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Abstract. Pairwise classification is a class binarization procedure that
converts a multi-class problem into a series of two-class problems, one
problem for each pair of classes. While it can be shown that for train-
ing, this procedure is more efficient than the more commonly used one-
against-all approach, it still has to evaluate a quadratic number of clas-
sifiers when computing the predicted class for a given example. In this
paper, we propose a method that allows a faster computation of the
predicted class when weighted or unweighted voting are used for com-
bining the predictions of the individual classifiers. While its worst-case
complexity is still quadratic in the number of classes, we show that even
in the case of completely random base classifiers, our method still out-
performs the conventional pairwise classifier. For the more practical case
of well-trained base classifiers, its asymptotic computational complexity
seems to be almost linear.

1 Introduction

Many learning algorithms can only deal with two-class problems. For multi-class
problems, they have to rely on class binarization procedures that transform the
original learning problem into a series of binary learning problems. A standard
solution for this problem is the one-against-all approach, which constructs one
binary classifier for each class, where the positive training examples are those be-
longing to this class and the negative training examples are formed by the union
of all other classes. An alternative approach, known as pairwise classification or
round robin classification has recently gained attention [3, 12]. Its basic idea is to
transform a c-class problem into c(c−1)/2 binary problems, one for each pair of
classes. This approach has been shown to produce more accurate results than the
one-against-all approach for a wide variety of learning algorithms such as sup-
port vector machines [7] or rule learning algorithms [3]. Moreover, Fürnkranz
[3] has also proved that despite the fact that its complexity is quadratic in the
number of classes, the algorithm can in fact be trained faster than the conven-
tional one-against-all technique. However, in order to obtain a final prediction,
we still have to combine the predictions of all c(c − 1)/2 classifiers, which can
be very inefficient for large values of c.

The main contribution of this paper is a novel solution for this problem.
Unlike previous proposals (such as [10]; cf. Section 3.2) our approach is not
heuristic but is guaranteed to produce exactly the same prediction as the full



pairwise classifier, which in turn has been shown to optimize the Spearman
rank correlation with the target labels [8]. In essence, the algorithm selects and
evaluates iterative pairwise classifiers using a simple heuristic to minimize the
number of used pairwise classifiers that are needed to determine the correct top
rank class of the complete (weighted) voting. We will describe and evaluate this
algorithm in Section 3.

2 Pairwise Classification

In the following, we assume that a multi-class problem has c classes, which
we denote with c1, . . . , cc. A pairwise or round robin classifier trains a set of
c(c − 1)/2 binary classifiers Ci,j , one for each pair of classes (ci, cj), i < j. We
will refer to the learning algorithm that is used to train the classifiers Ci,j as
the base classifier. Each binary classifier is only trained on the subset of training
examples that belong to the classes ci and cj , all other examples are ignored
for the training of Ci,j . Typically, the binary classifiers are class-symmetric, i.e.,
the classifiers Ci,j and Cj,i are identical. However, for some types of classifiers
this does not hold. For example, rule learning algorithms will always learn rules
for the positive class, and classify all uncovered examples as negative. Thus,
the predictions may depend on whether class ci or class cj has been used as the
positive class. As has been noted in [3], a simple method for solving this problem
is to average the predictions of Ci,j and Cj,i, which basically amounts to the use
of a so-called double round robin procedure, where we have two classifiers for
each pair of classes. We will use this procedure for our results with Ripper.
At classification time, each binary classifier Ci,j is queried and issues a vote (a
prediction for either ci or cj) for the given example. This can be compared with
sports and games tournaments, in which all players play each other once. In each
game, the winner receives a point, and the player with the maximum number of
points is the winner of the tournament. In our case, the class with the maximum
number of votes is predicted (ties are broken arbitrarily for the larger class).
In this paper, we will assume binary classifiers that return class probabilities
p(ci|ci ∨ cj) and p(cj |ci ∨ cj). These can be used for weighted voting, i.e., we
predict the class that receives the maximum number of votes:

c′ = arg max
i=1...c

c∑
j=1

p(ci|ci ∨ cj)

This procedure optimizes the Spearman rank correlation with the target ranking
[8]. Other algorithms for combining votes exist (cf. pairwise coupling [5, 12]), but
are not subject of this paper.

Note that weighted or unweighted voting produce a ranking of all classes.
For prediction problems, one is typically only interested in the top ranked class,
but in some applications one might also be interested in the complete ranking
of classes. Due to space restrictions we will focus here only on classification.
However, the extended version of this paper [9] deals also with the problem of



efficiently predicting a full class ranking. We propose for this case the so-called
Swiss-System, a common scheme for conducting multi-round chess tournaments.
Our results show that this algorithm offers a good trade-off between the number
of evaluated classifiers and the quality of the approximation of the complete
ranking.

3 Efficient Pairwise Classification

3.1 The Quick Weighted Voting (QWeighted) Algorithm

Weighted or unweighted voting predicts the top rank class by returning the
class with the highest accumulated voting mass after evaluation of all pairwise
classifiers. During such a procedure there exist many situations where particular
classes can be excluded from the set of possible top rank classes, even if they
reach the maximal voting mass in the remaining evaluations. Consider following
simple example: Given c classes with c > j, if class a has received more than
c − j votes and class b lost j votings, it is impossible for b to achieve a higher
total voting mass than a. Thus further evaluations with b can be safely ignored.

To increase the reduction of evaluations we are interested in obtaining such
exploitable situations frequently. Pairwise classifiers will be selected depending
on a loss value, which is the amount of potential voting mass that a class has
not received. More specifically, the loss li of a class i is defined as li := pi − vi,
where pi is the number of evaluated incident classifiers of i and vi is the current
vote amount of i. Obviously, the loss will begin with a value of zero and is
monotonically increasing.1 The class with the current minimal loss is one of
the top candidates for the top rank class. First the pairwise classifier Ca,b will

Algorithm 1: QWeighted

while ctop not determined do
ca ← class ci ∈ K with minimal li;
cb ← class cj ∈ K\{ca} with minimal lj & classifier Ca,b not yet evaluated;
if no cb exists then

ctop ← ca;

else
vab ← Evaluate(Ca,b);
la ← la + (1− vab);
lb ← lb + vab;

be selected for which the losses la and lb of the relevant classes ca and cb are
minimal, provided that the classifier Ca,b has not yet been evaluated. In the
case of multiple classes that have the same minimal loss, there exists no further
1 This loss is essentially identical to the voting-against principle introduced by [1, 2],

which we will discuss later on in Section 3.2.



distinction, and we select a class randomly from this set. Then, the losses la and
lb will be updated based on the evaluation returned by Ca,b (recall that vab is
interpreted as the amount of the voting mass of the classifier Ca,b that goes to
class ca and 1 − vab is the amount that goes to class cb). These two steps will
be repeated until all classifiers for the class cm with the minimal loss has been
evaluated. Thus the current loss lm is the correct loss for this class. As all other
classes already have a greater loss, cm is the correct top rank class. Theoretically,
a minimal number of comparisons of c− 1 is possible (best case). Assuming that
the incident classifiers of the correct top rank ctop always returns the maximum
voting amount (ltop = 0), ctop is always in the set {cj ∈ K|lj = minci∈K li}. In
addition, ctop should be selected as the first class in step 1 of the algorithm among
the classes with the minimal loss value. It follows that exactly c−1 comparisons
will be evaluated, more precisely all incident classifiers of ctop. The algorithm
terminates and returns ctop as the correct top rank. The worst case, on the
other hand, is still c(c− 1)/2 comparisons, which can, e.g., occur if all pairwise
classifiers classify randomly with a probability of 0.5. In practice, the number of
comparisons will be somewhere between these two extremes, depending on the
nature of the problem. The next section will evaluate this trade-off.

3.2 Related Work

Cutzu [1, 2] recognized the importance of the voting-against principle and ob-
served that it allows to reliably conclude a class when not all of the pairwise
classifiers are present. For example, Cutzu claims that using the voting-against
rule one could correctly predict class i even if none of the pairwise classifiers Cik

(k = 1 . . . c, k 6= i) are used. However, this argument is based on the assumption
that all base classifiers classify correctly. Moreover, if there is a second class
j that should ideally receive c − 2 votes, voting-against could only conclude a
tie between classes i and j, as long as the vote of classifier Cij is not known.
The main contribution of his work, however, is a method for computing poste-
rior class probabilities in the voting-against scenario. Our approach builds upon
the same ideas as Cutzu’s, but our contribution is the algorithm that exploits
the voting-against principle to effectively increase the prediction efficiency of
pairwise classifiers without changing the predicted results. The voting-against
principle was already used earlier in the form of DDAGs [10], which organize the
binary base classifiers in a decision graph. Each node represents a binary decision
that rules out the class that is not predicted by the corresponding binary classi-
fier. At classification time, only the classifiers on the path from the root to a leaf
of the tree (at most c−1 classifiers) are consulted. While the authors empirically
show that the method does not lose accuracy on three benchmark problems, it
does not have the guarantee of our method, which will always predict the same
class as the full pairwise classifier. Intuitively, one would also presume that a
fixed evaluation routine that uses only c− 1 of the c(c− 1)/2 base classifiers will
sacrifice one of the main strengths of the pairwise approach, namely that the
influence of a single incorrectly trained binary classifier is diminished in large
ensemble of classifiers [4].



Table 1. Comparison of QWeighted and DDAGs with different base learners on seven
multi-class datasets. Next to the average numbers of comparisons for QWeighted we
show their trade-off n−(c−1)

max−(c−1)
between best and worst case (in brackets).

Accuracy ∅ Comparisons
dataset c learner QWeighted DDAG QWeighted DDAG full

vehicle 4 NB 45.39 44.92 4.27 (0.423) 3 6
SMO 75.06 75.06 3.64 (0.213)
J48 71.99 70.92 3.96 (0.320)
JRip 73.88 72.46 3.98 (0.327)

glass 7 NB 49.07 49.07 9.58 (0.238) 6 21
SMO 57.01 57.94 9.92 (0.261)
J48 71.50 69.16 9.69 (0.246)
JRip 74.77 74.30 9.75 (0.250)

image 7 NB 80.09 80.09 9.03 (0.202) 6 21
SMO 93.51 93.51 8.29 (0.153)
J48 96.93 96.75 8.55 (0.170)
JRip 96.62 96.41 8.75 (0.183)

yeast 10 NB 57.55 57.21 15.86 (0.191) 9 45
SMO 57.68 57.41 15.52 (0.181)
J48 58.56 57.75 15.48 (0.180)
JRip 58.96 58.09 15.87 (0.191)

vowel 11 NB 63.84 63.64 17.09 (0.158) 10 55
SMO 81.92 81.52 15.28 (0.117)
J48 82.93 78.28 17.13 (0.158)
JRip 82.42 76.67 17.42 (0.165)

soybean 19 NB 92.97 92.97 27.70 (0.063) 18 171
SMO 94.14 93.41 28.36 (0.068)
J48 93.56 91.80 29.45 (0.075)
JRip 94.00 93.56 27.65 (0.063)

letter 26 NB 63.08 63.00 44.40 (0.065) 25 325
SMO 83.80 82.58 42.26 (0.058)
J48 91.50 86.15 47.77 (0.076)
JRip 92.33 88.33 45.01 (0.068)

3.3 Evaluation

We compare the QWeighted algorithm with the full pairwise classifier and
with DDAGs [10] on seven arbitrarily selected multi-class datasets from the
UCI database of machine learning databases [6]. We used four commonly used
learning algorithms as base learners (the rule learner Ripper, a Naive Bayes
algorithm, the C4.5 decision tree learner, and a support vector machine) all in
their implementations in the Weka machine learning library [11]. Each algo-
rithm was used as a base classifier for QWeighted, and the combination was
run on each of the datasets. As QWeighted is guaranteed to return the same
predictions as the full pairwise classifier, we are only interested in the number
of comparisons needed for determining the winning class.2 These are measured
for all examples of each dataset via a 10-fold cross-validation except for letter,
where the supplied testset was used. Table 1 shows the results. With respect
to accuracy, there is only one case in a total of 28 experiments (4 base classifiers
× 7 datasets) where DDAGs outperformed the QWeighted, which, as we have

2 As mentioned above, we used a double round robin for Ripper for both, the full
pairwise classifier and for QWeighted. In order to be comparable to the other
results, we, in this case, divide the observed number of comparisons by two.
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Fig. 1. Efficiency of QWeighted in comparison to a full pairwise classifier

noted above, optimizes the Spearman rank correlation. This and the fact that,
to the best of our knowledge, it is not known what loss function is optimized by
DDAGs, confirm our intuition that QWeighted is a more principled approach
than DDAGs. It can also be seen that the average number of comparisons needed
by QWeighted is much closer to the best case than to the worst case. Next
to the absolute numbers, we show the trade-off between best and worst case (in
brackets). A value of 0 indicates that the average number of comparisons is c−1,
a value of 1 indicates that the value is c(c− 1)/2 (the value in the last column).
As we have ordered the datasets by their respective number of classes, we can
observe that this value has a clear tendency to decrease with the number of the
classes. For example, for the 19-class soybean and the 26-class letter datasets,
only about 6 − 7% of the possible number of additional pairwise classifiers are
used, i.e., the total number of comparisons seems to grow only linearly with the
number of classes. This can also be seen from Fig. 1, which plots the datasets
with their respective number of classes together with a curve that indicates the
performance of the full pairwise classifier. Finally, we note that the results are
qualitatively the same for all base classifiers. QWeighted does not seem to de-
pend on a choice of base classifiers. For a more systematic investigation of the
complexity of the algorithm, we performed a simulation experiment. We assume
classes in the form of numbers from 1 . . . c, and, without loss of generality, 1
is always the correct class. We further assume pairwise base pseudo-classifiers
i ≺ε j, which, for two numbers i < j, return true with a probability 1−ε and false
with a probability ε. For each example, the QWeighted algorithm is applied
to compute a prediction based on these pseudo-classifiers. The setting ε = 0 (or
ε = 1) corresponds to a pairwise classifier where all predictions are consistent
with a total order of the possible class labels, and ε = 0.5 corresponds to the
case where the predictions of the base classifiers are entirely random.

Table 2 shows the results for various numbers of classes (c = 5, 10, 25, 50, 100)
and for various settings of the error parameter (ε = 0.0, 0.05, 0.1, 0.2, 0.3, 0.5).



Table 2. Average number n of pairwise comparisons for various number of classes and
different error probabilities ε of the pairwise classifiers, and the full pairwise classifier.
Below, we show their trade-off n−(c−1)

max−(c−1)
between the best and worst case, and an

estimate of the growth ratio log(n2/n1)
log(c2/c1)

of successive values of n.

c ε = 0.0 ε = 0.05 ε = 0.1 ε = 0.2 ε = 0.3 ε = 0.5 full

5 5.43 5.72 6.07 6.45 6.90 7.12 10
0.238 — 0.287 — 0.345 — 0.408 — 0.483 — 0.520 —

10 14.11 16.19 18.34 21.90 25.39 28.74 45
0.142 1.378 0.200 1.501 0.259 1.595 0.358 1.764 0.455 1.880 0.548 2.013

25 42.45 60.01 76.82 113.75 151.19 198.51 300
0.067 1.202 0.130 1.430 0.191 1.563 0.325 1.798 0.461 1.974 0.632 2.109

50 91.04 171.53 251.18 422.58 606.74 868.25 1225
0.036 1.101 0.104 1.515 0.172 1.709 0.318 1.893 0.474 2.005 0.697 2.129

100 189.51 530.17 900.29 1684.21 2504.54 3772.45 4950
0.019 1.058 0.089 1.628 0.165 1.842 0.327 1.995 0.496 2.045 0.757 2.119

Each data point is the average outcome of 1000 trials with the corresponding
parameter settings. We can see that even for entirely random data, our algorithm
can still save about 1/4 of the pairwise comparisons that would be needed for
the entire ensemble. For cases with a total order and error-free base classifiers,
the number of needed comparisons approaches the number of classes, i.e., the
growth appears to be linear. To shed more light on this, we provide two more
measures below each average: the lower left number (in italics) shows the trade-
off between best and worst case, as defined above. The result confirms that for a
reasonable performance of the base classifiers (up to about ε = 0.2), the fraction
of additional work reduces with the number of classes. Above that, we start
to observe a growth. The reason for this is that with a low number of classes,
there is still a good chance that the random base classifiers produce a reasonably
ordered class structure, while this chance is decreasing with increasing numbers
of classes. On the other hand, the influence of each individual false prediction of
a base classifier decreases with an increasing number of classes, so that the true
class ordering is still clearly visible and can be better exploited by QWeighted.
We tried to directly estimate the exponent of the growth function of the number
of comparisons of QWeighted, based on the number of classes c. The resulting
exponents, based on two successive measure points, are shown in bold font below
the absolute numbers. For example, the exponent of the growth function between
c = 5 and c = 10 is estimated (for ε = 0) as log(14.11/5.43)

log(10/5) ≈ 1.378. We can see
that in the growth rate starts almost linearly (for a high number of classes and
no errors in the base classifiers) and approaches a quadratic growth when the
error rate increases.

In summary, our results indicate that QWeighted always increases the effi-
ciency of the pairwise classifier: for high error rates in the base classifiers, we can
only expect improvements by a constant factor, whereas for the practical case
of low error rates we can also expect a significant reduction in the asymptotic
algorithmic complexity.



4 Conclusions

In this paper, we have proposed a novel algorithm that allows to speed up the
prediction phase for pairwise classifiers. QWeighted will always predict the
same class as the full pairwise classifier, but the algorithm is close to linear
in the number of classes, in particular for large numbers of classes, where the
problem is most stringent. For very hard problems, where the performance of
the binary classifiers reduces to random guessing, its worst-case performance is
still quadratic in the number of classes, but even there practical gains can be
expected. A restriction of our approach is that it is only applicable to combining
predictions via voting or weighted voting. There are various other proposals for
combining the class probability estimates of the base classifiers into an overall
class probability distribution (this is also known as pairwise coupling [5, 12]).
Nevertheless, efficient alternatives for other pairwise coupling techniques are an
interesting topic for further research.
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