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Abstract. Label ranking studies the problem of learning a mapping
from instances to rankings over a predefined set of labels. Hitherto
existing approaches to label ranking implicitly operate on an under-
lying (utility) scale which is not calibrated in the sense that it lacks
a natural zero point. We propose a suitable extension of label rank-
ing that incorporates the calibrated scenario and substantially extends
the expressive power of these approaches. In particular, our extension
suggests a conceptually novel technique for extending the common
learning by pairwise comparison approach to the multilabel scenario,
a setting previously not being amenable to the pairwise decomposi-
tion technique. We present empirical results in the area of text catego-
rization and gene analysis, underscoring the merits of the calibrated
model in comparison to state-of-the-art multilabel learning methods.

1 INTRODUCTION

Label ranking, a particular preference learning scenario [7], studies
the problem of learning a mapping from instances (typically repre-
sented by feature vectors) to rankings over a finite number of pre-
defined labels, in this context also referred to as alternatives. Ap-
proaches that operate in this framework include Ranking by pairwise
comparison (RPC) as a natural extension of pairwise classification
[6] and constraint classification which aims at learning a linear util-
ity function for each label [8].

Although this framework is very general in the sense that simpler
learning problems, such as classification or l-multilabel classifica-
tion can be embedded as special cases, it is restricted to ranking the
labels on a non-calibrated scale, that is, a scale which lacks a nat-
ural zero-point. Learning problems, such as conventional multilabel
learning, which require a bipartite partition into complementary sets
(relevant and non-relevant) do not admit a representation as special
instances of either RPC or constraint classification. More generally,
as a consequence of the underlying non-calibrated scales, both ap-
proaches cannot learn to determine the relevant/non-relevant cutoff,
even though this information is specified in the training data.

We will present a general model avoiding the aforementioned
drawbacks by incorporating a calibrated scale which contains a natu-
ral zero-point. Extending conventional label ranking approaches, this
novel framework provides a means to represent and learn bipartite
partitions of alternatives. In particular, it suggests a conceptually new
technique for extending the common pairwise classification learning
approach to the multilabel scenario, a setting previously not being
amenable to a pairwise decomposition technique.
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2 LABEL RANKING

In label ranking, the problem is to learn a mapping from instances
x ∈ X to rankings �x (total strict orders) over a finite set of labels
L = {λ1, . . . , λc}, where λi �x λj means that, for instance x, label
λi is preferred to λj . A ranking over L can be represented by a per-
mutation as there exists a unique permutation τ such that λi �x λj

iff τ(λi) < τ(λj), where τ(λi) denotes the position of the label λi

in the ranking. The target space of all permutations over c labels will
be referred to as Sc.

It has been pointed out in several publications [8; 6; 3] that a va-
riety of learning problems may be viewed as special cases of label
ranking (perhaps supplemented by a straightforward projection of the
output space Sc) hence underscoring the importance of this setting.
Among those are the following:

• Multiclass Classification: A single class label λi is assigned to
each example x. This implicitly defines the set of preferences
Rx = {λi �x λj | 1 ≤ j 6= i ≤ c}. The output space Sc is
projected to the first component.

• l-Multilabel Classification: Each training example x is associated
with a subset Px ⊆ L of possible labels. This implicitly defines
the set of preferences Rx = {λi �x λj | λi ∈ Px, λj ∈ L\Px}.
The output space is projected to the first l components.

RPC and constraint classification provide a general means to ex-
tend arbitrary (linear) binary classification algorithms to the label
ranking scenario. Both approaches require (not necessarily complete)
sets of pairwise preferences associated with the training instances to
learn a ranking model which, as a post-processing step, may be pro-
jected from Sc to the specific output space Y .

The key idea of RPC is to learn, for each pair of labels (λi, λj), a
binary model Mij(x) that predicts whether λi �x λj or λj �x λi

for an input x. In order to rank the labels for a new instance, predic-
tions for all pairwise label preferences are obtained and a ranking that
is maximally consistent with these preferences is derived, typically
by means of a voting scheme.3 This technique describes a natural
extension of pairwise classification, i.e., the idea to approach a mul-
ticlass classification problem by learning a separate model for each
pair of classes.

As we will see in the next section, conventional multilabel classi-
fication can not be embedded as a special case of the label ranking
setting because, even though RPC or constraint classification could
be used to rank the labels, they do not include a mechanism for ex-
tracting the set of relevant labels from this ranking.

3 To account for equal vote statistics, we consider random tie breaking in our
implementation.



3 MULTILABEL CLASSIFICATION AND
RANKING

Multilabel classification refers to the task of learning a mapping from
an instance x ∈ X to a set Px ⊂ L, where L = {λ1, . . . , λc} is
a finite set of predefined labels, typically with a small to moderate
number of alternatives. Thus, in contrast to multiclass learning, alter-
natives are not assumed to be mutually exclusive such that multiple
labels may be associated with a single instance. The set of labels Px

are called relevant for the given instance, the set Nx = L \ Px are
the irrelevant labels.

A common approach to multilabel classification is binary rele-
vance learning (BR). BR trains a separate binary relevance model
Mi for each possible label λi, using all examples x with λi ∈ Px as
positive examples and all those with λi ∈ Nx as negative examples.
For classifying a new instance, all binary predictions are obtained
and then the set of labels corresponding to positive relevance classi-
fication is associated with the instance. This scenario is, for exam-
ple, commonly used for evaluating algorithms on the REUTERS text
classification benchmark [10].

In the following, we will study the task of multilabel ranking,
which is understood as learning a model that associates with a query
input x both a ranking of the complete label set {λ1, . . . , λc} and a
bipartite partition of this set into relevant and irrelevant labels. Thus,
multilabel ranking can be considered as a generalization of both mul-
tilabel classification and ranking.

In conventional label ranking, a training example typically con-
sists of an instance x ∈ X , represented with a fixed set of fea-
tures, and a set of pairwise preferences over labels Rx ⊂ L2, where
(λ, λ′) ∈ Rx is interpreted as λ �x λ′. In multilabel classification,
the training information consists of a set Px of relevant labels and,
implicitly, a set Nx = L \ Px of irrelevant labels. Note that this in-
formation can be automatically transformed into a set of preferences
R̂x = {(λ, λ′) | λ ∈ Px ∧ λ′ ∈ Nx} (cf. Fig. 1 (a)).

While it is straightforward to represent the training information
for multilabel classification as a preference learning problem, the al-
gorithms that operate in this framework only produce a ranking of
the available options. In order to convert the learned ranking into
a multilabel prediction, the learner has to be able to autonomously
determine a point at which the learned ranking is split into sets of
relevant and irrelevant labels. Previous applications of ranking tech-
niques to multilabel learning, such as [2], have ignored this problem
and only focused on producing rankings, but not on determining this
correct zero point for splitting the ranking.

Multilabel ranking can, for example, be realized if the binary clas-
sifiers provide real-valued confidence scores or a posteriori proba-
bility estimates for classification outcomes. Schapire & Singer [12]
included an ad hoc extension to multilabel ranking in their experi-
mental setup by ordering labels according to decreasing confidence
scores.

In the following, we will introduce calibrated ranking, a concep-
tually new technique for extending the common pairwise learning
approach to the multilabel scenario, a setting previously not being
amenable to a pairwise decomposition approach. Within our frame-
work, RPC can solve both multilabel classification and ranking prob-
lems in a consistent and generally applicable manner.

4 CALIBRATED LABEL RANKING

In this section, we will propose a general model avoiding the afore-
mentioned drawbacks by incorporating a calibrated scale which con-

tains a natural zero-point. This zero-point provides a means to distin-
guish between the top and the complementary set of labels.

Let us proceed to a formal definition of the hypothesis space un-
derlying the calibrated label ranking framework:

Definition 4.1 (Calibrated Label Ranking Model). Denote by X
a nonempty input space and by S0

c the space of permutations over
the set {λ0, λ1, . . . , λc}, that is, the original set of labels plus an
additional virtual label λ0. Then, a model h : X → S0

c is referred
to as a calibrated label ranking model.

The key idea is to use the virtual label λ0 as a split point between
relevant and irrelevant labels: all relevant labels are preferred to λ0,
which in turn is preferred to all irrelevant labels. Thus, a calibrated
ranking

λi1 � · · · � λij � λ0 � λij+1 � · · · � λic (1)

induces both a ranking among the labels,

λi1 � · · · � λij � λij+1 � · · · � λic , (2)

and a bipartite partition into

P = {λi1 , . . . , λij} and N = {λij+1 , . . . , λic} (3)

in a straightforward way.
As sketched in the previous section, the training information for a

multilabel ranking problem consists of a set of preferences Rx, and
subsets of labels Px, Nx ⊂ L with Px ∩ Nx = ∅, which distin-
guish, respectively, positive labels that should be ranked above the
zero-point element λ0 and negative labels to be ranked below.4 The
bipartite partitions associated with the training instances is used to,
with the help of the virtual label λ0, induce additional constraints:
the calibrated classifier h should predict λ �x λ0 for all λ ∈ Px and
vice-versa λ0 �x λ′ for all λ′ ∈ Nx (cf. Fig. 1 (b)). Moreover, as a
consequence of transitivity, it should predict λ �x λ′ for all λ ∈ Px

and λ′ ∈ Nx (Fig. 1 (c)). Combining the new partition-induced pref-
erence constraints with the original set of pairwise preferences for
the training data, i.e.,

R′
x

def
= Rx ∪ {(λ, λ0) | λ ∈ Px}

∪ {(λ0, λ
′) | λ′ ∈ Nx}

∪ {(λ, λ′) | λ ∈ Px ∧ λ′ ∈ Nx}, (4)

the calibrated ranking model becomes amenable to previous ap-
proaches to the original label ranking setting: The calibrated ranking
model can be learned by solving a conventional ranking problem in
the augmented calibrated hypothesis space, which may be viewed as
a ranking problem with c + 1 alternatives, with respect to the modi-
fied sets of constraints R′

x on the original labels λ1, . . . , λc and the
virtual label λ0. Therefore, this unified approach to the calibrated set-
ting enables many existing techniques, such as RPC and constraint
classification [1], to incorporate and exploit partition-related prefer-
ence information and to generalize to settings where predicting the
zero-point is required. We will discuss an exemplary application of
this framework to pairwise ranking in Section 5.

4 In general, we do not need to assume complete training data, neither for the
sets of preferences (Rx might even be empty) nor for the partitions (which
do not necessarily have to cover all the labels, i.e., Px∪Nx 6= L). Besides,
in a noisy learning scenario, it may happen that (λ′, λ) ∈ Rx even though
λ ∈ Px and λ′ ∈ Nx. In this paper, we will not further consider these
cases, and assume a strict multilabel scenario.



(a) the set of preferences representing a
multilabel classification problem

(b) introducing a virtual label λ0 that
separates P and N

(c) the set of preferences representing a
calibrated label ranking problem

Figure 1. Calibrated Label Ranking

4.1 Relation to Binary Relevance Learning
Conventional pairwise label ranking learns a binary preference
model Mij for all combinations of labels λi and λj with 1 ≤ i <
j ≤ c,5 where instances x with (λi, λj) ∈ Rx are associated with
positive and those with (λj , λi) ∈ Rx with negative class labels (cf.
Figure 1 (b)). In the calibrated scenario, the partition-related con-
straints with respect to λ0 as defined in (4) are required to learn an
additional set of binary preference modelsM0j with 1 ≤ j ≤ c. It is
important to notice, that these additional models are identical to the
common binary-relevance models Mj .

Theorem 4.2. The models M0j that are learned by a pairwise ap-
proach to calibrated ranking, and the models Mj that are learned
by conventional binary ranking are equivalent.

Proof. Each training example x, for which label λj is relevant, is, by
definition, a positive example in the training set for model Mj . The
calibrated ranking approach adds the preference λj �x λ0, which
means that x will be a negative example for M0j . Similarly, if λj is
irrelevant, x is negative for Mj and positive for M0j . Assuming a
symmetric learner, the learned models will be the equivalent in the
sense that Mj = −M0j .

Thus, calibrated RPC may be viewed as a method for combin-
ing RPC with conventional binary ranking, in the sense that the bi-
nary models that are learned for RPC, and the binary models that are
learned for BR, are pooled into a single ensemble. However, CRPC
provides a new interpretation to the BR models, that not only allows
for ranking the labels, but also to determine a suitable split into rele-
vant and irrelevant categories.

By training a larger number of pairwise models, the calibrated
extension of RPC achieves two potential advantages over simple
relevance learning. Firstly, it provides additional information about
the ranking of labels. Secondly, it may also improve the discrim-
ination between relevant and irrelevant labels. In fact, it is legiti-
mate to assume (and indeed supported by empirical evidence in the
next section) that the additional binary models can somehow “stabi-
lize” the related classification. For example, while an error of model
Mj = −M0j definitely causes a misclassification of label λj in
simple relevance learning, this error might be compensated by the
models Mij , 1 ≤ i 6= j ≤ c, in the case of RPC. The prize to pay
is, of course, a higher computational complexity, which, as we will
show in the next section, depends on the maximum number of labels
for an example.
5 The case i > j is typically not required as a consequence of the symmetry

of binary classifiers with respect to positive and negative instances.

4.2 Computational Complexity
In this section, we will derive bounds for the number of training ex-
amples that are constructed for training the pairwise classifiers. The
total computational complexity depends on the complexity of the
base classifier used for processing these examples. In brief, super-
linear classifiers like SVMs will profit from distributing the work-
load on many small problems instead of fewer larger problems as for
the BR approach.

Theorem 4.3. CRPC is trained on O(lcn) examples, where l =
maxx|Px| is the maximum number of relevant labels that may be
associated with a single training example, c is the number of possible
labels, and n is the number of original training examples.

Proof. In previous work, it has been shown that training a pairwise
classifier requires O(cn) training examples [5]. To see this, note that
each of the n original training examples will only appear in the train-
ing sets of c − 1 models, therefore the total number of training ex-
amples that have to be processed is (c− 1)n.

For multilabel classification, RPC will compare a training exam-
ple’s |Px| relevant labels to all |Nx| = c − |Px| labels that are not
relevant for this example. In addition, CPRC will include every ex-
ample in the c training sets of the models M0j , j = 1 . . . c.

Thus, each example occurs in |Px|× |Nx|+c = |Px|(c−|Px|)+
c < |Px|c + c < (l + 1)c training sets, and the total number of
training examples is therefore O(lcn).

This result shows that the complexity of training CRPC depends
crucially on the maximum number of labels in the training exam-
ples. For the case of l = 1, i.e., for conventional pairwise classifica-
tion, we get the linear bound that was shown in [5].6 For multilabel
classification with a maximum number of l labels per example, we
still have a bound that is linear in the number of examples and the
number of classes, i.e., the complexity is within a factor of l of the
O(cn) examples needed for training a BR. We would like to point
out that in many practical applications, the bound l is determined by
the procedure that is used for labeling the training examples, and is
independent of c. A typical example is the number of keywords that
are assigned to a text, which is rarely ever more than ten.

Thus, for practical purposes, the complexity of CRPC is within a
constant factor of l of the complexity of BR. Of course, the worst-
case complexity, which would occur when all possible label subsets
are a priori equally likely, is O(c2n).

6 Note that the O-notation hides, in this case, a constant factor of two, which
results from the introduction of the virtual label λ0.



Table 1. Experimental Results on the Yeast Dataset.

Degree 1 2 3 4 5 6 7 8 9 Optimum
PREC 0.762* 0.768* 0.760* 0.767* 0.772* 0.772* 0.773 0.770 0.767 0.773

CRPC RANKLOSS 0.168* 0.164* 0.170* 0.164* 0.159* 0.158* 0.158* 0.160 0.162 0.158
ONEERROR 0.230 0.224* 0.230* 0.229* 0.229* 0.233 0.230 0.234 0.234 0.224
HAMLOSS 0.199 0.197 0.208* 0.204* 0.199* 0.194 0.193 0.192 0.193 0.192
PREC 0.746 0.755 0.733 0.742 0.755 0.762 0.768 0.772 0.771 0.772

BR RANKLOSS 0.199 0.183 0.197 0.188 0.178 0.171 0.165 0.161 0.160 0.160
ONEERROR 0.241 0.248 0.277 0.268 0.244 0.236 0.229 0.227 0.229 0.227
HAMLOSS 0.199 0.198 0.219 0.209 0.202 0.196 0.192 0.192 0.192* 0.192
Bold face indicates superior performance comparing models with the same kernel parameters (except for the optimum-related column).

Stars indicate statistical significance at the α = 0.05 level using a paired t-test.

Table 2. Experimental Results on the Reuters2000 Dataset.
C 1 10 100 Optimum
PREC 0.943 0.944 0.943 0.944

CRPC RANKLOSS 0.031 0.031 0.031 0.031
ONEERROR 0.052 0.052 0.052 0.052
HAMLOSS 0.067 0.069 0.070 0.067
PREC 0.940 0.935 0.933 0.940

BR RANKLOSS 0.035 0.038 0.039 0.035
ONEERROR 0.053 0.061 0.063 0.053
HAMLOSS 0.067 0.069 0.071 0.067

Note: Bold face indicates superior performance comparing models with the same
kernel parameters (except for the optimum-related column).

5 EMPIRICAL EVALUATION
The purpose of the following section is to provide an empirical com-
parison of calibrated RPC with the common binary-relevance ap-
proach in the domain of multilabel classification and ranking. The
datasets that were included in the experimental setup cover two ap-
plication areas in which multilabeled data are frequently observed:
text categorization and bioinformatics.

• Yeast: The Yeast gene functional multiclass classification problem
consists of 1500 genes in the training and 917 in the test set, rep-
resented by 103 features, where each gene is associated with a
subset of the 14 functional classes considered [4].

• Reuters2000: The Reuters Corpus Volume I is one of the currently
most widely used test collection for text categorization research.
As the full corpus contains more than 800000 newswire docu-
ments, we restricted our experiments to a subset distribution of
five times 3000 training and 3000 test documents which is pub-
lically available as a preprocessed version.7 The documents are
represented using stemmed word frequency vectors (normalized
to unit length) with a TFIDF weighting scheme and elimination
of stopwords resulting in 47152 features. Each document is asso-
ciated with a subset of the 101 categories present in the dataset.
The number of categories was reduced to 10 in our experiments
by sequentially grouping the original categories into buckets of
roughly equal size where each bucket corresponds to a single new
label which is associated with positive relevance if at least one of
the labels in the bucket is relevant.

We replicated the experimental setup in [4] to conduct the empiri-
cal evaluation on the Yeast dataset where a predefined split into train-
ing and test data was given. The four different measures considered
cover both multilabel classification and ranking performance:
Preliminaries: For a multilabel ranking model h and a given instance
x, let τ(λi) denote the position of λi in the predicted ranking (with

7 http://www.csie.ntu.edu.tw/˜cjlin/libsvmtools/
datasets/

λ0 being removed from the ranking), τ−1(i) the label λ having as-
signed position i, and P the set of relevant labels as predicted by
CRPC.

Precision (PREC) assesses the multilabel ranking performance and
is a frequently used measure in Information Retrieval:

PREC(h, x, Px)
def
=

1

|Px|
X

λ∈Px

|{λ′ ∈ Px|τ(λ′) ≤ τ(λ)}|
τ(λ)

(5)

The ranking loss (RANKLOSS) also measures ranking perfor-
mance as it evaluates the average fraction of pairs of labels which
are not correctly ordered:

RANKLOSS(h, x, Px)
def
=

˛̨
{(λ, λ′) ∈ Px ×Nx | τ(λ) > τ(λ′)}

˛̨
|Px||Nx|

The one-error loss (ONEERROR) evaluates the multilabel ranking
performance from a restricted perspective as it only determines if the
top-ranked label is actually relevant:

ONEERROR(h, x, Px)
def
=

(
1 if τ−1(1) 6∈ Px,
0 otherwise.

(6)

The Hamming loss (HAMLOSS) assesses the multilabel classifica-
tion performance in terms of the average binary (non-)relevant error:

HAMLOSS(h, x, Px)
def
=

1

|L|
˛̨
P4Px

˛̨
(7)

In compliance with [4], support vector machines (SVMs) [13] pro-
vided the underlying classifiers for the binary-relevance multilabel
model, as well as for the calibrated ranking model which was built
on top of SVMs with polynomial kernels. The degree of the kernel
varied from 1 to 9 and the margin-error penalty was fixed to C = 1.
Linear kernels with C ∈ {1, 10, 100} were used on the Reuters2000
dataset as they have demonstrated excellent performance in many
publications studying text mining problems [9].

The empirical results on the Yeast dataset, depicted in Table 1,
demonstrate that the calibrated ranking model is a promising al-
ternative to the common binary-relevance approach to multilabel
classification and ranking. Over a wide range of parameter values,
the performance of the calibrated ranking is superior to the binary-
relevance approach and comparatively stable, thus indicating a high
level of robustness. For the optimal choice of parameters with respect
to the testset (which could be approximately determined by cross-
validation or leave-one-out estimation in practice), the gap is decreas-
ing while calibrated ranking still outperforms its binary-relevance
counterpart on three of the four evaluation measures. Interestingly,
the only measure for which both approaches achieve comparable ac-
curacy, namely, the Hamming loss, evaluates the multilabel accuracy

http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/
http://www.csie.ntu.edu.tw/~cjlin/libsvmtools/datasets/


in a manner that seems to be more tailored to the binary-relevance
approach from a theoretical point of view as it computes the average
(independently measured) binary-relevance error. Note that although
the pattern observed in Table 1 might suggest that further increasing
the degree of the polynomial kernel could improve the experimen-
tal results of the binary-relevance approach, this assumption could
not be validated in an additional experiment. Despite that we could
not set up a perfect replication of [4] as certain parameters (e.g., the
margin-penalty values C) were not published, we nevertheless note
that the performance of calibrated RPC compares favorably to those
reported in [4] for the ranking and Hamming loss, while the results
in terms of precision are comparable to those of the herein proposed
SVM ranking algorithm. With respect to the one-error loss the per-
formance is slightly worse. Moreover, there is a substantial margin
between the performance of Boostexter [12], a boosting-based mul-
tilabel learning system, on the Yeast benchmark dataset (as published
in [4]) and the calibrated ranking technique with respect to all four
evaluation measures considered in the experimental setup.

The empirical results on the Reuters2000 dataset (see Table 2)
clearly support the conclusions drawn from the Yeast dataset. In
terms of the Hamming loss, both approaches achieve comparable ac-
curacy, while calibrated ranking outperforms binary-relevance multi-
label learning for the remaining evaluation measures. Again, the mar-
gin is typically smaller for the optimal choice of parameter values,
whereas the difference in accuracy is larger when comparing the re-
sults with the parameter C being fixed. Moreover, calibrated ranking
tends to be more stable than binary-relevance learning with respect
to the choice of the underlying binary classifiers. Furthermore, addi-
tional experiments using different methods for reducing the number
of labels, such as selecting only the most frequent relevant labels (cf.,
[12]), showed qualitatively comparable outcomes.

6 RELATED WORK
Schapire & Singer [11] derived a family of multilabel extensions
in the framework of AdaBoost (referred to as AdaBoost.MH and
AdaBoost.MR) which provided the algorithmic basis for the Boost-
exter text and speech categorization system [12]. For the online learn-
ing setting, a computationally efficient class of perceptron-style algo-
rithms for multilabel classification and ranking was proposed in [2].
In a manner similar to the above mentioned approaches, the multi-
label generalization of support vector machines advocated by Elis-
seeff & Weston [4] exploits comparative preferences among pairs of
labels as defined for the multilabel case in Section 2, while lacking a
natural approach to determine the relevance zero-point in the multi-
label ranking.

7 CONCLUDING REMARKS
We have proposed a unified extension to overcome the severe restric-
tion on the expressive power of previous approaches to label ranking
induced by the lack of a calibrated scale. This unified approach to the
calibrated ranking setting enables general ranking techniques, such
as ranking by pairwise comparison and constraint classification, to
incorporate and exploit partition-related preference information and
to generalize to settings where predicting the zero-point is required.
In particular, the calibrated extension suggests a conceptually novel
technique for extending the common learning by pairwise compar-
ison technique to the multilabel scenario, a setting previously not
being amenable to pairwise decomposition. A particular limitation
of the binary-relevance extension to multilabel ranking, which is not

shared by the calibrated framework, consists in the fact that it only
applies to soft-classifiers providing confidence scores in the predic-
tion. Exploring the benefits of calibrated ranking with binary-valued
classifiers is a promising aspect of future work. Experimental results
in the areas of text categorization and gene analysis underscore the
merits of our calibrated framework from an empirical point of view.
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