of an extensive experimental study, in particular not in the
context of inductive rule learning algorithms.

In this paper, we will show that this technique in fact gives
significant improvements in predictive accuracy and pro-
vide a detailed analysis of the complexity of the approach,
which shows that it is not much slower, but may in fact
be considerably faster than conventional approaches that
train each class against all other classes. In particular, we
prove that the performance ratio of pairwise classification
over conventional approaches goes to zero with increasing
asymptotic complexity of the base algorithm. Our exper-
imental results underline the efficiency of the approach,
even though we only experimented with a proof-of-concept
implementation in the form of a wrapper around the Ripper
rule learning algorithm.

2. Class Binarization

Many machine learning algorithms are inherently designed
for binary (two-class) decision problems. Prominent exam-
ples are neural networks with single output nodes, support
vector machines and separate-and-conquer rule learning.
In addition, all regression algorithms can, in principle, be
used for binary decision problems, but not for multi-class
problems (unless, maybe, if the class values are ordered).
However, real-world problems often have multiple classes.
Fortunately, there exist several simple techniques for turn-
ing multi-class problems into a set of binary problems. We
will call such techniques class binarization techniques.

Definition 2.1 (class binarization, decoding) A class bi-
narization is a mapping of a multi-class learning problem
to several 2-class learning problems in a way that allows
a sensible decoding of the prediction, i.e., allows to derive
a prediction for the multi-class problem from the predic-
tions of the set of 2-class classifiers. The learning algo-
rithms used for solving the 2-class problems is called the
base classifier.

The most popular class binarization rule is the unordered
or one-against-all class binarization, where one takes each
class in turn and learns binary concepts that discriminate
this class from all other classes. It has been independently
proposed for rule learning (Clark & Boswell, 1991), neural
networks (Anand et al., 1995), and support vector machines
(Cortes & Vapnik, 1995).

Definition 2.2 (unordered class binarization) The un-
ordered class binarization transforms a c-class problem
into c 2-class problems. These are constructed by using the
examples of class i as the positive examples and the
examples of classes j, j = 1 . . . c, j 6= i as the negative
examples.

The name “unordered” originates from Clark and Boswell
(1991), who proposed this approach as an alternative to the
decision-list learning approach that was originally used in
CN2 (Clark & Niblett, 1989). In other fields, the strategy
has different names, but as our main concern is rule learn-
ing, we stick with the terminology used there.

The rule learning algorithm Ripper (Cohen, 1995), which
will be our main test object, also provides an option for
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(a) Multi-class learning
one classifier separates all classes.
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(b) Unordered learning
c classifiers, each separates one class from
all other classes. Here: + against all other

classes.
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(c) Round robin learning
c(c−1)

2
classifiers, one for each pair of

classes. Here: + against ∼.

Figure 1. Unordered and round robin binarization for a 6-class problem.

inducing unordered rule sets. Its default mode of operation,
however, is an ordered approach.

Definition 2.3 (ordered class binarization) The ordered
class binarization transforms a c-class problem into (c−1)
2-class problems. These are constructed by using the ex-
amples of class i, i = 1 . . . c − 1 as the positive examples
and the examples of classes j, j = i+1 . . . c as the negative
examples.

Note that ordered class binarization imposes an order on the
induced classifiers, which has to be adhered to at classifi-
cation time: the classifier learned for discriminating class 1
from classes 2 . . . c has to be called first, and if this clas-
sifier assigns the example to class 1, no other classifier is
called. If not, the example is passed on to the next classi-
fier. Unordered class binarization, on the other hand, has
to call each of its constituent binary classifiers and requires
some external criterion for decoding the individual predic-
tions into a final prediction. Typical decoding rules vote the
predictions of the individual classifiers, possibly by taking
into account the confidences of the predictions.

For a uniform view and an empirical evaluation of several
class binarization and decoding techniques, we refer the
reader to (Allwein et al., 2000). In the following section,
we discuss one particular technique in more detail.

3. Round Robin Classification

In this section, we will discuss a more complex class bina-
rization procedure, the pairwise classifier. The basic idea
is quite simple, namely to learn one classifier for each pair
of classes. In analogy to round robin tournaments in sports
and games, in which each participant is paired with each
other participant exactly once, we call this procedure round
robin binarization.

Definition 3.1 (round robin, pairwise binarization) The
round robin or pairwise class binarization transforms a
c-class problem into c(c−1)

2 2-class problems, one for
each unique pair of classes < i, j > (i = 1 . . . c − 1,
j = i + 1 . . . c). The binary classifier is trained on the
training examples of classes i and j. The examples of
classes 6= i, j are ignored for the binary classifier <i, j>.

When classifying a new example, each of the learned base
classifiers determines to which of its two classes the exam-
ple is more likely to belong to. The winner is assigned a
point, and in the end, the algorithm will predict the class
that has accumulated the most points. In our version, ties
are broken by preferring the class that is more frequent in
the training set (or flipping a coin if the frequencies are
equal), but more elaborate techniques are possible (see Sec-
tion 6).

Round robin binarization is illustrated in Figure 1. For the
6-class problem shown in Figure 1(a), the round robin pro-
cedure learns 15 classifiers, one for each pair of classes.
Figure 1(c) shows the classifier for the class pair <+,∼>.
In comparison, Figure 1(b) shows one of the classifiers for
the unordered class binarization, namely the one that pairs
class + against all other classes. It is obvious that the round
robin base classifier uses fewer examples and thus has more
freedom for fitting a decision boundary between the two
classes. In fact, in this problem, all binary classification
problems of the round robin binarization could be solved
with a simple linear discriminant, while neither the multi-
class problem nor its unordered binarization have a linear
solution.

Note that some examples will be forced to be classified er-
roneously by some of the binary base classifiers because
each classifier must label all examples as belonging to one
of the two classes it was trained on. Consider the classifier



shown in Figure 1(c): it will arbitrarily assign all exam-
ples of class o to either + or ∼ (depending on which side
of the decision boundary they are). In principle, such “un-
qualified” votes may lead to an incorrect final classification.
However, the votes of the five classifiers that contain exam-
ples of class o should be able to over-rule the votes of the
other ten classifiers, which pick one of their two constituent
classes for each o example. If the class values are indepen-
dent, it is unlikely that all classifiers would unanimously
vote for a wrong class. However, the likelihood of such a
situation could increase if there is some similarity between
the correct class and some other class value (e.g., in prob-
lems with a hierarchical class structure).1 In any case, if the
five o classifiers unanimously vote for o, no other class can
accumulate four votes (because they lost their direct match
against o).

In the above definition, we assume that the problem of dis-
criminating class i from class j is identical to the problem
of discriminating class j from class i. This is the case if
the base learner is class-symmetric. Rule learning algo-
rithms, however, need not be class-symmetric. Many of
them choose one of the two classes as the default class,
and learn only rules to cover the other class. In such a case,
<i, j> and <j, i> may be two different classification prob-
lems, if j is used as the default class in the former and i in
the latter.

Ripper is such an algorithm. Unless specified otherwise, it
will treat the larger class of a 2-class problem as the default
class and learn rules for the smaller class. Although this
procedure is class-symmetric (problem <i, j> is converted
to <j, i> if i > j), we felt that it would not be fair. For ex-
ample, the largest class in the multi-class problem would be
used as the default class in all round robin problems. This
may be an unfair advantage (or disadvantage) to this class.
One solution for avoiding this, is a double round robin, in
which separate classifiers are learned for both problems,
<i, j> and <j, i>.2

Definition 3.2 (double round robin) The double round
robin class binarization transforms a c-class problem into
c(c − 1) 2-class problems, one for each pair of classes
< i, j >, (i, j = . . . c, j 6= i). The examples of class i

are used as the positive examples and the examples of class
j as the negative examples.

In our experiments, we used Ripper with the option
-agiven as the base classifier, which uses the classes as
given in the specification. Hence, <i, j> and <j, i> are
two different problems, and each class is the default class
in exactly half of its binary classification problems.

1This observation is due to one of the anonymous reviewers.
2Another approach to tackle this problem could be to ensure

that each class is used as the default class in approximately half
of the classification problems.

Ripper
dataset unord. ordered R3 ratio <

abalone 81.03 82.18 72.99 0.888 ++
covertype 35.37 38.50 33.20 0.862 ++
letter 15.22 15.75 7.85 0.498 ++
sat 14.25 17.05 11.15 0.654 ++
shuttle 0.03 0.06 0.02 0.375 =
vowel 64.94 53.25 53.46 1.004 =
car 5.79 12.15 2.26 0.186 ++
glass 35.51 34.58 25.70 0.743 ++
image 4.15 4.29 3.46 0.808 +
lr spectrometer 64.22 61.39 53.11 0.865 ++
optical 7.79 9.48 3.74 0.394 ++
page-blocks 2.85 3.38 2.76 0.816 ++
solar flares (c) 15.91 15.91 15.77 0.991 =
solar flares (m) 4.90 5.47 5.04 0.921 =
soybean 8.79 8.79 6.30 0.717 ++
thyroid (hyper) 1.25 1.49 1.11 0.749 +
thyroid (hypo) 0.64 0.56 0.53 0.955 =
thyroid (repl.) 1.17 0.98 1.01 1.026 =
vehicle 28.25 30.38 29.08 0.957 =
yeast 44.00 42.39 41.78 0.986 =
average 21.80 21.90 18.52 0.770

Table 1. Error rates: The first three columns show the results of
Ripper (in unordered and in default, ordered mode) and R3. The
last two columns show the improvement rate of R3 over Ripper
(default), and whether R3 is significantly better (++ if p > 0.99,
+ if p > 0.95) than Ripper, measured with a McNemar test. The
last line shows the average of the columns above.

4. Accuracy

In this section, we will briefly present an experimental eval-
uation of round robin binarization in a rule learning con-
text. We chose Ripper (Cohen, 1995) as the base classifier,
which—in our view—is the most advanced member of the
family of separate-and-conquer (or covering) rule learning
algorithms (Fürnkranz 1997; 1999).

The unordered and ordered binarization procedures were
used as implemented within Ripper. The round robin bi-
narization was implemented as a wrapper around Ripper,
which provided it with the appropriate training sets. The
wrapper was implemented in perl and had to communi-
cate with Ripper by writing the training sets to and reading
Ripper’s results from the disk. This implementation is re-
ferred to as R3 (Round Robin Ripper).

For evaluation, we arbitrarily chose 20 datasets with ≥ 4
classes from the UCI repository (Blake & Merz, 1998).3

The implementation of the algorithm was developed inde-
pendently and not tuned on these datasets. Six datasets had
a dedicated test set. On the other 14 sets, we estimated the
error rate using paired, stratified 10-fold cross-validations.

3The restriction to 4 or more classes was made because on 3-
class problems, we would expect frequent 3-way ties, which are
not yet handled very cleverly. The issue of ties is discussed further
below in the paper (Section 6).



Table 1 shows the accuracies of Ripper (unordered and or-
dered) and R3 on the selected datasets. On half of the 20
sets, R3 is significantly better (p > 0.99 on a McNemar
test (Feelders & Verkooijen, 1995)) than Ripper’s default
mode (ordered binarization). There are only two sets (thy-
roid (repl.) and vowel ), where R3 is worse than Ripper,
both differences being insignificant. The comparison to
unordered Ripper is similar (the significance levels for this
case are not shown).

We can safely conclude that round robin binarization may
result in significant improvements over ordered or un-
ordered binarization without having a high risk of decreas-
ing performance.

5. Efficiency

At first sight, it appears to be a questionable idea to re-
place O(c) binary learning tasks (unordered binarization)
with O(c2) binary learning tasks (round robin binarization)
because the quadratic complexity seems to be prohibitive
for tasks with more than a few classes. This section will
illustrate that this is not the case.

5.1. Theoretical Considerations

In this section, we will see that although round robin classi-
fication turns a single c-class learning problem into c(c−1)
2-class problems, the total learning effort is only linear in
the number of classes, and may in some circumstances
even be smaller than the effort needed for an unordered
binarization. The analysis independent of the base learn-
ing algorithm used. Some of the ideas have already been
sketched in a short paragraph by Friedman (1996), but we
go into considerably more detail here, and, in particular,
focus on the comparison to conventional class binarization
techniques.

Definition 5.1 (class penalty) If the base learner has a
complexity growth function f(n) (i.e., the time needed for a
n-example training set is f(n)), and the total time needed
for the class binarized problem is π(c)f(n), we call the
function π(c) the class penalty.

Intuitively, the class penalty π(c) measures the perfor-
mance of an algorithm on a (class binarized) c-class prob-
lem relative to its performance on a single 2-class problem
of equal size.

In the following, we will compare the class penalty πr of a
single round robin class binarization to class penalty πu of
an unordered binarization. Note that the class penalty for
a double round robin is twice as high as the class penalty
of a single round robin. Also, unordered binarization is
more expensive than ordered binarization, but it is simpler
to analyze because it does not depend on the class distribu-

tion. We would estimate that the ordered approach will take
about half of the training time of the unordered approach.4

So, unless noted otherwise, the ratio of the penalty func-
tions has to be adjusted by factor of 4 to get the results
of ordered binarization versus double round robin binariza-
tion.

First, we look at the class penalty πu of unordered class
binarization:

Theorem 5.2 πu(c) = c

Proof: There are c learning tasks, each using the entire
training set of n examples. Hence the total complexity is
cf(n), and πu(c) = c. 2

Lemma 5.3 The sum of examples in all training sets of a
single round robin class binarization is (c − 1)n.

Proof: Each example of the original training set will occur
once in each of the c − 1 binary tasks where its class is
paired against one of the other c − 1 classes. As there are
n examples in the original training set, the total number of
examples is (c − 1)n. 2

Note that this number is less than the total number of train-
ing examples in the unordered class binarization (i.e., cn).

In the following analysis of the class penalty πr of a single
round robin binarization, we assume that our learner has a
complexity growth function f(n) = no with o ≥ 1.

Theorem 5.4 For f(n) = no, o ≥ 1: πr(c) ≤ c − 1.
The inequality is strict for o > 1.

Proof: We have c classes with ni examples,
∑

c

i=1 ni = n.
Without loss of generality, let us assume c is even (if c is
odd, we add a dummy class with nc+1 = 0 examples).
Then we can arrange the learning tasks in the form of c− 1
rounds. Each round consists of c

2 disjunct pairings, i.e.,
each class occurs exactly once in each round, and it has a
different partner in each round. Such a tournament sched-
ule is always possible (think sports...).

Without loss of generality, consider a round where classes
2i are paired against classes 2i − 1. The complexity of
this round is

∑

c

2

i=1 f(n2i + n2i−1). As for o ≥ 1 and
a, b ≥ 0, it holds that ao + bo ≤ (a + b)o (with equality

only in the case of o = 1), we have
∑

c

2

i=1 f(n2i+n2i−1) ≤

f(
∑

c

2

i=1 n2i + n2i−1) = f(
∑

c

i=1 ni) = f(n).

Anologously, we can derive the same upper bound for each
of the c− 1 rounds. Thus the total complexity of the round
robin binarization is ≤ (c − 1)f(n), where the inequality
is strict for o > 1. 2

4The ordered approach has only c − 1 binary tasks, and the
number of training examples decreases with each learned class.
Our empirical results (Section 5.2) indicate that for Ripper, the
actual gain is less than 50%.



Corollary 5.5 For algorithms with at least linear complex-
ity, the class penalty ratio πr(c)

πu(c) < 1, i.e., single round
robin is more efficient that unordered binarization.

Proof: Follows immediately from Theorems 5.2 and 5.4. 2

Theorem 5.6 Let π(c, o) denote the class penalty for an
algorithm of complexity f(n) = no. Then

lim
o→∞

πr(c, o)

πu(c, o)
= 0

Proof: In the proof of theorem 5.2 we derived an upper
bound of (c − 1)f(n) for the total complexity of the round
robin task. Let us denote the error we made by this approx-
imation with ε(c, o). We then have

πr(c, o)

πu(c, o)
=

(c − 1)f(n) − ε(c, o)

cf(n)
=

c − 1

c
−

ε(c, o)

cf(n)

The error ε(c, o) is the sum of the errors εi(c, o) that were
made at each of the c − 1 rounds of the tournament de-
scribed in the proof of Theorem 5.2. Let us again, without
loss of generality, look at the error εi(c, o) of a round where
successive classes are paired together. Then

lim
o→∞

εi(c, o)

f(n)
= lim

o→∞

no −
∑

c

2

i=1(n2i + n2i−1)
o

no

= 1 −

c

2
∑

i=1

lim
o→∞

(

n2i + n2i−1

n

)o

= 1

because n2i + n2i−1 < n. As an analogous derivation
works for all c − 1 values of εi(c, o), we have

lim
o→∞

ε(c, o)

f(n)
=

c−1
∑

i=1

lim
o→∞

εi(c, o)

f(n)
= c − 1

Hence:

lim
o→∞

πr(c, o)

πu(c, o)
=

c − 1

c
−

1

c
lim

o→∞

ε(c, o)

cf(n)
= 0

2

In practice, this means that the more expensive a learning
algorithm is, the larger will be the efficiency gain in using
a round robin binarization instead of an unorderd binariza-
tion. In particular, this theorem implies that for complex
algorithms even the double round robin may be faster than
the ordered binarization.

For example, it is straight-forward to show that in a class-
balanced eight-class problem, an algorithm of quadratic
complexity has a penalty ratio of 7

32 < 1
4 (Fürnkranz,

2001). Thus, under these circumstances, the single round
robin is more than four times faster than the unordered ap-
proach. Considering that the double round robin is twice

dataset R3 vs. unordered vs. ordered
abalone 193.0 4.51 5.73
covertype — —- —-
letter 1250.0 0.51 1.14
sat 143.0 0.85 1.51
shuttle 277.0 2.10 3.16
vowel 14.0 1.83 4.75
car 6.71 1.55 1.47
glass 2.03 2.26 3.80
image 25.84 0.90 1.98
lr spectrometer 489.67 4.40 6.93
optical 275.69 0.63 1.34
page-blocks 36.66 1.43 1.93
solar flares (c) 6.65 6.03 7.57
solar flares (m) 3.98 5.62 7.49
soybean 21.07 6.29 13.24
thyroid (hyper) 19.71 2.68 3.46
thyroid (hypo) 14.91 2.39 3.63
thyroid (repl.) 15.35 2.26 3.33
vehicle 7.66 1.22 2.10
yeast 16.90 1.77 3.12
average 2.59 4.09

Table 2. Runtime results: The first column shows the run-times
(in CPU secs. user time) of R3. The following columns show the
ratio of R3 over unordered and ordered Ripper. The first five lines
are total run-times, i.e., training and test time, while the cross-
validated results report training time only. We failed to measure
the run-times for the covertype data set, where the situation was
complicated because of the large test set, which had to be split
into several pieces.

as slow, and assuming that the ordered approach is twice as
fast as the unordered approach (see the following section
for empirical values on that), a double round robin would
be faster than the ordered approach. In the following sec-
tion, this scenario will be empirically evaluated.

5.2. Empirical Evaluation

Contrary to the theoretical analysis in the previous section,
where we focussed on the lenient case of pairing unordered
binarization vs. single round robin, our empirical results
show the performance of ordered binarization (Ripper’s de-
fault mode) vs. double round robin binarization. This, as
we have noted above, is the worst case. In the case of a lin-
ear algorithm complexity, the round robin should be about
four times slower than the ordered binarization.

Table 2 shows the training times5 in CPU secs. user time
(measured on a Sparc Ultra-2 under Sun Solaris) of R3

and its performance ratios against Ripper in unordered and
ordered mode. On average, it is about 2.6 times slower
than Ripper in unordered mode, and about 4 times slower
than Ripper in default, ordered mode. Coincidentally, these

5Classification time is only included in the runs that had a sep-
arate test set. In general, it can be expected to be more expensive
for R3. See Section 6 for a brief discussion of this issue.



numbers also show that the ordered mode is less than twice
as fast as the unordered mode, which confirms the assump-
tions we made at the beginning of Section 5.1.

Moreover, there are several cases where R3 is even faster
than Ripper in unordered mode and comes close to Ripper
in ordered mode. This is despite the fact that R3 is imple-
mented as a perl-script that communicates to Ripper by
writing the training and test sets of the new tasks to the
disk. Although this is somewhat compensated by the fact
that we only report user time (which ignores time for disk
access and system time),6 a tight integration of round robin
binarization into Ripper’s C-code would certainly be more
efficient.

The good performance of R3 does not come entirely sur-
prising, if we consider the super-linear run-time complexity
of Ripper.7 For more expensive base learning algorithms
(like support vector machines), the analysis in the previous
section lets us expect even bigger savings.

6. Other Issues

R3 as an Ensemble Method: In (Fürnkranz, 2001) we
compared round robin binarization to boosting. In partic-
ular, we compared the performance improvement obtained
by C5-boost over C5 to the improvement obtained by R3

over Ripper. It turned out that both algorithms seemed to be
apt for similar types of problems. Round robin binarization
seemed to work well whenever boosting worked well, and
vice versa. Figure 2 plots the error ratios of C5-boost/C5
and R3/Ripper on the 20 datasets. The correlation between
the improvement ratios was 0.618, which is in the same
range as correlation coefficients for bagging and boosting
(Opitz & Maclin, 1999). However, in terms of efficiency,
C5-boost was about 8.75 times slower than C5, which is
not surprising as it basically calls C5 10 times on different
samples of the original dataset.

Parallel Implementations: It should be noted that—
contrary to boosting, where the individual runs depend
on each other and have to be performed in succession—
pairwise classification can be entirely parallelized (as al-
ready noted by Friedman (1996) and Lu and Ito (1999)).

6For example, on the 26-class letter dataset, where R3 writes
26 × 25 = 650 files to the disk, its total run-time is about 15%
higher than the reported user time, while there is almost no differ-
ence for Ripper.

7The complexity of Ripper’s initial rule learning and pruning
phase is O(n log2(n)) (F ürnkranz, 1997; Cohen, 1995). The two
phases of optimization that Ripper performs thereafter, only seem
to add a constant factor to these results according to the experi-
mental evidence shown in (Cohen, 1995). However, in very large
domains, like text domains, our own experience is that these two
optimization phases can slow down the algorithm considerably,
and seem to dominate the run-time (but we have not performed a
thorough analysis of this issue).

Figure 2. Error reductions ratios of boosting vs. round robin.

As each binary task will be smaller than the original task,
the total training time of a multi-class problem of size n

will be significantly below that of a binary problem of the
same size, if each binary classifier can be trained on a sep-
arate processor.

Memory Requirements: It is also clear that each individ-
ual binary task in a round-robin binarization has less train-
ing examples than the original tasks. For multi-class tasks
that are too large to be performed in memory, pairwise clas-
sification may provide a simple means to reduce the size of
the learning task without resorting to subsampling. Note
that this is not the case for unordered class binarization or
error-correcting output codes.

Classification Efficiency: Our efficiency analysis is only
concerned with training time. At testing time, we have to
test a quadratic number of classifiers in order to make the
final prediction. Although it might be the case that the con-
stituent classifiers are simpler (which often means that they
can make faster predictions) it can be expected that classi-
fication time would be considerably slower than in the un-
ordered binarization case. This situation is particularly bad
for lazy learners, which defer most of their training effort to
the classification phase. A solution for this problem could
be found in the proposal of Platt et al. (2000) who suggest
to organize pairwise classifiers in a decision graph where
each node represents a binary classifier. They show that this
structure allows to obtain a classification for c-class prob-
lems by consulting only c − 1 pairwise classifiers without
loss of accuracy on three benchmarks problems.

Tie Breaking: We have mostly ignored the issue of tie-
breaking, which is necessary when several classes have an
equal number of wins against other classes. In particular
for a low number of classes, ties are more likely because the
ensemble is much smaller (which was the reason why we
restricted our study to problems with at least four classes).



Our straight-forward approach of using the a priori more
likely class, can certainly be improved upon. In addition to
techniques known from the literature (see, e.g., (Hastie &
Tibshirani, 1998; Allwein et al., 2000)), one could think of
exploring techniques that are commonly used for breaking
ties in tournament cross tables in games and sports (such as
the Sonneborn-Berger ranking in chess tournaments).

Imbalanced Class Distributions: Although we have not
yet evaluated this issue, we also believe that round robin
binarization provides a better focus on minority classes, in
particular in problems where several large classes appear
next to a few small classes. The fact that separate classifiers
are trained to discriminate the small classes from each other
(and not only from all remaining examples as would be the
case for unordered binarization or for treating the multi-
class problem as a whole) may help to improve the focus in
the case of imbalanced class distributions.

Comprehensibility: While boosting also provides similar
gains in accuracy, the price to pay is that the learned ensem-
ble of classifiers is no longer easy to comprehend.8 While
round robin rule learning also learns an ensemble of clas-
sifiers, we think that it has the advantage that each element
of the ensemble has a well-defined semantics (separating
two classes from each other). In fact, Pyle (1999) proposes
a very similar technique called pairwise ranking in order to
facilitate human decision-making in ranking problems. He
claims that it is easier for a human to determine an order
between n items if s/he makes pairwise comparisons be-
tween the individual items and then adds up the wins for
each item, instead of trying to order the items right away.9

7. Related Work

Pairwise classification was introduced to the machine
learning literature by Friedman (1996) but the idea seems
to have been known for some time. Hastie and Tibshi-
rani (1998) picked up the technique and introduced pair-
wise coupling, a tie-breaking technique which combines
the class probability estimates from the binary classifiers
into a joint probability distribution for the multi-class prob-
lem. Pairwise classification was soon applied in the sup-
port vector (Schmidt, 1996; Kreßel, 1999) and neural net-
works communities (Lu & Ito, 1999). In comparison to

8An exception might be a system like Slipper (Cohen &
Singer, 1999) which tightly integrates boosting into the rule learn-
ing algorithm with the effect that only a single set of rules is
learned and the redundancy among these rules is exploited to ob-
tain higher accuracies. A direct comparison between Slipper and
R3 would be very interesting, not only for this reason.

9The aspect of being able to rank the available classifications
for each example (as an intermediate version between predicting
only a class value and providing a full probability distribution)
is another interesting aspect of round robin binarization, which
might be worth exploring in more depth.

these works, our study provides a much broader empirical
evaluation of round robin learning, as well as a detailed
theoretical analysis. It is also the first evaluation of this
technique in the context of inductive rule learning.

Unordered and ordered class binarization techniques are
not the only alternatives. Error-correcting output codes
(Dietterich & Bakiri, 1995) are probably the most popular
alternative. It encodes a c-class problem as c̄ binary prob-
lems (c̄ > c). As the number of required binary problems
is > c for c-class problems, its penalty function πeoc > c,
i.e., pairwise and unordered binarization are more efficient.
Most recently, Allwein et al. (2000) provide a unifying
view of various class binarization techniques and derive
some theoretical error bounds. They also provide a thor-
ough experimental study of five different class binarization
schemes with three different techniques for combining the
predictions of the binary classifiers.

Unfortunately, space restrictions prevent an in-depth dis-
cussion of the relevant literature in this paper. We have to
refer the reader to (Fürnkranz, 2001).

8. Summary and Outlook

This paper has investigated the use of round robin bina-
rization (or pairwise classification) as a technique for han-
dling multi-class problems with separate-and-conquer rule
learning algorithms (aka covering algorithms). Our experi-
mental results show that, in comparison to conventional, or-
dered or unordered binarization, the round robin approach
may yield significant gains in accuracy without risking a
bad performance. We think that the reason for this im-
provement lies on the one hand in the exploitation of di-
verse predictions in an ensemble of classifiers and, on the
other hand, in the fact that the resulting binary problems
may be considerably simpler and can thus be learned more
reliably (Figure 1(c)).

Moreover, we demonstrated both empirically and theoret-
ically that the quadratic growth in the number of learning
problems is compensated by the reduction in size for each
of the individual problems. For algorithms with a super-
linear run-time, round robin binarization is even faster than
conventional unordered technique, and we have proven that
this advantage increases with the complexity of the base
algorithm. Our experimental results confirm the efficiency
of round robin binarization, but for a true evaluation of the
performance of this technique, an efficient, tight integration
of the technique into a separate-and-conquer rule learning
algorithm would be highly desirable.

There are several issues that still need to be addressed.
First, we want to investigate whether the correlation in the
performance gains of boosting and round robin binarization
prohibits an effective combination of these two techniques.



To this end, we plan to evaluate round robin binarization
using C5 and C5-boost as base learners. Alternatively, a
direct comparison of R3 to Slipper (Cohen & Singer, 1999)
could provide evidence to answer this question.

The main disadvantage of the approach, of course, is its de-
pendency on the number of classes. More classes result in a
bigger ensemble which should produce better predictions.
In particular in the limiting case, where only two or three
classes are available, the benefits should be rather small.
This trade-off also needs to be investigated in more detail.
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